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Summary  

Geoinformation systems and remote sensing proved the extent to which they can 

significantly contribute to the emergency response. In the context of decision 

making in emergency situations, high-quality and timely information, accessibility, 

defined standards, user‐friendly interfaces, and appropriate visualisations are all 

factors of great significance and help.  

Displacement settings represent a particularly complex case of emergency. The 

magnitude of displacement is rising, and nowadays it represents a global theme, 

involving both developed and developing countries. Displaced people’s camps and 

settlements are getting more numerous and more crowded and the tendency of a 

high fraction of them is to lose their temporary nature to become permanent and 

extensive. Managing displacement settings and providing humanitarian support is 

crucial.  

At the same time, the geospatial world is expanding. The availability of open data 

and free and open source tools is vast, and the capacities made freely available to 

extract information from it are growing, starting to be based on cloud 

infrastructures.  

The starting point of the proposed research is the impression of an existing gap 

between available data and the operational use of it. The amount of data generated 

is impressive and its quality has proven to be good or high, embedding 

characteristics such as timeliness and accessibility. The majority of remote sensing 

applications in the field of displaced populations recurs to very high-resolution 

imagery, whose cost is not negligible and whose temporal resolution and spatial 

coverage is lower compared to high-resolution imagery.  

From field experience it has also emerged that the information extraction task for 

operational use is generally left to the end user, who sometimes might not have the 

ability or the resources to use or make best use out of the available data.  

Hence, the research questions arise. Is it possible to apply in the context of 

displacement standardized, operationally focused and simple (relatively to the end 

user) methods to take advantage of the large quantity of data and of the most recent 

processing capacities available? Can high-resolution open imagery be implemented 

in applications supporting displacement contexts? What are the potential 

applications of high-resolution open imagery in the context of displacement? 

Keywords: GIS, remote sensing, Sentinel-2, emergency, IDP, refugees, 

displacement, DIAS 
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Chapter 1 

1. Introduction 

1.1. Displacement as a global event 

Natural disasters, including climate change induced disasters, and conflicts are 

increasingly affecting population worldwide (UNHCR, 2019a; UNHCR, 2018).  

Displacement is inevitably arising consequently (UNHCR, 2019; Mastrojeni and 

Pasini, 2017). Forced displacement is expected to increase over the course of the 

century (UNHCR, 2019). Worldwide, we currently witness 68.5 million of forcibly 

displaced people, of which 40 million Internally Displaced People (IDP), 25.4 

million refugees and 3.1 asylum-seekers (UNHCR, 2019). Displacement will 

exacerbate the factors leading to conflicts (UNHCR, 2019a), developing a negative 

self-impacting feedback. Camps are the form of settlement where displaced people 

(either IDP and refugees) may end up concentrating and residing (WHO, 2019; 

UNHCR, 2015). 

 

The amount of news that is possible to read every day about displaced people 

camps is an indicator of the magnitude of the event. From the world’s largest 

refugee camp in Uganda, Bidibidi camp, hosting almost 230,000 people (The 

Guardian, 2018), to the Syrian Za’atari (The Guardian, 2015) and Bangladesh’s 

Rohingya camps (The Guardian, 2018a), recently threated and heavily affected by 

heavy rains and floods. It is not only a developing world theme, though, since 

displaced camps can commonly be set up in the aftermaths of any common 

emergency, such as an earthquake, like it happened for the earthquakes that hit Italy 

(L’Espresso, 2009). Displaced people camps are getting more and more numerous 

and crowded. The tendency for many of these camps, especially in developing 

countries, is to lose their temporary nature to become permanent and extensive, in 

terms of permanence and amount of hosted population. Managing these camps, 

monitoring, and improving the social, sanitary, and environmental condition of 

hosted population is the key focus of humanitarian agencies and organizations.  
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Displacement is lately becoming topic of research (Oloruntoba et al., 2018) and 

it keeps growing as an operational and technical concern of humanitarian agencies 

and organizations, together with the factors exacerbating it such as climate change. 

A new branch of research is focusing on the care of displaced people. As an 

example, the research in humanitarian logistics is recently opening to the theme of 

IDP and refugees (Oloruntoba et al., 2018). The field of humanitarian logistics was 

defined by Thomas and Kopczak in 2005 as “the process of planning, implementing 

and controlling the efficient, cost-effective flow and storage of goods and materials, 

as well as related information, from the point of origin to the point of consumption 

for the purpose of alleviating the suffering of vulnerable people” (Thomas et al., 

2005). 

 

The main motivation of this research is what is thought to be a growing need 

for optimized procedures and tools in the world of information and data in support 

of emergencies. It is well known how timely, accurate, standardized, and accessible 

data and information are crucial in emergency settings (Konecny et al., 2010), and 

geospatial data and satellite-based observation are increasingly used to respond to 

emergencies (Voigt et al., 2016). Most recent emergency events have also exposed 

the limits of the humanitarian community in coordinating and efficiently use 

information on most urgent needs of affected population in emergency contexts 

(Westrope et al., 2013). The planning, management and maintenance of a displaced 

people camp can be considered as an emergency, and information and data about 

the camp are crucial for humanitarian actors to plan response and relief (Füreder et 

al., 2015).   

 

Displacement is an event that impacts society as a whole. Displacement is 

considered a cross-countries and multidisciplinary event, into which global efforts 

already flow, but that still remain challenging, complex and needy of several and 

dynamic solutions. Furthermore, the humanitarian operations in displaced people 

camps, starting from logistics operations, are potentially well supported by 

geospatial applications. 

1.2. Geospatial information in 

emergency contexts 

The geospatial world is nowadays vast, inter-disciplinary and continuously 

revised through new technologies. The production of data and their availability is 

massive and recent platforms make geospatial data, in terms of tabular, vector data 

or satellite imagery, continuously freely available and updated. Crowdsourcing 

communities such as OpenStreetMap (OSM) produce and update a detailed map of 

the world and respond to most emergencies via their Humanitarian OpenStreetMap 

Team (HOT) (Humanitarian OpenStreetMap Team, 2019). The most recent cloud-

based geospatial processing platforms, such as Google Earth engine (GEE), include 
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a vast database of freely available satellite imagery and geospatial datasets and the 

possibility to run geospatial analysis on a cloud infrastructure (Google Earth 

Engine, 2019). The latest developments in the geospatial world include applications 

of machine learning, training models on imagery and existing geospatial data with 

the aim of, among others, making predictions for areas where no data is available 

(MVAM, 2019) or automatically extracting features of interest from satellite 

imagery (Bramhe et al., 2018).  

 

The vertical applications of produced data and available tools are likewise vast, 

and an already quite extensive literature about applications for supporting 

humanitarian operations in displaced people camps exists. Population monitoring, 

groundwater exploration, environmental impact assessment or land degradation 

(Füreder et al., 2015) are few examples, as they are going to be covered in the 

section framing the research topic.  

 

The starting point of the proposed research is the impression of an existing gap 

between available data and the operational use of it. The amount of data generated 

is impressive and its quality has proven to be good or high, for instance for 

crowdsourced OpenStreetMap data (Minghini et al., 2018). Open data, in addition, 

embed quality such as timeliness and accessibility (Elia et al., 2018), which are 

considered to be useful in the context of displaced people camps (Füreder et al., 

2015). Furthermore, from the field experience briefly exposed in the next section, 

it has emerged that the operational information extraction task is generally left to 

the end user, who sometimes might not have the ability or the resources to use or 

make best use out of the available data.  

1.3. A field experience 

A field experience parallel and connected to the topic of this research was 

carried out by the author in 2019 in Uganda with the REACH IMPACT 

(https://www.impact-initiatives.org/) NGO, based in Kampala. This experience 

offered the possibility to experience actual field issues connected with geospatial 

information in displacement contexts. The NGO’s main activity, indeed, is to 

facilitate the development of information tools and products that enhance the 

humanitarian community’s decision-making and planning capacity. In Uganda, this 

NGO mainly works in performing assessments related to different sectors such as 

Multi Sectors Needs Assessment, House Land and Property, and others, in all 30 

existing refugee settlements and in urban refugee locations, such as Kampala 

(IMPACT, 2021).  

 

Thanks also to this field experience, it was possible to understand current best 

practices in the field of data collection and data management in support to displaced 

people camps. In addition, a vision on potential gaps and room for improvement in 

existing methodologies and where new methodologies could be explored in support 

https://www.impact-initiatives.org/
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to humanitarian operations in displaced people camps was acquired. The 

operational use of available data and the limits of a team in accessing, 

understanding, and extracting relevant information from the data when needed was 

experienced. How a needs assessment is performed and how geospatial methods 

can support it was a crucial aspect of this field experience.  

 

Key take away points of this field experiences were: 

- The evidence of the existing room for automation of processes in 

optimizing the information flow in displacement context related 

emergencies.  

 

-  The evidence that the operational information extraction task is generally 

left to the end user, who sometimes might not have the ability or the 

resources to use or make best use out of the available data. 

1.4. Research questions and objectives 

The main objective of the research is in first place to explore and investigate 

the applications of geospatial tools and methods in support of emergency settings. 

In particular, understanding how data and information, particularly the geospatial 

component of them, fits in the context of humanitarian operations in displaced 

people camps or settlements. After exploring and evaluating current best-practices 

in the field of data collection and management in support of displaced people 

camps, the aim is to identify potential research gaps. The ultimate objective is to 

make a step toward the varying and complex information needs of the humanitarian 

displacement contexts, possibly bridging the large amount of open data and free 

and open source processing capacities available with existing standardized 

operational needs. The importance and the use of the geospatial component of data 

and information has increased over the past years in the emergency sector. This 

research is expected to explore and investigate applications of geospatial 

technologies in support of emergency settings, particularly in the complex context 

of displaced people camps and settlements. 

1.4.1. Specific research questions 

How is the geospatial technology currently supporting humanitarian operations 

in displacement settings? What geospatial/non-geospatial method or combination 

of methods currently meet information needs in displacement settings (remote 

sensing, drones, GPSs, databases, platforms, and apps, etc.)? What are the needs in 

terms of information in displacement contexts? Is there room for automation of 

processes to obtain higher efficiency of data?  Is the large availability of data in this 

context optimally used and if not, how can this be optimized? Is it possible to apply 

in the context of displacement standardized, operationally focused and simple 

(relatively to the end user) methods to take advantage of the large quantity of data 



 

 
18 

and of the most recent processing capacities available? Can high-resolution open 

imagery be implemented in applications to displacement contexts? What are the 

potential applications of high-resolution open imagery in the context of 

displacement? 

1.4.2. Aim and contribution of the research 

The general aim of this research is a potential contribution in exploitation of 

available technologies and data with an operational use objective. This bridging the 

context and research in humanitarian operation for displacement settings with the 

research in geospatial methods and tools, having in mind standards and real needs 

in humanitarian and emergency operations. Strongly based on real case studies and 

observations, the research is aimed at testing and exploring different available tools 

and in understanding limitations and potentials. 

 

Literature and operational real cases examples on applications of geospatial 

methods for the care of displaced people exist. Anyhow, the technologies are 

moving fast, and more and more data are made freely available as well as processing 

capacities. Understanding whether available open data and the new open-source 

and cloud-based processing capacities can contribute to the emergency 

management sector and particularly to the displacement settings context is also one 

of the expected contributions. 

1.4.3. Target subjects  

The main domain of interest of the research is the humanitarian and emergency 

management domain. Targets can be humanitarian actors as well as other 

researchers in the attempt to fit in a wider network of studies. Once the results of 

the research would be available, it might encourage humanitarians to feed their data 

or to give suggestion on type of analyses that can be performed or methods that can 

be applied.  

1.5. Methodology and expected results 

The starting point of the research is a review of existing academic literature and 

operational real cases about applications of geospatial methods for operations in 

displacement settings in order to frame the research topic. Combining the keywords 

GIS, remote sensing, satellite imagery, data, information, refugees, IDP, refugee 

camps, refugee settlements and informal settlements, the resulting literature is 

reviewed. This will allow to categorize the main technologies already applied in the 

context of displacement settings and to identify main applications categories as well 

as specific applications. Pro, cons, and limits of already applied technologies will 

possibly be highlighted as well as specific requirements in terms of data of each 

application category.  
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Following, by further investigating the use of the already listed technologies in 

applications for displacement settings with a focus on automation, the aim is to 

possibly tackle existing gaps in existing applications and to understand whether it 

is possible to make use of the most recent available technologies and released data 

to fill these gaps. 

 

Afterward, a series of potential applications in the context of displacement of 

open data and different existing tools and methods will be explored, and their results 

analysed and presented. The following scheme sums up the research schema 

followed.  

 

 

Figure 1.1 Research schema. 

The results expected from this research are: 

- An evaluation of how geospatial methods and technologies can effectively 

and efficiently support humanitarian operations in displacement settings, 

looking at already explored methodologies in the literature and especially 

looking at the newest available geospatial capacities.  

 

-  A categorization of which methods and technologies provide support and 

the identification of their benefits and drawbacks.  

 

- The identification of a research gap in the field of geospatial methods 

applied to displacement context. 

 

- A series of examples of how geospatial open data and newest available 

geospatial technologies could be used in the context of displacement and 

their results.  
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1.6. Framing of the research topic 

The growing research interest in the field of displacement, particularly 

supported by geospatial and remotely sensed information, is highlighted in the 

following charts representing the research documents by year identified by the 

following queries within the Scopus database (Scopus, 2021): 

 

- ((TITLE-ABS-KEY(((remote sensing) OR (satellite imagery)) AND 

((refugees) OR (displaced W/0 people) OR (displaced W/0 population) OR 

(refugee W/0 camps) OR (refugee W/0 settlements))))). With a total of 159 

results. 

 

 
Figure 1.2 Trends of scientific production. 

- ((TITLE-ABS-KEY(((remote sensing) OR (satellite imagery)) AND 

((refugees) OR (displaced W/0 people) OR (displaced W/0 population) OR 

(refugee W/0 camps) OR (refugee W/0 settlements) OR (informal W/0 

settlements))))). With a total of 330 results.  

 

 
Figure 1.3 Trends of scientific production. 
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In the emergency context, a displaced person is defined as someone who had to 

abandon her/his/their home due to natural, technological, or deliberate event 

(WHO, 2019). Displaced people is a broader definition that includes Internally 

Displaced People (IDP) as well as refugees. IDP are people who remain in their 

own country after displacement, while refugee are people who cross international 

borders as a result of displacement (WHO, 2019). Camps are the form of settlement 

where displaced people (either IDP and refugees) may end up concentrating and 

residing (WHO, 2019; UNHCR, 2015). Camps can widely vary in size, quality, 

type of equipment and location according to the funding the camp receives and on 

the hosting country’s policy in the matter (Schön et al., 2018). The main 

characteristic that defines a displaced people camps is that they are intended to be 

temporary (USA for UNHCR, 2019). Camps allow the hosted population to receive 

formal centralised protection, humanitarian assistance and other services from host 

governments or other humanitarian actors (UNHCR, 2015). When the emergency 

evolves into a protracted crisis, the camps may lose their provisional nature and turn 

into long term settlements (USA for UNHCR, 2019). The protracted nature of a 

settlement generates new challenges that include delivering of infrastructure, 

energy, and education to what slowly become a community (USA for UNHCR, 

2019). An estimate of 14.2 million people resides in camps for an average of 17 

years (Schön et al., 2018). Finally, when the camp or settlement is populated 

spontaneously without the assistance and guidance of local government and 

humanitarian community, the camp or settlement is informal (UNHCR, 2015a) and 

the provision of humanitarian aid is not officially established anymore. Food, water, 

sanitation, health, and education assistance are not formally established, and 

physical shelters are sub-standard (REACH, 2013). The arrival of displaced people 

generates critical issues in terms of shelters, health, food security, nutrition, 

education, environment, energy, and protection, concerning both the displaced 

people themselves but also the communities hosting them (FAO/UNHCR, 2016).  

 

Geoinformation systems and remote sensing have already proven several times 

the extent to which they can give a significant contribute to the emergency response 

(Konecny et al., 2010). Over the last years, geospatial technologies and earth 

observations have supported humanitarian action, specifically logistics in planning 

and mitigation in the aftermaths of natural disasters or complex crisis (Füreder et 

al., 2015). In the context of decision making in emergency situations, high-quality 

and timely information, accessibility, defined standards, user‐friendly interfaces, 

and appropriate visualisations are all factors of great significance and help. This is 

where geospatial methods and tools allow improving user perception, orientation, 

knowledge and understanding. Furthermore, digital geospatial data include the 

relevant potential capability of adaptation of their visualization with respect to the 

user and of being queryable, an aspect of great significance considering the multi‐

stakeholders implication aspect of an emergency (humanitarians, NGOs, media, 

local communities). All these concepts are especially valid nowadays, where digital 

cartography created the shift to ubiquitous mapping and the capability of acquiring 

and supplying enormous amounts of geoinformation and, at the same time, the 



 

 
22 

maintenance and accessibility of spatial data infrastructures, has greatly improved 

(Konecny et al., 2010). 

 

If the usefulness of Geographic Information Systems and emergency data is 

taken for granted, still the shortcomings and failures of existing technologies and 

applications in emergency response are equally known. Many barriers still exist in 

making data available, appropriate, and reliable and in making systems and 

providers working together and in coordination, avoiding overlays in products and 

time wastage. The importance of enhancing data availability and information 

sharing is a crucial aspect in the definition of the actual potential of emergency 

mapping in the Disaster Risk Management context. Furthermore, data have not only 

to be displayed, but they have to be made readable avoiding overwhelming amount 

of undefined information and be reliable. Finally, cartographic products are highly 

technical and still require the skills of trained and educated experts to be produced 

and interpreted (Harvard Humanitarian Initiative, 2011). 

 

Overall, most recent crisis and disasters have exposed the limits of the 

humanitarian community to coordinate a rapid gathering and an effective use of 

information, both already existing and required in the aftermaths of the crisis, 

leading to significant information gaps. Two main gaps are highlighted. The first 

one concerns the emergency phase of the crisis, when the data supply is lower 

compared to the demands. The second one arises in the recovery and development 

phase. When the available information exceeds the demands, the use of this 

information decreases with a subsequent decline in the regular supply of 

information products, leading to an information gap for an eventual future occurring 

crisis (Westrope et al., 2013).  

 

In the case of displacement settings considered as a complex emergency, having 

as a starting point geospatial data and satellite or aerial imagery, critical information 

can be produced and provided for humanitarian operations (Füreder et al., 2015). 

Information management is one of the Camp Coordination and Camp Management 

(CCCM) key concerns in implementing the response. According to the UNHCR 

Emergency Handbook, a centralized information management system should be 

developed, disseminating information management products regularly. Particularly 

in the initial stages of an emergency, the harmonization of information is relevant 

for efficient sharing (UNHCR, 2015b). A solid information management ensures 

that all actors involved in the emergency are working with same or complementary 

relevant, accurate and timely information and baseline data. The main information 

management phases highlighted are data and information collection, data analysis 

and information dissemination (CM Toolkit, 2015). The Camp Management (CM) 

CM Toolkit by the CCCM Cluster highlights the following main information needs 

at camp level: 

- Information on total number of camp inhabitants and their status 

(refugee/IDP/stateless), their age, sex and protection need; 

- Information about groups and individuals most at risk; 
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- Information about services, standards and activities in the camp; 

- Information on camp security and safety; 

- Information on procedures and systems in camp management; 

- Information on camp infrastructure: roads, pathways, communal buildings, 

health centres, schools, distribution sites, latrines, drains, water supply 

lines, electricity lines, meeting places and burial sites; 

- Information on coordination mechanisms: Who is doing what, where (3W) 

(CM Toolkit, ,2015). 

 

So far, a wide range of geospatial methods and tools has been already deployed 

to support displaced people camps and has been documented in research. A camp’s 

life cycle is generally described in three phases: set-up, care and maintenance and 

closure (CM Toolkit, 2015). The different phases of a displaced people camp’s life 

cycle involve different information needs and consequently different methods and 

tools that can be applied in this context. After a literature review of available papers 

and articles covering geospatial applications in displacement settings, the deployed 

methods and tools can be summarized mainly in the following technology 

categories: 

- Satellite imagery. Satellite imagery can be acquired for non-accessible 

areas all over the world. The temporal resolution of satellite imagery allows 

potentially both past and real-time investigations. On the other hand, spatial 

and temporal resolution varies greatly with available budget and 

environmental factors (e.g. clouds, atmosphere).  

- UAVs/Drone. Unmanned Aerial Vehicles use is expanding in a wide range 

of sectors including the humanitarian operations. The possibility to target 

users’ needs in terms of spatial and temporal resolution of acquisitions, area 

coverage and to bypass adverse climatic conditions such as cloud coverage 

are crucial in the humanitarian sector. In addition, a portable technology 

serves well community mapping projects. Problems arise in terms of 

regulations, including security and privacy concerns (FloodList, 2016).  

- Field collected geospatial data (GPS based surveys). The most direct 

application of geospatial methods is the acquisition of the GPS location of 

features of interest on the ground, with the possibility to collect and store 

directly observed information and details attached to the GPS location. 

Several mobile data collection applications are nowadays available, and 

their use is common and standard across humanitarian organizations, 

recurring mostly to Kobo and ODK applications. Unfortunately, in 

emergency contexts, it is not always possible to access locations directly. 

Furthermore, complete surveying of infrastructures is time and resources 

consuming and it becomes even more complex when the context is highly 

dynamic and changing quickly, such in the case of displaced people camps.  

- Databases. Not an exclusively geospatial method. The possibility to store 

efficiently and effectively information is crucial in emergency contexts as 

well in displacement settings. A standardized, unified, accessible and 
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queryable information management system is helpful in supporting 

humanitarian operations. Given the vast deployment of different actors in 

the humanitarian response, effectively set and use standards across them to 

collect and update information is highly challenging.  

Each of these technologies have been used individually or simultaneously and 

have proved to have pro and cons in the specific displacement settings sector.  Main 

categories of applications reviewed so far through the literature review process are 

summarized below. Sources are both academic papers and articles covering real 

operational case studies.  

- Population and infrastructure mapping and monitoring.  

Very high-resolution (VHR) satellite imagery has been used to derive 

information on the amount and spatial distribution of shelters in 

displacement settings. Information about the location, size and hosted 

population of a camp is fundamental to plan first response but also long-

term humanitarian aid. When no information is available on the ground, 

satellite imagery can provide a first estimate of location and size of the 

camps (Füreder et al., 2015). When enough and reliable field information 

is available, this data can be used as a proxy for the population residing in 

the camp (Kemper et al., 2011). Being camps highly dynamic contexts, 

satellite imagery is also implemented to monitor movement, expansion, or 

reduction of the camps (Copernicus, 2018; Kemper et al., 2011). Shelter 

mapping is performed via visual interpretation of imagery mostly, but the 

literature on shelter mapping is very wide and is moving toward the semi-

automatic and automatic extraction of shelter footprints. The issue of 

automatic shelter mapping is very complex and presents several obstacles 

such as the need for VHR imagery, the difficulties in differentiating 

between displaced people shelters and host community shelters in peculiar 

and complex structural context, where the displacement setting is not 

constituted by tents and complex spectral contexts, with high shelter 

density, low shelter contrast or different shelters materials. The papers 

available in this context, in fact, present automatic extraction of camp 

shelters and camp extent for very specific case studies and locations, since 

generalization is highly challenging (Lang et al., 2010). Object-based image 

analysis (OBIA) is used to distinguish objects based on their shape, size, 

spectral behaviour, and neighbouring relations (Füreder et al., 2015). 

Anyhow, the limits of semi-automated tools in the humanitarian domain are 

well recognized, given the complexity of the features of interest (Voigt et 

al., 2014).  

 

- Natural resources assessment. 

Natural resources are critical in displacement settings. Issues such as access 

to fuel and energy, environmental degradation around camps, availability 

of water resources are all crucial aspects in displacement contexts 
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(FAO/UNHCR, 2016). The settling of a large number of displaced people 

into an area has proven to induce a stress on the surrounding environment, 

leading to impacts on forests, land and water resources (Füreder et al., 

2015). Access to safe and reliable sources of fuel and energy for cooking, 

lighting and other uses is essential for sustainable development and food 

security of displaced people. The main fuel used in displacement settings 

(in developing countries) is wood, which is used to produce charcoal. This 

has become one of the main drivers of environmental degradation around 

the camps sites.  Remote sensing has been used to assess wood fuel supply 

and environmental degradation of targeted areas. Time-series of appropriate 

satellite imagery have been analysed to detect different land cover types 

significant for wood fuel production, mainly tree cover and shrub cover, 

and their changes over time. In connection to this, field measurements 

allowed to derive biomass expansion factors from satellite imagery to 

estimate biomass stocks (FAO/UNHCR, 2016). The availability and supply 

of drinking water, in a reasonably close range, is as well critical in 

displacement settings, especially in the long term when groundwater takes 

the primary role of water provision when purification of surface water and 

water trucking are not sustainable anymore. Remote sensing has been used 

to define suitable groundwater extraction sites, making an effort in 

delineating the location and extend of subsurface structures potentially 

containing water (Wendt et al., 2015).   

 

- Risk or damage assessment. 

Displacement settings often take place on dangerous, hazard-prone sites 

such as hill-slopes and flood-prone areas. In some cases, the hazard is 

generated by the displaced people themselves, by over-exploiting natural 

resources, for instance cutting hills and destroying forests for building 

shelters and providing fuel, like in the case of the Rohingya refugees in 

Bangladesh (Sammonds et al., 2018). Displacement settings become highly 

vulnerable to heavy rainfall causing severe flooding and shelters, 

infrastructure and livelihood destructions, water sources contamination and 

further displacement, such in the latest floods in northern Syria (Reliefweb, 

2018) and in Cox’s Bazar, Bangladesh (REACH, 2018a). Flood and 

landslide risk mapping are some of the examples of applications of 

geospatial methods for risk or damage assessment in displacement settings. 

Using elements such as elevation, water flow directions and previous rainy 

season observations it is possible to assess flood-prone areas and identify 

infrastructures likely to be affected by floods and landslides (REACH, 

2015). The use of UAVs/drones imagery has also proved to be useful in 

flood risk mapping exercises in urban informal areas, whose vulnerability 

to extreme events resembles the one of displacement settings. UAVs/drones 

provide very high-resolution and up-to-date imagery targeted to the user 

needs in terms of resolution, acquisition time and area coverage in addition 

to the possibility to bypass adverse climatic conditions such as cloud 
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coverage, characteristics that serve well flood risk and exposure mapping. 

These characteristics are hardly reachable recurring to satellite imagery. In 

addition to allowing the generation of a 3D surface model of an area and 

potentially a detailed hydrological model, very high-resolution (5 cm) 

drone mapping allows detailed digitalization of features, hence high-quality 

mapping of exposed areas (Open DRI, 2018; FloodList, 2016). Extent of 

actually flooded areas and damage in the aftermaths of an extreme event 

can then be extracted recurring to very high-resolution radar imagery and 

semi-automatic processing techniques (UNITAR, 2018; Copernicus, 2013).  

 

 
Figure 1.4 Figure 1.2 Zaatari camp flood map (Copernicus, 2013). 

- Camp site selection.  

Facilities location in emergency settings is one of the themes faced in the 

humanitarian logistics sector and that can be supported by geographical 

information systems (Rodríguez-Espíndola et al., 2016). Models are 

generated based on vector and raster inputs and on a set of rules to obtain 

optimisation-based disaster management systems to locate facilities or 

identify optimal routes in case of emergency (Rodríguez-Espíndola et al., 

2016). Same theory can be applied to displaced people camp site selection 

(Çetinkaya et al., 2016). The location of the camp has a remarkable impact 

on access to assistance, protection, and well-being of hosted population 

throughout the camp life cycle. In many cases displaced people settle 

spontaneously before aid is available, occupying unsuitable available and 

unwanted land, often prone to natural hazards such as floods and with 

inadequate supply of basic services such as WASH (water, sanitation and 

hygiene) and health facilities (UNHCR, 2015). 
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- Field data collection.  

The most straightforward implementation of GIS technologies is in the 

planning, implementation, monitoring and post-processing of field data 

collection or more generally of field surveying.  The response in 

displacement settings is planned according to the needs of the people 

residing in it. Usually, these needs are firstly estimated by obtaining basic 

information about the camp (location, extension, number of structures and 

consequent estimated number of people) also through remotely sensed data, 

as shown in the previous paragraphs. In a second phase, information is 

collected through surveys, to identify more specific and population-oriented 

needs for better resources allocation and humanitarian interventions. Needs 

assessment is one of the areas identified as needy to be improved by the 

agreement among major humanitarian donors in 2016, the Grand Bargain, 

mainly because of the lack of a standardized and coordinated information 

gathering and analysis system. The main aim of needs assessments is to fill 

information gaps of organizations and agencies leading the humanitarian 

response (Agenda for Humanity, 2016). Needs assessments are carried out 

through data collection campaigns, namely surveys. Survey can be 

statistically representative, hence surveying a statistically relevant sample, 

or they can cover the whole population, becoming a census. Surveys are 

designed with tools in different surveying applications, mostly Kobo and 

ODK in the humanitarian sector, and they are carried out with mobile data 

collection applications. In this, geospatial methods are relevant both in the 

planning of the survey, addressing locations needed to be surveyed, and in 

the data collection, where the GPS locations of the surveyed households (in 

case of a household level survey) is registered and represents a precious 

information to perform further analysis on the final obtained database of 

surveyed households (REACH, 2018). A limit in statistical representative 

surveys is that, according to the resources available, the final survey can be 

representative only at whole camp level or in optimal cases at camp zones 

level, limiting the spatial and statistical analysis applications. In efforts of 

extensively surveying and keeping track of a displaced people camp, 

meaning that all households of a camp are included in the survey, it was 

possible to build comprehensive camp level queryable databases. In an 

existing operational example in South Sudan, each household is identified 

by a unique identifier that allows to link information on that household from 

disparate sources and link them into a single database, including its GPS 

location. This allows the provision of targeted georeferenced aid and a more 

accurate and potentially up to date planning and coordination of the camp.  

The main effort is to maintain the efficiency of such a database by 

standardizing information formats across partners, so that the database can 

be kept updated with on-going data collection campaigns. In addition, being 

a displacement setting highly dynamic, the update of such a database needs 

to be regular and frequent. Embedding the geospatial component in a camp 

database allows to spatialize information and display it, allowing for easier 
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information sharing and analysis capacity including each feature of the 

camp. (Westrope et al., 2013).  

 

 
Figure 1.5 Map of Jamam camp food distribution recipients and non-recipients (Westrope et al., 2013). 

In addition to this, the field 

surveying of infrastructures 

is another precious resource 

where geospatial methods 

play an important role. 

Mapping infrastructures 

GPS locations and details 

using mobile data collection 

applications with GPS 

embedded devices, allows 

conducting surveys of 

existing facilities and 

infrastructures in the camp, 

whether WASH, health, 

education, or whatsoever. 

This is helpful in identifying 

coverage, functioning and 

vulnerability of existing 

infrastructures and their 

ability to serve the current 

population (Reliefweb, 

2017).   

The following table summarizes the major findings of the performed literature 

review. Classes of spatial resolution refer to ESA classification of resolution of 

sensor of their missions (ESA, 2015): 

Functioning and non-functioning water structures in Kutupalong 
Camp 12 (Reliefweb, 2017).  

