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Abstract 

In the safety analyses of passive systems for nuclear energy applications, computationally demanding 

models can be substituted by fast-running surrogate models coupled with adaptive sampling techniques; 

for speeding up the exploration of the components and system state-space and the characterization of the 

conditions leading to failure (i.e., the system Critical failure Regions, CRs). However, in some cases of non-

smoothness and multimodality of the state-space, the existing approaches do not suffice. In this paper, we 

propose a novel methodological framework, based on Finite Mixture Models (FMMs) and Adaptive Kriging 

(AK-MCS) for CRs characterization in case of non-smoothness and/or multimodality of the output. The 

framework contains three main steps: 1) dimensionality reduction through FMMs to tackle the output non-

smoothness and multimodality, while focusing on its clusters defining the system failure; 2) adaptive 

training (AK-MCS) of the metamodel on the reduced space to mimic the time-demanding model and, finally, 

3) use of the trained metamodel provide the output for new input combinations and retrieve information 

about the CRs.   

The framework is applied to the case study of a generic Passive Safety System (PSS) for Decay Heat 

Removal (DHR) designed for advanced Nuclear Power Plants (NPPs). The PSS operation is modelled through 

a time-demanding Thermal-Hydraulic (T-H) model and the pressure selected for characterizing the PSS 

response to accidental conditions shows a strong non-smooth and multimodal behavior. A comparison with 

an alternative approach of literature relying on the use of Support Vector Classifier (SVC) to cluster the 

output domain is presented to support the framework as a valid approach in challenging CRs 

characterization.  
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Symbols 

���   Activation Valve flow area  �����  Main Steam Isolation Valve flow area �  Lagrange multiplier   �  Classifier bias parameter  	  Constant  
�  Input domain 
�  Output domain 
���   Delay of Activation Valve opening  
�����  Delay of Main Steam Isolation Valve closure �  Distance   Expected value   ��  Energy exchanged  ��,%  Percentage of energy exchanged  �  Generic model function  Φ  Mapping function for the Support Vector Classifier 

Construction ���   Hellinger distance  �  Encoding of information in the Minimum Message 

Length   �  Input combination index   �  Cluster index    �  Number of components in the FMMs approximation  ���  Kernel  ℓ  Classifier label     Problem original dimensionality  !  Input variable index   "  Mean value  "#$   Mean value of a metamodel prediction %&'()   Number of best candidates in AK-MCS procedure %�*�  Number of samples generated by Monte Carlo 

Sampling %+,'-(  Number of training samples  %.'/  Number of validation samples   %	%  Non-condensable gases percentage  0  Iteration number  01-(   Final number of iterations   2  Slack term for penalization    3  Probability distribution    3�'�  Maximum value of pressure     4  Set of weights   5  Probability Density Function weight  5$   Weight estimate  3�'�  Maximum value of pressure   

6  Q-function in the FMM approximation    7  Predictivity indicator   8  Problem reduced dimensionality  9  Standard deviation    9#$   Estimation error of a metamodel prediction :  Mixture parameters estimate index   ;  Set of mixture parameters   ;<   Estimate of the mixture parameters    Θ  Probability Density function parameters Θ<  Probability Density function parameters estimate >   U learning function  @   Conditional expectation of the set of FMMs labels A   Vector of hyperplane coefficients   B   Conditional expectation of the FMMs labels    �  Generic input  �C  Generic input vector of reduced dimensionality  D  Set of model input vectors   D∗  Input vectors of the set of best candidates  DF,-G  Set of input vectors to be evaluated with the Kriging 

metamodel D+,'-(  Set of training input vectors  D+,'-(��*   Set of training input vectors for the Support Vector 

Classifier  D.'/  Set of validation input vectors    H  Model input vector  I  Model input parameter  J  Generic output  J+K,�L  Threshold output value   M∗  Outputs of the set of best candidates   M+,'-(  Set of training outputs   M+,'-(N��   Set of training outputs for the FMMs approximation  M+,'-(��*   Set of training outputs for the Support Vector 

