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Beyond Groups: Uncovering Dynamic
Communities on the WhatsApp Network of
Information Dissemination
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Abstract. In this paper, we investigate the network of information dis-
semination that emerges from group communication in the increasingly
popular WhatsApp platform. We aim to reveal properties of the underly-
ing structure that facilitates content spread in the system, despite limita-
tions the application imposes in group membership. Our analyses reveal
a number of strongly connected user communities that cross the bound-
aries of groups, suggesting that such boundaries offer little constraint
to information spread. We also show that, despite frequent changes in
community membership, there are consistent co-sharing activities among
some users which, even while holding broad content diversity, lead to high
coverage of the network in terms of groups and individual users.
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1 Introduction

Social media applications are known as tools to connect people, enhance human
interactions, ultimately contributing to information diffusion on the Internet, a
widely explored subject of study [22,25,33]. WhatsApp is one such application
with great popularity in many countries such as India, Brazil and Germany
[41]. Indeed, the application, which has recently surpassed the mark of 2 billion
monthly users worldwide [40], has been shown to play an important role as a
vehicle for information dissemination and social mobilization [34].

WhatsApp allows for one-to-one and group conversations, both end-to-end
encrypted. WhatsApp groups are structured as private chat rooms, generally
under a certain topic and limited to only 256 users who can participate in mul-
tiple discussions at the same time. However, a group manager may choose to
share an invitation link to join the group on websites and social networks, which
effectively makes the group publicly accessible, as anyone with access to the link
can join in and become a member. We note that groups are dynamic spaces of
conversations, with users joining and leaving over time, at their will. Also, there
is no limit in the number of groups a user can participate in at any time.

A number of recent studies have analyzed group conversations in What-
sApp [8, 13,28, 33, 34], often discussing content and temporal properties of in-
formation dissemination within groups. A few have hinted at the potential for
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information virality by taking a bird’s eye view of the network that emerges
from information exchange in different groups [8,34]. However, an investigation
of the properties of this network, which may reveal an underlying structure that
facilitates information dissemination at large, is still lacking.

In this paper, we delve deeper into the network of information dissemination
in WhatsApp. Specifically, we use a dataset consisting of messages posted in over
150 publicly accessible WhatsApp groups in Brazil during a 6 week period, en-
compasing the 2018 general elections [34]. We build a sequence of media-centric
networks so as to capture the relationships established among users who shared
the same piece of content in one or more groups during pre-defined time windows.
We then analyze properties of these networks and how they evolve over time.
In particular, we are interested in investigating to which extent users in differ-
ent groups, intentionally or not, build “communities” of content spread, which
consistently help speeding up information dissemination within the system.

Specifically, we tackle the following two research questions (RQs):

— RQ1: To which extent cross-group user communities emerge from analyzing
the WhatsApp media-centric networks?

— RQ2: What are key properties of these communities and how they evolve
over time?

One challenge when analyzing the media-centric networks is that, by defini-
tion, they model interactions established among multiple users, that is, many-
to-many interactions, as opposed to traditionally studied binary relationships.
As recently argued [4,10], such many-to-many interactions may lead to the for-
mation of networks with multiple spurious and random edges. These spurious
edges may ultimately hide the real underlying structure (often called the network
backbone) representing the phenomenon under study, in our case, information
spread across the monitored groups. Thus, as a first step to our study, we applied
a technique [37] to extract the backbone of each media-centric network. We then
used the Louvain algorithm [6] to extract communities in the backbone of each
network, and analyzed their properties and how they evolve over time.

Our study revealed a number of strongly connected user communities that
extrapolate the boundaries of groups, suggesting that such boundaries offer little
constraint (if any) to information spread. Indeed, it is often the case that the
same community covers a large number of different groups, and users with higher
centrality in these communities are the ones with most impact on the commu-
nity’s group coverage and on the content uniqueness spread through the network.
We also observed that around 30% of the users persist in the network backbone
over time, whereas those with highest activity tend to remain even in the same
community. These results suggest that, though WhatsApp groups are limited
to small sizes, the platform effectively has an underlying network that greatly
facilitates information spread, revealing consistent co-sharing activities among
the users which, even while holding broad content diversity, lead to high user
and group coverage. While corroborating arguments in [34], our study offers a
much deeper analysis, revealing properties that help understand the information
dissemination phenomenon in a very popular communication platform.
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2 Related Work