Figure 1.6 Functioning and non-functioning water structures in 

Kutupalong Camp 12 (Reliefweb, 2017). 
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- VHR1 Very High Resolution 1 where resolution <=1m 

- VHR2 Very High Resolution 2 where 1m < resolution <=4m 

- HR1 High Resolution 1 where 4m <resolution<=10m 

- HR2 High Resolution 2 where 10m <resolution<=30m 

- MR1 Medium Resolution 1 where 30m <resolution<=100m 

- MR2 Medium Resolution 2 where 100m <resolution<=300m 

- LR Low Resolution where resolution >=300m 

 

Application 

category 
Application 

Tools 

and 

methods 

Spatial 

resolution 

(if 

applicable) 

Reference 

Population 

and 

infrastructure 

mapping and 

monitoring 

Shelters 

mapping 

Remote 

sensing 

 

Drones 

Very high 

Füreder et al., 

2015 

Kemper et al., 

2011 

Copernicus, 

2018 

FloodList, 

2016 

Natural 

resources 

assessment 

Delineation of 

potential 

groundwater 

extraction 

sites 

Remote 

sensing 
High 

Wendt et al., 

2015 

Wood fuel 

supply and 

environmental 

degradation 

Remote 

sensing 

High 

 

Very high 

FAO/UNHCR, 

2016 

Füreder et al., 

2015 

Risk or 

damage 

assessment 

Risk 

assessment 

Remote 

sensing 

 

Drones 

Very high 

REACH, 

2018a 

Open DRI, 

2018 

FloodList, 

2016 

Flood 

mapping 

Remote 

sensing 
Very high 

UNITAR, 

2018 

Copernicus, 

2013 

Camp site 

selection 
-- 

Remote 

sensing 
High 

Rodríguez-

Espíndola et 

al., 2016 

Çetinkaya et 

al., 2016 

Field data 

collection 

Needs 

assessment 

Databases 

 

GPSs 

-- 

REACH, 2018 

Westrope et 

al., 2013 

Infrastructure 

mapping 

Databases 

 
-- 

Reliefweb, 

2017 
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GPSs 
Table 1.1 Summary table of literature review. 

The research in the field of displacement settings and in finding solutions for 

the care of the people residing in it is being highlighted for its potential and pushed 

to be investigated further, especially in the humanitarian logistics sector 

(Oloruntoba, 2018; Seifert, 2018). The interest of this proposed research is to bridge 

the growing interest in this field with the geospatial research. By further 

investigating the use of the already listed technologies in applications for 

displacement settings, the aim is to possibly tackle existing gaps and to understand 

whether it is possible to make use of the most recent available technologies. No 

scientific paper has been found so far, for instance, on applications of Google Earth 

Engine (GEE) or of more general Data and Information Access Services (DIAS), 

such as the ones provided by the European Commissions (Copernicus, 2019), in the 

field of displacement settings. These cloud-based platforms provide access to data 

and information and to processing tools to directly analyse them, bringing 

availability and accessibility of data to another level. The database of available 

satellite, vector and tabular data is vast in Google Earth Engine (Google Earth 

Engine, 2019a) and the European Commission is including in his newly funded 

DIAS also all the information products deriving from its operational services 

(Copernicus, 2019) such as the Emergency Mapping Service, that often produced 

information on displacement settings digitizing it from VHR satellite imagery 

(Copernicus, 2019a). As highlighted in the summarizing table, the biggest challenge 

for using these platforms seems to be the resolution of available imagery. While the 

availability of data is huge and potentially covering thematic and temporal needs of 

the applications illustrated in the summarizing table, the resolution of freely 

available imagery is mostly high or medium, while applications in small scale 

context such as displacement settings are mostly supported by very high-resolution 

imagery, which is mostly not freely available and needs to be purchased. GEE, for 

instance, includes a free repository of over 40 years of global satellite imagery at 

high temporal resolution, from multiple satellite missions including, among many 

others, the complete Landsat series, Moderate Resolution Imaging Spectrometer 

(MODIS), National Oceanographic and Atmospheric Administration Advanced 

very high-resolution radiometer (NOAA AVHRR), Sentinel 1, 2, and 3, Advanced 

Land Observing Satellite (ALOS). Minimum spatial resolution of available imagery 

in GEE is of 10 meters. The largest applications of GEE from 2010 to 2017 were in 

the natural resources’ domain (vegetation, forest, land cover and land use change 

monitoring) (Kumar et al., 2018). Anyhow, also vector, social, demographic and 

weather data are included in the platform (Kumar et al., 2018), which might be 

potentially useful. The cloud processing capacity of these systems could be also 

further investigated to support information production on displacement settings. For 

instance, recurring to machine learning algorithms in a cloud computing 

environment for training classifiers powered by the wide range of spectral, spatial 

and temporal resolutions available, or even just importing secondary sourced raster 

or vector datasets to perform targeted analysis or making use of the GUI to make 
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GEE scripts into web applications (Kumar et al., 2018). In addition to this, studies 

on extractions of settlement extent and extent change from Landsat imagery (high-

medium resolution) using Goole Earth Engine exists (Patel et al., 2014), and this 

might be further investigated for applications in the larger and denser displacement 

settings. 

 

 Optimally visualize and efficiently extract information from existing datasets 

is another interesting field of research, addressing issues such as usability and 

transferability of data. A successful example of a similar application is ADAM, the 

Automatic Disaster Analysis and Mapping system of the World Food Programme 

developed with open-source technology. This alert system automatically retrieves 

information from a series of sources (Global Disaster Alert and Coordination 

System, the US Geological Survey, World Bank, WFP databases) before, during 

and after an earthquake or a tropical storm happen. The alert-system then produces 

real-time virtual dashboards with event relevant information such as scale of the 

emergency, population likely to be affected, weather conditions, available resources 

etc. This timely and accurate information allows humanitarian operations to be 

carried out more informed and to plan preparedness actions accordingly (World 

Food Programme Insight, 2018).  

 

 
Figure 1.7 ADAM output in the aftermaths of Ecuador earthquake (World Food Programme Insight, 2018). 

 

An attempt to summarize in visually appealing and interactive maps 

information and data related to displaced people camps exists as well.  A project 

for the Syrian Zaatari camp created a tool to incorporate in an interactive map and 

in charts the analysis of key social attributes of the camp population, derived from 

camp specific survey data and displayed on OpenStreetMap data in a bivariate 
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choropleth map. The aim was to inform needs assessment and resource allocation 

(Mooney et al., 2017).  

 

 

Figure 1.8 Zaatari camp choropleth interactive map (Money et al., 2017). 

 

Nevertheless, no attempt has been found so far to create a more automated and 

not camp specific tool with methods similar to the ADAM WFP tool, which may 

be able to pull displacement settings data from existing global sources and produce 

information on an interactive map or dashboard. Sources of data about displacement 

settings are nowadays vast, including OpenStreetMap, whose Humanitarian Team 

constantly work on new humanitarian projects (Humanitarian OpenStreetMap 

Team, 2019), and the Humanitarian Data Exchange platform, where major 

organizations, such as UNHCR, WFP, etc., upload their data including facilities 

locations (WASH, education, health, etc.) and population data (HDX, 2019). 

Differently from the ADAM WFP tool, this would not be a rapid assessment tool 

but would need to be built on information collected over time.  

 

In the next Chapter, the framing of the research topic will be continued, and it 

will be focused particularly on those applications and research dedicated to the 

automation of satellite imagery analysis for displacement contexts. Finally, the 

existing identified gap in the scientific literature that will be tackled by the 

presented research will be framed.  
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Chapter 2 

2. Automation in remote sensing 

for displacement contexts 

Machine learning techniques have been tested widely in the humanitarian 

context over the last years, including specific exercises on displaced people camps 

or settlements. As it was illustrated in Chapter 1, major applications of remote 

sensing for humanitarian purposes in these contexts require skilled human visual 

interpretation and manual mapping over imagery. Consequently, this framework is 

particularly suitable to a certain degree of automation. Indeed, automating the 

detection of specific features, such as camps/settlements or specific 

camps/settlements structures, can potentially minimize human efforts, shorten the 

time of response, and align outputs. Even more importantly, automation could 

potentially amplify the use and the benefits of the increasing availability of satellite 

imagery. Finally, this would lead to more frequent and more detailed monitoring 

(Quinn et al., 2018).  

 

What were successful and not successful applications of automatic or semi-

automatic detection of these specific features supported by remote sensing so far? 

The detection and classification of displacement settings form remotely sensed 

imagery can easily fit in the broader context of urban or human settlements 

applications. Applications of machine learning for detection of urban areas and 

human settlements in remotely sensed imagery are extremely extensive and some 

of that are going to be taken into consideration in the next sections.  

 

The specific sub-case of displaced population camps and settlements is a more 

matted one. First of all, why one should proceed in the direction of applying 

machine learning for displacement settings? Some answers are the following: 

- As explained in Chapter 1, displacement is a humanitarian growing issue. 
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- The amount of open data and free and open source tools available nowadays 

is outstanding and the potential of them is partly unexplored.  

Why displacement settings applications are more challenging compared to 

general human settlements applications, such as urban areas? 

- Displacement settings are often temporary, or they exist withing a 

specific time window. Therefore, training of a classifier should be done 

at the date when the camp exists. This means different dates per each 

camp, as different camps may exist and disappear at different dates. 

 

- There is no global updated unified database on locations of 

displacement settings. This represents a lack of ground truth data 

compared to high availability of satellite imagery and analytical tools. 

 

- Displaced population camps/settlements are fewer in number compared 

to urban areas. Consequently, it is very likely to have less training data 

input compared to general urban areas applications. 

 

- Displacement settings have a peculiar and complex pattern. 

 

- Displacement settings show high variation in patterns and appearance 

within same feature type according to geographic area, type of event, 

type of setting, surrounding environment, etc.  

 

- Displaced population camps and settlements may have a high spectral 

similarity to urban features. This may make difficult to isolate and 

separate the two type of features. 

2.1. Machine learning and deep 

learning 

First applications of machine learning methods in remote sensing have been 

devoted to land cover classification exercises using HR multi-spectra imagery. First 

attempts recurred to random forest and support vector machines algorithms. These 

algorithms have represented a standard for remote sensing applications for about 

ten years. Lately the applications of machine learning to remotely sensed imagery 

have shifted towards deep learning methods.  

 

In machine learning the problem is generally split into data labelling, training, 

testing and validating, deep learning has smoothened the pipeline incorporating the 

model learning and fine tuning of the model parameters. 
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The biggest difference between machine and deep learning is the amount of 

training data and the computational power demanded, which are way larger in deep 

learning exercises. Common network structures used in deep learning exercises for 

remote sensing applications are autoencoders, usually used to map the extent of 

features, hence applicable in land cover mapping exercises, or convolutional neural 

networks for object detection methods, hence for identifying the bounding box of 

objects detected in the imagery.  

 

Machine learning and deep learning applications to remote sensing span from 

high precision land cover mapping to scene classification and so on. Of course, a 

not negligible aspect is the huge amount of data and the large computational power 

required to train from scratch a deep learning model on a brand-new problem. This 

is the reason why usually transfer learning is used as a solution. When low capacity 

and poor datasets are available, a pre-trained network is selected and adapted to the 

specific problem, even though the network was trained on another dataset (Quinn 

et al., 2018).  

2.2.  State of the art of applications 

As state before, remote sensing-based machine learning applications can be 

found profusely linked to the urban context and in minor amount to displaced 

population settings. A brief overview of the two cases is given in the next sections.  

 

As already introduced in Chapter 1, the feasibility of applications of remotely 

sensed data and imagery in these contexts is strongly dependent on the spatial, 

temporal, spectral resolution of the sensor (Quinn et al., 2018). From now on, it will 

be referred to resolution of imagery following the already stated ESA classification 

of resolution of sensor of their missions (ESA, 2015): 

 

- VHR1 Very High Resolution 1 where resolution <=1m 

- VHR2 Very High Resolution 2 where 1m < resolution <=4m 

- HR1 High Resolution 1 where 4m <resolution<=10m 

- HR2 High Resolution 2 where 10m <resolution<=30m 

- MR1 Medium Resolution 1where 30m <resolution<=100m 

- MR2 Medium Resolution 2 where 100m <resolution<=300m 

- LR Low Resolution where resolution >=300m 

 

It is clear how according to different resolution the scope and objective of 

machine learning applications may change. If with VHR imagery it could be 

possible to detect features of interest such as buildings or shelters, with HR imagery 

the detection of these features become more challenging while with MR and LR 

imagery mainly land cover applications are allowed (Quinn et al., 2018).  
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2.2.1. Applications to general human 

settlements 

Identifying and mapping human settlements can be seen as a broader issue of 

identifying and mapping displaced populations. The first is fundamental for both 

technical and humanitarian purposes, as knowing where people are is the first step 

in planning a response. Anyhow, accurate and up to date data of human settlements 

are still scarce or quite heterogeneous from the data quality point of view. 

Consequently, the development of techniques to generate such datasets is crucial 

(Herfort et al., 2019).  

 

Plenty of applications of remote sensing for human settlements identification 

already exist. In this section, some of them that are considered to be particularly 

relevant in this context are going to be resumed.  

 

The identification of human settlements can be generally classified as a binary 

classification problem, in which the “non-human settlement” class is extremely 

heterogeneous, including a variety of different land covers and uses (Patel et al., 

2014). Several studies have leveraged the new availability of remotely sensed data 

with high temporal and geographical coverage such as Landsat and Sentinel to 

implement models of human settlements detection. While some of them relied on 

cloud infrastructures such as Google Earth Engine (GEE) and the identification of 

relevant dataset to optimally identify human settlements (e.g. spectral indices, night 

time lights, etc.), others recurred to crowdsourcing in combination with deep 

learning techniques in order to optimize the mapping results.  

 

Two studies conducted by Goldblatt et al. (Goldblatt et al., 2016; Goldblatt et 

al., 2018) focused on the binary supervised classification of urban land cover over 

very large geographic areas (country scale) using high-resolution satellite imagery 

from the Landsat 7 and 8 missions, which allows a resolution of 30 meters.  

The first study aimed at building and providing an open-source labelled dataset 

of urban areas in India and at applying it for a supervised urban areas classification 

exercise. The second study is focused on identifying alternative datasets such as 

remotely sensed night-time lights data than can be associated to urbanization and 

can improve the detection of urban areas. Both the studies leveraged the Google 

Earth Engine cloud computing platform and Landsat data and both studies perform 

a pixel-based classification instead of an object-based classification, because of the 

higher computational power required by object-based classification and the large 

unit of analysis.  

The first study relies only on spectral bands of the Landsat imagery as inputs to 

the supervised classifiers, with an addition of two indices: Normalized Difference 

Vegetation Index (NDVI) and NDBI (Normalized Difference Built-up Index). 

Three classifiers are tested: Classification and Regression Tree (CART), Support 

Vector Machine (SVM) and Random Forest. The second study, instead, combines 
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the use of DMSP-OLS (Operational Line-scan System of the Defense 

Meteorological Satellite Program) night-time lights data to automatically extract 

and collect training examples of urban areas, and uses these training data for urban 

areas classification with Landsat imagery. The second study relies on a uniform 

artificial hexagonal tessellation mapping approach. This approach is used to collect 

training data and build a classification model independently for each hexagonal 

mapping unit. This allows to account for regional variations of the land cover at 

large geographic scales, to better achieve the desired zone mapping approach. In 

the second study a Random Forest classifier is trained.  

Both studies lead to consider Google Earth Engine as an optimal and accessible 

platform for image classification and analysis over large and heterogenous 

geographical areas, when appropriate ground-truth data are inputted. In addition, 

both studies underline how classification performance improves when either 

additional datasets are used as input of the training dataset construction or indices 

are added to the imagery spectral bands. The importance of identifying the optimal 

parameters to be inputted to the classifiers is highlighted. Classification 

performance improves as well the larger the size of the training dataset, especially 

of the non-urban samples. Finally, they showed that Random Forest classifier’s 

performance is higher to other classifiers when applied at large geographic scale 

and with noisy and high dimensional data (Goldblatt et al., 2016; Goldblatt et al., 

2018).  

 

Two studies carried out instead in the context of OpenStreetMap (Herfort et al., 

2019; Goldblatt et al., 2020) tried to combine the power of the crowd with 

secondary datasets in order to optimize the results of collaborative mapping efforts 

in the context of human settlements mapping.  

The first study combined crowdsourcing with deep learning algorithms to 

obtain optimal mapping results. In the study by Herfort et al., a task allocation 

strategy is developed to allocate classification either to deep learning or to 

crowdsourcing based on a confidence score. This study highlighted how critical are 

the lack of datasets tailored to remote sensing applications and the vulnerability of 

such applications to several factors including sensors sensitivity to environmental 

conditions and imagery quality. The benefit of such application is the combination 

of the precise intervention of human validators and the high performance of 

automated methods, which is delineated as the optimal approach for efficient 

human settlements mapping (Herfort et al., 2019). The second study, instead, was 

intended to estimate the completeness of OpenStreetMap buildings over some areas 

of interest. The task was carried out by interpolating secondary open data, such as 

night-time lights (VIIRS) and Sentinel 1 and 2 data. These data demonstrated to 

correlate very well with building footprints coverage over the areas of interest. 

Indeed, the combined effect of these data explained between 92% and 94% of the 

OpenStreetMap building footprints variations. This study highlighted how fusing 

night-time and daytime remotely sensed information can increase the separability 

of urban and non-urban land cover types. The overall aim of this study was to 

identify gaps in OpenStreetMap coverage. Indeed, once a Random Forest 
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Regression model linking selected variables and OSM completeness was trained, it 

was possible to launch it over unknown areas and identify areas where the actual 

building coverage did not match the predicted one, hence gaps in OSM 

completeness and where mapping efforts should then be focused (Goldblatt et al., 

2020).   

2.2.2. Application to displacement contexts 

Main existing applications of machine learning in remote sensing for 

displacement settings refer to a set of methods comprising pixel-based 

classification, object-based classification, and mathematical morphology, but the 

issue is still open and under discussion and research (Quinn et al., 2018).  

 

An identified example of application of machine learning for displacement 

settings detection is the study by Quinn et al. in 2018 (Quinn et al., 2018). The 

designed exercise was a deep learning application aimed at training a Mark-RCNN 

model over very high-resolution satellite imagery for single structures extraction 

within refugee settlements. A Mask-RCNN (Region-proposal Convolutional 

Neural Network) model simultaneously predicts the bounding boxes of objects, the 

class of belonging of the objects and it also performs a pixel segmentation in order 

to obtain the extent of each object detected in the image (Quinn et al., 2018). These 

experiments of training of the Mask-RCNN model led to the development of Pulse 

Satellite tool, a human supported tool that is able to analyse satellite imagery 

assisted by a Mask-RCNN neural network. The human contribute is inputted as 

feedback loops until a satisfactory result is obtained by the network. This allows 

the tool to be fine-tuned according to the specific user cases (e.g. a different 

environmental condition compared to the one the model was trained at the 

beginning) (Logar et al., 2020).  

The experiment of Quinn et al. showed that it is possible through deep learning 

to detect a large proportion of structures within the studied settlements. However, 

the large variation of both quality and type of imagery used and of the features to 

be detected themselves led to the necessity of an interactive learning approach, 

where human can provide inputs and adjustments to reach usable accuracy levels. 

Trivially, the best results were obtained when the settlements to be analysed showed 

similar characteristics with the training dataset and when the structures of the 

settlements are easily distinguishable (Quinn et al., 2018).  

 

A very similar tool to Pulse Satellite illustrated above is the platform Picterra 

(https://picterra.ch/). Picterra is an extremely intuitive online platform allowing the 

users to train machine learning algorithms to detect and map objects on satellite and 

drone imagery without directly dealing with the algorithm itself. Picterra allows the 

user to upload the imagery, train and build a detector by providing training and 

testing areas and training features and to run the trained detector over every image 

chosen by the user and export the objects detected. Picterra has been used, among 

https://picterra.ch/
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others, for detection of informal settlements shelters in Tanzania from drone 

imagery (Picterra, 2020).  

In 2020, Thinking Machines and iMMAP partnered to investigate the 

possibility to apply artificial intelligence on high-resolution satellite imagery to 

detect and located new migrant informal settlements in Colombia as a consequence 

of the Venezuelan crisis for humanitarian aid. The project aimed at accelerating the 

detection of newly formed informal settlements in all municipalities with high 

incidence of migrants and refugees from Venezuela between 2015 and 2020, in 

order to speed up the field validation process. A machine learning model was 

trained to identify difference between informal settlements and formal settlements 

or other type of land uses. The model was trained on ground-validated field data of 

informal migrant settlements collected by iMMAP and on a random sampling of all 

the other features. High-resolution Sentinel-2 satellite imagery available in Google 

Earth Engine were used both as yearly composites and as spectral indices as input 

for the model. The final output is a probability map of informal settlement presence 

that was twice validated both through independent visual inspection of very high-

resolution satellite imagery based also on change detection between years and 

through field validation. At the end of the project, 350 potentially new settlements 

were identified by the model across Colombia, of which 70 were already validated 

by field campaign (Thinking Machine, 2020).  

 

 
Figure 2.1 Figure 2.1 The probability map of informal settlements presence (Thinking Machine, 2020). 

These few examples taken both from scientific literature and from operational 

experiences such as the Thinking Machines one, suggest that the application of 

remotely sensed imagery in the field of displacement is being explored and it is 

providing interesting outcomes. Nevertheless, at the moment, the context reveals 

that there are still few applications successful in obtaining such a level of robustness 

and accuracy to be actually deployed in a fast and consistent way in an actual crisis 

situation.  
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2.3. Spatio-temporal machine learning 

and deep learning 

As briefly illustrated, there is an increased availability of big spatio-temporal 

datasets fastening the applications of fully or semi-automatic processing and 

analysis of these data. While classical machine learning exercise involving random 

forest or support vector machines algorithms have also been applied in remote 

sensing applications to manage temporal series of datasets, deep learning has been 

employed mainly on single temporal scene or imagery (Lubej et al., 2018). Machine 

learning methods in remote sensing rarely simultaneously describe both spatial 

context and temporal variations (Lubej et al., 2019). 

 

The work carried out by Lubej et al. (Lubej et al., 2018) illustrates a deep 

learning application to leverage both spatial and temporal relationships in satellite 

imagery, in order to classify the land cover of Slovenia. To this end, annual series 

of Sentinel-2 images f 2017 were used. Briefly, the aim of the exercise was to use 

a Temporal Fully Convolutional Network (TFCN) able to leverage the time-series 

to maximise the classification results (Lubej et al., 2019). 

2.4. The gap: application of high-

resolution open data  

After the evaluation of existing applications of machine learning methods in 

the displaced population fields, a gap was identified. Mostly all applications, except 

for the one carried out by Thinking Machines and iMMAP of which unfortunately 

no scientific paper has been published yet, were performed on very high-resolution 

satellite imagery (below 4 meters resolution). This cuts out a considerable amount 

of freely available satellite or alternatively remotely sensed products, mostly high-

resolution products. These HR products could be investigated and exploited for 

developing semi or fully automated data management and analytical methods 

(Witmer, 2015), also for application in displacement settings.  

 

What would be the benefits of recurring to open high-resolution remotely 

sensed products? 

- First of all, the high temporal and spatial coverage of high-resolution 

missions. High-resolution satellite missions such as Sentinel-2 mission 

have a coverage between latitudes 56° south and 84° north and a revisit time 

of 10 days at the equator with one satellite, and 5 days with 2 satellites under 

cloud-free conditions which results in 2-3 days at mid-latitudes. Contrarily, 

very high-resolution missions are unable to store all the imagery they could 

potentially collect of the Earth because of the capacity of the system itself. 
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Consequently, they are operated on request or on a tasking basis. For some 

areas, such as remote areas or developing countries, the most recent very 

high-resolution imagery available could be several years old (Quinn et al., 

2018). Historical analysis and strict monitoring are by far more feasible 

with high-resolution products than with very high-resolution products.  

 

- Very high-resolution satellite missions, because of the stated storing 

capacity problem, operate on request and rotate their sensors in order to 

capture the requested area of interest. Consequently, the angle of incidence 

varies image by image. The angle of incidence varies also in images of the 

same area with different sensing time, even if taken by the same sensor. 

This leads to inconsistencies in calibration and in difficulties in comparing 

images. Contrarily, high-resolution missions have sensors capturing almost 

the entire Earth according to a predefined grid system and a predefined 

measurement process. This makes this type of imagery more prone to be 

used in machine learning exercises, because models can be transposed 

across space and time with less difficulties compared to very high-

resolution imagery. The latter, indeed, while providing a higher resolution 

and consequently a wider range of applications, require to work around 

dataset shifts and model generalization issues (Quinn et al., 2018).  

 

- Open high-resolution remotely sensed imagery is free of charge and plenty 

of platforms and infrastructure exist nowadays to explore, process and 

download these data. This extends the possibility to use this imagery to 

monitor changes in almost real-time. 

Of course, as previously stated, the range of applications potentially supported 

by HR satellite imagery is narrower than VHR. Nevertheless, as it will be showed 

in Chapter 3, HR satellite imagery still allows the displaced population camps or 

settlements to be identified in their location and in their extent. Certainly, variation 

and limitation occur according to the type of feature and the environmental 

conditions. Despite that, the possibility to identify the presence, the location and 

potentially the extent of displacement contexts from HR imagery is considered from 

the author a potential benefit in: 

- Providing a first idea of the displacement context with available data 

(Witmer, 2015). 

 

- Identifying in the first stages of an emergency where to focus further 

mapping efforts, potentially with VHR satellite imagery. 

 

- Performing high temporal resolution monitoring exercises with freely 

available and ingestible imagery, leveraging the newly released cloud 

infrastructures.  
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2.5. Limits and risks 

It is of extreme importance to not forget themes such as privacy, sensitivity, 

and ethics (Quinn et al., 2018) when dealing with high and very high-resolution 

imagery covering potentially every corner of the world. This is especially valid 

when dealing with vulnerable population, even if the main objective of such 

applications is intentionally positive.  

 

When such imagery become public, vulnerable population become 

automatically exposed. And exposal does not always turn into improvements of the 

condition of vulnerable population. One outstanding and negative example is the 

2007 Amnesty International’s project Eyes on Darfur. This project consisted in 

feeding regular updates of satellite imagery covering 12 vulnerable villages in 

Sudan’s province of Darfur. The main ideally beneficial aim was to monitor any 

sign of violence and conflict committed to these villages and put pressure on the 

government and finally reducing the violence itself (Reuters, 2007). Main back 

motivation was the inability of organization to reach the field because of 

government’s restriction, hence satellite imagery was a workaround information 

access. Unfortunately, this project received as much attentions as negative and 

impactful were its consequences. Indeed, a rise in violence was identified in the 

villages monitored by the project in the years following the project itself, leading 

the project to shut down in 2008. It is supposed that higher visibility and 

government’s retaliation were main causes of this increased violence (Forbes, 

2020).  

 

Humanitarian contexts are highly challenging. Timing and context knowledge 

are fundamental in analysis the feasibility of a project and its costs and benefits, 

especially on the interested population. Furthermore, when dealing with ethics, it 

should be kept in mind that most of the time populations monitored by such projects 

have no knowledge at all of being monitored (Forbes, 2020).  

Additionally, a high degree of accuracy is expected by the products of these 

kind of applications, in order not to worsen the situation providing approximative 

information to whom must actually intervene on the field. Remotely sensed imagery 

is affected by many variables and inaccuracies related to climate, time, sensor 

quality, etc. (Quinn et al., 2018). Humans’ intervention can contribute to them as 

an additional variable and inaccuracy.  
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Chapter 3 

3. Sentinel-2 data for displacement 

contexts 

As introduced in Chapter 2, high-resolution imagery such as Sentinel-2 data 

exhibits a spectrum of benefits and potentialities that are considered to be beneficial 

in emergency contexts and specifically in emergencies related to displaced 

populations. The possibility to assess displacement settings with field campaigns 

are often time-constrained and limited by cost and security factors, despite being 

fundamental in assessing their size and evolution. Consequently, remote 

observations offered increasing support in providing evidence of displacement 

phenomena and in performing accurate mapping exercises, even though mostly 

through visual interpretation yet. Visual interpretation requires skilled analysts, and 

it is severely time and labour consuming, impacting and limiting its applicability 

over large scale emergencies that may require strict and regular temporal 

monitoring. This can be alternatively supported by a more automatic or semi-

automatic approaches when their accuracy proves to be sufficient (Quinn et al., 

2018). Nevertheless, the potentialities of high-resolution imagery (4 to 30 meters 

resolution) are still sparsely and rarely explored in the context of displacement.  

 

This Chapter is going to present an overview of the Sentinel-2 mission and of 

its potential applications for detection, classification and monitoring of 

displacement settings. The following Chapter 3, instead, is going to provide an 

overview of potential indirect applications of the same data to assess indicators of 

ongoing displacement.  

3.1. The Sentinel-2 mission 

Sentinel-2 is a wide-swath, high-resolution and multi-spectral imaging mission. 

Sentinel-2 is one of the European Space Agency next-generation Earth observation 

missions launched in June 2015, with the main objective of a high-resolution, 
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multispectral and high revisit frequency land monitoring. Land monitoring includes 

vegetation, soil and coastal areas but not exclusively, covering also humanitarian 

relief operations, disaster control and risk mapping. The Sentinel-2 mission is made 

of a constellation of two polar-orbiting satellites placed in the same sun-

synchronous orbit and phased at 180 degrees to each other. Sentinel-2 mission as a 

revisit time at the equator of 10 days for each single satellite and 5 days if both 

satellites are considered, under cloud-free conditions. This is translated in a revisit 

time of 2-3 days at mid-latitudes due to overlap between swaths from adjacent orbits 

with different viewing conditions. Its swath width is of 290 kilometres and its 

coverage limits are from between latitudes 56º south and 84º north.  

Sentinel-2 satellites are equipped with a single Multi-Spectral Instrument (MSI) 

optical sensor able to sample 13 spectral bands, four of which at 10 meters 

resolution, six of which at 20 meters resolution and three of which at 60 meters 

resolution. Sentinel-2 products available are Level-1C Top-Of-Atmosphere 

reflectance products and Level-2A Bottom-Of-Atmosphere reflectance products, 

for which the granules, also called tiles, are 100x100 km2 ortho-images in 

UTM/WGS84 projection. These tiles can be fully or partially covered by image 

data; indeed, the tiles grid does not correspond to the sensor swath so partially 

covered tiles correspond to those tiles at the edge of the swath (ESA, 2020). 

 

 
Figure 3.1 Complete observation scenario of the Copernicus Sentinel-2 constellation, with a revisit frequency of five days 

worldwide, since February 2018 (ESA, 2020). 

 
Figure 3.2 Spatial and spectral resolution of Sentinel-2 (ESA, 2020). 
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3.2. The construction of reference 

dataset 

The preliminary step of a classification exercise is the construction of a 

reference dataset. A reference dataset is fundamental for training a classification 

algorithm in case of a supervised classification and for validating the classification 

algorithm in case of both a supervised and an unsupervised classification.   

The selection of the dataset and of the number of data constituting the dataset 

itseld is an open issue in the machine learning field. As a rule of thumb, the larger 

is the training dataset the model is trained on and the better the model will be. As 

such, the larger the validation dataset and the higher confidence will have the results 

of the classification model.  

A quite conspicuous number of labelled datasets have been developed in recent 

years for applications of remote sensing based supervised classification exercises. 

One of the most recognized source of commercial satellite imagery and labelled 

training data for the purpose to be used in machine learning research is the SpaceNet 

database (SpaceNet, 2020). Datasets exist for a variety of features (roads, building, 

etc.), even though dataset developed specifically for urban applications are still 

considered scarce (Goldblatt et al., 2016).  

 

In the specific case of displacement settings (refugees’ camps/settlements, IDP 

camps/settlements) there is no (to the author’s knowledge) recognized and unified 

open ground-truth labelled dataset available that could possibly be used for a 

satellite imagery-based classification exercise. In order to implement classification 

exercises of displacement settings, a dataset of this kind of was built as first step.  

3.2.1. Creation of the dataset 

The workflow for the creation of the displacement settings dataset is resumed 

in the following figure.  

 

 
Figure 3.3 Workflow for the generation of the displacement settings dataset. 