Classifier construction  M.'/  Set of validation outputs   MO  Set of metamodel predictions  MO.'/  Set of predictions of the validation outputs  P  Model output  P$  Metamodel prediction output  P$ ��*  Support Vector Classifier prediction output  PQ.'/  Average validation output value   R  Set of FMMs labels   S  FMMs label vector    T  Component of the FMMs label vector  



 

 

Acronyms 

AE AutoEncoders 

AIC  Akaike Information Criterion   

AK-MCS  Adaptive Kriging Monte Carlo Sampling  

ALK  Active Learning Kriging  

ASM Active Subspace Method 

AV  Activation Valve   

BE-TH  Best Estimate Thermal Hydraulic  

BIC  Bayes Information Criterion   

CR  Critical (failure) Region 

CV  Cross-Validation  

DBSA  Distribution-Based Sensitivity Analysis 

DHR  Decay Heat Removal  

DS Directional Sampling 

EFF Expected Feasibility Function 

E-HX  Emergency Heat Exchanger 

EM  Expectation Minimization  

EMO Evolutionary Multimodal Optimization 

FC  Failure Criterion 

FMM  Finite Mixture Model  

FORM First Order Reliability Method 

GA  Genetic Algorithm  

GP  Gaussian Process  

I/O  Input/Output  

IS Importance Sampling 

KDE Kernel Density Estimation 

LAR Least Angle Regression 

LHS  Latin Hypercube Sampling 

LOO Leave-One-Out 

LS Line Sampling 

MAIS Multimodal Adaptive Importance sampling 

MCMC Markov Chain Monte Carlo 

MCS  Monte Carlo Sampling 

MfEGRA Multifidelity Efficient Global Reliability Analysis 

ML  Maximum Likelihood 

MML  Minimum Message Length 

MSIV  Main Steam Isolation Valve 

NPP  Nuclear Power Plant 

PCA Principal Component Analysis 

PCC  Partial Correlation Coefficient  

PCK Polynomial Chaos Kriging 

PCP  Parallel Coordinates Plot  

PDF  Probability Density Function  

PRESS Predicted Residual Sum of Squares 

PV  Pressure Vessel 

PSS  Passive Safety System 

QI  Quality Indicator   

RBSA  Regression-Based Sensitivity Analysis  

RMSE  Root-Mean-Square Error 

SA  Sensitivity Analysis   

SBO  Station Black-Out  

SPLOM  Scatter PLOt Matrix  

SRC  Standardized Regression Coefficient  

SRV  Safety Relief Valve 

SS Subset Simulation 

SVC  Support Vector Classifier 

TCR Truncated Candidate Region 

T-H  Thermal Hydraulic 

TPI  Transient Performance Indicator  

VBSA  Variance-Based Sensitivity Analysis  

 Introduction 

Let us assume a system behavior can be modelled with a mathematical Input/Output (I/O) 

representation J U �V�W, where the input � ∈ 
� ⊂ ℝ� represents a given system operational 

configuration and whose output J ∈ 
[ ⊂ ℝ reflects the system condition/state. For safety/reliability 

assessment, it is necessary to identify the critical combinations of inputs values (system design and/or 

operational parameters), which lead the system to failure. In mathematical terms, a specific combination 

of input parameters H is critical, if the resulting output value is higher (lower) than a predefined threshold, P U �VHW \ V]WJ+K,�L, representing the limit value for the system operation. These combinations define 

the so-called Critical failure Region (CR), i.e., 	8 U ^H ∈ 
� ⊂ ℝ�: P U �VHW \ V]WJ+K,�L`, whose 

identification and characterization can be addressed with computational methods: see, e.g., (Cadini et al. 