There is a rich literature on online information spread and its related phenom-
ena involving the modeling of online user interactions [2,16], the extraction of
user communities [6,17], the identification of important users [15] and the anal-
ysis of the information diffusion process [8,25,34]. In the context of community
extraction, there is a plethora of techniques [12,32] exploiting from statistical
inference [1,19] to modularity optimization [44] and dynamic clustering [12,35].
Others have offered analyses of communities’ structural properties [17,24] and
temporal behavior [2]. In contrast, the authors of [16] described a system that al-
lows the detection of influential users in dynamic social networks. Other authors
have examined multi-model networks by proposing a framework for detecting
community evolution over time [36,39].

WhatsApp has emerged as a global tool for communication [40] and has
driven many recent researches. In [8], the authors analyzed information spread
within groups from the perspective of user attention on different topics, while
in 7] the authors focused on partisan activities, aiming to distinguish left-wing
and right-wing groups. The work in [33] describes a system for collecting shared
messages in publicly accessible WhatsApp groups. The collected content was
later used in analyses of content properties and temporal dynamics of the dis-
semination of images [34], textual messages [33] and audio content [28].

Despite WhatsApp group communication being restricted to small groups (up
to 256 users), there has been evidence of its use for information dissemination
at large [18,27]. The only prior work that hinted at possible reasons for that
was [34], which presented the network structure of the monitored groups, briefly
analyzing some of its basic structural properties. Also, the authors of [13] showed
that recent limitations on messaging forwarding [42] are not effective to block
viral content spread across the network (despite contributing to delay it).

Our goal here is to delve deeper into information spread in WhatsApp groups,
unveiling the underlying media sharing network that emerges from communica-
tion in those groups and investigating the extent to which the formation of user
communities that cross group boundaries occur, favoring information spread. We
thus complement prior analyses of WhatsApp, focusing on the network structure
and how its properties relate to information dissemination in the platform.

3 Methodology

As stated, this work aims to investigate the formation of user communities that
may favor information dissemination in WhatsApp. To that end, we adopted
the three-step methodology depicted in Figure 1. First, we collected a dataset
containing messages shared in a number of WhatsApp groups during a six-week
period. The dataset was then broken into six non-overlapping snapshots, one for
each week. The data was then processed to filter less relevant data and to identify
(near-)duplicated content (Step 1). Next, we built a media-centric network for
each snapshot. For each network, we proceeded to retrieve its backbone which,
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Fig. 1: Overview of our Methodology

as argued later, is a necessary step to remove random and spurious edges (Step
2). Finally, we ran a community detection algorithm [6] to extract communities
from each backbone and characterized their structural properties and temporal
dynamics (Step 3). These steps are further discussed in the following sections.

3.1 Data Collection and Post-Processing

We used a dataset gathered by the WhatsApp Monitor [33], consisting of mes-
sages shared in political-oriented publicly accessible WhatsApp groups in Brazil.
As described in [33], these groups were detected by searching for invitation links
on public websites and online social networks. Our dataset covers six weeks
around the 2018 general elections in Brazil (15 and 2°¢ rounds in October 7t}
and 28" respectively), ranging from September 17" until October 28" in 2018.
The dataset was broken into six non-overlapping one-week snapshots, and we re-
stricted our analyses to 155 groups for which data was available in all snapshots.

Table 1 provides an overview of our dataset, showing the numbers of users,
groups and messages (text, images, audios and videos) shared per week in the
selected groups. It also shows the average number of users active per group,
average number of messages shared per group, and average number of messages
shared by a user in a group, for each week. Weeks including election dates (3
and 6) are highlighted in bold. As seen in the table, the numbers of users and
messages vary over the snapshots. However, there tends to be an increase in
activity around the dates of the two rounds of the election.