Sources of geospatial data and information regarding displacement settings are 

quite scattered. The openly available sources used in this process to collect data and 

georeferenced information and data on displacement settings were: 
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- The Copernicus Emergency Management Service (EMS) platform 

(https://emergency.copernicus.eu/mapping/list-of-components); 

- The Humanitarian Data Exchange (HDX) platform 

(https://data.humdata.org/); 

- The OpenStreetMap (OSM) data sharing apps (https://overpass-turbo.eu/); 

- The Geonames platform (https://www.geonames.org/) coupled with 

Google Earth platform; 

- The Humanitarian OpenStreetMap Team (HOT) Tasking Manager projects 

(https://tasks.hotosm.org/project/5668?task=85#bottom); 

- The Displacement Tracking Matrix (DTM) database of the International 

Organization for Migration (IOM) https://displacement.iom.int/  

Across these open sources, data were searched using key words such as 

#IDPcamp #refugeecamp #informalsettlement #displacedpeople. Most of data were 

retrieved in a shapefile format. Where no shapefile was available, it was possible to 

retrieve GPS coordinate of the displacement setting. Once data were retrieved from 

the differed sources, they had to be pre-processed. Main steps of pre-processing 

were: 

- Cleaning of the data to keep only relevant features; 

- Digitize the data when necessary (lack of proper shapefiles or noted 

changes over satellite imagery); 

- Application of a naming convention to the shapefile. The naming 

convention chosen is XYZ_YYYYMMDD.shp where XYZ is the three-

letter code of the country of belonging of the features and YYYYMMDD 

is the date of the source of the data, ideally the date of the imagery used to 

digitize the feature; 

- Filling of the attributes of the data with relevant information, as by table 

below. 

Attribute Description Values 

src_date 
Date of the source of the data (e.g. date of 

the imagery used to digitize) 
YYYY-MM-DD 

ext_date Date of the digitization process (if known) YYYY-MM-DD 

source_nam 
Name of the imagery used for the 

digitization process 
 

settl_type Type of settlements (if known) 

IDP_camp 

refugee_camp 

informal_settlement 

https://emergency.copernicus.eu/mapping/list-of-components
https://data.humdata.org/
https://overpass-turbo.eu/
https://tasks.hotosm.org/project/5668?task=85#bottom
https://displacement.iom.int/
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other_info 

Other relevant info on the displacement 

setting. Can be also a combination of the 

two e.g. temporary_structured 

temporary 

permanent 

structured 

unstructured 

event_type 
Type of event that brought to displacement 

(if known) 

hum 

nat 

country 
Three letter abbreviation of the country 

where the site falls into (see doc) 
e.g. BGD 

place_nam Name of the place  

src_link 
Link at the source of the data, important to 

retrieve further information if needed 
 

S2L2A 
Is the site visible/available in S2L2A 

imagery? 

yes 

no 

Table 3.1 Attribute table applied to the displacement settings dataset. 

A total of 117 displaced population settings data were collected. In addition to this, 

a dataset of 56 IDP camps was added only in Iraq. Indeed, for Iraq a very 

comprehensive census of IDP camps was released by IOM in August 2019. This 

census contained the GPS locations of the IDP camps in Iraq. Through Google 

Earth Engine platform these IDP camps were well digitized and added to the 

previous dataset. These camps were highly regular and similar across the country, 

being officially recognized camps.  

The following map represents the geographical and numerical distribution of 

the collected dataset.  

 

 
Figure 3.4 Geographic and numerical distribution of the displaced people camps/settlements dataset. 
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Update: as of April 2020, two websites are found to be under development 

sharing unified UNHCR and secondary sources data on GPs locations of 

populations of concern. These datasets can be potentially exploited to enrich the 

described dataset.  

- https://unhcr.maps.arcgis.com/apps/webappviewer/index.html?id=2028db

44801d43fe8eb49321eea19285 

- https://maps.unhcr.org/en/apps/campmapping/index.html 

3.3. Examples and limitations 

In this section, a list of charts and images illustrating the spectral response of 

samples of displacement settings, urban areas and comparative samples of 

vegetation and water over Sentinel-2 L2A data in four different countries are 

illustrated. The aim is to investigate and to highlight the expected challenges in 

dealing with separability between displacement and urban contexts, which often 

exhibit very similar spectral response, such as in the cases of Ethiopia and Uganda, 

or can be slightly separated from the spectral point of view, such as in the case of 

Iraq, when the settings are clearly made of different materials, size, and shape. 

 

 
Figure 3.5 Spectral distribution of formal IDP camps (second and third image), urban areas (first image) and vegetation and 

water in Iraq over Sentinel-2 L2A image of August 2019. 

 

https://unhcr.maps.arcgis.com/apps/webappviewer/index.html?id=2028db44801d43fe8eb49321eea19285
https://unhcr.maps.arcgis.com/apps/webappviewer/index.html?id=2028db44801d43fe8eb49321eea19285
https://maps.unhcr.org/en/apps/campmapping/index.html
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Figure 3.6 Spectral distribution of formal refugee camps (first and second image), urban areas (third image) and vegetation 

and water in Ethiopia over Sentinel-2 L2A image of September 2019. 

 

 

 
Figure 3.7 Spectral distribution of refugee settlements (first and second image), urban areas (third image) and vegetation 

and water in Uganda over Sentinel-2 L2A image of January 2020. 
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Figure 3.8 Spectral distribution of refugee camp (second image), urban areas (first and third image) and vegetation and 

water in Bangladesh over Sentinel-2 L2A image of March 2019. 

The following charts, instead, represent the temporal evolution of monthly 

median Normalized Difference Vegetation Index (NDVI) averaged over the same 

samples used in the previous charts for the two illustrative cases of Iraq and Uganda. 

The analysis of spectral evolution in the time domain may additionally highlight 

seasons where these features are more separable compared to other.  

 
Figure 3.9 Temporal evolution of monthly median Normalized Difference Vegetation Index (NDVI) averaged over 

the same samples used in the previous chart for Iraq for year 2019.  

 
Figure 3.10 Temporal evolution of monthly median Normalized Difference Vegetation Index (NDVI) averaged over 

the same samples used in the previous chart for Uganda for year 2020. 
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3.4. A binary classification problem 

As already introduced, this Chapter will cover a series of classification 

exercises recurring to high-resolution satellite imagery and the collected dataset 

illustrated in the previous section. As stated in Chapter 2, the 

classification/identification of displacement settings can be defined as a binary 

classification problem, where two classes are identified: 

- The “camp” class, defined as areas covered by structures ascribable to 

displaced population camps or settlements; 

- The “non camp” class, defined as everything that is not included in the 

“camp” class.  

The series of classification exercises were performed selecting different geographic 

areas, in order to obtain a spectrum of results involving different environmental, 

climatic and event-specific conditions. Indeed, as already discussed, the complexity 

and variety in types and distribution of displacement settings are one of the 

challenges in dealing with these features (Quinn et al., 2018).  

 

In addition, an exploratory exercise was performed in the Picterra platform 

using the data collected about the IDP camps in Iraq through the IOM dataset. The 

aim of this exploratory exercise was to have a preliminary understanding of the 

potentiality of Sentinel-2 imagery in detecting and classifying displacement. The 

choice fell on the Iraq dataset in that it was related to ground truth data. The amount 

of data made it possible to have a fair amount of both training and testing data. In 

addition, these data showed to be very homogeneous in appearance and highly 

visible and detectable in high-resolution imagery, as shown in the image below.  

 
Figure 3.11 Few IDP camps in Iraq (in green) as digitized in the displacement dataset in an area near Mosul as seen in 

Sentinel-2. 
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3.4.1. The Picterra platform 

The aim of an exploratory classification was to understand how detectable are 

IDP camps features in high-resolution Sentinel-2 imagery from a qualitative point 

of view, recurring to a user-friendly platform such as Picterra, as a basis for further 

in-depth analysis recurring to other tools. 

 

 A full Sentinel-2 tile covering an area presenting a fair amount of IDP camps 

was selected at a date at which the dataset was collected, in order to have the 

features clearly visible in the imagery and aligned to the manually digitized dataset. 

The Sentinel-2 tile was selected and download from Copernicus Open Access Hub 

S2A_MSIL2A_20190929T074711_N0213_R135_T38SLF_20190929T103511 ( 

https://scihub.copernicus.eu/dhus/#/home). In the following image, the whole 

Sentinel-2 tile is presented and the IDP camps belonging to the collected digitized 

dataset from ground-truth data are also visualized in bright green. The area includes 

the city of Mosul and part of the city of Erbil.  

 

 
Figure 3.12 Map showing Sentinel-2 image tested in this exercise and IDP camps belonging to the collected dataset (in 

green). 

Over this whole tile, three sub-areas were identified and extracted in order to 

upload them in Picterra platform and to extract training and testing areas, they are 

illustrated in the following figure.  

https://scihub.copernicus.eu/dhus/#/home
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Figure 3.13 Map showing Sentinel-2 image tested in this exercise, IDP camps belonging to the collected dataset (in green) 

and sub-areas selected for the training and testing (in red). 

For each of these sub-areas, a random selection of IDP camps included in these 

sub-areas was performed and these were used as training polygons in the platform. 

Over the overall Sentinel-2 tiles, 34 IDP camps areas (intended as polygons, hence 

more than one polygon may represent one single IDP camp) are present. It is 

decided to use 30% of these IDP camps areas as training data, hence 11 IDP camps 

areas were used as training data in the platform. A size limit was also set at the 

algorithm level, verifying the minimum size of the IDP camps available over the 

image and setting a minimum size of detection, in order not to detect smaller 

objects. Testing areas are used to iteratively check the results of the training at each 

run of the training and to adjust the identified training sample accordingly. This is 

a feedback loop with the user aimed at improving the training of the algorithm used 

within the platform before launching the classification over the whole image of 

interest. This procedure is performed for all three the chosen sub-areas. For each 

adjustment in training/testing areas the algorithm is re-trained. Once the iterative 

process of feedback loop between the platform and the user is concluded and the 

results shown over testing areas are satisfactory, the trained detector can be run over 

another image or over the entirety of the image.  

 

The results of the detection were exported as points and imported in a GIS 

environment such as QGIS where a rapid and qualitative confrontation with the 

actual complete and ground-truth data of IDP camps could be performed. The 

interest was the detection of the object and not on the accuracy of the geometry 

detected. In the following image, the ground-truth IDP camps dataset is showed in 

green while the detection results from the algorithm trained in Picterra are shown 

as red points.  
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Figure 3.14 Map showing Sentinel-2 image tested in this exercise, IDP camps belonging to the collected dataset (in green) 

and IDP camps identified as such by the Picterra trained algorithm (red points). 

 

As it can be qualitatively assessed from the image above, there is an evident 

presence of commission errors, also known as false positives, but also a few 

omission errors. Indeed, 65% of actual IDP camps (ground-truth) areas present in 

the image are intersected by areas identified as IDP camp by the platform (this 

percentage includes the 30% used as training data), this means that 35% of actual 

IDP camps in the image were not identified, so an omission error of 35%. In 

addition, only about 45% of detected objects intersects actual IDP camps areas, 

while the remaining about 55% represents commission error and so misclassified 

objects. In this preliminary phase of the analysis, a more comprehensive and 

rigorous error matrix was not calculated since the focus of the exploratory 

classification via Picterra was on the potential of the identification of the features 

and not on the geometric accuracy of their classification. A more quantitative 

approach will be carried out recurring to other tools in the next sections.  

 

As expected, the majority of these misclassified objects were detected on 

features with spectral characteristics or shape easily attributable to the ones of IDP 

camps over the same image, such as agricultural fields or specific regularly shaped 

features such as industrial sites. These results suggest how the detection could be 

relevantly improved by adding more training examples belonging to the “non 

camp” class (such as agricultural fields, industrial sites, etc.), furthermore the result 

is slightly encouraging in that urban areas were rarely misclassified as IDP camps. 

Finally, even though the omission and commission error are still relevant, the result 

is encouraging in that it shows how displacement features could be potentially 

detected also in high-resolution open imagery such as Sentinel-2 imagery.  
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3.5. Unsupervised classification in 

Google Earth Engine 

In order to assess the potential of high-resolution imagery such as Sentinel-2 in 

the detection and classification of displacement features, this section will explore a 

series of classification case studies. The case studies were selected in order to be 

quite heterogeneous in terms of geographical location, hence environmental 

conditions, and type of displacement itself.  

 

 

Figure 3.15 Location of the four case studies. 

The Bangladesh case study concerns the large and well-known Kutupalong 

refugee camp near Cox’s bazar linked to the Rohingya exodus from Myanmar. This 

camp showed a clear yearly evolution over the years, allowing a monitoring of its 

dynamics through the classification exercise. In Uganda, the Palorinya refugee 

settlement is considered as case study, which have all the characteristics of a long-

term-village. The Ethiopia case study involves the two smaller refugee camps of 

Kobe and Melkadida, also considerable stable across years. Finally, in Iraq the 

focus is on the structured and well delimited Khanke, Kabarto 1, Kabarto 2 and 

Shariya Internally Displaced People’s (IDP) camps.  

 

The classification tests aim at assessing the accuracy of a pixel-based 

classification recurring to different sets of input classification features/properties, 

such as spectral bands, combined spectral indices or secondary datasets such as 

nocturnal lights.  
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3.5.1. Tools and methods 

The exercises were entirely performed in the Google Earth Engine (GEE) 

platform (https://earthengine.google.com/) and the developed code is available in 

the Annexes.  

 

The source data mainly used were: 

- The displacement dataset manually digitized and already described and 

discussed in the previous sections; 

- Sentinel-2 L1C Top-of-the-Atmosphere (TOA) reflectance data. This was a 

data-driven choice. TOA data were used instead of the L2A Bottom-of-the-

Atmosphere (BOA) data because of their longer temporal availability on the 

GEE platform compared to the latter, available only starting from March 

2017. Consequently, the Bangladesh case study could be investigated 

backwards up to 2016, and the reproducibility of the approach to other 

displacement contexts existing in years lacking availability of L2A products 

on the GEE platform is guaranteed. Rumora et al. study on the impact of 

different atmospheric correction methods (including no correction at all, 

hence using TOA products) on the accuracy of Sentinel-2 based land cover 

machine learning classification accuracy, concluded that the selection of the 

classifier overtakes in importance the selection of the atmospheric 

correction method, although their impact on the spectral values of the 

satellite imagery (Rumora et al., 2020). As already introduced, Sentinel-2 

data are available at a resolution ranging from 10 to 60 meters according to 

the bands considered. Bands of Sentinel-2 data will be referred to as: B2 

(Blue 10m), B3 (Green 10m), B4 (Red at 10m), B5 (Red Edge 1 at 20m), 

B6 (Red Edge 2 at 20m), B7 (Red Edge 3 at 20m), B8 (NIR at 10m), B8A 

(Red Edge 4 at 20m), B11 (SWIR 1 at 20m) and B12 (SWIR 2 at 20m); 

- Monthly average radiance composite images using night-time data from the 

Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band 

(DNB), stray light corrected. VIIRS night-time data are composited 

monthly using a procedure to correct for stray light. In particular, the 

average DNB (Day/Night Bands) radiance values were used. The native 

resolution of this data is approximately 450 meters.  

The overall methodology consists in the following steps: 

1. Location of the displacement setting of interest and identification of the 

study site as the bounding box of the displacement setting of interest, 

potentially buffered if needed; 

2. Image selection and image pre-processing; 

3. Unsupervised pixel-based classification with k-means clustering 

recurring to different sets of input classification spectral 

https://earthengine.google.com/
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features/properties, with the objective to separate the “displacement 

setting” class from any other class; 

4. Visual inspection of the resulting clusters and selection/labelling of the 

outcome cluster better representing the displacement setting feature; 

5. Validation accuracy metrics of the identified clusters calculated using 

as reference data the ones coming from the manually digitized dataset 

of displacement settings; 

6. Selection of the best performing set of classification spectral 

features/properties in terms of overall validation accuracy and 

representation of the results.  

The image pre-processing consists in the generation of yearly per-pixel 

composites of all the available imagery with less than 5% cloud coverage over the 

reference year. Per-pixel composites take a collection of images available over the 

same geographical areas for a selected time window and reduce them per-pixel 

using different statistical aggregating functions resulting in a single image 

representative of the time window. It was decided to work with yearly per-pixel 

composites for mainly two reasons: 

- To prevent or to avoid the impact of clouds in the final composites used for 

the representation and classification exercises. Working with optical 

imagery, a finer temporal compositing (e.g. monthly or weekly) would have 

led to cloud affected composites; 

- Displacement settings with a lifetime (appearance, evolution, 

disappearance, or movement) shorter than a year exist, and the yearly 

composites make it difficult to properly capture or monitor such type of 

settings. Nevertheless, the selected study sites concern displacement 

situations that are observed to be quite stable even across several years and 

extensive. Indeed, the rapid evolution of a displacement situation is mostly 

typical of small, informal and emergency linked contexts, which are rarely 

observable from high-resolution imagery and hence not covered by this 

Chapter.  

The image pre-processing phase also includes a data harmonization process. 

Since bands and imagery used to generate input classification data happen to have 

different spatial resolutions, they were all resampled to 10 meters resolution using 

a bilinear interpolation method and the pixels were aligned by reprojecting the data 

in the same coordinates reference system (CRS).  

 

The reference year used for the generation of the per-pixel composites 

corresponds to the reference year of the manually digitized data used as input of the 

location of the study area and then as reference data for the validation accuracy 

metrics.  
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The image selection and pre-processing phase varies slightly according to the 

specific case study. In the case of Bangladesh, given the striking evolution of the 

displacement setting across the years, it was decided to perform a temporal 

monitoring of the setting itself. Consequently, five years from 2016 to 2020 were 

used as reference years for generating yearly composites and yearly classifications.  

 

The following scheme resumes the applied methodology.  

 

 
Figure 3.16 Methodology scheme. 

3.5.2. Clustering 

The selected approach for the classification exercises is the one of unsupervised 

classification or clustering, in that the main objective of the tests is to investigate 

the separability of displacement features from the surroundings in high-resolution 

imagery and the impact on the separability, hence on the classification accuracy, of 

different spectral features.  

Again, the main objective here is trying to separate two classes: the 

“displacement setting” class as areas covered by structures ascribable to displaced 

population camps or settlements, and the “non displacement setting” class, defined 

as everything that is not included in the “displacement setting” class. To this end, 

the clustering algorithm outputs will be visually inspected until the algorithm 

identified clusters will align with the classes that are meant to be separated, even 

considering that the “non displacement setting” class will most likely be represented 

by more than one cluster that will be eventually merged into one.  

Finally, the availability of the manually digitized and visually interpreted 

dataset of displacement features will serve as study sites identification and as 

reference for validation accuracy metrics calculation.  

 

Clustering algorithms allows to partition numerical observations into clusters. 

The clustering algorithm generally requires to be instantiated with a set of 

parameters and to be trained using a user defined amount of training data. Once 

trained, the clustering algorithm can be applied on an image whose numeric 
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properties have to be clustered. Once the clusters are identified, they can be visually 

labelled, hence assigned with a specific class.  

The k-means clustering algorithm was selected since it is the one clustering 

algorithm available in the GEE platform.  The k-means clustering algorithm aims 

at partitioning observations into k clusters based on their features/properties, where 

k is user defined and each cluster is identified by its mean/centroid. The algorithm 

is iterative, starting with k clusters, assigning each observation to one of the 

clusters, calculating the mean/centroid of each cluster and reassigning each 

observation to the cluster with the closest mean/centroid. The mean/centroid are 

then recalculated for new clusters until convergence of the algorithm itself. Finally, 

each observation will belong to the cluster with the nearest mean of the user-defined 

feature/property. The main aim of the k-means algorithm is to minimize the intra-

clusters variance. Additionally, the GEE platform provides the x-means clustering 

algorithm, including an efficient estimation of the number of clusters. In the 

following classification exercises, the optimal number of clusters was assessed via 

a combination of a preliminary use of the x-means clustering algorithm to identify 

the efficient estimated number of clusters and visual inspection of iterative results 

until a satisfactory classification outcome. 

One benefit of clustering is that the same inputs should always reproduce the 

same outputs if the order of the inputs remains the same. 

Within the GEE platform, the clustering algorithms implemented are from the 

Weka software. Their implementation may differ from the commonly clustering 

algorithms available in common remote sensing software, given the parallel 

distributed computing approach of Google Earth Engine. Indeed, common 

clustering algorithms build the model on the entire image intended to be clustered. 

The Weka GEE implementation of the clustering algorithms, instead, requires 

building (“training”) the clustering model on a representative subset of the data, 

generally randomly selected, before being applied to the whole image to predict the 

clusters. This allows as well to train the clusterer on the totality of the pixels 

constituting the image that has to be clustered, matching common remote sensing 

software behaviour, but since the Weka classifiers implemented in GEE are not fast 

neither efficient nor robust, when training with as few as 10 bands * 100k points, it 

may potentially lead to memory errors in the platform (Google Earth Engine, 2021). 

Consequently, in the following classification exercises, k-means will be trained on 

a reduced randomly selected number of pixels of the image to identify the clusters 

and then applied to assign the remaining pixels to the identified clusters.  

3.5.3. What features/properties can 

improve classification? 

As stated before, the second aim after exploring the potential of high-resolution 

imagery in classifying displacement is to identify the best set of spectral features to 

this end. When performing an image pixel-based classification, different 

features/properties (one or many) of the image itself can be used as input parameters 
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to train and run an algorithm in the case of a supervised classification or to clusters 

into several classes the properties of the image to be classified in the case of an 

unsupervised classification. To this end, image stacks can be generated containing 

several bands/properties, where each one could be used as an input feature/property 

for a classification algorithm.  

In conclusion, the aim of this Chapter is also to explore different combinations 

of features/properties that can be used when classifying displacement and their 

impact on the classification result and accuracy. 

Spectral bands 

The first inputs that can be used when classifying a satellite image are its 

spectral bands itself, hence the spectral surface reflectance at different wavelengths 

that constitute the different bands of a satellite image. In this case, since using per-

pixel composites, the value and the date along the year of the spectral reflectance 

per pixel will depend on the statistical aggregating function used for compositing. 

Indices 

 Spectral surface reflectance at different wavelengths, hence different 

spectral bands of a same satellite image, can be combined into spectral indices. 

Spectral indices are able to enhance the contribution of a specific land feature’s 

(vegetation, water, burned area, urban area, etc.) property compared to the others. 

Spectral indices, indeed, generally leverage inverse relationships between two (or 

more) bands in which the specific land feature manifest a different behaviour. 

Consequently, spectral indices lend themselves to a variety of applications, from 

multi-temporal monitoring of vegetation health conditions to thresholding or other 

kinds of classification.  

 

Two indices were taken into accounts in these classification exercises. The first 

is the widely recognized Normalized Difference Vegetation Index (NDVI). The 

NDVI is calculated as: 

𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑)
 

 

Where Red and NIR are the spectral reflectance measurements acquired within the 

red visible and the near-infrared wavelengths regions, respectively. NDVI ranges 

from -1 to 1 and it leverages the high reflectance of vegetation in the near-infrared 

region and the strong absorption in the visible region to enhance vegetation with a 

high NDVI value.  

 

The second index considered is the Normalized Difference Built-Up Index 

(NDBI). The NDBI is calculated as: 

𝑁𝐷𝐵𝐼 =  
(𝑆𝑊𝐼𝑅 − 𝑁𝐼𝑅)

(𝑆𝑊𝐼𝑅 + 𝑁𝐼𝑅)
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Where SWIR and NIR are the spectral reflectance measurements acquired within 

the shortwave-infrared and the near-infrared wavelengths regions, respectively, 

with a SWIR band between 1.55-1.75 µm and a NIR band between 0.76-0.9 µm. 

NDBI ranges from -1 to 1 and it leverages the higher reflectance of urban areas in 

the SWIR region compared to the NIR region to highlight built-up areas.  

Composites 

The compositing technique allows to combine spatially overlapping images, 

such as a series of multi-temporal images over the same geographical area, into a 

single image where each pixel of the image is the result of an aggregation process 

or a specific function. The result of a composite implies that pixels at different 

locations in the resulting composite come from different times. This is valid for 

each band constituting the input images in the input collection. The compositing 

discussed here differs from the visualization composite that allows visualizing 

multi-bands data on a screen in real or false colours. 

 
Figure 3.17 Compositing example. 

 

One could composite a collection of images over the same geographical areas 

using different statistical aggregating functions. For instance, in the following 

classification exercises, one of the aggregating functions used will be the median 

of the pixel values for each band over a yearly collection of images. The median is 

well acknowledged because it returns a real pixel value to the composite. In 

addition, it reduces the impact of the presence of cloudy pixels within the collection 

itself, even if it was already filtered by cloud coverage less than 5%.  

 

Composites can also be generated in order to maximize an arbitrary band in the 

input data, meaning that the resulting composite is created by picking each pixel of 

each band from the image in the collection that shows a maximum value at that 

pixel for the specifically selected bands. These types of composites are referred to 

as Quality Mosaics in the Google Earth Engine platform. One of these quality 

mosaics maximizes the greenness by selecting each pixel where the NDVI shows 

its maximum value. This type of composite can be referred to as greenest 
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composite, in that every pixel of the image will be picked at the time where the 

pixel itself expressed its maximum NDVI value hence it is supposed to have 

reached its peak in vegetation coverage or vegetation health condition.  In the 

following classification exercises, the spectral features/properties obtained 

recurring to this specific type of composite will be referred to as “greenest”.  

Night-time light 

The use of complementary and secondary datasets can also be taken into 

consideration when performing classification exercises of a specific phenomena. 

As fire detection products have been reportedly exploited to detect potential 

violence outbursts, night-time lights measures from satellite imagery have also been 

explored in humanitarian applications contexts. As an example, patterns of night-

time lights have been used to monitoring unfolding conflicts as well as to correlate 

night-time light loss or fluctuation with the presence of IDP or large-scale 

populations movements (Quinn et al., 2018).  

 

In this context, VIIRS Stray Light Corrected Nighttime Day/Night Band 

Composites Version 1 data are explored firstly to identify whether they provide 

additional information in the selected displacement case studies. In addition, they 

are exploited as an additional spectral feature to assess their impact on classification 

accuracies. VIIRS Stray Light Corrected Nighttime Day/Night Band Composites 

Version 1 data represent monthly average radiance composite images using night-

time data from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night 

Band (DNB) at approximately 450 meters resolution available from 2014 up to 

now. These data are composited monthly, implying than over some regions the 

impact of clouds over a month might not be avoided. The fact that during the 

classification exercises they were composited into yearly median overcomes this 

issue These specific data have been corrected for stray light effect.  

3.5.4. Accuracy assessment 

The output of a classification requires the assessment of its thematic accuracy 

as a quantitative indicator of the quality of the classification itself. The thematic 

accuracy of a classification is the agreement between the classification and a 

reference data that is taken into account as ground-truth. The result is a confusion 

matrix used to calculate the various accuracy metrics and whose diagonal elements 

represent the number of features correctly classified as the ground-truth class. This 

implies that a reference dataset to be used as ground-truth is needed in order to 

quantify the accuracy of a classification. In this case the visually 

inspected/manually digitized dataset of displacement setting features described in 

the previous section will be used as reference dataset.  

 

While the diagonal elements of a confusion matrix represent the number of 

features correctly classified, three other accuracy metrics are worth being described: 
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- The overall accuracy is the ratio between the sum of all correctly 

classified features/pixels and the total number of reference 

features/pixels in the considered area. 

  

- The producer’s accuracy (PA) represents the accuracy from the point of 

view of the producer of the map, indicating how often real features on 

the ground will be correctly represented in the classification map. The 

producer’s accuracy is calculated as the number of features/pixels in the 

reference correctly classified for a given class divided by the total 

amount of pixels in the reference for that class. 

 

- The user’s accuracy (UA) represents the accuracy from the point of 

view of the user of the map, indicating how often a class on the 

classification map will be actually present on the ground. The user’s 

accuracy is calculated as the number of pixels correctly classified for a 

given class divided by the total amount of pixels classified as that class.  

From the accuracy metrics it is also possible to derive the classification errors: 

- The omission error is a measure of how many reference features/pixels 

were omitted from the classification (false negatives) and it is the 

complement of the PA. 

 

- The commission error is a measure of misclassified features/pixels in a 

given class (false positives) and it is the complement of the UA.  

3.5.5. Bangladesh case study 

Context 

The stateless Muslim minority of Rohingya started to flee an outburst of 

violence in Myanmar in August 2017. More than 742’000 Rohingya refugees 

sought shelter in nearby Bangladesh. The exodus started in 2017 and continued 

throughout 2018 (UNHCR, 2019b).  

Most of the fleeing population settled in and around the already existing formal 

refugee camps of Kutupalong and Nayapara in Bangladesh’s Cox’s Bazar district. 

Kutupalong formal refugee camp already hosted 13’901 refugees before the 2017 

exodus. The new influx of refugees led to the fast growth of spontaneous 

settlements and the onset of makeshift camps/settlements around Kutupalong itself, 

which eventually ended up in a continuous area including Kutupalong and 

Balukhali extension sites and unofficial camps in the more southern part (Reuther 

Graphics, 2017; UNHCR, 2019b). 

Most of the makeshift camps were and still are in precarious sanitary, security 

and environmental conditions. Indeed, the Cox’s Bazar district is highly affected 

by monsoon rains between May and September, posing severe risk to the volatile 
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infrastructures of the refugees’ settlements, since most of refugees reside over 

terrain highly prone to landslides and flooding (UNHCR, 2019b). 

 

 
Figure 3.18 Aerial view of Kutupalong refugee camp (TheInterpreter, 2018). 

Kutupalong refugee camp is now one of the largest of its kind and hosts about 

600’000 people in about 13 square kilometres (Reuther Graphics, 2017; UNHCR, 

2019b). Kutupalong and the more southern Jamtoli-Bagghona-Hakimpara sites 

represent the current study sites.   

 

 
Figure 3.19 Kutupalong and nearby makeshifts settlements/camps on 2017 May 26, three months before the influx of 

refugees, showing the green, hilly areas around the camps still relatively unoccupied (Reuther Graphics, 2017). 
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Study site and input data 

The study site is illustrated in the following figure. The image is an RGB 

composite of the 2019 yearly median of a Sentinel-2 L1C. The green boundary 

represents the refugee camp outline manually digitized in the generation of the 

displacement dataset. 

  

 
Figure 3.20 Study site. 

A k-means clustering algorithm was trained on 100’000 randomly selected 

input pixels (15% of the totality of pixels of the classified image) with the following 

combinations of features/properties used as input of a k-means clustering algorithm: 

- Yearly median of NDVI, NDBI, B2, B3, B4, B5, B11, B12, VIIRS; 

- Yearly median of NDVI, NDBI; 

- Yearly median of NDVI, NDBI, VIIRS; 

- Yearly median of B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12; 

- Yearly median of NDVI, NDBI, B2, B3, B4, B5, B6, B7, B8, B8A, B11, 

B12, VIIRS; 

- Yearly greenest of NDVI, yearly median of NDBI, yearly greenest of B2, 

B3, B4, B5, B11, B12 and yearly median of VIIRS.  

Results 

The optimal number of clusters was assessed to be k = 4 and once the cluster 

better describing the refugee camp outline was visually identified, it was possible 
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to calculate the validation accuracies metrics for the 2019 classification against the 

manually digitized data with reference year 2019. The best overall validation 

accuracy was achieved with the combination of yearly median of NDVI, NDBI, B2, 

B3, B4, B5, B11, B12, VIIRS, compared to the other combinations of 

features/properties as illustrated in the Annexes. Indeed, the following graphs 

illustrating the spectral signature averaged in the whole camp area and the whole 

non camp area, suggests that higher separability occurs in these bands.  

 

 
Figure 3.21 Spectral distribution of refugee camp and non-camp areas. 

This selected combination of input features provided the following accuracy 

metrics expressed as error matrices, while the accuracy metrics for the remaining 

combinations of input features are illustrated in the Annexes.  

 

 
Figure 3.22 Combination of bands with the highest overall validation accuracy metrics for 2019 classification of the 

Bangladesh case study. 

In the following figure, the result of the 2019 classification achieving the best 

overall validation accuracy compared to the manually digitized data is illustrated, 

highlighting where commission or omission errors occur and where agreement 

between the two data occur. 

 

It has to be taken into account that a feature such as a refugee camp does not 

have clear outlines in most cases, unless in the case of a formal structured 

camp/settlement. As a consequence, even manually digitizing the outline can be 

challenging and susceptible to the subjective interpretation of the interpreter. 