2014; Picheny et al. 2010; Turati et al. 2017; Turati et al. 2018a and b). In these methods, the time-

demanding models typically adopted to simulate the system behavior cannot be directly used to numerically 



 

 

test the system under the many conditions that need to be considered, because the computational cost 

would be prohibitive for the high number of code runs required. Therefore, new advanced computational 

methods are being sought to reduce the cost of computation. On one side, fast-running metamodels may 

be exploited to mimic the behaviour of the time-demanding, original codes and replace them in the analysis. 

On the other side, adaptive sampling strategies may be adopted to intelligently trace the CR boundary (i.e., 

the system limit surface), with the minimum waste of computational time for drawing and simulating 

samples far from the CR.  

One of these innovative techniques, known as AK-MCS (Echard et al. 2011), exploiting Kriging 

metamodeling coupled with adaptive sampling, has been proposed and widely applied for the CRs 

characterization of systems whose behavior has been assumed to have accommodating properties of 

regularity, such as continuity and smoothness (Turati et al. 2017; Turati et al. 2018a) . However, several 

engineering problems showing non-smooth and/or multimodal functional behavior can be found, e.g., in 

structural and mechanical engineering phenomena like snap-through, buckling or others (Missoum et al. 

2002; Hrinda 2010; Boroson and Missoum 2017), challenging traditional smooth metamodels, like Kriging, 

and possibly lead to large estimation errors (Moustapha and Sudret 2019).   

One possible approach developed in recent years to tackle non-smoothness and multimodality, proposes 

a clustering of the output domain (Basudhar et al. 2008). This allows separating the different output clusters 

or, even more generally, to distinguish the regions of different behaviors and to isolate potential 

discontinuities. For this purpose, a classifier (also called state-selecting model) represents a solution 

allowing to identify the output clusters (or states), which can be treated separately through different 

metamodel approximations. In particular, in (Moustapha and Sudret 2019), the “two-stage surrogate 

modelling” technique is proposed: after determining the domain partitions (e.g., by expert judgment or by 

an unsupervised clustering technique) and constructing a Support Vector Classifier (SVC) (Vapnik and Cortes 

1995), a metamodel is trained for each partition considered interesting to explore. Then, a new input 

combination (H) whose output needs to be predicted (and identified if critical or not) is, first, classified with 

the SVC (1st stage) and, then, evaluated by the metamodel specifically constructed for the region H belongs 

to (2nd stage). In the field of reliability assessment (resp., failure probability estimation), (Cadini et al. 2014) 

propose an algorithm combining the First Order Reliability Method (FORM) and an Adaptive Kriging-based 

Importance Sampling (AK-IS) strategy to deal with multiple failure regions characterized by low probability 

and by complex, non-linear limit states. In (Yang et al. 2018) a two-step algorithm is also developed: in the 

first step, Active Learning Kriging (ALK) is utilized to recognize the most probable (possibly disconnected) 

failure region(s) of the system; in the second, Kernel Density Estimation (KDE) is employed to build an 

instrumental density function for IS: the ALK metamodel is then iteratively updated by means of the training 

points thereby generated by IS. In (Razaaly and Congedo 2018) the objective of estimating small 

probabilities of multimodal failure regions is tackled by an efficient combination of AK-MCS, k-Means 

clustering algorithm, and Markov Chain Monte Carlo (MCMC) techniques. (Chaudhuri et al. 2021) introduce 



 

 

the Multifidelity Efficient Global Reliability Analysis (MfEGRA) method, based on a two-stage adaptive 

sampling criterion that employs a multi-fidelity Gaussian process surrogate to leverage multiple information 

sources with different fidelities (which allows targeting also several, disconnected failure boundaries). (Yang 

and Cheng 2020) and (Yang et al. 2020) develop an active learning method combining Kriging metamodels 