The collected data was then processed to extract and store the following
information associated with each message: timestamp, anonymized user iden-
tifiers®, group identifier and the media(s) (text, image, audio or video) shared
through the message. Next, we filtered out text messages shorter than 180 char-
acters, as suggested in [33], so as to retain only those that most probably carry
relevant information. Then, as a final processing, we ran a number of heuristics
to identify (near)-duplicate content, a necessary step to build the media-centric
networks (next section). The specific heuristic depends on the type of media. For
textual content, we used the Jaccard Similarity Coefficient [20] to perform paired
comparisons, using a threshold of 70% of similarity to detect near duplicates (as
performed in [33]). For images, we followed [34]: we generated the Perceptual
Hash (pHash) [43] of each file and grouped together those with same hash. The

3 Indeed, our data contains only cellular phone numbers. Thus, we are not able to
identify the same user with multiple phone numbers.
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Table 1: Overview of our Dataset (155 WhatsApp groups, 09/17 - 10/28/2018
2 3

Weeks 1 4 5 6
# Unique users 4994 | 4,774 | 5,115 | 4,815 | 4,439 | 4,914
Average # users/group 34.68 | 33.21 | 35.60 | 33.27 | 31.14 | 34.09
Average # messages/group 575 598 590 536 490 599
Avg # msgs/user (in a group) | 16.59 | 18.01 | 16.58 | 16.13 | 15.75 | 17.59
# Text messages 89,136 | 92,650 | 91,438 | 83,118 | 75,982 | 92,840
# Image messages 13,018 | 13,208 | 13,274 | 13,471 | 11,922 | 17,113
# Audio messages 1,614 | 1,644 | 2,000 | 1,842 | 1,621 | 2,059
# Video messages 10,168 | 9,515 | 9,142 | 9,508 | 9,193 | 12,344

pHash algorithm works by detecting color variations on the image resulting on a
hash value. By comparing hash values we are able to detect resized and modified
images that are indeed the same content. Finally, for audios and videos, we used
the name associated to each media file by WhatsApp during the data transfer.
We note that our near-duplicate identification process is limited by the ap-
proximation techniques used. As future work, we intend to explore more sophis-
ticated and possibly accurate techniques, such as word embeddings [29] (for text
messages), product quantization [21] (for images) and techniques based on audio
and video content analysis [23,38], which may enhance the generated network.

3.2 Network Model and Backbone Extraction

The network model used in this work creates an abstraction for user interactions
in WhatsApp groups as a vehicle for information dissemination. Given that goal,
the model focuses on the content shared, by connecting users who shared the
“same message” at least once, regardless of whether they shared it on the same
group or on different groups. By “same message” we mean messages that were
identified as carrying near duplicate content, as described in Section 3.1. We
refer to such networks as media-centric networks.

Specifically, given our dataset, we created a set of graphs G = {G',G?,... GAT},
in which each G* models user interactions during week w (i.e., AT = 6 in our
case). Each graph G¥(V, E) is structured as follows. Each vertex in V refers to
a user who posted a message during week w in one of the groups. An undirected
edge e = (v;, vj) exists in E if users corresponding to vertices v; and v; shared
at least one message in common during week w. The weight of e corresponds to
the number of messages both users shared in common during w.

As defined, our network model captures many-to-many interactions, i.e., in-
teractions that occur among multiple (possibly more than two) users at once - in
our case, co-sharing the same media content. This kind of interaction occurs in
a range of other environments, such as the networks that emerge from relation-
ships based on co-authorship, emails sent to a group of people and congressmen
voting sessions [5,11,30], and raises different modeling challenges if compared to
traditionally studied one-to-one interactions (e.g., friendship links) [4, 14].
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In particular, modeling sequences of many-to-many interactions into a net-
work may lead to the emergence of a (potentially large) number of spurious
edges, reflecting random or sporadic user activities. Such spurious edges may
pollute the network, obfuscating the real underlying structure that better rep-
resents the phenomenon under study. We illustrate this problem by taking a
fictitious example in our context. Suppose two different scenarios: (1) one par-
ticular viral content is massively disseminated through the WhatsApp network
as many users shared it in different groups and (2) a smaller set of users re-
peatedly spread the same content, reaching different audience which ultimately
leads to a large spread. By simply looking at the topology of the network that
emerges from these two scenarios, one may consider both groups of users in (1)
and (2) as communities. However, we are here interested in identifying strong
and consistent co-sharing behavior, as in (2), as opposed to sporadic connec-
tions, as possibly in (1). As more many-to-many interactions are added to the
network, more edges of different natures are added, resulting in a richer but quite
noisier topology. We want to remove this noise to be able to focus on what is
fundamental to the large scale dissemination of content in the network.