  

VALIDATION ACCURACY

Bangladesh 2019

Yearly median of NDVI, NDBI, B2, B3, B4, B5, B11, B12, VIIRS

Predicted

Non-camp Camp

Non-camp 471390 12381 483771

Actual Camp 52911 135296 188207

Overall 524301 147677 671978

Omission Comission PA UA

Non-camp 0.025592687 0.100917221 0.974407313 0.899082779

Camp 0.281131945 0.083838377 0.718868055 0.916161623

Overall 0.902836105
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Figure 3.23 2019 refugee camp classification accuracy metrics. 

In the next pages, instead, the whole temporal evolution of the data is illustrated 

from 2016 (left) to 2020 (right) of: 

- RGB composites of yearly medians composites of Red, Green and Blue 

bands of Sentinel-2 L1C data; 

- RGB composites of greenest composites of Red, Green and Blue bands 

of Sentinel-2 L1C data; 

- Yearly medians of VIIRS night-time data.  

In the second pages the outcomes of the clustering classification from 2016 (left) to 

2020 (right) are illustrated together with a binary representation of the clusters, 

meaning that all clusters not representing the refugee camp feature have been 

dissolved into a single cluster and the remaining one is the cluster better 

representing the refugee camp feature. Again, all classification images refer to the 

classification achieving the best overall validation accuracy.  

 

Despite it was not possible to evaluate validation accuracy metrics for all years 

given to the lack of a reference data, it is possible to visually assess the agreement 

of the classification with the current expansion of the refugee camp itself.  
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Figure 3.24 From the top: RGB composites of yearly medians composites of R, G, B bands of Sentinel-2 L1C data, RGB composites of greenest composites of R, G, B bands of Sentinel-2 L1C data, yearly medians of VIIRS night-time data. 
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Figure 3.25 From the top: yearly clusters resulting from k-means classification, the same clusters aggregated in order to highlight refugee camp and non-camp features. 
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3.5.6. Uganda case study 

Context 

Uganda is the African country hosting the largest number of refugees due to its 

refugee’s policy that used to provide, among other benefits, a cultivable piece of 

land (WFP, 2021). Most of incoming refugees flee the neighbouring countries of 

South-Sudan, Democratic Republic of Congo, and Burundi. Uganda is nowadays 

hosting more than 1’400’000 refugees, who gradually settled in the existing 30 

refugee settlements existing across the country. About half of the totality of 

refugees’ population in Uganda resides in the settlements of Bidi Bidi, Pagirinya 

and Rhino in the northwest part of Uganda (UNHCR, 2021a). Uganda refugee 

settlements have developed with time to assume all features of villages.  

 

 
Figure 3.26 Bidi Bidi refugee settlement (The New York Times, 2018). 

Palorinya refugee settlement is located in the North Wester region of Uganda 

in the Moyo district. This settlement was opened in December 2016 in order to 

lighten the pressure due to new arrivals at the Bidi Bidi refugee settlements. Most 

of refugees hosted at Palorinya settlements come from South Sudan. More than 

42’000 refugees settled in Palorinya two months after tits opening. Palorinya 

refugee settlements is divided into three zones (01, 02, 03).  

Study site and input data 

The study site is illustrated in the following figure. The image is an RGB 

composite of the 2017 yearly median of a Sentinel-2 L1C. The green boundary 

represents the refugee settlements outline collected in the generation of the 

displacement dataset.  
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Figure 3.27 Study site. 

A k-means clustering algorithm was trained on 100’000 randomly selected 

input pixels (2% of the totality of pixels of the classified image) with the following 

combinations of features/properties used as input of a k-means clustering algorithm: 

- Yearly greenest of NDVI, yearly median of NDBI, yearly greenest of B4, 

B7, B11, B12; 

- Yearly greenest of NDVI, yearly median of NDBI, yearly greenest of B4, 

B7, B11, B12 and yearly median of VIIRS; 

- Yearly greenest of NDVI and yearly median NDBI; 

- Yearly median of NDVI, NDBI, B4, B7, B11, B12, VIIRS; 

- Yearly greenest of B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12; 

- Yearly greenest of B4, B7, B11, B12.  

Results 

The optimal number of clusters was assessed to be k = 8 and once the cluster 

better describing the refugee settlements outline was visually identified, it was 

possible to calculate the validation accuracies metrics for the 2017 classification 

against the manually digitized data with reference year 2017. The best overall 

validation accuracy was achieved with the combination of yearly greenest of B2, 

B3, B4, B5, B6, B7, B8, B8A, B11, B12, compared to the other combinations of 

features/properties as illustrated in the Annexes. The following graphs illustrates 

the spectral signature averaged in the whole camp area and the whole non camp 

area. The difference in accuracies metrics considering exclusively the combination 

of yearly greenest B4, B7, B11, B12 was minimal.   
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Figure 3.28 Spectral distribution of refugee camp and non-camp areas. 

This selected combination of input features provided the following accuracy 

metrics expressed as error matrices, while the accuracy metrics for the remaining 

combinations of input features are illustrated in the Annexes.  

 

 
Figure 3.29 Combination of bands with the highest overall validation accuracy metrics for 2019 classification of the 

Uganda case study. 

In the following figure, the result of the 2017 classification achieving the best 

overall validation accuracy compared to the manually digitized data is illustrated, 

highlighting where commission or omission errors occur and where agreement 

between the two data occur. 

 

Again, it has to be taken into account that a feature such as a refugee settlement 

does not have clear outlines in most cases, unless in the case of a formal structured 

camp/settlement. As a consequence, even manually digitizing the outline can be 

challenging and susceptible to the subjective interpretation of the interpreter.  

VALIDATION ACCURACY

Uganda 2017

Yearly greenest of B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12

Predicted

Non-camp Camp

Non-camp 4003503 82177 4085680

Actual Camp 309546 128627 438173

Overall 4313049 210804 4523853

Omission Comission PA UA

Non-camp 0.020113421 0.071769646 0.979886579 0.928230354

Camp 0.706446997 0.389826569 0.293553003 0.610173431

Overall 0.913409432
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Figure 3.30 2017 refugee settlements classification accuracy metrics. 

In the next pages, instead: 

- RGB composite of yearly medians composites of Red, Green and Blue 

bands of Sentinel-2 L1C data for reference year 2017; 

- RGB composite of greenest composites of Red, Green and Blue bands 

of Sentinel-2 L1C data for reference year 2017; 

- Binary representation of the clusters, meaning that all clusters not 

representing the refugee settlement feature have been dissolved into a 

single cluster and the remaining one is the cluster better representing 

the refugee settlement feature, for reference year 2017. 

Again, classification images refer to the classification achieving the best overall 

validation accuracy.
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Figure 3.31 From the top: RGB composite of yearly medians composites of Red, Green and Blue 

bands of Sentinel-2 L1C data, RGB composite of greenest composites of Red, Green and Blue bands 
of Sentinel-2 L1C data, clusters aggregated in order highlight refugee settlement and non-settlement 

features. 
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3.5.7. Ethiopia case study 

Context 

Ethiopia hosted a total of 883’546 refugees at the end of September 2017, 

mostly accommodated in 26 refugee camps distributed across the country, which 

largely depend on humanitarian assistance. Ethiopia’s long history of refugees’ 

hospitality from mostly neighbouring countries of South Sudan, Somalia, Eritrea 

and Sudan is strongly linked to its open-door asylum policy (UNHCR, 2018a).  

 

Eight refugee camps are located in the Somali region of Ethiopia, hosting 

mostly Somali refugees (Reliefweb, 2020). Among them, Kobe and Melkadida 

refugee camps were established in 2011 and they host now 31’127 and 35’038 

refugees respectively (UNHCR, 2021).  

 

 
Figure 3.32 Kobe refugee camp (Seed, 2015). 

 
Figure 3.33 Melkadida refugee camp (Mapio, 2021). 
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Study site and input data 

The study site is illustrated in the following figure. The image is an RGB 

composite of the 2019 yearly median of a Sentinel-2 L1C. The green boundary 

represents the refugee camps outline manually digitized in the generation of the 

displacement dataset.  

 

 
Figure 3.34 Study site. 

A k-means clustering algorithm was trained on 100’000 randomly selected 

input pixels (23% of the totality of pixels of the classified image) with the following 

combinations of features/properties used as input of a k-means clustering algorithm: 

- Yearly greenest of NDVI, yearly median of NDBI, yearly greenest of B8A, 

B11, B12 and yearly median of VIIRS; 

- Yearly greenest of NDVI, NDBI, B8A, B11, B12 and yearly median of 

VIIRS 

- Yearly greenest of NDVI and yearly median of NDBI; 

- Yearly greenest of NDVI, yearly median of NDBI and yearly median of 

VIIRS; 

- Yearly greenest of B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12; 

- Yearly median of NDVI, NDBI, B8A, B11, B12, VIIRS.  
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Results  

The optimal number of clusters was assessed to be k = 7 and once the cluster 

better describing the refugee camps outline was visually identified, it was possible 

to calculate the validation accuracies metrics for the 2019 classification against the 

manually digitized data with reference year 2019. The best overall validation 

accuracy was achieved with the combination of yearly greenest of NDVI, yearly 

median of NDBI, yearly greenest of B8A, B11, B12 and yearly median of VIIRS, 

compared to the other combinations of features/properties as illustrated in the 

Annexes.  Indeed, the following graphs illustrating the spectral signature averaged 

in the whole camp area and the whole non camp area, suggests that higher 

separability occurs in these bands.  

 
Figure 3.35 Spectral distribution of refugee camp and non-camp areas. 

This selected combination of input features provided the following accuracy 

metrics expressed as error matrices, while the accuracy metrics for the remaining 

combinations of input features are illustrated in the Annexes.  

 

 
Figure 3.36 Combination of bands with the highest overall validation accuracy metrics for 2019 classification of the 

Ethiopia case study. 

In the following figure, the result of the 2019 classification achieving the best 

overall validation accuracy compared to the manually digitized data is illustrated, 

highlighting where commission or omission errors occur and where agreement 

between the two data occur. 

 

VALIDATION ACCURACY

Ethiopia 2019

Yearly greenest of NDVI, yearly median NDBI, yearly greenest B8A, B11, B12, VIIRS

Predicted

Non-camp Camp

Non-camp 358854 12603 371457

Actual Camp 26760 32837 59597

Overall 385614 45440 431054

Omission Comission PA UA

Non-camp 0.033928557 0.069395821 0.966071443 0.930604179

Camp 0.44901589 0.277354754 0.55098411 0.722645246

Overall 0.908681975
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Again, it has to be taken into account that a feature such as a refugee camp does 

not have clear outlines in most cases, unless in the case of a formal structured 

camp/settlement. As a consequence, even manually digitizing the outline can be 

challenging and susceptible to the subjective interpretation of the interpreter.  

 

 
Figure 3.37 2019 refugee camps classification accuracy metrics. 

In the next pages, instead: 

- RGB composite of yearly medians composites of Red, Green and Blue 

bands of Sentinel-2 L1C data for reference year 2019; 

- RGB composite of greenest composites of Red, Green and Blue bands 

of Sentinel-2 L1C data for reference year 2019; 

- Yearly median of VIIRS night-time data for reference year 2019; 

- Outcome of the clustering classification for reference year 2019; 

- Binary representation of the clusters, meaning that all clusters not 

representing the refugee camp feature have been dissolved into a single 

cluster and the remaining one is the cluster better representing the 

refugee camp feature, for reference year 2019. 

Again, all classification images refer to the classification achieving the best overall 

validation accuracy.
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Figure 3.38 Top from left to right: RGB composite of yearly medians composites of Red, Green and Blue bands of Sentinel-2 L1C data, RGB composite of greenest composites of Red, Green and Blue bands of Sentinel-2 L1C 

data, yearly median of VIIRS night-time data. Bottom from left to right: clusters resulting from k-means classification, the same clusters aggregated in order to highlight refugee camp and non-camp features. 
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3.5.8. Iraq case study 

Context 

Following the rise of the Islamic State of Iraq and Syria and its expansion in 

Northern and Central Iraq in 2014, a significant internal displacement of population 

occurred since civilians started to flee towards more safe and secure parts of the 

country (USAID, 2020). In February 2020 approximately 1.4 million Internally 

Displaced People (IDP) were enumerated throughout the country, of which mostly 

residing in formal IDP camps in Iraq (Reliefweb, 2020a), mostly managed by 

UNHCR (UNHCR, 2021b). The government decision to initiate a plan to close IDP 

camps to facilitate returns in 2019 has exposed this population to further instability 

(Reliefweb, 2020a).  

 

The four formal IDP camps of Khanke, Kabarto 1, Kabarto 2 and Shariya, all 

opened in 2014 (Reliefweb, 2015), are located in the Sumel district north of the city 

of Mosul. They respectively hosted 14’192, 11’880, 12’073 and 15’270 IDP 

individuals by December 2020 (UNHCR, 2021b).  

 

 
Figure 3.39 Khanke IDP camp (UNHCR, 2021c). 

 
Figure 3.40 Kabarto IDP camp (Themenbuero, 2021). 
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Study site and input data 

The study site is illustrated in the following figure. The image is an RGB 

composite of the 2019 yearly median of a Sentinel-2 L1C. The green boundary 

represents the IDP camps outline manually digitized in the generation of the 

displacement dataset.  

 

 
Figure 3.41 Study site. 

A k-means clustering algorithm was trained on 100’000 randomly selected 

input pixels (8% of the totality of pixels of the classified image) with the following 

combinations of features/properties used as input of a k-means clustering algorithm: 

- Yearly median of NDVI, NDBI, B2, B3, B4, B5, B11, B12, VIIRS; 

- Yearly median of NDVI, NDBI, B2, B3, B4, B5, B11, B12; 

- Yearly greenest of NDVI, yearly median of NDBI, yearly greenest of B2, 

B3, B4, B5, B11, B12 and yearly median of VIIRS; 

- Yearly median of NDVI, NDBI; 

- Yearly median of NDVI, NDBI, VIIRS; 

- Yearly median of B2, B3, B4, B5, B11, B12.  

Results 

The optimal number of clusters was assessed to be k = 8 and once the cluster 

better describing the IDP camps outline was visually identified, it was possible to 

calculate the validation accuracies metrics for the 2019 classification against the 

manually digitized data with reference year 2019. The best overall validation 

accuracy was achieved with the combination of yearly median of NDVI, NDBI, B2, 

B3, B4, B5, B11, B12, VIIRS, compared to the other combinations of 

features/properties as illustrated in the Annexes. Indeed, the following graphs 
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illustrating the spectral signature averaged in the whole camp area and the whole 

non camp area, suggests that higher separability occurs in these bands.  

 
Figure 3.42 Spectral distribution of IDP camp and non-camp areas. 

This selected combination of input features provided the following accuracy 

metrics expressed as error matrices, while the accuracy metrics for the remaining 

combinations of input features are illustrated in the Annexes.  

 

 
Figure 3.43 Combination of bands with the highest overall validation accuracy metrics for 2019 classification of the Iraq 

case study. 

In the following figure, the result of the 2019 classification achieving the best 

overall validation accuracy compared to the manually digitized data is illustrated, 

highlighting where commission or omission errors occur and where agreement 

between the two data occur. 

 

In this specific case, IDP camps have very clear outlines being formal 

structured camps.  

VALIDATION ACCURACY

Iraq 2019

Yearly median of NDVI, NDBI, B2, B3, B4, B5, B11, B12, VIIRS

Predicted

Non-camp Camp

Non-camp 1160605 6125 1166730

Actual Camp 18100 30398 48498

Overall 1178705 36523 1215228

Omission Comission PA UA

Non-camp 0.005249715 0.015355835 0.994750285 0.984644165

Camp 0.373211266 0.167702544 0.626788734 0.832297456

Overall 0.980065469
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Figure 3.44 2019 IDP camps classification accuracy metrics. 

In the next pages, instead: 

- RGB composite of yearly medians composites of Red, Green and Blue 

bands of Sentinel-2 L1C data for reference year 2019; 

- RGB composite of greenest composites of Red, Green and Blue bands 

of Sentinel-2 L1C data for reference year 2019; 

- Yearly median of VIIRS night-time data for reference year 2019; 

- Outcome of the clustering classification for reference year 2019; 

- Binary representation of the clusters, meaning that all clusters not 

representing the IDP camp feature have been dissolved into a single 

cluster and the remaining one is the cluster better representing the IDP 

camp feature, for reference year 2019. 

Again, all classification images refer to the classification achieving the best overall 

validation accuracy. 
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Figure 3.45 Top from left to right: RGB composite of yearly medians composites of Red, Green and Blue bands of Sentinel-2 L1C data, RGB composite of greenest composites of Red, Green and Blue bands of Sentinel-2 L1C data, yearly median of 

VIIRS night-time data. Bottom from left to right: clusters resulting from k-means classification, the same clusters aggregated in order to highlight IDP camp and non-camp features. 
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3.5.9. Discussion and conclusions 

The presented series of classification exercises leads to a series of 

considerations: 

- Sentinel-2 data offers the possibility to identify visually and to semi-

automatically classify displacement settings with a measurable 

validation accuracy, as resumed in the following table illustrating the 

accuracy metrics of all four case studies for the highest overall 

validation accuracy achieving combination of input classification 

features/properties.  

 
Table 3.2 Validation accuracy metrics for all case studies. 

- The achieved validation accuracy varies according to the type of 

displacement setting and surrounding environment. In addition, every 

context requires a different set of input classification 

features/properties. In the case of Uganda, with the lowest achieved 

overall validation accuracy among all case studies, the refugee 

settlements are separable from the remaining classes in that they are 

highly characterized with bare soil. Nevertheless, this leads to a high 

degree of commission error, identifying as refugee settlements all the 

surrounding bare soil areas. On the other hand, in the Iraq case study, 

IDP camps are constituted mostly by white plastic sheets covered tents 

and tinned structures. Consequently, the displacement setting is very 

VALIDATION ACCURACY

Bangladesh 2019

Yearly median of NDVI, NDBI, B2, B3, B4, B5, B11, B12, VIIRS

Omission Comission PA UA

Non-camp 0.025592687 0.100917221 0.974407313 0.899082779

Camp 0.281131945 0.083838377 0.718868055 0.916161623

Overall 0.902836105

Uganda 2017

Yearly greenest of B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12

Omission Comission PA UA

Non-camp 0.020113421 0.071769646 0.979886579 0.928230354

Camp 0.706446997 0.389826569 0.293553003 0.610173431

Overall 0.913409432

Ethiopia 2019

Yearly greenest of NDVI, yearly median NDBI, yearly greenest B8A, B11, B12, VIIRS

Omission Comission PA UA

Non-camp 0.033928557 0.069395821 0.966071443 0.930604179

Camp 0.44901589 0.277354754 0.55098411 0.722645246

Overall 0.908681975

Iraq 2019

Yearly median of NDVI, NDBI, B2, B3, B4, B5, B11, B12, VIIRS

Omission Comission PA UA

Non-camp 0.005249715 0.015355835 0.994750285 0.984644165

Camp 0.373211266 0.167702544 0.626788734 0.832297456

Overall 0.980065469
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well separable from the surrounding context and even from the 

surrounding urban areas.  

The season of selection of images also influences the resulting 

classification. In the case of Uganda, where the settlement is mostly 

characterized by bare soil, the highest separability occurs recurring to 

the greenest pixel compositing techniques, in that every pixel of the 

classified image will be taken at the yearly peak of NDVI and 

surrounding vegetation will be clearly distinguishable from the soil 

cleared in order to host the refugee settlement. The same occurs in a 

very arid region such as the one of the Ethiopia case study.  

 

- VIIRS night-time data provided an increase in the accuracy for three 

out of four case studies. In the case of Uganda, the data were not 

significant.  

 

- Sentinel-2 data can be used to monitor periodical size evolution of 

displacement settings, such as in the case of the Kutupalong refugee 

camp in Bangladesh.  

 

- Finally, the measures of accuracy metrics against a validation dataset in 

the case of displacement settings is highly challenging. Indeed, these 

types of features often do not have clear and easily distinguishable 

outlines, unless in the case of very structured formal camps, such as in 

the Iraq case study. To decide where to trace a line to separate the 

displacement camp from everything else is often a subjective choice of 

the image analyst.  
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Chapter 4 

4. Cropland abandonment as an 

indicator of migration and 

displacement 

When exploring applications of available data and methods in the context of 

displacement, indirect approaches can also be considered. Displacement is often 

induced by a series of factors or it is an inductor itself of a series of potential 

consequences (conflict, natural disasters, food insecurity, etc.). Consequently, by 

monitoring driving or impacted factors as indicators for displacement, it is possible 

to: 

- Obtain indirect information on displacement; 

- Monitor displacement; 

- Predict displacement.  

One of the driving causes of displacement is the impact of conflict on food 

security, leading to consequences such as cropland abandonment. This land-use 

change can potentially be monitored from remotely sensed data, including high-

resolution data, which can give a finer level information about where this change 

occurs. Limitations and challenges exist.   

4.1. Literature review 

The topic of cropland abandonment mapping has been covered by the literature. 

Different approaches have been explored, ranging from visual interpretation of 

imagery to semi-automatic information extraction. A commonly agreed method for 

monitoring cropland abandonment is still lacking, especially for large scale 

applications.  
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Difficulties in monitoring cropland abandonment from remotely sensed data 

include the spatial dispersion of this land cover change and the challenging spatial 

similarity of cropland and cropland change with other features such as grasslands, 

fallow fields, etc. Furthermore, cropland mapping requires a sufficient amount of 

imagery in order to capture the dynamic temporal spectral behaviour of crops and 

to enable separation with other classes (Yin et al., 2020). 

 

Operational services, such as the World Food Programme of the United Nations 

and the Copernicus Risk and Recovery Mapping (RRM) Service, have been already 

called to try answering this task.  

In 2020, WFP worked on preparing cropland loss maps between 2016 and 2019 

for the Mopti region, in Mali. The context of Mali facing an increasing presence of 

armed groups and violence outbreaks, led to loss of livelihoods and difficulties in 

accessing and cultivating fields for displaced populations. The methodology 

followed by WFP consisted in visually inspecting, comparing, and classifying 

multi-temporal composites of high-resolution satellite imagery, specifically 

Sentinel-2 data. The data was processed in order to obtain for each year interested 

by the monitoring a 3 bands stack where each band is the per-pixel composite of 

the maximum NDVI over a specific agricultural period. Specifically, the 

agricultural periods are the plowing, the growing and the harvesting. These multi-

temporal stacks have then been used to visually compare different years and assign 

to each populated place in the study area a slight increase, no change, slight 

decrease, medium decrease and severe decrease in the cropland change. The final 

output is the map represented in the following figure (WFP, 2020).  

 

 
Figure 4.1 Output of WFP work in mapping cropland change after conflict events in Mopti region (WFP, 2020). 
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On the same year, Copernicus Risk and Recovery Mapping (RRM) Service was 

called by WFP itself to perform the same kind of analysis in the Borno state in 

North-Eastern Nigeria between 2010 and 2019. The objective was to estimate the 

impact of conflict and to estimate the population affected by cropland loss. In this 

case, availability of imagery was more challenging and required to recur to a wider 

range of satellite sensors to respond to the requested monitoring time range. The 

methodology applied was aligned with the one applied by WFP. For each 

settlement, cropland change classification was performed visually. The identified 

classes are significant decrease, medium decrease, slight decrease, no change, slight 

increase, medium increase, and significant increase. The different sensors 

resolutions were one of the stated reasons that prevented the application of a semi-

automated change detection. The final product is a series of maps per Area of 

Interest (AOI) and a general one represented in the following figure.  

 

 
Figure 4.2 Output of Copernicus work in mapping cropland change after conflict events in North-Eastern Borno state 

(Copernicus, 2020). 

The limitations identified in these two approaches consist in: 

- The lack of a quantitative and measurable output in terms of cropland loss; 

- The cropland loss output is not explicitly spatially located but generally 

assigned to the populated place; 

- The considerable human effort and time consumed in visually interpreting 

a large number of villages points (more than 2000 in both cases).  
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Yin et al. (2020) illustrated a semi-automated method for mapping the extent 

and the time of cropland abandonment using the entire availability of Landsat time 

series, tested on 14 heterogeneous study sites. In their approach, the starting point 

was a yearly per-pixel classification of active cropland and non-cropland using 

annual summary statistics using multi-years training data identified on stable areas 

across years, minimizing the input and labelling of training data. The classification 

was performed for each study site and each year separately. This allowed not to 

assume that reflectance behaviour and phenology of cropland remain similar among 

years. The land use change was then classified according to the multi annual per-

pixel evolution to distinguish between what is an actual abandoned cropland, stable 

cropland, non-cropland, and fallow fields (Yin et al., 2020).  

4.2. Multi-temporal supervised 

classification in Google Earth Engine 

In the context of a research collaboration and a research stay with the Z_GIS 

department of geoinformatics at the University of Salzburg, the possibility and 

extent to which an automation of the approaches followed by the WFP and 

Copernicus is possible is explored. The main objective is to obtain a more 

quantitative result in the identification of abandoned cropland and to use the output 

as an indicator of potential displacement.  

4.2.1. Study area 

It was decided to implement the analysis on the same area of interest covered 

by the Copernicus RRM activation in 2020, in order to have access to the already 

existing data about the area of study and the population sites and to have a 

comparative product, even though mostly qualitative. The Copernicus activation 

focused on five areas of interest (AOI) in Borno state in north-eastern Nigeria, west 

of Lake Chad, represented in the figure and listed in the table. 

 

 

 

 

AOI No. Name Area [km2] 

1 Abadam 2502 

2 Guzamala 3153 

3 Kukawa 3989 

4 Marte 4867 

5 Kala Balge 1883 
Table 4.1 Areas of interest. 

Figure 4.3 Areas of interest (AOI). 
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4.2.2. Context 

This area of Nigeria witnessed a dramatic conflict which originated in 2009 

with the insurgence of Boko Haram and that led to an outbreak of the conflict in 

2014, especially in the north-eastern states of Nigeria, including the Borno state 

(Copernicus, 2020). The increased security threats limited the access to the land 

surrounding the villages in the affected areas. This induced a significant loss in 

cropland which, consequently, impacted population itself, leading to a highly 

insecure food situation. An increased number of villages and towns underwent 

attacks and led the population to flee in other nearby towns. Out of them, the well-

known refugee town of Rann, in the Kala Balge region. The security threats strongly 

limited the access to the area and consequently limited the availability of field 

collected data and reliable information, leaving remotely assessment as one of the 

few options to gain situational information on the area.  

4.2.3. Tools and methods 

In the context of this research, the identification and mapping of abandoned 

cropland in a semi-automated approach was achieved through the classification of 

active cropland in two reference years (pre- and post-conflict) and the delineation 

of changed cropland status by means of the difference between the obtained yearly 

cropland classification masks. To this end, multi-temporal pixel-based supervised 

classification is the main tool explored. 

 

The pixel-based classification was mostly performed in the Google Earth 

Engine (GEE) platform, and the developed code is available in the Annexes. 

Preliminary analysis steps were performed recurring to other software.  

The pixel-based classification was performed recurring exclusively to high-

resolution satellite imagery, specifically Landsat-8 (30 meters resolution) for years 

before 2015 (included) and Sentinel-2 (10 meters resolution) for years from 2016 

to 2020. Landsat-8 imagery was resampled to 10 meters resolution using a bilinear 

interpolation method in order to integrate it with Sentinel-2. 

First tests of classification were performed recurring to the same multi-

temporal composites stacks used during the Copernicus activation. Since the three 

vegetation periods composites were not successful in providing an acceptable 

cropland classification, it was decided to investigate different multi-temporal stacks 

of bands as input properties/features of a classification, as literature itself suggests 

for this type of classifications (Yin et al., 2020). Monthly composites of maximum 

NDVI were generally used when performing the reported analysis.  

Clouds represented a big challenge in performing multi-temporal analysis, 

especially in this region where rainy months strongly impact image availability and 

usability even when considering month long composites. The use of maximum 

NDVI composites compensates the impact of clouds, but still some cloudy images 

ended up being integrated in the computation and hence impacted some portions of 
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the images. In addition, recurring to maximum NDVI composites lead to 

classification issues especially along water bodies, where vegetated pixels are 

picked-up when creating composites.  

The 2010 reference year used by the Copernicus activation as pre-event year 

was highly challenged by the spare and diverse satellite sensors availability, as 

stated in the Copernicus methodology. For this reason, 2013 was used as fallback 

year to compensate data availability (Copernicus, 2020). Anyhow, following 

previous considerations on cloud coverage, in the presented analysis it was decided 

to perform a cropland change classification between years 2014 and 2019. The year 

2014, indeed, allows to access a more stable Landsat-8 time series of imagery 

compared to 2013 and it is not expected to have significant difference compared to 

year 2013 used also in Copernicus activation. The month of August 2014 had to be 

compensated with imagery from August 2015 because of excessive cloud impact. 

Year 2019 was instead accepted as post-event reference year, given larger 

availability of data in the Sentinel-2 repository.  

The following scheme resumes the applied methodology.  

 

 
Figure 4.4 Methodology scheme. 

4.2.4. Exploratory analysis 

In order to identify the optimal method to approach the cropland classification, 

an exploratory analysis of one of the areas of interest and of the available data was 

initially performed. The main aim was to identify first visually and then from a 

spectral point of view the differences between two different years in the cropland 

status and between the two classes to be identified (cropland and non-cropland) in 

the same year in the selected AOI. The selected AOI for the exploratory analysis 

was Kala Balge, since it was the one with the largest degree of visually identified 

decrease in cropland area during the Copernicus RRM activation. Major staples in 

the area include cereals such as maize, millet and rice, whose seasonal calendar in 

Northern Nigeria spans from planting in May and harvesting in October (FEWS 

NET, 2018). Specifically sweet corn is planted in July and harvested in October 

(FAO, 2021). The crop calendar was identified by Copernicus as follows: 

- Vegetation period 1: Plowing from 15th June to 1st August;  

- Vegetation period 2: Growing from 2nd August to 1st September; 

- Vegetation period 3: Early stage of harvesting from 2nd of September to 

15th October (Copernicus, 2020).  
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Difference between years 

Copernicus and WFP worked on visual interpretation comparing RGB 

synthesis of three band stacks per each year in order to identify change in cropland. 

Each yearly stack is composed of three bands, where each band represents the per-

pixel composite of the maximum NDVI over one of the vegetation periods listed 

above. For Kala Balge, these stacks were recreated in Google Earth Engine and the 

results are showed in the following images. 

 

 
Figure 4.5 RGB synthesis of per-pixel maximum NDVI composites of three vegetation periods over Kala Balge AOI for 

reference year 2013/2014 using Landsat8 imagery (left) and 2019 using Sentinel-2 imagery (right). Original satellite 

imagery in Top of Atmosphere (TOA) reflectance values. 

The following images show instead two per-pixel composites of maximum 

NDVI exclusively over the month of October for the two reference years 2014 and 

2019. In these composites the difference between the two images in the cropland 

distribution is more striking, being October the harvesting month. The consequence 

is that harvested fields exhibit lower NDVI (darker in the images) compared to the 

surrounding vegetation.  

 

 
Figure 4.6 Per-pixel maximum NDVI composites of October over Kala Balge AOI for reference year 2014 using Landsat8 

imagery (left) and 2019 using Sentinel-2 imagery (right). Original satellite imagery in Top of Atmosphere (TOA) 

reflectance values. 
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A close-up over the town of Rann shows the striking differences in the cropland 

distribution between the two years. Rann, also called a refugee town, hosted an 

increasingly larger amount of Internally Displaced People (IDP) from the 

neighbouring villages over the years of conflicts, and this is also captured by the 

expanding cropland area around the town itself. From these images, the difference 

between a cropland and the surrounding environment is highlighted by its darker 

colour in the image, as already stated reflecting the lower NDVI seemingly linked 

to the harvest of the crop itself. 