(ALK) and Importance Sampling (IS) to analyze systems with very small failure probabilities and multiple 

failure regions: in particular, evolutionary algorithms from the field of multimodal optimization (Cheng et 

al. 2018) are used to find all the local and global most probable points on the (surrogate) failure boundaries 

at each iteration of the metamodel training process. (Zhao et al. 2021) presents an Adaptive Multi-Fidelity 

sparse Polynomial Chaos-Kriging (AMF-PCK) metamodeling for the global approximation of aerodynamic 

data, which proves useful for the efficient uncertainty analysis and optimization of expensive multimodal 

engineering problems. In this approach, low-fidelity computations are used to build the PCK model as a 

trend for the high-fidelity function and to capture the relative importance of sparse polynomial bases 

selected by Least Angle Regression (LAR). Then, high-fidelity model evaluations are employed to adaptively 

refine a scaling PCK model within an adaptive framework based on correction polynomial expansion-

Gaussian process modeling. Finally, in (Zhang et al. 2021) the performance of AK-MCS in dealing with 

multiple failure regions of small probability is improved by combination with Directional Sampling (DS). As 

a remark, notice that the identification of multiple CRs, which is the task of interest in the present paper, is 

different from the estimation of the system failure probability, which is, instead, the task of the (advanced) 

techniques reviewed above. The goal in the former task is to identify and characterize the combinations of 

values of PSS design and/or operational input variables which lead to functional failure, that is strictly related 

to the PSS thermal-hydraulic behavior. The objective of the latter task is, instead, to propagate the 

uncertainty affecting the computer code (e.g., its models, correlations, parameters, …) onto the output of 

interest and estimating of the functional failure likelihood. In this work, we are not performing uncertainty 

propagation nor failure probability estimation. 

A different approach consists in circumventing the dimensionality problem by means of feature selection 

(Guyon and Elisseeff 2003). Indeed, any metamodel, in general, greatly benefits from a dimensionality 

reduction (Verleysen and François, 2005; Auder et al., 2012; Gu and Berger, 2016; Turati et al., 2017, 2018a 

and b; Lataniotis et al., 2020). Moreover, if the analysis is restricted only to those input parameters 

significantly affecting the output clusters of interest (e.g., the clusters connected with the system failure), 

also the specific issue of output multimodality can be overcome (Moustapha and Sudret 2019). Feature 

selection techniques for dimensionality reduction usually rely on many computer simulations, which might 

become an issue, when the system model is time demanding. Alternatively, Sensitivity Analysis (SA) 

methods can be employed to achieve the same goal of feature selection by ranking the inputs in terms of 

their contribution to the model output (Sudret 2008; Borgonovo and Plischke 2016). Several SA techniques 

are available in literature and they can be subdivided into Local and Global methods (Saltelli et al. 2008), 

with the latter being more suitable for dimensionality reduction, since they quantify the contribution of 

each input to the variability of the output over the entire range of values of both the input and the output 



 

 

(Di Maio et al. 2014). Global SA can be also divided into Regression-Based Sensitivity Analysis (RBSA) 

methods, also known as non-parametric techniques (Saltelli and Marivoet 1990), such as Standardized 

Regression Coefficients (SRCs) or Partial Correlation Coefficients (PCCs) (Saltelli et al. 1993); Variance-Based 

Sensitivity Analysis (VBSA) methods, such as Sobol’ method (Saltelli and Sobol 1995; Archer et al. 1997; 

Nossent et al. 2011); and Distribution-Based Sensitivity Analysis (DBSA) methods, also known as moment-

independent methods (Borgonovo and Plischke 2016), such as a indicator (Borgonovo 2007), input saliency 

(Law et al. 2004), Hellinger distance (Gibbs and Su 2002) and Kullback-Leibler divergence (Gibbs and Su 

2002). However, both the RBSA and VBSA methods, in general, suffer from the output function non-

smoothness and/or multimodality (as explained in detail in Section 3.1). On the other hand, DBSA methods 

become suitable to overcome this issue (Borgonovo et al. 2012): for example, when based on Finite Mixture 

Models (FMMs), they provide a natural “clustering” of the output (e.g., subdividing the data in groups of 

large safety margin, low safety margin, failure) that can be used to calculate the SA indexes (Carlos et al. 