In other words, we want to identify pairs of users (i.e., edges) who dispropor-
tionately shared messages in common, filtering out edges resulted from random-
ness and sporadic co-sharing, thus revealing the underlying network backbone [9].
By definition, the backbone contains only the salient edges more fundamentally
related to the phenomenon under study (information dissemination, in our case).

There is a rich and vast literature on methods to extract the backbone from
networks [9, 30, 37]. Here, we aimed to identify when an edge connecting two
vertices reflects a strong connection between them when compared to the other
spurious connections they both may have with other peers. We experimented
with two state-of-the-art backbone extraction methods which are driven by that
goal, namely Noise Corrected Method [9] and Disparity Filter Method [37], se-
lecting the latter. Our choice follows the approach in [9]: we selected the method
that, according to our experiments, delivers the best trade-off between the num-
ber of edges with lower weight removed and the structural connectivity of the
resulted backbone. The latter was measured in terms of clustering coefficient and
modularity metrics (discussed in the next section), preserving those edges with
higher weights. The Disparity Filter Method was able to remove a larger num-
ber of spurious/sporadic edges while still maintaining modularity and clustering
coefficient measures comparable to the complete network.

The Disparity Filter algorithm works as follows. Let’s define the strength of
vertex v; as the sum of all edge weights attached to v;. The algorithm considers
an edge attached to v; as salient if it represents a “large fraction” of v;’s strength.
Specifically, each edge attached to v; is tested against the null hypothesis that
the weights of all edges of v; are uniformly distributed. Salient edges are those
whose weights deviate significantly from this hypothesis. Notice that an edge is
tested twice, once for each vertex it is incident to, and it is considered salient if
it is statistically significant for both vertices when compared to a p-value. Edges
that are not considered salient are removed from the graph. In our experiments
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we adopted a p-value of 0.1. This value was selected in preliminary experiments,
by running the algorithm with various options (ranging from 0.01 to 0.32) and
choosing the one that led to the best tradeoff between statistical significance,
number of remaining vertices in the backbone and backbone connectivity. This
choice of p-value is consistent with prior studies on backbone extraction, which
report that very small p-values lead to a large number of nodes removed, ulti-
mately breaking the original network and turning the analysis unfeasible [37].
Thus the need for a choice that meets the aforementioned tradeoff.

3.3 Community Identification and Characterization

As a final step, we identify groupings of users who impact information spread in
the network by, intentionally or not, sharing common content in a disproportion-
ately high frequency. Studying these groupings, here referred to as communities
(to avoid confusion with the original WhatsApp groups), reveals how they are
structured, how such structure relates to the Whatsapp groups and how they
evolve over time. Ultimately, we aim at bringing novel insights into how infor-
mation virality may occur [34], despite the restrictions in group membership.
We identify user communities in the backbone extracted from each graph
G" (w = 1...6) using the Louvain algorithm [6]. It is a widely used community
detection algorithm [32] that relies on a heuristic approach to iteratively build
hierarchical partitions of the backbone. Specifically, it is based on a greedy opti-
mization of the modularity, which is a metric of quality of these partitions. The

modularity @ is defined [6] as Q = 5+ >° |:Aij - m} 8(ci,cj), where A;; is the
ij

2m

weight of edge (v;,v;); ki (k;) is the sum of the weights of the edges attached
to v; (v;); m is the sum of all of the edge weights in the graph; ¢; (c;) is the
community assigned to v; (v;); and d(c;, ¢;) = 1 if ¢;=¢; or 0 otherwise.

Note that the communities are built from pairs of users who share similar
content more often than expected by chance. Such groupings could be driven
by intentional behavior (i.e., by orchestration), by coincidence (as side effect of
the general information diffusion process) or by a mix of both. We here do not
distinguish between these effects, although the stronger the edge weights the
greater the chance that some sort of coordination is in place. Characterizing the
effects behind community formation is an interesting line of future research.