 

 
Figure 4.7 Per-pixel maximum NDVI composites of October over the town of Rann for reference year 2014 using Landsat8 

imagery (left) and 2019 using Sentinel-2 imagery (right). Original satellite imagery in Top of Atmosphere (TOA) 

reflectance values. 

A close-up over towns that were instead identified as destroyed by Copernicus 

activation in other areas of Kala Balge shows the difference in the cropland 

distribution and likely abandonment between the two years.  

 

 

In the following images, the year-by-year evolution over the town of Rann is 

showed. Images are this time three bands synthesis where each band is a per-pixel 

Figure 4.8 Per-pixel maximum NDVI composites of October over destroyed and partially functional towns (red and orange 

dots) for reference year 2014 using Landsat8 imagery (left) and 2019 using Sentinel-2 imagery (right). Original satellite 

imagery in Top of Atmosphere (TOA) reflectance values. 



95 

 

composites of maximum NDVI over the entire months of August, September and 

October. For 2014 Landsat-8 series were used, for remaining years Sentinel-2 series 

were used, in both cases original satellite imagery was in Top of the Atmosphere 

(TOA) reflectance values. Crop field stand out in dark colours. The progressive 

increase in cropland area around the city of Rann is again evident.  

 
Figure 4.9 Yearly RGB synthesis of per-pixel maximum NDVI composites of August, September and October over the 

town of Rann for 2014 using Landsat8 imagery Sentinel-2 imagery for remaining years. Original satellite imagery in Top 

of Atmosphere (TOA) reflectance values. 

 

Figure 4.10 Charts showing average maximum NDVI per month in 2014 and 2019 over the same sample cropland patches. 

2014 2016 2017

2018 2019 2020
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The behaviour of crop fields that visually seemed to be active in 2014 and not 

active anymore in 2019 was further analysed by investigating the multi-temporal 

spectral evolution of the NDVI of some test cropland patches. To this end, stacks 

of per-pixel maximum NDVI composites per each month of the two reference years 

2014 and 2019 were generated recurring to Landsat-8 Bottom of the Atmosphere 

(BOA) reflectance imagery for 2014 and Sentinel-2 Bottom of the Atmosphere 

(BOA) reflectance imagery for 2019. A sample of cropland patches that “visually” 

look active in 2014 while inactive in 2019 was selected in areas cleared by clouds 

disturbance. The multi-temporal maximum NDVI signature of these sample fields 

was plotted for both 2014 and 2019. The resulting charts are showed in the previous 

figure, where the average over all sample crop patches of maximum NDVI values 

per month is presented for both years. In 2014, a drop in the NDVI signal is visible 

in the month of October, seemingly linked to the harvesting, while in 2019 the more 

regular curve resembles the ones of herbaceous vegetation.  

Difference between classes 

To understand whether the two classes of interest (cropland and non-cropland) 

are spectrally separable in the selected images, a preliminary unsupervised isodata 

clustering and separability analysis of classes were performed. The input data are: 

- 2014 (August 2014 compensated with August 2015 images) stack of per-

pixel maximum NDVI composites per month, resulting in a 12 bands stack 

where each band is composed by the max NDVI per month per-pixel. 

Landsat-8 BOA reflectance values are used as input for the composites 

calculation in GEE. 

- 2019 stack of per-pixel maximum NDVI composites per month, resulting in 

a 12 bands stack where each band is composed by the max NDVI per month 

per-pixel. Sentinel-2 BOA reflectance values are used as input for the 

composites calculation in GEE. 

An isodata clustering algorithm with minimum number of clusters of 2 and 

maximum number of clusters 11 was run on both stacks of images, taking into 

account all twelve bands. For year 2014, the isodata classification resulted in 6 

classes, of which three visually aligned with the active cropland with some relevant 

commission error. For year 2019, the isodata classification resulted in 8 classes, of 

which two visually aligned with the active cropland with some relevant commission 

error. The resulting clusters for both years identifying the active cropland are 

illustrated in the following figure.  
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Figure 4.11 Results of isodata unsupervised clustering on 2014 (left) and 2019 (right) multi-temporal stacks of maximum 

NDVI composites. Original satellite imagery in Bottom of Atmosphere (BOA) reflectance values. 

A number of Region of Interests (ROIs) were identified within the clusters 

aligning with cropland and non-cropland and labelled according to their class 

(cropland and non-cropland) in order to assess the spectral separability of the 

clusters in every band constituting the stack, consequently for each month of the 

year. The main objective is to understand whether all input features/properties, 

hence all months of a year, are relevant in separating between the two cropland and 

non-cropland classes. The charts in the next page show the results of the separability 

analysis for 2014 and for 2019 for the two classes for the selected ROIs. Both in 

terms of multi-temporal maximum NDVI signature averaged across the ROIs and 

in terms of scatter plots. Only most relevant scatterplots are illustrated together with 

one examples of scatter plots of two months in which separability is more 

challenging.  

 

From the analysis and from the figures, it is evident how not all months are 

relevant when trying to separate the cropland from the non-cropland class. In 2014, 

the months of August, September and October are the ones with the higher spectral 

separability in terms of maximum NDVI. In 2019, the window of higher 

separability is larger, going from July to November, but higher in August, 

September, October and November. This analysis provides an insight on which 

properties/features can be more relevant when performing further classification 

exercises.  

 

Statistical separability tests were also performed on the ROIs for 2014 and 2019 

on the identified most separable months, hence August, September and October. 

Spectral separability between class ROIs were measured with the Jeffries - Matusita 

and Transformed Divergence separability measures, achieving respectively values 

of 1.99 and 1.99 for 2014 and 1.92 and 1.99 for 2019, indicating that the ROIs class 

pairs have a good statistical separability in the identified months. 
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Figure 4.12 Spectral separability analysis on 2014 imagery of cropland and non-cropland ROIs. 
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4.2.5. Pixel-based supervised classification 

The previous exploratory analysis served as a basis to identify those 

properties/features that are expected to maximize the separability between the 

cropland and non-cropland classes for a test AOI whose size allowed a 

simultaneous visual inspection of the results. This served as a starting point to 

extent the analysis on the entire study site, all areas of interest, recurring to both an 

Figure 4.13 Spectral separability analysis on 2019 imagery of cropland and non-cropland ROIs. 
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unsupervised clustering to first identify the training dataset and then a supervised 

classification, both exclusively based on the most relevant multi-temporal features.  

Creation of training and validation dataset 

A supervised classification, as mentioned in the previous chapter, requires a 

training dataset and a validation dataset at least.  

 

In order to generate a training dataset made of spectrally separable elements 

and that include a certain degree of automation, the unsupervised clustering 

approach tested on the test AOI is applied over all the areas of interest. This allows 

to identify clusters of spectrally separable classes, identify the clusters that 

physically represents the classes of interest (cropland and non-cropland) and sample 

within these clusters the desired amount of training data. The potential noise in the 

outcome training dataset will be dampened by the following supervised random 

forest classifier, as it will be explained in the following section. 

 

In order to generate a training dataset of separable samples, new stacks 

containing only relevant properties/features derived from the exploratory analysis 

were generated for the totality of the AOI. This resulted in a three bands stack for 

2014 constituted by per-pixel maximum NDVI composites of August, September 

and October and in a three bands stack for 2019 constituted by per-pixel maximum 

NDVI composites of August, September and October using BOA reflectance values 

as input for the composites calculation in GEE both for Landsat-8 (2014) and 

Sentinel-2 (2019). Both stacks were again generated in Google Earth Engine 

environment. These stacks are illustrated as RGB synthesis in the figures in the next 

page, where also problematic areas in terms of cloud cover are highlighted. These 

stacks were then used as inputs for unsupervised clustering of the images, this time 

recurring to a k-means clustering algorithm since it is the one available in the GEE 

platform. Both years underwent unsupervised clustering with a varying number of 

clusters until the classes of interest were approximately represented. These clusters 

were then used to label a dataset of 50 random points per individual AOI as cropland 

and non-cropland both for 2014 and for 2019. These random points were then 

buffered in 10mx10m squares. This final dataset represents the training dataset used 

for the pixel-based supervised classification. Jeffries - Matusita and Transformed 

Divergence separability measures achieved respectively values of 1.22 and 1.34 for 

2014 and 1.26 and 1.67 for 2019, indicating that the training dataset could 

potentially be improved in its statistical separability. 

 

The validation dataset was instead created independently by visually 

interpreting a series of randomly generated points by two independent remote 

sensing experts at the University of Salzburg. Approximately 260 randomly 

generated points, approximately 50 per individual AOI, were visually inspected and 

labelled according to their land cover (cropland and non-cropland) in both 2014 and 

2019 using the following class definition: active cropland are areas that shows over 
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the year the behaviour of typically active tilled crops, consequently manifesting a 

clear soil signal at some point during the year as a consequence of harvesting (Yin 

et al., 2020); non-cropland are areas that are not tilled, consequently not showing 

the behaviour of active cropland, including herbaceous vegetation, woody 

vegetation, non-vegetated areas, urban areas, etc. 

   

 
Figure 4.14 RGB synthesis of per-pixel maximum NDVI composites of August, September and October 2014. Original 

satellite Landsat-8 imagery in Bottom of Atmosphere (BOA) reflectance values. Cloud impacted areas highlighted by red 

squares (clouds impacted month is August). 

 
Figure 4.15 RGB synthesis of per-pixel maximum NDVI composites of August, September and October 2019. Original 

satellite Sentinel-2 imagery in Bottom of Atmosphere (BOA) reflectance values. Cloud impacted areas highlighted by red 

squares (clouds impacted month is September). 



 

 
102 

The following charts show the spectral separability of the identified training 

dataset in all months. The average maximum monthly NDVI of all training areas 

labelled with the same class is plotted. These charts confirm that the spectral 

separability within the training dataset is higher within the months of August, 

September and October for both years. 

 

 

 

Figure 4.16 Charts showing average maximum NDVI per month in 2014 and 2019 per class of the labelled training areas 

constituting the training dataset. 

Random forest stratified classification 

The supervised classifier intended to be used was a random forest, commonly 

adopted in the literature for this type of classification, with 100 trees. Random forest 

classifier repeatedly takes shuffled subset of both the training data, by standard 50% 

of all pixel withing the training data, and of the input properties/features, by 

standards the square root of the number of features. This means that each tree of the 

classifier is created based on a different set of training data and features. Eventually, 

all the trees are summarized to a majority voting. This method makes the random 

forest classifier robust towards outliers in the training dataset and in redundancies 

in the input features. This also makes important to have enough trees. Indeed, the 

more input properties/features to the classifier the more important is the factor of 

randomization of input features in order to ensure that all features will be used to 

construct the internal random forest rulesets. A sufficient number of trees, meaning 



103 

 

that the process is repeated for as many trees, ensures that the permutation of input 

features and training data covers all the inputted ones.  

 

The random forest classifier was trained and applied with a stratified approach. 

This means that a random forest classifier was trained and applied independently 

for each AOI constituting the whole study area (hence 5 classifiers where trained 

and run independently), selecting for each training and classification only the 

portion of training dataset included exclusively in the AOI of interest. The 

validation of the resulting classification was then again tested independently for 

each individual AOI using the visually labelled validation dataset. The resulting 

cropland classification for reference years 2014 and 2019 were then arithmetically 

subtracted to obtain a cropland change classification map between 2014 and 2019. 

All the procedure was implemented in a Google Earth Engine code showed in the 

Annexes.  

Results 

The following figures represent the resulting cropland change map as a difference 

of 2014 and 2019 classifications cropland masks for the whole study area. The 

following colour legend is followed:  

- White: never classified as cropland; 

- Yellow: stable cropland; 

- Green: new cropland; 

- Red: lost cropland.  

The error matrices for individual yearly classifications for each individual AOI 

are reported in the Annexes. Results of the final cropland and non-cropland 

classifications for individual years report low and not acceptable validation 

accuracies metrics for almost all the AOI, especially for the cropland class. A 

potential reason could be the unbalanced distribution of training and validation data 

between the cropland and non-cropland classes, particularly with less validation 

samples for the cropland class itself due to minor distribution of this class across 

the land cover, especially in 2019.  

 

A close-up of the results of the classification over the Kala Balge region is also 

reported in the following figures. In Kala Balge it can be highlighted how that the 

classification managed to capture the change in cropland around some areas, such 

as Rann, and that some commission error is included in the classification. It is 

evident, for instance, how often riverbeds are mistaken for agriculture, probably 

due to the use of maximum NDVI composites that implies the selection of vegetated 

pixel over a time window.  

 

Finally, some further close-ups and comparison between classification and 

RGB synthesises of multi-temporal stacks of images for 2014 and 2019 are 

illustrated to highlight and allow further comparisons.  
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Figure 4.17 Cropland change classification between years 2014 and 2019 map over the five AOIs. 

 

 
Figure 4.18 Cropland change classification between years 2014 and 2019 map over Kala Balge AOI. 

 



105 

 

 
 

 
 

 
Figure 4.19 Samples close-ups. From left to right: cropland change classification between years 2014 and 2019, 2014 RGB 

synthesis of per-pixel maximum NDVI composites of August, September and October using Landsat8 imagery, 2019 RGB 

synthesis of per-pixel maximum NDVI composites of August, September and October using Sentinel-2 imagery. Original 

satellite imagery in Bottom of Atmosphere (BOA) reflectance values. 
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Figure 4.20 Samples close-ups. From left to right: cropland change classification between years 2014 and 2019, 2014 RGB 

synthesis of per-pixel maximum NDVI composites of August, September and October using Landsat8 imagery, 2019 RGB 

synthesis of per-pixel maximum NDVI composites of August, September and October using Sentinel-2 imagery. Original 

satellite imagery in Bottom of Atmosphere (BOA) reflectance values. 

. 
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4.3. Discussion and conclusions 

The result of the classification aligns at least qualitatively with the classification 

performed visually by Copernicus activation, as illustrated in the following figure. 

The following map illustrates on top of the cropland change classification obtained 

with the illustrated methodology, the populated places labelled by Copernicus RRM 

activation according to the increase, decrease or no change in the surrounding 

cropland area. There is a significance discrepancy in the two datasets, especially in 

the Northern area, while in the Kala Balge AOI the two classifications are 

qualitatively well aligned.  

 

 
Figure 4.21 Cropland change classification between years 2014 and 2019 map compared to populated places as classified 

by Copernicus EMSN063 activation according to the change in surrounding cropland status. 

Limitations and challenges 

The following challenges and limitations were identified within the illustrated 

approach: 
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- Pixel-based classification inevitably leads to salt-and-pepper effects in the 

final products of the classification if not combined with an Object-Based 

approach.  

 

- The availability of both a training and a validation dataset is highly 

challenging. In order to perform a supervised pixel-based classification, a 

training dataset is needed. For the cropland classification, it would be 

possible to refer to existing coarser resolution cropland masks, such as the 

30 meters Global Food Security-support Analysis Data (GFSAD) Cropland 

Extent generated for reference year 2014-2015 by NASA and USGS 

(https://lpdaac.usgs.gov/products/gfsad30afcev001/), but their quality was 

considered not adequate when visually compared to the imagery over the 

study site. The other challenge is the availability of validation products, in 

order to compare and evaluate the quality of any obtained classification 

product when no ground-truth data exist. The visual interpretation and 

labelling of a validation dataset are a highly challenging and subject to the 

interpreter task itself. 

 

- The results of the supervised classifications could be potentially improved 

in terms of validation accuracy metrics by improving the training dataset 

and the validation datasets by applying an area and class proportional 

approach when computing the number of training and validation data per 

each area of interest.  

 

- The impact of clouds albeit the use of maximum NDVI composites 

generates noise in the classification. The use of a random forest classifier 

that repeatedly takes shuffled subset of both the training data and the input 

features minimizing outliers might positively contain the impact of cloud 

patches in some bands, hence is some monthly per-pixel composites, of the 

stacks used as training properties/features.  

Benefits 

The following benefits were identified within the illustrated approach: 

 

- Recurring to high-resolution (up to 10 meters) satellite products allows 

a finer resolution product compared to already existing yearly cropland 

or land cover products, such as the Copernicus Proba-v 100 meters 

yearly (2015-2019) land covers (https://developers.google.com/earth-

engine/datasets/catalog/COPERNICUS_Landcover_100m_Proba-V-

C3_Global).  

 

- The multi-temporal composites approach allows to contain the cloud 

coverage issue. Several methods exist to control the cloud coverage of 

imagery in Google Earth Engine. Both the cloud-masking approach 

https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_Landcover_100m_Proba-V-C3_Global
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_Landcover_100m_Proba-V-C3_Global
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_Landcover_100m_Proba-V-C3_Global
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using quality bands (QA60 for Sentinel-2 and BQA for Landsat-8) 

available in the used satellite products and the quality mosaic approach 

were investigated to this end. Nevertheless, both approaches, and the 

mixed approach, lead to imagery artifacts, most probably due to the 

inaccuracy of the quality bands included in the satellite products. 

Consequently, the maximum NDVI approach applied over the whole 

imagery availability (hence without a filter on cloud percentage over the 

whole image) was applied in order to limit the probability that a cloudy 

pixel is selected if a sufficient number of images are used as input of a 

reducer when compositing.  

- In order to obtain a supervised classification product only 250 training 

points had to be generated through a semi-automated process including 

an unsupervised clustering algorithm and a visual inspection of obtained 

clusters, compared to more than 1500 points visually inspected in both 

the WFP and Copernicus activations. This could be a good qualitative 

input or starting point for focusing further mapping visual efforts.  
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Chapter 5 

5. Crowdsourcing and DIAS 

This Chapter, in contrast with the previous ones, is going to explore two 

additional technologies that mainly focus on a qualitative approach to imagery and 

on a visual interpretation of it to extract information. Starting with the Volunteered 

Geographic Information (VGI) of the Humanitarian OpenStreetMap Team and 

ending with the contribution that new cloud infrastructures could provide to support 

the efforts of volunteer mappers. All framed in the context of an application for 

displaced population monitoring.  

5.1. Crowdsourcing and the 

Humanitarian OpenStreetMap Team 

In the geospatial world, the “crowd” can be identified as the wide group of 

volunteers who deliberately and often with no professional background decide to 

join the cause and, by sitting at their laptops, start looking for vital information on 

satellite images and producing data that is then translated into essential information. 

They contribute to the generation of the so called Volunteered Geographic 

Information (VGI), based on the principles of open and crowdsourced data and 

participatory mapping.  

 

There is no better way to define OpenStreetMap as the “Wikipedia of maps”. 

OpenStreetMap, from now on referred to with the acronym OSM, is a multi‐faceted 

project that enables distributed work around a common product. OSM is a database 

that contains geographic data for many parts, nowadays almost all, of the world, it 

is a website and a set of software and tools that allow users to contribute, download 

and interact with the database. OSM is also a community that interacts through 

various channels. People active in OSM participate for a wide variety of reasons 

but most of them focus on the ideology of and opportunities created by non-

proprietary geospatial data (Soden at al, 2014).  
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OpenStreetMap is the perfect representative of the Volunteered Geographic 

Information (VGI), representing a free, open and editable map of the world, updated 

by the minute. Whoever can collect data through, for example, GPS surveys or 

aerial photography and, at the same time, whoever can digitize the available satellite 

image creating useful geographic information covering the whole Earth’s surface. 

This crowdsourced information is entered into the database of OpenStreetMap and 

data can be freely exported from the database into different suitable formats being 

processed by common GIS software (Harvard Humanitarian Initiative, 2011).  

 

The interest of the OSM community in the humanitarian work started with the 

2010 Haiti’s earthquake, with a growing contingent who believed that values such 

as data openness and sharing and civic participation perfectly fit in the emergency 

and humanitarian response. The Humanitarian OpenStreetMap Team, from now on 

usually referred to with the acronym HOT, was firstly created in 2010 to build the 

capacity of OSM contributors and volunteers and to draft a strategy for how to best 

support the relief efforts (Soden et al., 2014). HOT/OSM became a global 

community of volunteers that are asked to rapidly digitize available satellite 

imagery whenever a humanitarian crisis occurs or an humanitarian task is asked to 

be solved, obtaining as a final result maps and data which may support humanitarian 

organizations in delivering their relief aid or prevention plans. Most of HOT’s 

response activities occur remotely. After a disaster strikes, HOT members search 

for existing data and available satellite imagery. Pertinent partners are contacted to 

provide compatible imagery. Once the imagery is obtained, the virtual community 

digitizes, or traces from the imagery. Normally, the focus is on recognizable objects 

that are useful for humanitarian response, like roads, buildings, blocked roads, flood 

extent, and generates data and maps. During this time, responding organizations are 

also contacted to determine their needs (LearnOSM, 2015). In between the on the 

field humanitarians and the OpenStreeMap community, the Humanitarian 

OpenStreetMap Team takes the role of coordinating the two groups in order to 

concentrate the construction of data where it is more needed, for instance by 

contacting the pertinent organizations to determine their most urgent needs. HOT 

nowadays is a non-profit organization coordinating simultaneously the remote 

community and the field community with on-going capacity building (HOT, 2019).  

 
Figure 5.1 Workflow of a typical HOT/OSM activation. 
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5.1.1. The Missing Millions project 

The Missing Millions project is an initiative funded by NASA and led by 

Oregon State University in collaboration with the Humanitarian OpenStreetMap 

Team and Development Seed. The main goal of this project is the creation of an 

open global database of informal settlements location and schema in order to 

monitor Sustainable Development Goals within them (SDGs). To achieve this, 

remote sensing, crowdsourcing and machine learning are planned to be leveraged. 

The steps of the project are the following: 

- Collection of global data on already known informal settlements; 

- Training of a machine learning algorithm based on known informal 

settlements; 

- Location of as-yet-unrecorded informal settlements through a 

crowdsourcing campaign; 

- Location and characterisation of global informal settlements with machine 

learning; 

- Measurement and monitoring of SDGs in informal settlements (HOT, 

2017).  

One of the first steps of this project is identified as the location of unknown 

informal settlements through the OpenStreetMap crowdsourcing community 

recurring to the MapSwipe application. MapSwipe is an application developed in 

the context of the Missing Maps Project mainly by the HeiGIT (Heidelberg 

University GIScience Research Group) to create an easy mean for the crowd to 

contribute to humanitarian mapping (OpenStreetMap Wiki, 2019).  

5.1.2. MapSwipe 

The operating principle of MapSwipe sees the users swiping through satellite 

images of a region and tapping the screen when they identify the features they are 

asked to look for (buildings, settlement, roads, etc.). The information retrieved 

through MapSwipe is then used to narrow down the areas fed to mappers for 

detailed mapping, so that they do not have to scroll a huge number of images over 

inhabited areas before they actually encounter the features of interest 

(OpenStreetMap Wiki, 2019). 
 

In the case of the Missing Millions project, MapSwipe is planned to be 

deployed over large-scale areas to identify potential informal settlements. A novel 

approach is to use before and after satellite images pairs for change detection. The 

change detection technique is supposed to support the crowd to better identify 

informal settlements that have established in between the two periods. The output 

from the Missing Millions MapSwipe campaign is going to be used to guide 

detailed informal settlements mapping and the results of the detailed mapping are 

going to feed a machine learning algorithm.  
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5.1.3. A potential case study for the ONDA 

DIAS application 

The Missing Millions project and the deployment of a MapSwipe campaign 

were seen as a proper opportunity to test the capacity of newly available cloud 

infrastructures such as the Data Information and Access Services (DIAS), which 

are going to be further explored in the next sections. It was decided to generate 

potential test inputs of a MapSwipe campaign in terms of satellite imagery recurring 

to this newly available infrastructure. The following sections are going to explore 

the methodology and tools followed and explored to respond to this potential task. 

The actual imagery fed into the actual MapSwipe campaign that is going to be 

launched were instead generated within a research group at the Oregon State 

University.  
 

The main objective of this potential case study application of the ONDA DIAS 

is identifying any problem in the usability of the infrastructure itself and the 

generation of a reusable pipeline. In addition, it is of interest the evaluation of the 

imagery used and its suitability for settlements detection by a community of 

volunteer mappers. 

 

The test area identified is the Northern Uganda region. The Northern Uganda 

region is indeed home of refugees in nineteen well-established refugees’ 

settlements in the districts of Adjumani, Arua, Moyo, Lamwo, Koboko and Yumbe.  

 

It was decided to recur to Sentinel-2 imagery, firstly because it has already been 

proved how this kind of imagery offers the possibility to visually detect settlements 

in this area (Chapter 2). In addition, the 10 meters spatial resolution of this kind of 

data is also a topic of research in the development of the app.  

 

Two mosaics of Sentinel-2 imagery are required in a potential MapSwipe 

campaign for providing a pre- and post-event example to the users, hence the 

Sentinel-2 images had to be collected for two separate time periods in order to allow 

before and after change detection. The following requirements were identified for 

the mosaics: 

- The two time periods had to be at least two years apart in order to capture 

new settlements establishments and allow the crowd to better identify the 

features by comparing with an image where the feature was not yet present;  

- The two time periods had to be selected from the same season or in similar 

phenological conditions in order to minimize environmental discrepancies 

between before and after images and ease the work of the crowd;  

- The output mosaics should have a good quality in terms of cloud coverage 

in order not to excessively limit the work of the crowd.  
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5.2. Tools and methods 

This section is going to present a theoretical background of the technical aspects 

involved in the generation of a Tile Map Service and of the tools and methods 

leveraged in the generation of such services.  

5.2.1. Tiling and Tile Map Services 

MapSwipe uses satellite imagery provided by Tile Map Services (TMS) 

(MapSwipe Back-End, 2019). Consequently, a full pipeline to deliver the two 

Sentinel-2 mosaics in TMS format had to be developed.  

 

Tiled web maps, slippy maps (as referred to in OpenStreetMap) or tile maps 

(both raster or vector) are maps displayed within the browser by means of several 

image or vector data files that are individually requested through the internet and 

seamlessly joined. A tiled web map is the most common way to display and 

navigate a map on the internet, while a WMS (Web Map Service) typically displays 

the single large image allowing to pan nearby areas in the map. 

  

A tiled map is actually constituted by a large number of smaller images, named 

tiles, which are drawn next to each other in order to build a larger seamless image. 

The result is one apparent large map image.  

 

 
Figure 5.2 Example of tiling (Liedman, 2020). 

The amount of detail of a map is limited by its size, meaning that a higher level 

of detail will require either a higher image size or a reduced map scale, namely a 

higher zoom level. This problem is solved in tiling by pre-originating and storing 

several maps of the same geographic area at different scales, zoom levels, from the 

larger to the smaller possible. In order to avoid handling extremely large files when 

displaying an image at the maximum zoom level, in map tiling, only the images 

covering the area currently being displayed are required. This is achieved by pre-

dividing each image at each zoom level into several smaller images, namely the 

tiles, of a fixed size. When displaying the image, the viewing application (e.g. the 
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web browser) will request an image at the current geographic location and the server 

will provide it.  

 

In conclusion, a tiled map consists of several zoom levels. Each zoom level is 

a map of the same geographic area drawn at different scales and split into tiles and 

each tile has the same size independently from the zoom level. Since increasing the 

scale of the same map can be translated in increasing the map’s size in pixels, 

increasing the scale also increases the number of tiles of the zoom level.  Each time 

a user of the web map pans the map, only the relevant tiles are displayed while new 

tiles are fetched. This mechanism allows individual tiles to be pre-computed so that 

the images have not to be rendered in the browser, a quite computationally 

demanding task.  

 

Tiled web maps belong in the wider framework of client/server mapping 

solutions. Consequently, the request of tiled web maps by clients and the provision 

of tiled web maps by the servers has to be well understood.  

 

Of course, conventions or standards exist to address tiled web maps and the 

client/server relationships. The main properties of tiled web maps, namely the size 

of the tiles, the numbering of the zoom levels, the projection to use, the numbering 

and identification of individual tiles and the method to request them are 

standardized by different existing conventions. Indeed, tiles have to be numbered 

according to numbering schemes and they are usually managed into rows and 

columns (up/down the firsts and left/right the latter). This rows/columns schema is 

used to identify the tile of belonging of each pixel constituting the map or image. 

This is done by subtracting from the pixel coordinate the tile set’s origin and 

dividing the result by tile size in pixels.  

 

The request and display of a tiles map in the browser, instead, requires the 

support of a web mapping framework to handle the retrieval of tiles, the display, 

the caching and the user experience itself. Very popular web mapping framework 

are OpenLayers or Leaflet. 

 

The most common conventions for standards existing for tile web maps are 

TMS (Tile Map Service), the XYZ OpenStreetMap standard or Slippy Map 

Tilenames, WMTS (Web map Tile Service) that is the most recent and more 

complex OGC (Open Geospatial Consortium Standard), etc. (Wikipedia, 2019; 

Liedman, 2020). 

 

Main standards common across conventions are: 

- Tiles are 256x256 pixels; 

- The outer most zoom level is 0 and the entire world is rendered in a single 

map tile at this zoom level; 
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- At each zoom level both dimensions are doubled. This means that a single 

tile is replaced by 4 tiles when zooming in; 

- The projection used for tile web maps is Web Mercator EPSG:3857; 

- The images are served through a web server by means of an URL. In 

general, all tile web maps expect tiles to be served up by URLs following 

their specific standard’s scheme.  

The OpenStreetmap standard for the Slippy Map Tilenames known also as XYZ 

adds the following conventions: 

- The number scheme is X and Y, where X and Y identify the single tile; 

- The tiles are PNG format files; 

- Images are server through a web server by means of an URL in the form of 

http://.../Z/X/Y.png where Z is the zoom level, X and Y identify the tile; 

- Each zoom level is a directory, each column is a subdirectory and each tile 

in that column is a file. This convention is followed by TMS as well.  

 
Figure 5.3 Numbering scheme in XYZ standard (Stefanakis, 2017). 

The OpenStreetMap XYZ standard has a numbering scheme that goes (0 to 

2zoom-1, 0 to 2zoom-1) for the range (-180, +85.0511) - (+180, -85.0511). The 

specific numbering scheme for the Tile Web Map (TMS) standard instead is (0 to 

2zoom-1, 2zoom-1 to 0) for the range (-180, +85.0511) - (+180, -85.0511). This 

means that while for XYZ standard the x and y are growing right and downwards 

starting from top left, for the TMS standard the x and y are growing right and 

upwards starting from bottom left. Basically, the y is inverted for TMS and XYZ.  

The zoom parameter is an integer between 0 and a maximum of usually 18.   

Each zoom level has a different resolution, measured in meters per-pixel. Both a 

formula and reference tables for calculating the resolution at each zoom level exist.  

 

In general, all tile web maps expect tiles to be served up by URLs following 

their specific standard’s scheme. The first part of the URL usually indicates the 

server where the tiles are hosted (Wikipedia, 2020a).  

http://.../Z/X/Y.png
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5.2.2. Data Information and Access 

Services (DIAS) 

To work on generating TMS to be potentially deployed in the MapSwipe app, 

it was necessary to retrieve the required satellite imagery, to process the imagery 

and to make it available on a server to be published on the browser or in the app to 

the users. Since it was planned to recur to Sentinel- 2 data, it was decided to recur 

to a new technology in the field of satellite imagery, the Data Information Access 

Services (DIAS).  

 

DIAS are cloud-based infrastructures developed in the year 2018 in the 

framework of a European Commission (EC) initiative. The main objective of this 

initiative was to facilitate the users’ access to Copernicus data and information 

services. DIAS provide a single centralized access to the full set of Copernicus data, 

including Sentinel data (more than 10 petabytes delivered each year) and 

information products from the six operational services. In addition, DIAS offer the 

possibility and capacity to manipulate, process and download data, mostly with 

open source tools (Copernicus, 2017; Copernicus, 2020a).   

 

The Data and Information Access Services provide the users the great 

possibility to develop and deploy their own applications in the cloud. In addition, 

DIAS provide the innovative advantage of bypassing the heavy download and 

storage of bulky dataset locally. Indeed, the capacity required for managing the 

massive amount of Copernicus data has always represented a complex challenge in 

the past (Copernicus, 2017; Copernicus, 2020a). DIAS can be seen as the European 

answer to the well-known Google Earth Engine. Different fields of application are 

in the reach of DIAS: climate change, land monitoring, marine environment, 

atmosphere monitoring, security and emergency and disaster management (UN-

SPIDER, 2018).  