2013; Di Maio et al. 2015). A synthetic comparison of different SA approaches is reported in Table 1. 

Table 1: Comparison among different SA methods to tackle non-smoothness or multimodality 

 

Method Low cost Non-smoothness  Multimodality 

RBSA YES NO NO 

VBSA NO YES NO 

DBSA NO YES YES 

 

In particular, FMMs are a flexible and powerful modeling tool for univariate and multivariate data, 

providing a formal approach to unsupervised learning for statistical pattern recognition. Indeed, FMMs 

analyze a set of output variables (training set), each one assumed to be generated by a certain random 

model, i.e. a certain distribution of the mixture (also called component). Then, it infers the distributions 

parameters and identifies the distribution that originated each training output, leading to a clustering of 

the training output variables. Moreover, FMMs can be used in support of DBSA methods, aiming at 

identifying the most relevant input variables affecting the output clusters and, hence, performing a feature 

selection (Di Maio et al. 2015). Then, the choice of the most appropriate model space (i.e., the space 

generated by a linear combination of known distributions of a specific kind) and the extraction of the right 

number of components to approximate the output multimodal distribution remain the challenging tasks to 

be inferred. Different metrics, based on Maximum Likelihood (ML) estimation, have been developed in the 

past to guide the model space selection: Minimum Message Length (MML) (Wallace and Boulton 1968), 

Akaike Information Criterion (AIC) (Akaike 1974) and Bayes Information Criterion (BIC) (Schwarts 1978).  

In the present paper, we investigate a novel framework that employs FMMs for the selection of relevant 

features to be used as inputs to AK-MCS for the CRs characterization of a generic Passive Safety System 

(PSS) of a Nuclear Power Plant (NPP), based on an Emergency Heat eXchanger (E-HX) designed for the Decay 

Heat Removal (DHR) after the reactor shut down due to an accident initiation (e.g., Station Black-Out (SBO)). 



 

 

The application of the proposed framework to a PSS of a NPP is motivated by the growing interest in PSSs 

employed in advanced NPPs to provide the main safety functions, e.g., reactivity control, decay heat 

removal and fission product containment, and the need of determining the conditions leading them to 

failure for safety analysis (Herer et al. 2019). This leads to the necessity of developing methods for CRs 

characterization, within a more general reliability assessment, to identify the limits of the safe operation of 

the system (Picheny et al. 2010; Cadini et al. 2014; Turati et al. 2017; Turati et al. 2018a and b; Zio and 

Pedroni, 2009 and 2011; Zio et al., 2010; Pedroni and Zio, 2017).  

In all these works the underlying system function to approximate has, in general, smoothness and 

unimodality properties. This is also the case in a previous work by the authors (Puppo et al., 2021), where 

the amount of energy exchanged by a PSS during an accidental transient (��) is used to evaluate the 

success of the PSS intervention. In that case, the AK-MCS technique has proved its capability of successfully 

replacing the original BE-TH code to model the system response with increasing accuracy in proximity 

of J+K,�L. However, in the case here considered, we tackle the problem of the PSS output measuring the 

maximum pressure value (3�'�) reached in the Pressure Vessel (PV), which shows a strong non-smooth and 

multimodal behaviour (see Fig. 2). Thus, poor results would be obtained if traditional AK-MCS procedure 

were applied in this case. To address this problem, we develop a novel framework, inspired by that of (Turati 

et al. 2017), which comprises three steps: i) “dimensionality reduction” carried out through a DBSA method 

supported by FMMs, to tackle the output non-smoothness and multimodality; ii) “iterative metamodel 

training” based on AK-MCS, to substitute the computationally expensive model simulations on the reduced 

input space by means of an accurate Kriging metamodel; iii) “CRs representation and information retrieval” 

for evaluating a large number of new input combinations with the Kriging model obtained at the previous 

step to retrieve useful information about the CRs and graphically represent them. The benefit of the 

proposed framework is twofold: i) speeding up the calculation with respect to the use of the Best-Estimate 