Our community identification process revealed a number of very small com-
munities (e.g., three-four nodes), often organized as small trees. We chose to
disregard small groupings (fewer than 5 vertices), focusing our analyses instead
on the larger and more impactful communities. These communities were analyzed
according to two dimensions: structural properties and temporal dynamics.

The analysis of structural properties aimed to quantify the quality of each
grouping and what it represents to the diffusion of information during the period
under analysis. For the former, we make use of the clustering coefficient metric
computed for each community [31], which measures the degree to which vertices
in the community tend to cluster together. For the latter, we compute the group
coverage and the content coverage of each community. Group coverage is the
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fraction of all monitored groups that were reached by posts from community
members. Content coverage is the fraction of all contents shared during the
period that were shared by the community members. Larger values of either
metric reflect greater importance of the community to the information spread.

The analysis of temporal dynamics aimed to characterize the evolution of
communities in the backbone and quantify changes in community membership
over time. To that end, we used two metrics (as in [11]), always computed for
snapshot w with respect to snapshot w-1. The first metric, called persistence,
captures the continuous presence of the same users in the network backbone over
time. It is computed as the fraction of users in the backbone at snapshot w-1
that remain in the backbone in snapshot w. This metric quantifies the presence
of users who remain important for content dissemination over time.

Note that persistence does not distinguish between users who, despite re-
maining in the backbone over time, often change community from those who
remain in the same community. The latter might reflect a potential coordinated
effort to boost information spread. To capture the permanence of members in the
same community, we adopted the Normalized Mutual Information (NMI) [26].

Let X and Y be the sets of communities identified in snapshots w-1 and w,
respectively. Let also P(z) be the probability of a randomly selected user being
assigned to community x in X, and P(z,y) be the probability of a randomly
selected user being assigned to communities z in X and y in Y. Finally, let H(x)
be the Shannon entropy for X defined as H(X) = — " P(z)log P(z). The NMI

. S 3, Plz,y) log &)
X and Y is defined as NMI(X,Y) = v WPW. Tt can be thought
VHX)H(Y)
as the information “overlap” between X and Y, or how much we learn about
Y from X (and vice-versa). Its value ranges from 0 (all members changed their
communities) to 1 (all members remained in the same communities).

In addition to characterizing communities, we also analyzed the importance
of users to the information dissemination process. We did so by computing the
impact on the (group and content) coverage metrics as vertices are removed
from the backbone according to a ranking of importance. We experimented with
different user/vertex rankings built based on metrics of activity level (number of
messages shared and number of groups the user participates in) and metrics of
centrality in the backbone. Our goal by comparing those rankings is to assess the
extent to which the backbone and its communities are able to reveal important
users to information dissemination in the system (as captured by the coverage
metrics), compared to the activity metrics, priorly analyzed in [8,28, 34].

We built four vertex rankings based on degree centrality and closeness (which
relates to the average distance of the vertex to all other vertices) [3]. In each case,
we use the standard metric, computed over the complete backbone, along with a
tuned variation, referred to as community centrality. The latter, defined in [15],
considers the embeddedness of the vertex in its community and the relations
between this community and the others, and quantifies the vertex’s ability to
disseminate information on its own community and on the overall network.

Specifically, the community centrality of a vertex v; assigned to community
¢ is computed by combining two components, a local one and a global one [15].
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Table 2: Structural Properties of the Extracted Backbones

‘Weeks
Metrics 1 2 3 4 5 6
# Users 114 | 162 | 132 | 216 | 143 | 338
# Edges 346 | 767 | 500 | 1,676 | 617 | 3,499
# Connected components 1 1 1 1 2 2
Average clustering coefficient | 0.49 | 0.61 | 0.58 | 0.63 | 0.57 | 0.63
Average degree 6.07 | 9.47 | 7.58 | 15.52 | 8.63 | 20.70
Average edge weight 6.95 | 9.10 | 8.05 | 12.66 | 7.36 | 8.91
# Communities 5 6 6 5 7 8
Modularity 0.70 | 0.61 | 0.55 | 0.54 | 0.59 | 0.57

The local component aX quantifies the (degree or closeness) centrality of v; in
its own community c¢; whereas the global component aiG quantifies the centrality
of v; in the backbone by considering only edges connecting vertices of different
communities (i.e., inter-community edges). These two components are combined
by a weighting factor . that is the fraction of all inter-community edges that are
incident to community ¢. In other words, the community (degree or closeness)
centrality of vertex v;, a;, is defined as a; = (1 — pe) * aF + e * af.