 

Five different DIAS have been funded to be developed, all based on a cloud-

based system architecture: CREODIAS, MUNDI, ONDA, SOBLOO and WEKEO 

(Copernicus, 2017; Copernicus, 2020a).  

 

 
Figure 5.4 DIAS dissemination workflow (Copernicus, 2020a). 
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 In the context of this research, it was possible to get access to the ONDA 

DIAS infrastructure. ONDA gives the possibility to deploy a virtual server designed 

according to the user’s needs. The virtual server is already provided with useful 

tools for geospatial processing such as python and the gdal library and it was further 

enriched with processors such as Sen2Cor for processing of Sentinel-2 imagery.  

 

The ONDA DIAS Advanced Application Programming Interface (API) is 

based on the Elastic Node Server (ESN), a specific system allowing the access to 

low level components of the satellite products without a full download (ONDA; 

2018). The ENS is a Linux-based Open Source software developed by GAEL 

Systems (GAEL, 2017). ENS basically provides a simple and scalable front-end to 

one or more Data Storages. The ESN is mounted on the Computing Instances of 

ONDA DIAS and allows the Data Storages to be accessed and used with the specific 

client Computing Instances. A Computing Instance is the server running the 

applications of the specific user, namely a virtual machine running the application 

developed by the user in the cloud. ENS acts like an interface between the 

Computing Instance and the complexity of Files opening, Files format discovery 

and data access engineering skills. ENS exposes only the resulting unified tree of 

Nodes through standards and well-defined Distribution File Systems such as the 

Network File System (NFS). A DFS is a methodology to store and access files based 

on a client/server architecture, where the files are stored by one or more central 

servers and remote clients in a network can access them. ENS adds to conventional 

File and Object Storages the organization of Directories and Files into further 

logical trees of Nodes. These Nodes can be located, queried and accessed 

semantically by means of names despite their physical formats and their locations 

(ONDA, 2018). ENS can in addition handle a variety of data types. A central and 

unified data model is used, allowing a separation between the data management 

logic and the implementation details peculiar of each data format and access 

method. ENS Data Model supports already a variety of EO products, such as 

Sentinel-1/2/3, ENVISAT ASAR, Landsat-8, etc. (ONDA, 2018). The default ENS 

is mounted on the ONDA DIAS Virtual Server. All the products available in the 

ONDA Catalogue are stored in the ONDA ENS, even though some of them may 

require to be ordered.  

 

Since the ONDA DIAS archive contains millions of products, these are spread 

into directories hierarchy following a “What/When/Where” organisation. The first 

set of directories and sub-directories concert what kind of data is exposed, the 

second set of sub-directories when the data is acquired and the last set concerns 

where the data is located. The information used to organise the ENS directory tree 

is extracted by the metadata of the products when they are ingested. The result of 

this directories organization is a series of “pseudo-paths” per product (ONDA, 

2018).  

 

Access to the products archived in the ONDA DIAS catalogue can be 

performed, among others, in two main ways: 
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- Through the ONDA DIAS online catalogue. 

 

 
Figure 5.5 The ONDA online catalogue interface. 

The online ONDA catalogue allows to browse the products per area, sensing 

period, product type and cloud coverage. Once the products are identified they 

can be downloaded in .zip format or ordered whether they are archived. 

Usually, products older than three months in sensing date are archived. The 

online ONDA catalogue allows also to browse the specific products’ 

information and details. 

 

 
Figure 5.6 Product details available in the ONDA online catalogue. 

- Through the ONDA architecture itself, using the Advanced API service 

base on the already explained ENS, without having to download the 

product.  

An important information of the products, made available when investigating 

the products online, is the UUID (Universally Unique Identifier). The UUID allows 

to send request to the server via the Open Data Protocol and to have in return a 

response, usually in XML format. The XML response, if no other specific query is 
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performed, includes relevant products metadata including the product name and the 

product “pseudo-paths” in the ONDA infrastructure, as illustrated in the image 

below (ONDA, 2018).  

 

 

Figure 5.7 XML response to a ONDA server query. 

All of this is possible via an Open Data Protocol (OData) interface exposed by 

the ONDA Catalogue. The OData is an open protocol or a set of standards allowing 

the standardises generation and use of query-able RESTful APIs. Basically, yhr 

OData defines conventions, rules, and formats for data handling on the web using 

HTTP requests (Hypertext Transfer Protocol). The OData standards define the logic 

for constructing the URIs identifying data and metadata exposed by an OData 

server and URI query strings operator to query the same data and metadata. Through 

the Representation State Transfer architecture (REST), resources are identified 

using the Uniform Resource Identifier (URI), they are published and edited by Web 

clients using HTTP messages (ONDA, 2018).  

5.2.3. Pipeline 

After identifying the tools available for the development of a TMS, it was 

possible to delineate the suitable pipeline for the work. The pipeline consisted in 

the following steps.  

Selection of the pre- and post-periods 

This step comprises the selection of the two periods for the acquisition of the 

satellite imagery. As already stated before, it was necessary to identify two periods 

apart of at least two years and that showed similar phenological activity across the 

area of interest (AOI). The similarity in phenological activity is not related to any 

calculation of vegetation indices, but it is strictly related to the expected enhanced 

capability of the crowd to detect better the features (the informal settlements) over 

two pre- and post-images, in which environmental differences are minimized as 

much as possible.  

 

https://catalogue.onda-dias.eu/dias-catalogue/Products(Id) 
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The post period was identified in the two months of January and February 2020. 

It was indeed decided to use the most recent available imagery for the post mosaic. 

In the following image, an overview mosaic of the least cloudy (0.1 %) Sentinel-2 

imagery covering the AOI in January and February 2020 was retrieved using 

Google Earth Engine.  

 

 
Figure 5.8 Mosaic over the AOI for the period January and February 2020 in Google Earth Engine. 

Another overview mosaic similar to the previous one was generated exactly 

two years backwards, for January and February 2018. From the image below it is 

evident how the 2018 mosaic does not show similar phenological activity as the 

2020 mosaic, since 2018 shows a quite drier vegetation compared to 2020.  

 

 
Figure 5.9 Mosaic over the AOI for the period January and February 2018 in Google Earth Engine. 

It was decided then to move the selection of the images backwards. The 

overview result for December 2017 shows a phonologically aspect more similar to 
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2020, at least from a visual inspection. Hence it was decided to select December 

2017 as a pre period for the generation of the mosaics.  

 

 
Figure 5.10 Mosaic over the AOI for the period December 2017 in Google Earth Engine. 

Selection of the imagery 

Once the two periods were identified, the single scenes of Sentinel-2 had to be 

identified and selected. The AOI was intersected with the Sentinel-2 tiles grid.  

 

 
Figure 5.11 Sentinel-2 tiles covering the AOI. 

Some of the tiles are constituted by two different acquisitions because of the 

acquisition trajectory. This is better explained in the image below.  
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Figure 5.12 Sentinel-2 tiles covering the AOI with effect of the sensor swath. 

Once the Sentinel-2 tiles intersected by the AOI were identified, the selection 

of optimal Sentinel-2 scenes was performed directly in the online ONDA catalogue. 

By filtering the results by AOI, dates of interest corresponding to the two identified 

periods and by cloud coverage (a limit of 0.1% was used), a list of possible Sentinel-

2 scenes was returned. Among this, given the limited number of tiles covering the 

AOI, it was possible to visually inspect and select the best imagery to be processed 

in the developed pipeline.  

 

Following the methodology explained in the DIAS section, the “pseudo-paths” 

of the selected Sentinel-2 were identified and stored in a .txt file to be then 

implemented in the automatic procedures. The Sentinel-2 scenes selected for the 

post period are: 

 
S2A_MSIL2A_20200212T081041_N0214_R078_T36NTH_20200212T113212 

S2A_MSIL2A_20200212T081041_N0214_R078_T36NTJ_20200212T113212 

S2A_MSIL2A_20200212T081041_N0214_R078_T36NTK_20200212T113212 

S2A_MSIL2A_20200212T081041_N0214_R078_T36NUH_20200212T113212 

S2A_MSIL2A_20200209T080051_N0214_R035_T36NUH_20200209T110919 

S2A_MSIL2A_20200212T081041_N0214_R078_T36NUJ_20200212T113212 

S2A_MSIL2A_20200209T080051_N0214_R035_T36NUJ_20200209T110919 

S2A_MSIL2A_20200212T081041_N0214_R078_T36NUK_20200212T113212 

S2A_MSIL2A_20200209T080051_N0214_R035_T36NUK_20200209T110919 

S2A_MSIL2A_20200209T080051_N0214_R035_T36NVH_20200209T110919 

S2A_MSIL2A_20200209T080051_N0214_R035_T36NVJ_20200209T110919 

S2A_MSIL2A_20200212T081041_N0214_R078_T36NVK_20200212T113212 

S2A_MSIL2A_20200209T080051_N0214_R035_T36NVK_20200209T110919 

S2A_MSIL2A_20200120T080241_N0213_R035_T36NWH_20200120T111107 

S2A_MSIL2A_20200209T080051_N0214_R035_T36NWJ_20200209T110919 

S2A_MSIL2A_20200209T080051_N0214_R035_T36NWK_20200209T110919 

S2A_MSIL2A_20200209T080051_N0214_R035_T36NXH_20200209T110919 

S2A_MSIL2A_20200209T080051_N0214_R035_T36NXJ_20200209T110919 

S2A_MSIL2A_20200117T075241_N0213_R135_T36NXJ_20200117T105226 

S2A_MSIL2A_20200209T080051_N0214_R035_T36NXK_20200209T110919 
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The Sentinel-2 scenes selected for the pre period are: 

 
S2A_MSIL1C_20171214T081331_N0206_R078_T36NTH_20171214T103532 

S2A_MSIL1C_20171214T081331_N0206_R078_T36NTJ_20171214T103532 

S2A_MSIL1C_20171214T081331_N0206_R078_T36NTK_20171214T103532 

S2A_MSIL1C_20171214T081331_N0206_R078_T36NUH_20171214T103532 

S2A_MSIL1C_20171221T080331_N0206_R035_T36NUH_20171221T100353 

S2A_MSIL1C_20171214T081331_N0206_R078_T36NUJ_20171214T103532 

S2B_MSIL1C_20171206T080309_N0206_R035_T36NUJ_20171206T102614 

S2A_MSIL1C_20171214T081331_N0206_R078_T36NUK_20171214T103532 

S2B_MSIL1C_20171206T080309_N0206_R035_T36NUK_20171206T102614 

S2B_MSIL1C_20171206T080309_N0206_R035_T36NVH_20171206T102614 

S2B_MSIL1C_20171216T080319_N0206_R035_T36NVJ_20171216T102645 

S2B_MSIL1C_20171219T081329_N0206_R078_T36NVK_20171219T105309 

S2A_MSIL1C_20171221T080331_N0206_R035_T36NVK_20171221T100353 

S2B_MSIL1C_20171206T080309_N0206_R035_T36NWH_20171206T102614 

S2B_MSIL1C_20171206T080309_N0206_R035_T36NWJ_20171206T102614 

S2A_MSIL1C_20171221T080331_N0206_R035_T36NWK_20171221T100353 

S2B_MSIL1C_20171206T080309_N0206_R035_T36NXH_20171206T102614 

S2B_MSIL1C_20171206T080309_N0206_R035_T36NXJ_20171206T102614 

S2B_MSIL1C_20171213T075319_N0206_R135_T36NXJ_20171213T101202 

S2B_MSIL1C_20171216T080319_N0206_R035_T36NXK_20171216T102645 
 

 

As it can be seen, the pre period Sentinel-2 imagery belong to the Sentinel-2 

Top of the Atmosphere (TOA) reflectance products Level-1C (L1C). This means 

that, in order to eliminate the effect of atmosphere on these scenes, the atmospheric 

correction must be performed to obtain Bottom of the Atmosphere (BOA) 

reflectance products Level-L2A (L2A). Indeed, Level-2A products were 

systematically generated by the European Space Agency (ESA) ground segment 

over Europe since March 2018 and extended globally in December 2018. All the 

previous products are available in L1C format and tools exist for the generation off 

the associated L2A product, such as the Sen2Cor processor.  

 

All products available in the ONDA DIAS infrastructure are in the original 

SAFE format. In the SAFE format, both for L1C and L2A product, the tiles files 

with TOA/BOA reflectance image data file are stored as GML/JPEG2000 for each 

band.  

 

 
Figure 5.13 Sentinel-2 data product structure. 
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Sen2Cor, i.e. Sentinel 2 (atmospheric) Correction, is a processor for Sentinel-2 

Level 2A product generation and formatting provided by the European Space 

Agency. Sen2Cor performs a pre-processing of L1C Top of Atmosphere image 

data, performing the atmospheric, terrain and cirrus correction of TOA L1C input 

data. The processor creates an ortho-image Level-2A Bottom-Of-Atmosphere 

reflectance product. Outputs are an Aerosol Optical Thickness (AOT) map, a Water 

Vapour (WV) map and a Scene Classification map together with Quality Indicators 

for cloud and snow probabilities. Its output product format is equivalent to the Level 

1C User Product: JPEG 2000 images, three different resolutions, 60, 20 and 10 m 

according to the native resolution of the different spectral bands. 

Input of the Sen2Cor processor are the Level 1C User Product Top of 

Atmosphere image data, consisting in 100 km square tiles. Each tile consists of 

thirteen compressed JPEG-2000 images, each image representing one single band. 

The thirteen bands have three different resolutions (10m, 20m and 60m). 

Output of the Sen2Cor processor are Level-2A Product Bottom-Of-

Atmosphere (BOA) reflectance product. The Level-2A image data product uses the 

same tiling, encoding and filing structure as Level-1C. Each L2A product folder 

consists of a series of sub-folders and the sub-folder named “GRANULE” includes 

the tile constituting the Level-2A user product. The “QI_DATA” folder includes 

the Scene Classification and the Quality Indicators for snow and cloud probability 

at 20 m and 60 m. The “IMG_DATA” folder includes BOA raster at three different 

spatial resolution and scene classification raster at 20 and 60 m of spatial resolution. 

 

 
Figure 5.14 Effect of the application of the Sen2Cor processor over a Seninel-2 L1C product (left) generating a Sentinel-2 

L2A product (right). 

Pre-processing and tiles generation 

Once the Sentinel-2 scenes are identified, they cannot simply be used to 

generate the TMS but they need to be pre-processed in order to be suitable for tiling 

and web publishing. A completely automated workflow was the ultimate goal. In 

order to do so, a Python 2.7 script was built based on the os, subprocess and gdal 

libraries.   
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Gdal is a free and open source library for raster and vector geospatial data 

formats. Gdal was released under Open Source Licence by the Open Source 

Geospatial Foundation. It supports many formats of both vector and raster data with 

a single abstract data model for each and it also provides a variety of command line 

utilities for data translation and processing (GDAL, 2019).  

 

The gdal utility used for the tiles’ generation is gdal2tiles.py. This utility allows 

to create a directory with the tiles and the respective metadata following the OSGeo 

Tile Map Service Specification. In addition, the utility also creates simple web 

pages with viewers based on Google Maps, OpenLayers and Leaflet. One of the 

prerequisites for gdal2tiles.py to work properly is that inputs should be Byte data 

types not to cause wrong outputs when converting non-Byte data type to Byte. In 

addition, as explored in the TMS section, one of the prerequisites of a TMS is that 

the projection used for tile web maps should be Web Mercator EPSG:3857. In 

conclusion, two of the main prerequisites to be guaranteed by the automated 

procedure are the Byte data type and the EPGS:3857 projection of the input 

imagery.  

 

The main steps of the automated procedures where then identified as: 

- Search of the useful bands in the SAFE format of the Sentinel-2 scenes. A 

true colour composite wants to be created at first for the MapSwipe 

campaign, hence the Red, Blue and Green .jp2 files representing the bands 

of the Sentinel-2 images (B02, B03, B04) at 10 meters resolution have to 

be automatically identified and selected; 

 

- Atmospheric correction and generation of L2A product if the product 

processed is a L1C with the Sen2Cor processor. Sen2Cor (both versions) 

was previously installed on the ONDA DIAS server; 

 

- Bands composite with the gdal_merge.py utility. Once the useful .jp2 files 

are selected, they have to be composited into a GeoTIFF files, each 

representing one Sentinel-2 scene in true colours; 

 

- Reprojection of the bands composite GeoTIFF files into EPSG:3857 

projection with the gdalwarp.py utility; 

 

- Translation with the gdal_translate.py utility of the GeoTIFF files from 

Sixteen-bit unsigned integer to Byte data type. This procedure also requires 

rescaling the reflectance values of the GeoTIFF files from their actual scale 

of values for each band to a 0-255 scale in a Byte data type. The actual 

rescale scale was set to 1-255 in order to avoid the generation of misleading 

no-data where reflectance values were originally low in the images. This 

translation procedure allows to set the final appearance of the single 

Sentinel-2 scenes before the tiling and web publishing, acting as an 
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histogram stretching procedure, cutting the reflectance values to a 

minimum and maximum values to improve the appearance of the images;  

 

- Construction of a virtual dataset mosaic of the GeoTIFF files with the 

gdalbuildvrt utility. Virtual datasets are very handy when large datasets 

constituted by multiple files have to be managed. A virtual dataset is 

essentially an XML file describing to gdal where the actual files composing 

the virtual dataset are located. Virtual datasets, consequently, allow 

handling large dataset as if they were single files.  A gdal Virtual Format 

(VRT) is a format driver for gdal allowing to compose a virtual dataset from 

other gdal datasets. VRT description in XML are saved with a .vrt e 

extension. The advantage of a gdal VRT is that, such as in the case of a 

mosaic constituted by several single GeoTIFF files, a virtual mosaic is 

much lighter and manageable than a full GeoTIFF mosaic (CSC, 2020); 

 

- Tiling. As a final step before the publishing of the tiles through a web 

server, tiles are generated using the gdal2tiles.py utility in gdal. This is the 

gdal utility allowing to generate a directory containing the tiles following 

the TMS convention, explained in the dedicated section. The gdal2tiles.py 

automatically generate the tiles starting from the input file, creating a 

directories structure where each zoom level is a directory, each column is a 

subdirectory and each tile in that column is a file. The utility allows to set 

the zoom levels to be generated as tiles. As a good practice, the zoom level 

is chosen in order to have a maximum resolution (the minimum value of 

meters represented per-pixel) of the tile equal to the resolution of the 

imagery used as input. In this case, using Sentinel-2 images, the minimum 

meters per-pixel than can be represented is 10, and the maximum zoom 

level should then be 14, where the resolution is 9.5546 m/px.  

Publishing 

As explained in the tiled web maps section, the images composing the tiled web 

map are served through a web server with a URL like http://.../z/x/y.png, where x 

and z are the numbering scheme identifying the specific tile and z is the zoom level. 

The gdal2tiles.py utility generates a directory scheme such as the one illustrated in 

the following figure.  

 
Figure 5.15 Directory scheme generated by the gdal2tiles.py utility. 

http://.../z/x/y.png
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A web server is a software application running on a server that is able to handle 

the requests for web pages coming from a client through the HTTP protocol. The 

web server stores, processes and delivers the resource (such as web pages) to 

clients. The resource is usually actually stored in the server and the client is usually 

a web browser that makes requests for a specific resource in the server to the server 

using HTTP language. The web server is able to map the path component of an 

URL to the local file system resource of our interest, if we are having a static 

request, or to an internal program for dynamic request. In the specific case of TMS 

publishing on the ONDA server, the request is a static request to the tiles resource 

and the URL specified by the client is relative to the web server’s root directory 

(Wikipedia, 2020b). The URL requested by a client would look something like: 

 

http://dias.ithacaweb.org/missing-millions/uganda_post/tiles/{z}/{x}/{y}.png 

 

The client’s web browser would then translate this request into a connection to the 

server dias.ithacaweb.org. While dias.ithacaweb.org represents the host, the 

server, /missing-millions/uganda_post/ represents the GET request, the path to be 

appended by the web server to the root directory of the web server to retrieve the 

resource. In a Unix machine such as the one of the ONDA DIAS server, the root 

directory is usually /var/www. The result of this request is a link to the local file 

system resource, in our case the directory with the tiles structure that satisfies the 

specific TMS’s standard’s scheme. The web server is able to read the resource and 

send the proper response to the client’s web browser, describing the content of the 

resource and containing the resource itself (Wikipedia, 2020b).  

 

In this case the web server software is the Nginx web browser installed in the 

ONDA DIAS infrastructure. The client would potentially be the MapSwipe app. 

Some simple web map visualizers were also created in order to share and visualize 

the output TMS. The MapBox GL library was used to this end.  

 

The results are the following TMS, available at the following visualizers: 

 

http://dias.ithacaweb.org/missing-millions/uganda_pre_2017/tiles/{z}/{x}/{y}.png 

http://dias.ithacaweb.org/missing-millions/uganda_post/tiles/{z}/{x}/{y}.png 

 

http://dias.ithacaweb.org/missing-millions/uganda_post/  

http://dias.ithacaweb.org/missing-millions/uganda_pre_2017/ 

 

Update: in February 2021, the server hosting the ONDA DIAS underwent a 

failure leading to the loss of the generated TMS previously reachable by the 

reported URLs.  

 

In the next images the TMS are visualized imported into QGIS.  

 

http://dias.ithacaweb.org/missing-millions/uganda_post/tiles/%7Bz%7D/%7Bx%7D/%7By%7D.png
http://dias.ithacaweb.org/
http://dias.ithacaweb.org/missing-millions/uganda_pre_2017/tiles/%7bz%7d/%7bx%7d/%7by%7d.png
http://dias.ithacaweb.org/missing-millions/uganda_post/tiles/%7bz%7d/%7bx%7d/%7by%7d.png
http://dias.ithacaweb.org/missing-millions/uganda_post/
http://dias.ithacaweb.org/missing-millions/uganda_pre_2017/
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Figure 5.16 TMS for 2017 imported into QGIS. 
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Figure 5.17 TMS for 2020 imported into QGIS. 
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Python code 

The whole pipeline was incorporated into a Python script. At the moment, two 

versions are available, one for L2A products and one for L1C products. The two 

scripts are available in the Annexes.  

 

The following scheme represents the whole pipeline and the software and 

libraries used.  

 

 
Figure 5.18 Developed pipeline. 

Bugs 

During the development of the full pipeline, some challenges were encountered 

in the ONDA infrastructure for which workarounds had to be developed. A brief 

list of these challenges and limitations are shown below: 

- Sen2Cor processor has two separate versions (v2.5.5 and 2.8), for products 

generated with the 14.5 and 14.2 and for older than the 14.2 Products 

Specification Document used as input. In this specific case, since products 

from 2017 onwards were used as inputs, the newest version of Sen2Cor 

processor was sufficient for the development of the pipeline. An alternative 

script using the older version of Sen2Cor was also implemented for older 

products.  

 

- During the development of the pipeline, a difference in the data structure of 

the products in SAFE format available in the ONDA infrastructure and the 

same ones available from other infrastructures (such as the ESA Open 

Access Hub platform) was noticed. This different consists in the two folders 

AUX_DATA and QI_DATA. While these are present as folders in the 

conventional products in SAFE format, the same are present as files in the 

products available in the ONDA catalogue. This difference prevents the 

normal functioning of the Sen2Cor processor. Hence, a workaround was 



 

 
132 

developed in the scripts in order to convert the files in folders. After this 

workaround, the Sen2Cor processor works properly.  

 

- Another limitation was encountered when comparing the results of filtered 

products research in the online ONDA catalogue and in other catalogues 

(e.g. the ESA Open Access Hub). The research available at the ONDA 

online catalogue has some limitations, in that, once some filters are applied, 

it does not return the full list of products actually responding to that filter. 

This requires a careful approach when investigating the existence of 

optimal imagery over a selected AOI. This will be communicated to the 

ONDA development support.  

Future developments 

Some considerations on potentially interesting future developments of the 

current developed pipeline. The current pipeline requires a preliminary manual 

research of the products that want to be used for the mosaic and tiling. In addition, 

the mosaic developed is a simple composite mosaic obtained by juxtaposing the 

products. Future developments may include: 

- An automatic procedure to search products in the ONDA DIAS catalogue 

based on filters such as dates of interest, area of interest and cloud cover.  

 

- The development of algorithms similar to the ones already available in 

platforms such as Google Earth Engine to generate per-pixel composites 

applying some reducers to the imagery available. These algorithms allow 

to take into consideration per each tile the full availability of products given 

a time range, and generate a mosaic given by statistics calculated over the 

overlapping pixels (mean, median, highest, lowest, etc.). This allows 

getting rid of visual effects such as discontinuity across tiles and also to 

perform a more efficient cloud removal by investigating the available pixel 

free from clouds over the same imagery.  

5.3. Discussion and conclusions 

This chapter investigated and illustrated a potential case study application for 

the newly available cloud infrastructures DIAS. Simultaneously, high-resolution 

open imagery such as Sentinel-2 were again the object of the application, lending 

themselves very well to the generation of large scale TMS to be provided to 

volunteer mappers for identification of displacement features by means of visual 

interpretation.  

 

The MapSwipe campaign will be launched soon recurring to the TMS 

generated within a research group at the Oregon State University. Then it will be 

possible to quantitively investigate and measure the extent to which high-resolution 
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imagery were suitable for the visual detection of such features by a community of 

volunteer mappers.  

 

In addition, it would be possible to explore what are the best options for the 

users to better identify a specific feature such as informal settlements from Sentinel-

2 satellite imagery. To this end, indeed, a variety of RGB synthesis of different 

bands combinations and imagery enhancement techniques can be evaluated and 

tested. Some examples could be to provide false-colour composites, greenest 

composites (see Chapter 2), multi-temporal composites (see Chapter 3) and so on.  
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Chapter 6 

6. Conclusions and future 

developments 

Displacement is a globally recognized and growing event, whose magnitude is 

only expected to rise in the next years, following the increasing magnitude and 

impact of climate change, conflicts, disasters, and social and political dynamics, all 

of them interconnected in complex mutual feedbacks mechanisms. The strong need 

for information in displacement contexts is well supported by geospatial data, tools, 

and methods, as presented in Chapter 1. Despite the acknowledged power of 

geospatial data in displacement contexts and the widespread and growing 

availability of new data, tools, and methods, applications of high-resolution open 

satellite imagery in the context of displacement are relatively little explored in the 

scientific literature, as highlighted in Chapter 2. The reasons behind this are clear, 

imagery with resolution between four and thirty meters do not offer the possibility 

to map single infrastructures constituting displacement settings, which is one of the 

most common requests by humanitarian organization on the field. Anyhow, high-

resolution open imagery, for instance from the Sentinel-2 mission, offers a wide 

range of benefits in comparison to the more commonly used very high-resolution 

imagery. Amongst them, higher temporal and spatial resolution and the lack of 

generalization issues. The potential uses and applications and the output that can be 

expected of high-resolution imagery for displacement contexts have been the key 

focus of this research.  

 

In order to evaluate the potential uses and applications of high-resolution 

imagery for displacement contexts and the outputs that can potentially be expected 

from their use, the research schema already presented in Chapter 1 has been used 

to guide the explorative research. In the next sections, each branch of the research 

schema will be retraced and commented in the light of the obtained the results and 

conclusions achieved by this research. 
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The first branch of the research schema explored the quantitative use of high-

resolution imagery, hence investigating image classification. It was decided to 

investigate both a direct application approach and an indirect one. The first was 

intended at verifying the usability of high-resolution imagery in mapping 

displacement settings themselves. The latter was intended at exploring indirect 

applications of high-resolution imagery, such as mapping indicators of 

displacement.  

 

 
Figure 6.1 Research schema – direct displacement settings mapping. 

When applied for directly classifying displacement settings, Sentinel-2 imagery 

has proved to be a potential useful source of information first in visually providing 

evidence of and then in locating and mapping the extent or outline of displacement 

settings, as illustrated in Chapter 3. As an exploratory exercise, the Picterra user-

friendly platform providing a pre-trained deep learning algorithm has been 

preliminary tested. The Picterra platform serves as a handy tool in mapping many 

features that are similar from the shape and spectral characteristics point of view 

over large areas. The platform showed good results in identifying IDP camps in 

Iraq, where they are numerous over large areas and spectrally separable from the 

surrounding. This approach did not offer the basis for a more rigorous and 

systematic approach. A more conventional machine learning unsupervised 

algorithm has been implement rigorously and systematically for Sentinel-2 

classifications in Google Earth Engine over four case studies. This approach 

provided good results in mapping the extent and outline of individual displacement 

settings. This is especially valid when spectral indices, such as NDVI and NDBI, 

and secondary dataset, such as night-time data, are implemented as classification 

properties in addition to the spectral bands of Sentinel-2 data. The four cases studies 

in Bangladesh, Uganda, Ethiopia, and Iraq revealed that unsupervised classification 

approaches provide acceptable overall validation accuracy metrics (up to 98%) in 

mapping the extent of displacement settings in four different geographical areas, 
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type of setting and surrounding environmental conditions. A generated 

displacement settings dataset served as validation dataset. 

 

 
Figure 6.2 Research schema – indirect cropland abandonment mapping. 

When applied for indirectly identifying displacement by mapping its potential 

indicators, high-resolution imagery proved to be qualitatively beneficial, even 

though achieved validation accuracies are low. Displacement is induced by and can 

induce itself a series of events. Amongst them, cropland abandonment was 

identified as a strong indicator of displacement in conflict affected areas in Chapter 

4. Landsat-8 and Sentinel-2 time series of data have been implemented to map 

abandoned cropland in north-eastern Nigeria with a multi-temporal and stratified 

supervised classification approach in Google Earth Engine. This time, multi 

temporal NDVI stacks derived from Landsat-8 and Sentinel-2 imagery were used 

as input of a supervised machine learning algorithm. Overall validation accuracies 

resulting from the classification are low, nevertheless visual inspection of results 

suggested that cropland abandonment dynamics were captured, despite some 

relevant commission error. The overall approach could definitely be improved by 

improving both the training and the validation datasets. 

 

Instead of exploiting imagery from a quantitative point of view, the second 

branch of the research schema explored a qualitative approach to high-resolution 

imagery. After assessing in Chapter 3 that high-resolution imagery can provide 

evidence in visually locating at least some of the existing displacement settings, 

photo interpretation methods can be implemented to take advantage of this type of 

data.  The photo interpretation approach offered a case study application for one of 

the most recent cloud infrastructures, the ONDA Data Information and Access 

Service.  
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Figure 6.3 Research schema –photo interpretation. 

In Chapter 5, hence, a crowdsourcing project aimed at crowd-mapping 

displacement settings across the world lend itself as a potential case study 

application of the ONDA Data Information and Access Service, one of the most 

recent cloud infrastructures leveraging the power of big data and cloud computing. 

A workable and reusable pipeline to retrieve large scale mosaics of Sentinel-2 

imagery to be implemented as TMS in any application was developed entirely based 

on the ONDA DIAS. Once again, high-resolution open Sentinel-2 imagery 

provided a useful support and application, in this case when they are needed for 

visually interpreting imagery for displacement detection. The improvement and the 

investigation of the best imagery synthesis and composites for optimally enabling 

volunteer mappers to identify displacement features is one of the potential future 

developments of this research. 

 

The transposal of the semi-automatic classification algorithms and monitoring 

tools investigated in Chapter 3 and Chapter 4 into the ONDA DIAS infrastructure 

is another potential future development of this research. By leveraging the 

described generated displacement dataset, it would be possible to develop a tool 

and a user interface for monitoring the evolution of displacement settings, providing 

the user with basic tools to perform simple image analysis, image composites or 

indices production. The end user would be provided with an assisted extraction of 

on-the-fly information. Being new imagery continuously uploaded in the ONDA 

DIAS catalogue, the developed tool could ingest the new imagery, identify, and 

monitor the features of interest with a high temporal resolution. Newly available 

software such as the Open Data Cube (https://www.opendatacube.org/) could also 

be explored in their potential to manage the large availability of data in a cloud 

infrastructure, easing the filtering of the catalogue itself.  