Thermal-Hydraulic (BE-TH) code available for the analysis of the PSS behaviour, and ii) overcoming the issue 

of the non-smoothness and multimodality of the PSS state-space. A comparison (in terms of estimation 

accuracy and computational cost) with an alternative state-of-the-art approach of different nature, i.e., not 

relying on FMMs-based DBSA but on an SVC to cluster the output domain (Moustapha and Sudret 2019), is 

presented to show that the proposed framework is valuable for challenging CRs characterization.  

The rest of the paper is organized as follows: in Section 2 the case study is briefly presented with a focus 

on the pressure output distribution in the state-space; Section 3 offers an exhaustive description of the 

novel framework for CRs exploration in case of output multimodality, whereas, in Section 4, the framework 

is applied to the PSS described in Section 2 to prove its effectiveness; in Section 5, a comparison with the 

strategy of clustering the output domain with a classifier is carried out and, finally, in Section 6 some 

conclusions are drawn.  

 Case Study 



 

 

The generic PSS considered is a DHR system based on natural circulation and we consider its operation 

in case of reactor shutdown during a SBO accident, to prevent over-pressurization and over-heating in the 

PV. A schematic view of the PSS is shown in Fig. 1.   

 

 

At the beginning of the SBO accident, the steam produced in the PV (initially operating in steady state 

conditions at around 70 bar) is no longer sent to the steam turbine, due to the simultaneous closure of the 

Main Steam Isolation Valve (MSIV) and opening of the Activation Valve (AV), but instead it is directed to the 

E-HX through the PSS steam line. The steam is condensed inside the E-HX, which is completely submerged 

in a pool, and flows back to the PV through the PSS condensate line. For further details about the PSS 

components and operation see (Lanfredini et al. 2020)  

For the reliability analysis of the PSS, five input parameters H U VIb, Ic, Id, Ie, IfW, with I that is the 

generic !-th input parameter (! U 1, … 5), have been identified by the authors through expert judgement 

as most influential to the system response during SBO accident (Table 2). Uniform probability distributions 

have been considered to span their ranges of variation and, thus, explore the possible combinations of 

values in the search for those of the CRs. The corresponding interval bounds have been chosen based on 

rough sensitivity calculations driven by expert judgment to obtain a satisfactory balance between two 

“competing objectives”: on one side, the ranges should be large enough to allow a detailed analysis and 

deep exploration of the failure regions (i.e., to include a relevant number of combinations to failure); on the 

other side, they should not be too wide, to avoid wasting time in searching way far from the CR.  

Figure 1: PSS system simplified sketch 



 

 

Table 2: Range of variation of the inputs 

Input   Symbol Range of variation  

AV flow area (%) ���  0 ÷ 100 

AV opening delay  (sec) 
���  0 ÷ 720 

MSIV residual flow area (%) ����� 0 ÷ 0.15 

MSIV closure delay  (sec) 
�����  0 ÷ 7200 

Non-condensable gases percentage in the PSS steam line (%) %	% 0 ÷ 40 

 

The PSS response is measured in terms of the amount of decay heat removed during an accidental 

transient lasting about 8h. If the heat is not removed adequately, temperature and pressure may 

dangerously rise inside the PV and if the pressure increases beyond the Safety Relief Valve (SRV) set-point 

assumed at 75.5 bar, the SRV opens to discharge the vapor inside the NPP containment building (not 

simulated in the model). Two output parameters (Jb, Jc), are considered as Transient Performance 

Indicators (TPIs) (Pierro et al. 2009) to evaluate the PSS functional response, where Jb is the total amount 

of energy removed by the PSS (��), and Jc is the maximum value reached by the pressure evolution inside 

the PV (3�'�).  