4 Characterization Results

We now discuss the results of the characterization of the communities that
emerged from the networks generated according to methodology described in
section 3. Table 2 presents a summary of the structural properties of the back-
bones extracted from the networks in set G. Once again, we show the snapshots
containing 1* and 2"¢ rounds of the general elections (weeks 3 and 6) in bold.

We first note that the size of the backbone, in number of users and edges,
varies greatly over the weeks. This variation is consistent, though in higher de-
gree, with the variations in the amounts of participation and sharing activity
in the monitored groups over the period, presented in Table 1. We also note
that the backbones are formed by at most 2 connected components (often only
one), with a reasonably strong average clustering coefficient (ranging from 0.49
to 0.63) and large average degree (6.07 to 20.7). These measures suggest well
connected topologies and also hint at the formation of communities.

The table also shows the average edge weight in each backbone. These num-
bers should be analyzed in light of the average number of messages per user
in a group, shown in Table 1. Note that the backbone edges represent a large
fraction of all messages shared by the users, on average. Moreover, by combining
average degree and average edge weight, we observe that each user in the back-
bone simultaneously shared multiple contents with many other users. All these
results show the multiplicity of media co-sharing among users and highlight the
need for investigating higher level user structures, notably communities. Indeed,
as shown in the last two rows of Table 2, we identified from 5 to 8 communi-
ties in the backbones, with an overall quality in terms of structural connectivity
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Fig.2: Community Properties: (a) Size; (b) Average Clustering Coefficient; (c)
Group Coverage and (d) Similarity of Group Coverage.

rather high (modularity between 0.54 and 0.70). Next, we delve deeper into these
communities.

Figure 2 provides an overview of different community properties. Figure 2a
shows the sizes (in number of nodes) of the communities identified in each snap-
shot (week), with each point representing a different community. We observe a
great diversity of community sizes, normally constrained to fewer than 40 users,
but it is also noticeable communities with more than 50 members. As an example,
we identified a community with 26 members who shared political-driven content
about presidential candidates and online campaigns on over 20 distinct What-
sApp groups in the week preceding the 15¢ round of election. This result suggests
that the communities are dynamically built over time with variable number of
users. We also correlate community size with average clustering coefficient, com-
puted for community nodes, which is a measure of internal connectivity. Figure
2b shows these results for communities in all snapshots. We observe that most
communities are strongly connected (even the larger ones) as the vast major-
ity of them have average clustering coefficient above 0.50. Thus, in essence, the
identified user communities are well structured, and, despite some size diversity
over the snapshots, offer clear indications of consistent user co-sharing activity.

We now analyze the reach of these communities. Figure 2c shows a scat-
ter plot with community size versus group coverage, for all communities in all
snapshots. Recall that the latter is the number of groups the members of the
communities participate in. There is a strong one-to-one relationship, in which
the community size is strongly correlated with the number of groups it reaches.
For larger communities, the sizes often are greater than the number of groups
covered. These results suggest a broad reach in the ability to disseminate infor-
mation, since communities often have members participating in multiple groups
during the same time period. Moreover, the redundancy in some larger commu-
nities suggests some degree of robustness as well.

Taking a step further, we analyze the intersection of group coverage for dif-
ferent pairs of communities. Given two communities A and B, the intersection
of B with A is the fraction of all groups covered by A that are also covered by
B. Figure 2d shows these fractions for one snapshot — the third week (w = 3),
which contains the 1% election round. Results for the other snapshots are simi-
lar, being thus omitted. In the figure, each cell in the upper triangle shows the
intersection of community B (column) with community A (row), and each cell
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in the lower triangle shows the intersection of A with B. In general, around half
of the communities are built over distinct groups, due to the small similarity val-
ues (around 20%). On the other hand, some communities are built over similar
groups, reaching up to 70% of coverage similarity. Such communities contribute
to robust, distinct and parallel content dissemination on the WhatsApp network.