 

https://www.opendatacube.org/
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ANNEXES 

Error matrices for the displacement settings classifications 

 

VALIDATION ACCURACY

Bangladesh 2019

Yearly median of NDVI, NDBI, B2, B3, B4, B5, B11, B12, VIIRS

Predicted

Non-camp Camp

Non-camp 471390 12381 483771

Actual Camp 52911 135296 188207

Overall 524301 147677 671978

Omission Comission PA UA

Non-camp 0.025592687 0.100917221 0.974407313 0.899082779

Camp 0.281131945 0.083838377 0.718868055 0.916161623

Overall 0.902836105

Bangladesh 2019

Yearly median of NDVI, NDBI

Predicted

Non-camp Camp

Non-camp 420140 63631 483771

Actual Camp 40129 148078 188207

Overall 460269 211709 671978

Omission Comission PA UA

Non-camp 0.131531241 0.087185972 0.868468759 0.912814028

Camp 0.213217362 0.300558786 0.786782638 0.699441214

Overall 0.845590183

Bangladesh 2019

Yearly median of NDVI, NDBI, VIIRS

Predicted

Non-camp Camp

Non-camp 475950 7821 483771

Actual Camp 72715 115492 188207

Overall 548665 123313 671978

Omission Comission PA UA

Non-camp 0.01616674 0.132530779 0.98383326 0.867469221

Camp 0.386356512 0.06342397 0.613643488 0.93657603

Overall 0.880150838

Bangladesh 2019

Yearly median of B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12

Predicted

Non-camp Camp

Non-camp 464195 19576 483771

Actual Camp 89801 98406 188207

Overall 553996 117982 671978

Omission Comission PA UA

Non-camp 0.040465427 0.162096838 0.959534573 0.837903162

Camp 0.477139533 0.165923615 0.522860467 0.834076385

Overall 0.837231278

Bangladesh 2019

Yearly median of NDVI, NDBI, B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12, VIIRS

Predicted

Non-camp Camp

Non-camp 471819 11952 483771

Actual Camp 54805 133402 188207

Overall 526624 145354 671978

Omission Comission PA UA

Non-camp 0.024705904 0.104068557 0.975294096 0.895931443

Camp 0.291195333 0.082226839 0.708804667 0.917773161

Overall 0.900655974

Bangladesh 2019

Yearly greenest NDVI, NDBI, B2, B3, B4, B5, B11, B12, VIIRS

Predicted

Non-camp Camp

Non-camp 471986 11785 483771

Actual Camp 89250 98957 188207

Overall 561236 110742 671978

Omission Comission PA UA

Non-camp 0.033077853 0.070694683 0.966922147 0.929305317

Camp 0.458462674 0.070694683 0.541537326 0.929305317

Overall 0.908108961
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VALIDATION ACCURACY

Uganda 2017

Yearly greenest of NDVI, yearly median NDBI, yearly greenest B4, B7, B11, B12

Predicted

Non-camp Camp

Non-camp 3897560 188120 4085680

Actual Camp 258869 179304 438173

Overall 4156429 367424 4523853

Omission Comission PA UA

Non-camp 0.046043743 0.062281588 0.953956257 0.937718412

Camp 0.590791765 0.511997039 0.409208235 0.488002961

Overall 0.901192855

Uganda 2017

Yearly greenest of NDVI, yearly median NDBI, yearly greenest B4, B7, B11, B12, VIIRS

Predicted

Non-camp Camp

Non-camp 3940795 144885 4085680

Actual Camp 287104 151069 438173

Overall 4227899 295954 4523853

Omission Comission PA UA

Non-camp 0.035461661 0.067907015 0.964538339 0.932092985

Camp 0.655229784 0.48955243 0.344770216 0.51044757

Overall 0.904508612

Uganda 2017

Yearly greenest of NDVI, yearly median NDBI

Predicted

Non-camp Camp

Non-camp 3911059 174621 4085680

Actual Camp 321332 116841 438173

Overall 4232391 291462 4523853

Omission Comission PA UA

Non-camp 0.042739764 0.075922097 0.957260236 0.924077903

Camp 0.733345049 0.599120983 0.266654951 0.400879017

Overall 0.890369338

Uganda 2017

Yearly median of NDVI, NDBI, B4, B7, B11, B12, VIIRS

Predicted

Non-camp Camp

Non-camp 3775354 310326 4085680

Actual Camp 296992 141181 438173

Overall 4072346 451507 4523853

Omission Comission PA UA

Non-camp 0.075954553 0.07292897 0.924045447 0.92707103

Camp 0.677796213 0.687311603 0.322203787 0.312688397

Overall 0.865752048

Uganda 2017

Yearly greenest of B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12

Predicted

Non-camp Camp

Non-camp 4003503 82177 4085680

Actual Camp 309546 128627 438173

Overall 4313049 210804 4523853

Omission Comission PA UA

Non-camp 0.020113421 0.071769646 0.979886579 0.928230354

Camp 0.706446997 0.389826569 0.293553003 0.610173431

Overall 0.913409432

Uganda 2017

Yearly greenest of B4, B7, B11, B12

Predicted

Non-camp Camp

Non-camp 4035638 50042 4085680

Actual Camp 341707 96466 438173

Overall 4377345 146508 4523853

Omission Comission PA UA

Non-camp 0.012248145 0.078062616 0.987751855 0.921937384

Camp 0.779844947 0.341564966 0.220155053 0.658435034

Overall 0.913403685
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VALIDATION ACCURACY

Ethiopia 2019

Yearly greenest of NDVI, yearly median NDBI, yearly greenest B8A, B11, B12, VIIRS

Predicted

Non-camp Camp

Non-camp 358854 12603 371457

Actual Camp 26760 32837 59597

Overall 385614 45440 431054

Omission Comission PA UA

Non-camp 0.033928557 0.069395821 0.966071443 0.930604179

Camp 0.44901589 0.277354754 0.55098411 0.722645246

Overall 0.908681975

Ethiopia 2019

Yearly greenest of NDVI, NDBI, B8A, B11, B12, VIIRS

Predicted

Non-camp Camp

Non-camp 359170 12287 371457

Actual Camp 27323 32274 59597

Overall 386493 44561 431054

Omission Comission PA UA

Non-camp 0.033077853 0.070694683 0.966922147 0.929305317

Camp 0.458462674 0.275734387 0.541537326 0.724265613

Overall 0.908108961

Ethiopia 2019

Yearly greenest of NDVI, yearly median NDBI

Predicted

Non-camp Camp

Non-camp 286655 84802 371457

Actual Camp 35235 24362 59597

Overall 321890 109164 431054

Omission Comission PA UA

Non-camp 0.228295604 0.10946286 0.771704396 0.89053714

Camp 0.591221035 0.77683119 0.408778965 0.22316881

Overall 0.721526769

Ethiopia 2019

Yearly greenest of NDVI, yearly median NDBI, VIIRS

Predicted

Non-camp Camp

Non-camp 353652 17805 371457

Actual Camp 24092 35505 59597

Overall 377744 53310 431054

Omission Comission PA UA

Non-camp 0.04793287 0.063778644 0.95206713 0.936221356

Camp 0.404248536 0.333989871 0.595751464 0.666010129

Overall 0.902803361

Ethiopia 2019

Yearly greenest of B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12

Predicted

Non-camp Camp

Non-camp 302220 69237 371457

Actual Camp 35331 24266 59597

Overall 337551 93503 431054

Omission Comission PA UA

Non-camp 0.186393041 0.104668628 0.813606959 0.895331372

Camp 0.592831854 0.740478915 0.407168146 0.259521085

Overall 0.757413224

Ethiopia 2019

Yearly median of NDVI, NDBI, B8A, B11, B12, VIIRS

Predicted

Non-camp Camp

Non-camp 357267 14190 371457

Actual Camp 26145 33452 59597

Overall 383412 47642 431054

Omission Comission PA UA

Non-camp 0.038200922 0.068190354 0.961799078 0.931809646

Camp 0.438696579 0.297846438 0.561303421 0.702153562

Overall 0.906427037
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VALIDATION ACCURACY

Iraq 2019

Yearly median of NDVI, NDBI, B2, B3, B4, B5, B11, B12, VIIRS

Predicted

Non-camp Camp

Non-camp 1160605 6125 1166730

Actual Camp 18100 30398 48498

Overall 1178705 36523 1215228

Omission Comission PA UA

Non-camp 0.005249715 0.015355835 0.994750285 0.984644165

Camp 0.373211266 0.167702544 0.626788734 0.832297456

Overall 0.980065469

Iraq 2019

Yearly median of NDVI, NDBI, B2, B3, B4, B5, B11, B12

Predicted

Non-camp Camp

Non-camp 1151300 15430 1166730

Actual Camp 16870 31628 48498

Overall 1168170 47058 1215228

Omission Comission PA UA

Non-camp 0.013224996 0.014441391 0.986775004 0.985558609

Camp 0.347849396 0.327893238 0.652150604 0.672106762

Overall 0.973420626

Iraq 2019

Yearly greenest of NDVI, yearly median NDBI, yearly greenest B2, B3, B4, B5, B11, B12, VIIRS

Predicted

Non-camp Camp

Non-camp 1142820 23910 1166730

Actual Camp 7771 40727 48498

Overall 1150591 64637 1215228

Omission Comission PA UA

Non-camp 0.020493173 0.00675392 0.979506827 0.99324608

Camp 0.160233412 0.36991197 0.839766588 0.63008803

Overall 0.973929995

Iraq 2019

Yearly median of NDVI, NDBI

Predicted

Non-camp Camp

Non-camp 952141 214589 1166730

Actual Camp 14568 33930 48498

Overall 966709 248519 1215228

Omission Comission PA UA

Non-camp 0.183923444 0.015069685 0.816076556 0.984930315

Camp 0.300383521 0.863471203 0.699616479 0.136528797

Overall 0.811428802

Iraq 2019

Yearly median of NDVI, NDBI, VIIRS

Predicted

Non-camp Camp

Non-camp 1088678 78052 1166730

Actual Camp 24795 23703 48498

Overall 1113473 101755 1215228

Omission Comission PA UA

Non-camp 0.066898083 0.022268165 0.933101917 0.977731835

Camp 0.511258196 0.76705813 0.488741804 0.23294187

Overall 0.915368145

Iraq 2019

Yearly median of B2, B3, B4, B5, B11, B12

Predicted

Non-camp Camp

Non-camp 1155537 11193 1166730

Actual Camp 21981 26517 48498

Overall 1177518 37710 1215228

Omission Comission PA UA

Non-camp 0.009593479 0.018667231 0.990406521 0.981332769

Camp 0.453235185 0.29681782 0.546764815 0.70318218

Overall 0.972701419
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GEE script for k-means classification on displacement settings (Sentinel-2) 

 

///////////////////////////////////////////////////// 

//// SET IMPORTS AND VISUALIZATION PARAMETERS //// 

///////////////////////////////////////////////////// 

 

var camps = 

ee.FeatureCollection("users/agataelia1991/IRQ_20190831_name_dissolve_sample"), 

imageVisParam = 

{"opacity":1,"bands":["B4","B3","B2"],"min":497.48,"max":3448.52,"gamma":2.013}, 

imageVisParam2 = 

{"opacity":1,"bands":["B4_median","B3_median","B2_median"],"min":696.7225,"max":42

77.4025,"gamma":1.1}, 

imageVisParam3 = 

{"opacity":1,"bands":["VIIRS_median"],"min":0.14514687657356262,"max":1.1310894489

28833,"gamma":1.1}, 

imageVisParam4 = 

{"opacity":1,"bands":["TXT_median"],"min":5.348189830780029,"max":5.60964202880859

4,"gamma":0.746}; 

 

 

///////////////////////////////////////////////////// 

//// SET PARAMETERS, FUNCTIONS AND ADD AND INSPECT DATA //// 

///////////////////////////////////////////////////// 

 

// Center the map over AOI 

Map.centerObject(camps); 

var aoi = camps.geometry().buffer(1000).bounds(); 

 

// Define roi 

var camp = (ee.Feature(camps.geometry())).set('type', 'camp', 'class', 1); 

var other = (ee.Feature(aoi.difference(camps, 10))).set('type', 'non-camp', 'class', 

0); 

var roi = ee.FeatureCollection([camp, other]); 

 

// Define years 

var year = 2019;   

var year_string = '2019';   

var years = [2016, 2017, 2018, 2019, 2020]; 

 

// Define bands 

var bands = ['B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B8', 'B8A', 'B11', 'B12']; 

var bands_median = ['B2_median', 'B3_median', 'B4_median', 'B5_median', 'B6_median', 

'B7_median', 'B8_median', 'B8A_median', 'B11_median', 'B12_median']; 

 

// Define a list of Sentinel-2 wavelengths for charts X-axis labels 

var wavelengths = [0.4966, 0.560, 0.6645, 0.7039, 0.7402, 0.7825, 0.8351, 0.8648, 

1.6137, 2.2024] 

 

// Define a function that rescales Sentinel-2 collection to reflectance values 

var rescale = function(image){ 

  var rescaledImage = image.multiply(0.0001); 

  return rescaledImage.copyProperties(image, image.propertyNames()); 

}; 

 

// Define a function that rescale images to 10m 

var rescale10m = function(image){ 

  var image_10m = image.resample('bilinear').reproject({ 

  crs: 'EPSG:4326', 

  scale: 10 

  }); 

  return image_10m;  

}; 

 

// Define a function that adds an NDVI band to a Sentinel-2 image 

var addNDVI = function(image) { 

  var ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI'); 
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  return image.addBands(ndvi); 

}; 

 

// Define a function that adds an NDBI band at 10m to a Sentinel-2 image 

var addNDBI = function(image){ 

  var band8 = image.select('B8'); 

  var band11 = image.select('B11'); 

  var band11_10m = band11.resample('bilinear').reproject({ 

  crs: band8.projection().crs(), 

  scale: 10 

  }); 

  var ndbi = ((band11_10m.subtract(band8)) 

  .divide(band11_10m.add(band8))).rename('NDBI'); 

  return image.addBands(ndbi);  

}; 

 

///////////////////////////////////////////////////// 

//// CREATE COLLECTIONS //// 

///////////////////////////////////////////////////// 

 

// Define and filter S2 collection based on AOI and map the addNDVI and addNDBI and 

rescale 

var collection = ee.ImageCollection('COPERNICUS/S2') 

  .select(bands) 

  .filterBounds(aoi) 

  .filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 5)) 

  .map(addNDVI) 

  .map(addNDBI) 

  .map(rescale10m); 

 

// Define and filter VIIRS collection based on AOI rescale 

var collection_viirs = ee.ImageCollection('NOAA/VIIRS/DNB/MONTHLY_V1/VCMCFG') 

    .select('avg_rad') 

    .filterBounds(aoi) 

    .map(rescale10m); 

 

// Create image collection of yearly greenests 

var collection_yearly_greenest = ee.ImageCollection.fromImages( 

  years.map(function(y) { 

    var yearly_greenest = collection 

        .filter(ee.Filter.calendarRange(y, y, 'year')) 

        .qualityMosaic('NDVI') 

        .clip(aoi) 

        .set('name', 'greenest') 

        .set('year', y); 

    return yearly_greenest; 

})); 

 

print(collection_yearly_greenest); 

 

// Create image collection of yearly medians 

var collection_yearly_median = ee.ImageCollection.fromImages( 

  years.map(function(y) { 

    var yearly_median = collection 

        .filter(ee.Filter.calendarRange(y, y, 'year')) 

        .reduce(ee.Reducer.median()) 

        .clip(aoi) 

        .set('name', 'median') 

        .set('year', y); 

    return yearly_median; 

})); 

 

print(collection_yearly_median); 

 

// Create image collection of yearly medians VIIRS 

var collection_yearly_viirs = ee.ImageCollection.fromImages( 

  years.map(function(y) { 

    var yearly_viirs = collection_viirs 
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        .filter(ee.Filter.calendarRange(y, y, 'year')) 

        .reduce(ee.Reducer.median()) 

        .clip(aoi) 

        .rename('VIIRS_median') 

        .set('name', 'viirs') 

        .set('year', y); 

    return yearly_viirs; 

})); 

 

print(collection_yearly_viirs); 

 

///////////////////////////////////////////////////// 

//// VISUALIZE //// 

///////////////////////////////////////////////////// 

 

Map.addLayer(collection_yearly_greenest.filter(ee.Filter.eq('year', year)), 

imageVisParam, year_string.concat('_greenest'), 0); 

Map.addLayer(collection_yearly_median.filter(ee.Filter.eq('year', year)), 

imageVisParam2, year_string.concat('_median')); 

Map.addLayer(collection_yearly_viirs.filter(ee.Filter.eq('year', year)), 

imageVisParam3, year_string.concat('_viirs_median'), 0); 

 

Map.addLayer(camps, imageVisParam, 'camps', 0); 

 

///////////////////////////////////////////////////// 

//// CLUSTERING //// 

///////////////////////////////////////////////////// 

 

// Create input stack 

var classification_stack = (ee.Image.cat([ 

  collection_yearly_median 

  .filter(ee.Filter.eq('year', year)) 

  .select(['NDVI_median', 'NDBI_median']) 

  .toBands() 

  .rename(['NDVI', 'NDBI']), 

  collection_yearly_median 

  .filter(ee.Filter.eq('year', year)) 

  .select(['B2_median', 'B3_median', 'B4_median', 'B5_median', 'B6_median', 

'B7_median', 'B8_median', 'B8A_median', 'B11_median', 'B12_median']) 

  .toBands() 

  .rename(['B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B8', 'B8A', 'B11', 'B12']), 

  collection_yearly_viirs 

  .filter(ee.Filter.eq('year', year)) 

  .select('VIIRS_median') 

  .toBands() 

  .rename('VIIRS') 

  ])).set('year', year);   

/* 

// Create input stack 

var classification_stack = (ee.Image.cat([ 

  collection_yearly_greenest 

  .filter(ee.Filter.eq('year', year)) 

  .select(['NDVI']) 

  .toBands() 

  .rename(['NDVI']), 

  collection_yearly_median 

  .filter(ee.Filter.eq('year', year)) 

  .select(['NDBI_median']) 

  .toBands() 

  .rename(['NDBI']), 

  collection_yearly_greenest 

  .filter(ee.Filter.eq('year', year)) 

  .select(['B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B8', 'B8A', 'B11', 'B12']) 

  .toBands() 

  .rename(['B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B8', 'B8A', 'B11', 'B12']), 

  collection_yearly_viirs 

  .filter(ee.Filter.eq('year', year)) 

  .select('VIIRS_median') 
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  .toBands() 

  .rename('VIIRS') 

  ])).set('year', year); 

*/ 

print(classification_stack); 

 

// Define which bands for clustering 

var bands_clustering = ['NDVI', 'NDBI', 'B2', 'B3', 'B4', 'B5', 'B11', 'B12', 

'VIIRS']; 

 

// Make the training dataset 

var training = classification_stack.select(bands_clustering).sample({ 

  region: aoi, 

  scale: 10, 

  numPixels: 100000 

}); 

 

// Instantiate the clusterer and train it 

var clusterer = ee.Clusterer.wekaKMeans(8).train(training); 

 

// Cluster the input using the trained clusterer 

var result = classification_stack.select(bands_clustering).cluster(clusterer); 

 

// Display the clusters with random colors 

var palette = ['8b0781', 'FF0000', '888888', '170daa', 

               '56d8ff', '53ff3f', '#ffdb58', '#ff3f97']; 

Map.addLayer(result, {min: 0, max: 7, palette: palette}, 'clusters', 0); 

 

///////////////////////////////////////////////////// 

//// ACCURACY //// 

///////////////////////////////////////////////////// 

 

var result_binary = result.remap([0, 1, 2, 3, 4, 5, 6, 7], [0, 1, 0, 0, 0, 0, 0, 

0]).rename('class'); 

Map.addLayer(result_binary, {min: 0, max: 1, palette: palette}, 'clusters_binary', 

0); 

 

var roi_binary = roi.reduceToImage({ 

    properties: ['class'], 

    reducer: ee.Reducer.first() 

}).rename('true_class'); 

Map.addLayer(roi_binary, {min: 0, max: 1, palette: palette}, 'roi_binary', 0); 

 

var validated = result_binary.addBands(roi_binary).sample({ 

  region: aoi, 

  scale: 10, 

  projection: 'EPSG:4326', 

  //seed: 1 

}); 

 

var testAccuracy = validated.errorMatrix('true_class', 'class'); 

print(('Validation error matrix for ').concat(year), testAccuracy); 

print(('Validation overall accuracy for ').concat(year), testAccuracy.accuracy()); 

print(('Validation producer accuracy for ').concat(year), 

testAccuracy.producersAccuracy()); 

print(('Validation consumers accuracy for ').concat(year), 

testAccuracy.consumersAccuracy()); 

 

var difference = (result_binary.multiply(ee.Image(3))).subtract(roi_binary); 

 

///////////////////////////////////////////////////// 

//// CHARTS //// 

///////////////////////////////////////////////////// 

 

// Create images to generate chart from 

var indices = collection_yearly_median 

  .filter(ee.Filter.eq('year', year)) 

  .select('NDVI_median', 'NDBI_median') 
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  .toBands() 

  .rename('NDVI', 'NDBI'); 

   

var viirs = collection_yearly_viirs 

  .filter(ee.Filter.eq('year', year)) 

  .select('VIIRS_median') 

  .toBands() 

  .rename('VIIRS'); 

   

var bands = collection_yearly_median 

  .filter(ee.Filter.eq('year', year)) 

  .select(bands_median) 

  .map(rescale) 

  .toBands(); 

 

// Define a dictionary that associates band names with values and labels 

var indices_info = { 

  'NDVI': {v: 1, f: 'NDVI'}, 

  'NDBI': {v: 2, f: 'NDBI'}, 

}; 

 

// Define client-side custom arrangement of the x-axis 

var xPropVals = [];     

var xPropLabels = [];   

for (var key in indices_info) { 

  xPropVals.push(indices_info[key].v); 

  xPropLabels.push(indices_info[key]); 

} 

 

// Define the indices chart and print it 

var chart = ui.Chart.image 

                .regions({ 

                  image: indices, 

                  regions: roi, 

                  reducer: ee.Reducer.mean(), 

                  scale: 10, 

                  seriesProperty: 'type', 

                  xLabels: xPropVals 

                }) 

                .setChartType('ColumnChart') 

                .setOptions({ 

                  title: 'Yearly Median of NDVI and NDBI Values (average over ROIs)', 

                  hAxis: { 

                    title: 'Index', 

                    titleTextStyle: {italic: false, bold: true}, 

                    ticks: xPropLabels 

                  }, 

                  vAxis: { 

                      title: 'Value', 

                      titleTextStyle: {italic: false, bold: true}, 

                      maxValue: 1, 

                      minValue: -1 

                  }, 

                  colors: ['8b0781', 'FF0000'], 

                }); 

                 

print(chart); 

 

// Define the viirs chart and print it 

var chart_viirs = ui.Chart.image 

                      .byRegion({ 

                        image: viirs, 

                        regions: roi, 

                        reducer: ee.Reducer.mean(), 

                        scale: 10, 

                        xProperty: 'type' 

                      }) 

                      .setSeriesNames([ 
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                        'VIIRS' 

                      ]) 

                      .setChartType('ColumnChart') 

                      .setOptions({ 

                        title: 'Yearly Median of VIIRS Stray Light Corrected 

Nighttime Values (average over ROIs)', 

                        hAxis: 

                            {title: 'Class', titleTextStyle: {italic: false, bold: 

true}}, 

                        vAxis: { 

                          title: 'Value', 

                          titleTextStyle: {italic: false, bold: true} 

                        }, 

                        colors: [ 

                          '555555' 

                        ] 

                      }); 

                 

print(chart_viirs); 

 

// Define the spectral chart and print it 

var spectralChart = ui.Chart.image.regions( 

    bands, roi, ee.Reducer.mean(), 10, 'type', wavelengths) 

        .setChartType('ScatterChart') 

        .setOptions({ 

          title: 'Sentinel-2 L1C Spectral Signatures (average over ROIs)', 

          hAxis: {title: 'Wavelength (micrometers)'}, 

          vAxis: {title: 'Reflectance'}, 

          lineWidth: 1, 

          pointSize: 4, 

          series: { 

            0: {color: '8b0781'}, 

            2: {color: 'FF0000'}, 

          } 

        }); 

 

print(spectralChart); 
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Error matrices for the yearly cropland classifications 

 

 
 

 

 

 

 

 

 

 

 

 

TRAINING ACCURACY VALIDATION ACCURACY

1_Abadam 2014 1_Abadam 2014

Omission Comission PA UA Omission Comission PA UA

Non-cropland 0 0 1 1 Non-cropland 0.108696 0.068182 0.891304 0.931818

Cropland 0 0 1 1 Cropland 0.6 0.714286 0.4 0.285714

Overall 1 Overall 0.843137

1_Abadam 2019 1_Abadam 2019

Omission Comission PA UA Omission Comission PA UA

Non-cropland 0 0 1 1 Non-cropland 0.162791 0.162791 0.837209 0.837209

Cropland 0 0 1 1 Cropland 0.875 0.875 0.125 0.125

Overall 1 Overall 0.72549

2_Guzamala 2014 2_Guzamala 2014

Omission Comission PA UA Omission Comission PA UA

Non-cropland 0 0 1 1 Non-cropland 0.0625 0.333333 0.9375 0.666667

Cropland 0 0 1 1 Cropland 0.652174 0.2 0.347826 0.8

Overall 1 Overall 0.690909

2_Guzamala 2019 2_Guzamala 2019

Omission Comission PA UA Omission Comission PA UA

Non-cropland 0 0 1 1 Non-cropland 0.153846 0.153846 0.846154 0.846154

Cropland 0 0 1 1 Cropland 0.375 0.375 0.625 0.625

Overall 1 Overall 0.781818

3_Kukawa 2014 3_Kukawa 2014

Omission Comission PA UA Omission Comission PA UA

Non-cropland 0 0 1 1 Non-cropland 0.113636 0.093023 0.886364 0.906977

Cropland 0 0 1 1 Cropland 0.5 0.555556 0.5 0.444444

Overall 1 Overall 0.826923

3_Kukawa 2019 3_Kukawa 2019

Omission Comission PA UA Omission Comission PA UA

Non-cropland 0 0 1 1 Non-cropland 0.12766 0.088889 0.87234 0.911111

Cropland 0 0 1 1 Cropland 0.8 0.857143 0.2 0.142857

Overall 1 Overall 0.807692

4_Marte 2014 4_Marte 2014

Omission Comission PA UA Omission Comission PA UA

Non-cropland 0 0 1 1 Non-cropland 0.133333 0.315789 0.866667 0.684211

Cropland 0 0 1 1 Cropland 0.545455 0.285714 0.454545 0.714286

Overall 1 Overall 0.692308

4_Marte 2019 4_Marte 2019

Omission Comission PA UA Omission Comission PA UA

Non-cropland 0 0 1 1 Non-cropland 0 0.038462 1 0.961538

Cropland 0 0 1 1 Cropland 1 1 0 0

Overall 1 Overall 0.961538

5_Kala_Balge 2014 5_Kala_Balge 2014

Omission Comission PA UA Omission Comission PA UA

Non-cropland 0 0 1 1 Non-cropland 0.035714 0.44898 0.964286 0.55102

Cropland 0 0 1 1 Cropland 0.611111 0.066667 0.388889 0.933333

Overall 1 Overall 0.640625

5_Kala_Balge 2019 5_Kala_Balge 2019

Omission Comission PA UA Omission Comission PA UA

Non-cropland 0 0 1 1 Non-cropland 0 0.16129 1 0.83871

Cropland 0 0 1 1 Cropland 0.833333 0 0.166667 1

Overall 1 Overall 0.84375
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GEE script for generation of yearly stacks of monthly max NDVI composites 

(example for Sentinel-2) 

 
// Imports 

var aoi_NGA = /*table import*/ 

 

///////////////////////////////////////////////////// 

//// SET PARAMETERS AND ADD AND INSPECT DATA //// 

///////////////////////////////////////////////////// 

 

// Center the map over aoi 

Map.centerObject(aoi_NGA); 

var aoi = aoi_NGA.geometry().bounds(); 

Map.addLayer(aoi_NGA);  

 

// Define year and months  

var year = '2019'; 

var months = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]; 

 

// Define a function that adds an NDVI band to a Sentinel-2 image 

var addNDVI = function(image) { 

  var ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI'); 

  return image.addBands(ndvi); 

}; 

 

///////////////////////////////////////////////////// 

//// CREATE STACKS //// 

///////////////////////////////////////////////////// 

 

// Define and filter S2 collection based on AOI and map the addNDVI 

var collection = ee.ImageCollection('COPERNICUS/S2_SR') 

  //.select(bands) 

  .filterBounds(aoi_NGA) 

  .filterDate(year.concat('-01-01'), year.concat('-12-31')) 

  //.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 50)) 

  .map(addNDVI); 

 

print(collection); 

 

// Create yearly stacks of monthly maximum NDVI 

var yearly_composite = ee.Image.cat( 

  months.map(function(m) { 

    var monthly_max_ndvi = collection 

        .filter(ee.Filter.calendarRange(m, m, 'month')) 

        .select('NDVI') 

        .reduce(ee.Reducer.max()) 

        .rename(('vp').concat(m).concat('NDVI_').concat(year)); 

    return monthly_max_ndvi; 

})); 

 

// Add the yearly composites to the map 

print (yearly_composite); 

Map.addLayer(yearly_composite.clip(aoi_NGA), imageVisParam, year); 

 

///////////////////////////////////////////////////// 

//// EXPORT //// 

///////////////////////////////////////////////////// 

 

// Export  

Export.image.toAsset({ 

  image: yearly_composite.clip(aoi_NGA), 

  description: ('NGA_S2_SR_maxNDVIcomposite_full').concat(year), 

  assetId: ('NGA_S2_SR_maxNDVIcomposite_full').concat(year), 

  scale: 10, 

  region: aoi_NGA, 

  maxPixels: 1e10}); 



 

 
162 

GEE script for stratified multi-temporal supervised classification 

 
// Imports 

var NGA_L8_2014_ALL = 

ee.Image("users/agataelia1991/NGA_L8_SR_maxNDVIcomposite_full2014"), 

NGA_S2_2019_ALL = 

ee.Image("users/agataelia1991/NGA_S2_SR_maxNDVIcomposite_full2019"), 

aoi_ALL = ee.FeatureCollection("users/agataelia1991/AOI_all"), 

imageVisParam_2014 = 

{"opacity":1,"bands":["vp8NDVI_2014","vp9NDVI_2014","vp10NDVI_2014"],"gamma":1}, 

imageVisParam_2019 = 

{"opacity":1,"bands":["vp8NDVI_2019","vp9NDVI_2019","vp10NDVI_2019"],"gamma":1}, 

training_areas_agri = 

ee.FeatureCollection("users/agataelia1991/TA_LC_250_AOI_ALL_ID_kmeans"), 

validation_areas_agri = 

ee.FeatureCollection("users/agataelia1991/TA_LC_260_AOI_ALL_ID_10m"), 

EMSN_populated_places = 

ee.FeatureCollection("users/agataelia1991/Populated_Places"); 

 
///////////////////////////////////////////////////// 

//// SET PARAMETERS AND ADD AND INSPECT DATA //// 

/////////////////////////////////////////////////////  

 

// Define main variables 

var bands_2014 = ['vp8NDVI_2014','vp9NDVI_2014','vp10NDVI_2014']; 

              

var bands_2019 = ['vp8NDVI_2019','vp9NDVI_2019','vp10NDVI_2019']; 

 

var ID_list = [1, 2, 3, 4, 5]; 

 

// Center the map over aoi  

Map.centerObject(aoi_ALL); 

Map.addLayer(aoi_ALL, {color: 'F096FF'}, 'aoi', 0);  

print(aoi_ALL); 

 