Table 3 lists the values of the input and output parameters for the reference transients, i.e., the 

“reference conditions” of nominal functioning of the PSS (note that the total energy exchanged is indicated 

as percentage ��,% with respect to the value obtained in reference conditions).  

Table 3: I/O reference conditions 

 

Variable symbol  ��p 
���  � q�p 
�����  %	% ��,% 3�'� 

Reference Value   100% 0 sec 0.00 % 0 sec 0 % 100% 70.0 bar 

In reference conditions, the functions that the system needs to provide are: 1) to ensure ��,% > 90%, 

and 2) to keep 3�'� below 75.5 bar. Therefore, two Failure Criteria (FC) are identified: 1) “Low heat 

removal”, if �I,% < 90% (Pierro et al. 2009); 2) “Steam release in the containment”, if 3�'� > 75.5 �u� 

(i.e., the pressure increase in the PV causes the SRV to open, which leads to vapor release in the NPP 

containment). In (Puppo et al. 2021), the authors have proposed a metamodel-based AK-MCS framework 

for the characterization of the CRs for ��,% output, with respect to the FC “Low heat removal”; in this 

present paper instead, the analysis of the CRs related to 3�'�, that shows a non-smooth and multimodal 

behaviour, has required the development of a suitable exploration framework. In this case, the successful 

operation of the PSS will be defined when 3�'� < 75.5 �u�; otherwise, the system fails providing its 

function.  

A RELAP5-3D model of the PSS has been developed in cooperation by University of Pisa and Politecnico 

di Torino to simulate the generic PSS connected to a simplified reactor pressure vessel (Lanfredini et al. 



 

 

2020). Each transient simulation takes about 4.30h on a PC with CPU Intel Core i7-7500U CPU @ 2.70GHz 

dual core.  

The Probability Density Function (PDF) of 3�'� is illustrated in Fig. 2, based on a collection of the 

outcomes of 200 RELAP5-3D simulations. At least two output modes can be identified and hence two 

corresponding clusters are defined: a first cluster with low pressure values (70.0 bar), which is associated 

to the majority of the simulations collected; if the decay heat was correctly removed, the pressure should 

never increase during the accidental transient and hence 3�'� coincides with the pressure value at the 

beginning of the transient, i.e., 3�'� U 70.0 �u�. A second cluster is concentrated around J+K,�L U75.5 �u�; if the MSIV closes before the AV opening, the decay heat cannot be removed through the E-HX 

and the vapor builds up in the PV, causing the pressure to rise. In this case, a quite short time interval is 

sufficient, in which the PV remains without outlets for vapor discharge to cause a sharp pressure increase 

towards J+K,�L, with consequent SRV opening. Finally, very few points fall in the middle region showing 

intermediate values of pressure.  

 

 Figure 2: vwxH multimodal distribution 



 

 

 The Proposed Exploration Framework   

We propose a novel framework, inspired by (Turati et al. 2017), for exploring the state-space of a system, 

for which a time-demanding computational model is available and the output is a non-smooth and 

multimodal function of the input. Firstly, the general idea and purpose of the framework is introduced and, 

then, the details of the steps concerning its implementation are expanded into the following subsections 

(3.1, 3.2 and 3.3).  

 

 

The main goal is to iteratively run a (possibly low) number of real model simulations to construct an 

accurate metamodel not suffering for the output non-smoothness and multimodality. Then, the metamodel 

is exploited to predict the outputs values for a large number of input values combinations, which are then 

manipulated to retrieve information about the CRs characteristics. In short, the first step, i.e., 

“dimensionality reduction”, aims at identifying the input parameters most affecting the output distribution, 

specifically those related to the output clusters in correspondence of the failure threshold and, thus, related 

to the CRs. For this we resort to a DBSA method supported by FMMs technique. The second step, i.e., 

“iterative metamodel training” aims at iteratively constructing an accurate and fast-running metamodel to 

use for simulation on the reduced input space in place of the real model, with specific attention to the 

boundary of the CRs (limit surface). The metamodel accuracy is verified (e.g., exploiting a validation set) 

and, then, in the third step, i.e., “CR representation & information retrieval”, the metamodel is employed 

to generate the output values for a large number (several thousands) of new input combinations, which are 

manipulated to retrieve information about the CRs, like their number and shape, and, finally, to graphically 

Figure 3: Flow diagram of the proposed framework 



 

 

represent them by exploiting high-dimensional data visualization techniques, like scatter plots or Parallel 

Coordinates Plot (PCP).   