We also analyze communities’ dissemination potential and their ability to
endure perturbations, by assessing their robustness to member removals. We ex-
periment with removing members based on attributes related to activity level,
standard network centrality and node community centrality, and evaluate com-
munity robustness in terms of group coverage and content coverage. Results for
one snapshot — the third week (w = 3) — are shown in Figure 3, where the z-axis
represents the percentage of the top users, according to each attribute, that are
removed (n% cut). Results for the other snapshots are quite similar.

Let’s start by looking into group coverage. Figures 3a and 3b show that, by
comparing the results for the attributes related to activity (number of messages
shared and number of groups the user participates in) with those for standard
(std.) network centrality metrics, we see that the latter are more relevant to de-
tect the most important users for group coverage. This is true for both centrality
metrics considered, i.e., centrality degree, which captures the node’s ability to re-
trieve information from the network, and closeness, which relates to the node’s
efficiency to spread information in the network. Yet, the results for the node
community centrality metrics (red lines in both figures) reveal that the commu-
nities are very important to the information dissemination through the network.
This is due to the successful identification of the most important users and the
positions they occupy both within its community and in relation to the whole
network. Analogously, the same trend is observed for content coverage, as shown
in Figures 3c and 3d. Thus, using the community structure for identifying the
most important users to information dissemination is relatively more effective
than simply checking the activity level or the standard centrality metrics.

Finally, we also analyze the temporal evolution of the backbone and its com-
munities. First, we quantify the persistence of users in the backbone over consec-
utive weeks. As shown in Figure 4, a considerable amount of users (from 20% to
42%) remain in the backbone, repeatedly engaging on the weekly sharing activi-
ties. Yet, there is a large fraction of newcomers week after week. It could be due
to new users who joined the groups (see Table 1) or simply reflect the replace-



12 G. Nobre et al.

—e— Top 10 Active @ 109 Users
—e— All Users

8 Users

1 = 3
Week Week Week

Fig. 4: Persistence Fig.5: NMI Fig. 6: Community Evolution

Communities

User Persistence %

ment of non-persistent users by others as result of a natural diversity of user
behavior over time. Regardless, the results indicate a highly dynamic backbone.

Focusing on the persistent users, we analyze how community members change
over time based on NMI. As shown in Figure 5, we compute NMI considering all
persistent users (blue line) and only the top 10 users who shared more content in
the week (green line). Considering all persistent users, there is a high mobility of
users across communities (low NMT). This is illustrated in Figure 6, which shows,
from one week to the next, events associated with community membership such
as splits, merges, births and deaths. In this figure, the wider the line, the greater
the number of members migrating between communities, and the larger the
diameter of the circle, the greater the number of members of that community.
Once again, we see that persistent users in general often change community,
engaging in different but strong co-sharing activities over time. However, if we
zoom in the top 10 most active users (green line in Figure 5), we observe a
stronger tendency to continue in the same community (higher NMI), suggesting
that these most active users regularly share common content over time.

5 Conclusions and Future Work

This work analyzed the underlying network structure of information dissemina-
tion on WhatsApp publicly accessible groups in Brazil. By monitoring over 150
groups, our study revealed the formation of strongly connected user communities
that cross the boundaries of traditional groups, fostering content spread at large.
We found that these communities co-exist in the same groups constantly shar-
ing broad content. By analyzing backbone and community centrality metrics, we
were able to uncover users who are very important to the information dissemina-
tion, and those users would not be found if we looked only at their activity levels
(numbers of messages and groups), as done in prior work. Moreover, by analyz-
ing the temporal dynamics of the communities, we found that, despite constant
changes in community membership, there is a number of users who persist in the
network backbone over time, some of whom even remain tightly connected in the
same community, suggesting coordinated efforts to boost information spread.
Future work includes analyzing the relations between content and community
properties, zooming into spread of particular types of content (e.g., misinforma-
tion), and assessing user engagement and coordinated efforts in the communities.
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