// Add and inspect images 

Map.addLayer(NGA_L8_2014_ALL, imageVisParam_2014, '2014_all'); 

//print (NGA_L8_2014_ALL); 

Map.addLayer(NGA_S2_2019_ALL, imageVisParam_2019, '2019_all'); 

//print (NGA_S2_2019_ALL); 

 

// Add and inspect training areas 

Map.addLayer(training_areas_agri, {color: 'F096FF'}, 'training areas', 0); 

print (training_areas_agri); 

 

///////////////////////////////////////////////////// 

//// CLASSIFICATION 2014 //// 

///////////////////////////////////////////////////// 

 

var classfication_2014 = (ee.ImageCollection( 

  ID_list.map(function(id){ 

   

  // Select aoi and training areas by AOI ID 

  var aoi = aoi_ALL.filter(ee.Filter.eq('ID', id)); 

  var aoi_name = aoi.get('NAME'); 

  var training_sample = training_areas_agri.filter(ee.Filter.eq('ID_aoi', id)); 

  var validation_sample = validation_areas_agri.filter(ee.Filter.eq('ID_aoi',     

id)); 

 

  // Create training dataset 

  var training = NGA_L8_2014_ALL.clip(aoi).select(bands_2014).sampleRegions({ 

  collection: training_sample, 

  properties: ['lc_2014'], 

  scale: 10  

  }); 

   

  // Train a classifier 
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  var classifier = ee.Classifier.smileRandomForest(100).train({ 

  features: training, 

  classProperty: 'lc_2014', 

  inputProperties: bands_2014 

  });  

   

  // Get a confusion matrix representing resubstitution accuracy 

  var trainAccuracy = classifier.confusionMatrix(); 

  print(('Resubstitution error matrix for ').concat(id).concat(': '),  

trainAccuracy); 

  print(('Training overall accuracy for ').concat(id).concat(': '), 

trainAccuracy.accuracy()); 

  print(('Training producer accuracy for ').concat(id).concat(': '), 

trainAccuracy.producersAccuracy()); 

  print(('raining consumers accuracy for ').concat(id).concat(': '), 

trainAccuracy.consumersAccuracy()); 

   

  // Export matrix 

  var trainAccuracy_feature = ee.Feature(null, {matrix: trainAccuracy.array()}); 

  Export.table.toDrive({ 

  collection: ee.FeatureCollection(trainAccuracy_feature), 

  description: ('trainAccuracy_2014_').concat(id), 

  fileFormat: 'CSV'}); 

   

  // Run the classification 

  var classified = 

NGA_L8_2014_ALL.clip(aoi).select(bands_2014).classify(classifier); 

 

  // Sample the validation data 

  var validation = NGA_L8_2014_ALL.clip(aoi).select(bands_2014).sampleRegions({ 

  collection: validation_sample, 

  properties: ['lc_2014'], 

  scale: 10  

  }); 

 

  // Classify the validation data 

  var validated = validation.classify(classifier); 

   

  // Get a confusion matrix representing expected accuracy 

  var testAccuracy = validated.errorMatrix('lc_2014', 'classification'); 

  print(('Validation error matrix for ').concat(id).concat(': '), testAccuracy); 

  print(('Validation overall accuracy for ').concat(id).concat(': '), 

testAccuracy.accuracy()); 

  print(('Validation producer accuracy for ').concat(id).concat(': '), 

testAccuracy.producersAccuracy()); 

  print(('Validation consumers accuracy for ').concat(id).concat(': '), 

testAccuracy.consumersAccuracy()); 

  

  // Export matrix 

  var testAccuracy_feature = ee.Feature(null, {matrix: testAccuracy.array()}); 

  Export.table.toDrive({ 

  collection: ee.FeatureCollection(testAccuracy_feature), 

  description: ('testAccuracy_2014_').concat(id), 

  fileFormat: 'CSV'}); 

  

  // Return the output of the classification per AOI 

  return (classified); 

}))).mosaic(); 

 

// Inspect the result 

print(classfication_2014);  

 

// Add classified crop mask image 

var classification_2_2014 = 

classfication_2014.updateMask(classfication_2014.eq(2)); 

Map.addLayer(classification_2_2014,  {min: 2, max: 2, palette: ['#3efd27'], 

opacity: 0.6}, 'classification_crop_2014', 0); 
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///////////////////////////////////////////////////// 

//// CLASSIFICATION 2019 //// 

///////////////////////////////////////////////////// 

 

var classfication_2019 = (ee.ImageCollection( 

  ID_list.map(function(id){ 

   

  // Select aoi and training areas by AOI ID 

  var aoi = aoi_ALL.filter(ee.Filter.eq('ID', id)); 

  var aoi_name = aoi.get('NAME'); 

  var training_sample = training_areas_agri.filter(ee.Filter.eq('ID_aoi', id)); 

  var validation_sample = validation_areas_agri.filter(ee.Filter.eq('ID_aoi', 

id)); 

 

  // Create training dataset 

  var training = NGA_S2_2019_ALL.clip(aoi).select(bands_2019).sampleRegions({ 

  collection: training_sample, 

  properties: ['lc_2019'], 

  scale: 10  

  }); 

   

  // Train a classifier 

  var classifier = ee.Classifier.smileRandomForest(100).train({ 

  features: training, 

  classProperty: 'lc_2019', 

  inputProperties: bands_2019 

  });  

   

  // Get a confusion matrix representing resubstitution accuracy 

  var trainAccuracy = classifier.confusionMatrix(); 

  print(('Resubstitution error matrix for ').concat(id).concat(': '), 

trainAccuracy); 

  print(('Training overall accuracy for ').concat(id).concat(': '), 

trainAccuracy.accuracy()); 

  print(('Training producer accuracy for ').concat(id).concat(': '), 

trainAccuracy.producersAccuracy()); 

  print(('raining consumers accuracy for ').concat(id).concat(': '), 

trainAccuracy.consumersAccuracy()); 

   

  // Export matrix 

  var trainAccuracy_feature = ee.Feature(null, {matrix: trainAccuracy.array()}); 

  Export.table.toDrive({ 

  collection: ee.FeatureCollection(trainAccuracy_feature), 

  description: ('trainAccuracy_2019_').concat(id), 

  fileFormat: 'CSV'}); 

   

  // Run the classification 

  var classified = 

NGA_S2_2019_ALL.clip(aoi).select(bands_2019).classify(classifier); 

   

  // Sample the validation data 

  var validation = NGA_S2_2019_ALL.clip(aoi).select(bands_2019).sampleRegions({ 

  collection: validation_sample, 

  properties: ['lc_2019'], 

  scale: 10  

  }); 

 

  // Classify the validation data 

  var validated = validation.classify(classifier); 

   

  // Get a confusion matrix representing expected accuracy 

  var testAccuracy = validated.errorMatrix('lc_2019', 'classification'); 

  print(('Validation error matrix for ').concat(id).concat(': '), testAccuracy); 

  print(('Validation overall accuracy for ').concat(id).concat(': '), 

testAccuracy.accuracy()); 

  print(('Validation producer accuracy for ').concat(id).concat(': '), 

testAccuracy.producersAccuracy()); 
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  print(('Validation consumers accuracy for ').concat(id).concat(': '), 

testAccuracy.consumersAccuracy()); 

   

  // Export matrix 

  var testAccuracy_feature = ee.Feature(null, {matrix: testAccuracy.array()}); 

  Export.table.toDrive({ 

  collection: ee.FeatureCollection(testAccuracy_feature), 

  description: ('testAccuracy_2019_').concat(id), 

  fileFormat: 'CSV'}); 

   

  // Return the output of the classification per AOI 

  return (classified); 

}))).mosaic(); 

 

// Inspect the result 

print(classfication_2019); 

 

// Add classified crop mask image 

var classification_2_2019 = 

classfication_2019.updateMask(classfication_2019.eq(2)); 

Map.addLayer(classification_2_2019,  {min: 2, max: 2, palette: ['#3efd27'], 

opacity: 0.6}, 'classification_crop_2019', 0); 

 

///////////////////////////////////////////////////// 

//// CHANGE DETECTION //// 

///////////////////////////////////////////////////// 

 

var change = 

(classfication_2014.multiply(ee.Image(3))).subtract(classfication_2019); 

Map.addLayer(change, {min: 1, max: 5, palette: ['#3efd27', '#fdfdfd', '272ef4', 

'#f4ef5c', '#fd3819'], opacity: 0.6}, 'change', 0); 

 

///////////////////////////////////////////////////// 

//// EXPORT //// 

///////////////////////////////////////////////////// 

 

// Export results of classification 

Export.image.toDrive({ 

  image: classfication_2014, 

  description: 'NGA_classified_2014', 

  region: aoi_ALL, 

  scale: 10, 

  fileFormat: 'GeoTIFF' 

}); 

 

Export.image.toDrive({ 

  image: classfication_2019, 

  description: 'NGA_classified_2019', 

  region: aoi_ALL, 

  scale: 10, 

  fileFormat: 'GeoTIFF' 

}); 

 

Export.image.toDrive({ 

  image: change.int(), 

  description: 'NGA_change', 

  region: aoi_ALL, 

  scale: 10, 

  fileFormat: 'GeoTIFF', 

  maxPixels: 1e10 

}); 

 

// Add populated places layer 

Map.addLayer(EMSN_populated_places, {palette: ['#f4ef5c']}, 'populated places', 

0); 

 

 



 

 
166 

processSentinel2_ONDA_Uganda_post.py 

#Import modules 
import os 
import subprocess 
 
rootFolder = r'/home/ubuntu/agata/missing_millions/uganda_2020' 
lista = ['/mnt/catalogue/OPTICAL/LEVEL-
2A/2020/02/12/S2A_MSIL2A_20200212T081041_N0214_R078_T36NTH_20200212T113212.zip', 
         '/mnt/catalogue/OPTICAL/LEVEL-
2A/2020/02/12/S2A_MSIL2A_20200212T081041_N0214_R078_T36NTJ_20200212T113212.zip', 
         '/mnt/catalogue/OPTICAL/LEVEL-
2A/2020/02/12/S2A_MSIL2A_20200212T081041_N0214_R078_T36NTK_20200212T113212.zip', 
         '/mnt/catalogue/S2/2A/MSI/LEVEL-
2A/S2MSI2A/2020/02/12/S2A_MSIL2A_20200212T081041_N0214_R078_T36NUH_20200212T113212.zip', 
         '/mnt/catalogue/OPTICAL/LEVEL-
2A/2020/02/09/S2A_MSIL2A_20200209T080051_N0214_R035_T36NUH_20200209T110919.zip', 
         '/mnt/catalogue/S2/2A/MSI/LEVEL-
2A/S2MSI2A/2020/02/12/S2A_MSIL2A_20200212T081041_N0214_R078_T36NUJ_20200212T113212.zip', 
         '/mnt/catalogue/S2/MSI/LEVEL-
2A/S2MSI2A/2020/02/09/S2A_MSIL2A_20200209T080051_N0214_R035_T36NUJ_20200209T110919.zip', 
         '/mnt/catalogue/OPTICAL/LEVEL-
2A/2020/02/12/S2A_MSIL2A_20200212T081041_N0214_R078_T36NUK_20200212T113212.zip', 
         '/mnt/catalogue/S2/MSI/LEVEL-
2A/S2MSI2A/2020/02/09/S2A_MSIL2A_20200209T080051_N0214_R035_T36NUK_20200209T110919.zip', 
         '/mnt/catalogue/S2/MSI/LEVEL-
2A/S2MSI2A/2020/02/09/S2A_MSIL2A_20200209T080051_N0214_R035_T36NVH_20200209T110919.zip', 
         '/mnt/catalogue/S2/MSI/LEVEL-
2A/S2MSI2A/2020/02/09/S2A_MSIL2A_20200209T080051_N0214_R035_T36NVJ_20200209T110919.zip', 
         '/mnt/catalogue/S2/MSI/LEVEL-
2A/S2MSI2A/2020/02/12/S2A_MSIL2A_20200212T081041_N0214_R078_T36NVK_20200212T113212.zip', 
         '/mnt/catalogue/OPTICAL/LEVEL-
2A/2020/02/09/S2A_MSIL2A_20200209T080051_N0214_R035_T36NVK_20200209T110919.zip', 
         '/mnt/catalogue/OPTICAL/LEVEL-
2A/2020/01/20/S2A_MSIL2A_20200120T080241_N0213_R035_T36NWH_20200120T111107.zip', 
         '/mnt/catalogue/OPTICAL/LEVEL-
2A/2020/02/09/S2A_MSIL2A_20200209T080051_N0214_R035_T36NWJ_20200209T110919.zip', 
         '/mnt/catalogue/OPTICAL/LEVEL-
2A/2020/02/09/S2A_MSIL2A_20200209T080051_N0214_R035_T36NWK_20200209T110919.zip', 
         '/mnt/catalogue/OPTICAL/LEVEL-
2A/2020/02/09/S2A_MSIL2A_20200209T080051_N0214_R035_T36NXH_20200209T110919.zip', 
         '/mnt/catalogue/OPTICAL/LEVEL-
2A/2020/02/09/S2A_MSIL2A_20200209T080051_N0214_R035_T36NXJ_20200209T110919.zip', 
         '/mnt/catalogue/OPTICAL/LEVEL-
2A/2020/01/17/S2A_MSIL2A_20200117T075241_N0213_R135_T36NXJ_20200117T105226.zip', 
         '/mnt/catalogue/OPTICAL/LEVEL-
2A/2020/02/09/S2A_MSIL2A_20200209T080051_N0214_R035_T36NXK_20200209T110919.zip'] 
 
#Search selected bands in MSIL2A products 
def searchBands(S2path): 
        listBands = [] 
        for root, dirs, files in os.walk(S2path): 
                for filename in files: 
                        if "_B02_10m.jp2" in filename: 
                                fullPathBand02 = os.path.join(root, filename) 
                                listBands.append(fullPathBand02) 
                        if "_B03_10m.jp2" in filename: 
                                fullPathBand03 = os.path.join(root, filename) 
                                listBands.append(fullPathBand03) 
                        if "_B04_10m.jp2" in filename: 
                                fullPathBand04 = os.path.join(root, filename) 
                                listBands.append(fullPathBand04) 
        return listBands 
     
#Composite bands  
def bandComposite(bandsList, outFile): 
        mergeCommand = ["gdal_merge.py", "-o", outFile, "-co", 
                        "PHOTOMETRIC=RGB", "-ot", "UInt16", "-separate", 
                        bandsList[2], bandsList[1], bandsList[0]] 
        subprocess.check_call(mergeCommand) 
        return  
 
#Reproject the composites in EPSG:3857 
def reproject(inComposite, outWarp): 
        reprojectCommand = ["gdalwarp", "-t_srs", "EPSG:3857", 



167 

 

                            "-srcnodata", "0", inComposite, outWarp] 
        subprocess.check_call(reprojectCommand) 
        return 
 
#Return list of warped composites 
def returnComposites(folderComposites): 
        composites = os.listdir(folderComposites) 
        listPathsComposites = [] 
        for composite in composites: 
                compositeFullPath = os.path.join(folderComposites, composite) 
                listPathsComposites.append(compositeFullPath) 
        return listPathsComposites        
 
#Traslate tiff into 8 bit tiff 
def translate(inWarp, outTranslate): 
        translateCommand = ["gdal_translate", "-ot", "Byte", "-strict", 
                            "-r", "bilinear", "-scale", "1", "2200", "1", "255", 
                            "-colorinterp_1", "red", "-colorinterp_2", "green", 
                            "-colorinterp_3", "blue", "-co", "PHOTOMETRIC=RGB", inWarp, 
                            outTranslate] 
        subprocess.check_call(translateCommand) 
        return 
 
#Create virtual mosaic 
def buildVRT(outMosaic, listComposites): 
        VRTCommand = ["gdalbuildvrt", outMosaic] + listComposites 
        subprocess.check_call(VRTCommand) 
        return         
 
 
#Generate tiles 
def buildTiles(inMosaic, outTileFolder): 
        tileCommand = ["gdal2tiles.py", "-r", "bilinear", "--zoom=5-14", 
                       inMosaic, outTileFolder] 
        subprocess.check_call(tileCommand) 
        return 
 
#Start process        
if __name__=="__main__": 
         
        outputFolderComposites = os.path.join(rootFolder, "Composites") 
        if not os.path.exists(outputFolderComposites): 
                os.mkdir(outputFolderComposites) 
 
        outputFolderWarped = os.path.join(outputFolderComposites, "Warped") 
        if not os.path.exists(outputFolderWarped): 
                os.mkdir(outputFolderWarped) 
 
 
        outputFolderTranslated = os.path.join(outputFolderWarped, "Translated") 
        if not os.path.exists(outputFolderTranslated): 
                os.mkdir(outputFolderTranslated) 
 
        outputFolderTiles = os.path.join(outputFolderTranslated, "Tiles") 
        if not os.path.exists(outputFolderTiles): 
                os.mkdir(outputFolderTiles) 
                 
        for S2 in lista: 
                bandsPaths = searchBands(S2) 
                print bandsPaths 
                outFilePath = os.path.join(outputFolderComposites, 
                                           os.path.basename(S2)[:-4] + ".tif") 
                print outFilePath 
                if not os.path.exists(outFilePath): 
                        bandComposite(bandsPaths, outFilePath) 
 
        composites = os.listdir(outputFolderComposites) 
        for composite in composites: 
                if composite[-4:] == ".tif": 
                        compositeFullPath = os.path.join(outputFolderComposites, 
composite) 
                        warpPath = os.path.join(outputFolderWarped, 
                                                composite[:-4] + "_warped.tif") 
                        print warpPath 
                        if not os.path.exists(warpPath): 
                                reproject(compositeFullPath, warpPath) 
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        warpedComposites = os.listdir(outputFolderWarped) 
        for warpedComposite in warpedComposites: 
                if warpedComposite[-4:] == ".tif": 
                        warpedCompositeFullPath = os.path.join(outputFolderWarped, 
                                                               warpedComposite) 
                        translatePath = os.path.join(outputFolderTranslated, 
                                                warpedComposite[:-11] + "_translated.tif") 
                        print translatePath 
                        if not os.path.exists(translatePath): 
                                translate(warpedCompositeFullPath, translatePath) 
                        
        listTranslatedComposites = returnComposites(outputFolderTranslated)             
        outMosaicPath = os.path.join(outputFolderTranslated, "Mosaic.vrt") 
        print outMosaicPath 
        if not os.path.exists(outMosaicPath): 
                buildVRT(outMosaicPath, listTranslatedComposites) 
 
        buildTiles(outMosaicPath, outputFolderTiles) 
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processSentinel2_ONDA_Uganda_pre_2017.py 

#Import modules 
import os 
import subprocess 
 
lista =['/mnt/catalogue/OPTICAL/LEVEL-
1C/2017/12/14/S2A_MSIL1C_20171214T081331_N0206_R078_T36NTH_20171214T103532.zip/S2A_MSIL1C_
20171214T081331_N0206_R078_T36NTH_20171214T103532.SAFE', 
        '/mnt/catalogue/OPTICAL/LEVEL-
1C/2017/12/14/S2A_MSIL1C_20171214T081331_N0206_R078_T36NTJ_20171214T103532.zip/S2A_MSIL1C_
20171214T081331_N0206_R078_T36NTJ_20171214T103532.SAFE', 
        '/mnt/catalogue/OPTICAL/LEVEL-
1C/2017/12/14/S2A_MSIL1C_20171214T081331_N0206_R078_T36NTK_20171214T103532.zip/S2A_MSIL1C_
20171214T081331_N0206_R078_T36NTK_20171214T103532.SAFE', 
        '/mnt/catalogue/OPTICAL/LEVEL-
1C/2017/12/14/S2A_MSIL1C_20171214T081331_N0206_R078_T36NUH_20171214T103532.zip/S2A_MSIL1C_
20171214T081331_N0206_R078_T36NUH_20171214T103532.SAFE', 
        '/mnt/catalogue/OPTICAL/LEVEL-
1C/2017/12/21/S2A_MSIL1C_20171221T080331_N0206_R035_T36NUH_20171221T100353.zip/S2A_MSIL1C_
20171221T080331_N0206_R035_T36NUH_20171221T100353.SAFE', 
        '/mnt/catalogue/OPTICAL/LEVEL-
1C/2017/12/14/S2A_MSIL1C_20171214T081331_N0206_R078_T36NUJ_20171214T103532.zip/S2A_MSIL1C_
20171214T081331_N0206_R078_T36NUJ_20171214T103532.SAFE', 
        '/mnt/catalogue/OPTICAL/LEVEL-
1C/2017/12/06/S2B_MSIL1C_20171206T080309_N0206_R035_T36NUJ_20171206T102614.zip/S2B_MSIL1C_
20171206T080309_N0206_R035_T36NUJ_20171206T102614.SAFE', 
        '/mnt/catalogue/OPTICAL/LEVEL-
1C/2017/12/14/S2A_MSIL1C_20171214T081331_N0206_R078_T36NUK_20171214T103532.zip/S2A_MSIL1C_
20171214T081331_N0206_R078_T36NUK_20171214T103532.SAFE', 
        '/mnt/catalogue/OPTICAL/LEVEL-
1C/2017/12/06/S2B_MSIL1C_20171206T080309_N0206_R035_T36NUK_20171206T102614.zip/S2B_MSIL1C_
20171206T080309_N0206_R035_T36NUK_20171206T102614.SAFE', 
        '/mnt/catalogue/OPTICAL/LEVEL-
1C/2017/12/06/S2B_MSIL1C_20171206T080309_N0206_R035_T36NVH_20171206T102614.zip/S2B_MSIL1C_
20171206T080309_N0206_R035_T36NVH_20171206T102614.SAFE', 
        '/mnt/catalogue/OPTICAL/LEVEL-
1C/2017/12/16/S2B_MSIL1C_20171216T080319_N0206_R035_T36NVJ_20171216T102645.zip/S2B_MSIL1C_
20171216T080319_N0206_R035_T36NVJ_20171216T102645.SAFE', 
        '/mnt/catalogue/OPTICAL/LEVEL-
1C/2017/12/19/S2B_MSIL1C_20171219T081329_N0206_R078_T36NVK_20171219T105309.zip/S2B_MSIL1C_
20171219T081329_N0206_R078_T36NVK_20171219T105309.SAFE', 
        '/mnt/catalogue/OPTICAL/LEVEL-
1C/2017/12/21/S2A_MSIL1C_20171221T080331_N0206_R035_T36NVK_20171221T100353.zip/S2A_MSIL1C_
20171221T080331_N0206_R035_T36NVK_20171221T100353.SAFE', 
        '/mnt/catalogue/OPTICAL/LEVEL-
1C/2017/12/06/S2B_MSIL1C_20171206T080309_N0206_R035_T36NWH_20171206T102614.zip/S2B_MSIL1C_
20171206T080309_N0206_R035_T36NWH_20171206T102614.SAFE', 
        '/mnt/catalogue/OPTICAL/LEVEL-
1C/2017/12/06/S2B_MSIL1C_20171206T080309_N0206_R035_T36NWJ_20171206T102614.zip/S2B_MSIL1C_
20171206T080309_N0206_R035_T36NWJ_20171206T102614.SAFE', 
        '/mnt/catalogue/OPTICAL/LEVEL-
1C/2017/12/21/S2A_MSIL1C_20171221T080331_N0206_R035_T36NWK_20171221T100353.zip/S2A_MSIL1C_
20171221T080331_N0206_R035_T36NWK_20171221T100353.SAFE', 
        '/mnt/catalogue/OPTICAL/LEVEL-
1C/2017/12/06/S2B_MSIL1C_20171206T080309_N0206_R035_T36NXH_20171206T102614.zip/S2B_MSIL1C_
20171206T080309_N0206_R035_T36NXH_20171206T102614.SAFE', 
        '/mnt/catalogue/OPTICAL/LEVEL-
1C/2017/12/06/S2B_MSIL1C_20171206T080309_N0206_R035_T36NXJ_20171206T102614.zip/S2B_MSIL1C_
20171206T080309_N0206_R035_T36NXJ_20171206T102614.SAFE', 
        '/mnt/catalogue/OPTICAL/LEVEL-
1C/2017/12/13/S2B_MSIL1C_20171213T075319_N0206_R135_T36NXJ_20171213T101202.zip/S2B_MSIL1C_
20171213T075319_N0206_R135_T36NXJ_20171213T101202.SAFE', 
        '/mnt/catalogue/OPTICAL/LEVEL-
1C/2017/12/16/S2B_MSIL1C_20171216T080319_N0206_R035_T36NXK_20171216T102645.zip/S2B_MSIL1C_
20171216T080319_N0206_R035_T36NXK_20171216T102645.SAFE'] 
 
rootFolder = r'/home/ubuntu/agata/missing_millions/uganda_2017' 
inputL1C = r'/home/ubuntu/agata/missing_millions/uganda_2017_L1C' 
outputL2A = r'/home/ubuntu/agata/missing_millions/uganda_2017_L2A' 
 
#Copy Sentinel2 to local folder 
def copy(L1Cpath, outFolder): 
        copyCommand = ["sudo", "cp", "-r", L1Cpath, outFolder] 
        subprocess.check_call(copyCommand) 
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        return 
 
#Apply Sen2Cor to L1C data 
def atmospheric(L1Cpath, L2Afolder): 
        for root, dirs, files in os.walk(L1Cpath): 
                for filename in files: 
                        if "QI_DATA" in filename: 
                                fullQIPath = os.path.join(root, filename) 
                                if os.path.isfile(fullQIPath): 
                                        deleteQICommand = ["sudo", "rm", fullQIPath] 
                                        createQIFolderCommand = ["sudo", "mkdir", root + 
"/QI_DATA"] 
                                        subprocess.check_call(deleteQICommand) 
                                        subprocess.check_call(createQIFolderCommand) 
        if os.path.isfile(L1Cpath + "/AUX_DATA"): 
                deleteCommand = ["sudo", "rm", L1Cpath + "/AUX_DATA"] 
                createFolderCommand = ["sudo", "mkdir", L1Cpath + "/AUX_DATA"] 
                subprocess.check_call(deleteCommand)       
                subprocess.check_call(createFolderCommand) 
        atmosphericCommand = ["sudo", "/home/ubuntu/sen2cor/Sen2Cor-02.08.00-
Linux64/bin/L2A_Process", 
                              L1Cpath, "--output_dir", L2Afolder, "--resolution", "10"] 
        subprocess.check_call(atmosphericCommand) 
        return 
 
#Search selected bands in MSIL2A products 
def searchBands(S2path): 
        listBands = [1, 2, 3] 
        for root, dirs, files in os.walk(S2path): 
                for filename in files: 
                        if "_B02_10m.jp2" in filename: 
                                fullPathBand02 = os.path.join(root, filename) 
                                listBands[0] = fullPathBand02 
                        if "_B03_10m.jp2" in filename: 
                                fullPathBand03 = os.path.join(root, filename) 
                                listBands[1] = fullPathBand03 
                        if "_B04_10m.jp2" in filename: 
                                fullPathBand04 = os.path.join(root, filename) 
                                listBands[2] = fullPathBand04 
        return listBands 
     
#Composite bands  
def bandComposite(bandsList, outFile): 
        mergeCommand = ["gdal_merge.py", "-o", outFile, "-co", 
                        "PHOTOMETRIC=RGB", "-ot", "UInt16", "-separate", 
                        bandsList[2], bandsList[1], bandsList[0]] 
        subprocess.check_call(mergeCommand) 
        return  
 
#Reproject the composites in EPSG:3857 
def reproject(inComposite, outWarp): 
        reprojectCommand = ["gdalwarp", "-t_srs", "EPSG:3857", 
                            "-srcnodata", "0", inComposite, outWarp] 
        subprocess.check_call(reprojectCommand) 
        return 
 
#Return list of warped composites 
def returnComposites(folderComposites): 
        composites = os.listdir(folderComposites) 
        listPathsComposites = [] 
        for composite in composites: 
                compositeFullPath = os.path.join(folderComposites, composite) 
                listPathsComposites.append(compositeFullPath) 
        return listPathsComposites        
 
#Traslate tiff into 8 bit tiff 
def translate(inWarp, outTranslate): 
        translateCommand = ["gdal_translate", "-ot", "Byte", "-strict", 
                            "-r", "bilinear", "-scale", "1", "2200", "1", "255", 
                            "-colorinterp_1", "red", "-colorinterp_2", "green", 
                            "-colorinterp_3", "blue", "-co", "PHOTOMETRIC=RGB", inWarp, 
                            outTranslate] 
        subprocess.check_call(translateCommand) 
        return 
 
#Create virtual mosaic 
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def buildVRT(outMosaic, listComposites): 
        VRTCommand = ["gdalbuildvrt", outMosaic] + listComposites 
        subprocess.check_call(VRTCommand) 
        return         
 
 
#Generate tiles 
def buildTiles(inMosaic, outTileFolder): 
        tileCommand = ["gdal2tiles.py", "-r", "bilinear", "--zoom=5-14", 
                       inMosaic, outTileFolder] 
        subprocess.check_call(tileCommand) 
        return 
 
#Start process        
if __name__=="__main__": 
         
        outputFolderComposites = os.path.join(rootFolder, "Composites") 
        if not os.path.exists(outputFolderComposites): 
                os.mkdir(outputFolderComposites) 
 
        outputFolderWarped = os.path.join(outputFolderComposites, "Warped") 
        if not os.path.exists(outputFolderWarped): 
                os.mkdir(outputFolderWarped) 
 
 
        outputFolderTranslated = os.path.join(outputFolderWarped, "Translated") 
        if not os.path.exists(outputFolderTranslated): 
                os.mkdir(outputFolderTranslated) 
 
        outputFolderTiles = os.path.join(outputFolderTranslated, "Tiles") 
        if not os.path.exists(outputFolderTiles): 
                os.mkdir(outputFolderTiles) 
 
        for originalL1C in lista: 
                L1Cbasename = os.path.basename(originalL1C) 
                L1CoutPath = os.path.join(inputL1C, L1Cbasename) 
                if not os.path.exists(L1CoutPath): 
                        copy(originalL1C, inputL1C) 
         
        L1C_list = os.listdir(inputL1C) 
        for L1C in L1C_list: 
                L1Cpath = os.path.join(inputL1C, L1C) 
                atmospheric(L1Cpath, outputL2A) 
         
        L2A_list = os.listdir(outputL2A)         
        for L2A in L2A_list: 
                S2 = os.path.join(outputL2A, L2A) 
                bandsPaths = searchBands(S2) 
                print bandsPaths 
                outFilePath = os.path.join(outputFolderComposites, 
                                           os.path.basename(S2)[:-4] + ".tif") 
                print outFilePath 
                if not os.path.exists(outFilePath): 
                        bandComposite(bandsPaths, outFilePath) 
 
        composites = os.listdir(outputFolderComposites) 
        for composite in composites: 
                if composite[-4:] == ".tif": 
                        compositeFullPath = os.path.join(outputFolderComposites, 
composite) 
                        warpPath = os.path.join(outputFolderWarped, 
                                                composite[:-4] + "_warped.tif") 
                        print warpPath 
                        if not os.path.exists(warpPath): 
                                reproject(compositeFullPath, warpPath) 
       
        warpedComposites = os.listdir(outputFolderWarped) 
        for warpedComposite in warpedComposites: 
                if warpedComposite[-4:] == ".tif": 
                        warpedCompositeFullPath = os.path.join(outputFolderWarped, 
                                                               warpedComposite) 
                        translatePath = os.path.join(outputFolderTranslated, 
                                                warpedComposite[:-11] + "_translated.tif") 
                        print translatePath 
                        if not os.path.exists(translatePath): 
                                translate(warpedCompositeFullPath, translatePath) 
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        listTranslatedComposites = returnComposites(outputFolderTranslated)             
        outMosaicPath = os.path.join(outputFolderTranslated, "Mosaic.vrt") 
        print outMosaicPath 
        if not os.path.exists(outMosaicPath): 
                buildVRT(outMosaicPath, listTranslatedComposites) 
 
        buildTiles(outMosaicPath, outputFolderTiles) 