 Dimensionality Reduction  

The purpose of dimensionality reduction is to find a lower-dimensional subspace of variables, i.e., �y z 
�{  ⊂ ℝy (where 8 <   is the reduced dimensionality of the problem), to build a reduced model 

still capable of correctly representing the system behavior (Fodor, 2002; Guyon and Elisseeff 2003; Liu and 

Motoda, 2012). In several research fields involving data-driven modeling, it has been shown that the use of 

many input variables/parameters often degrades the performance of empirical (regression) models (Verikas 

and Bacauskiene, 2002; Baraldi et al., 2009; Benkedjouh et al., 2013; Bolón-Canedo et al., 2015; Hu et al., 

2017). In general, this is due at least to three reasons: i) irrelevant, non-informative variables result in an 

empirical model which is not robust; ii) when the empirical model handles many parameters, a large number 

of observation data is necessary to properly span the high-dimensional input space for accurate 

multivariable interpolation; and iii) many input features unnecessarily increase the complexity of the data-

driven (regression) model. From the point of view of exploring the state-space for CRs characterization 

(which is of interest in the present paper), reducing the dimensionality allows tackling two issues. First, a 

more effective I/O training set can be defined to construct a more accurate metamodel (Verleysen and 

François, 2005; Auder et al., 2012; Gu and Berger, 2016; Turati et al., 2017, 2018a and b; Lataniotis et al., 

2020). In previous works, some of the authors have already verified the effectiveness of dimensionality 

reduction for improved metamodel training, in the presence of relatively high-dimensional input spaces 

(i.e., M ≥ 20). For example, in (Turati et al., 2017 and 2018b) a power network model involving M = 20 inputs 

has been reduced to R = 4 for effectively identifying the electrical feeders’ failure times and magnitudes 

leading the system to the most critical state, i.e., the one with the largest quantity of energy not supplied 

to the consumers. Also, in (Turati et al., 2018a) the long-running model of a next-generation, lead-cooled 

fast nuclear reactor involving M = 32 inputs (28 parameters related to system neutronics and physics and 4 

parameters associated to components’ mechanical failures) has been reduced to, again, R = 4, in order to 

precisely bound the regions of reactor safe operation at an affordable computational cost. Second, in case 

of non-smooth and/or multimodal output specific attention must be given to the input variables mostly 

contributing to the definition of the output clusters corresponding to system failure conditions: by so doing, 

also the specific problem of output multimodality can be overcome (Moustapha and Sudret 2019). In this 

paper, we are particularly concerned with this latter issue. 

Several examples are available in literature on how to carry out a dimensionality reduction: in particular, 

three classes of strategies have been proposed. Feature selection aims at optimally identifying a subset of 

the available model input variables and parameters, most representative for capturing and describing the 

overall system behaviour (Guyon and Elisseeff, 2003; Saeys et al., 2007). A feature selection technique can 

be seen as the combination of a (possibly burdensome) search algorithm for proposing multiple diverse 



 

 

feature subsets, along with an evaluation metric (e.g., a regression error), which scores the different feature 

subsets with respect to their representativeness (Dy and Brodley, 2004; Zhang et al., 2015). Instead, feature 

extraction aims at identifying a set of “new” features (i.e., new input parameters or variables), generated 

by transformations of the initial ones (in other words, generating a new, lower-dimensional input subspace 

as a linear or nonlinear function of the original one) (Guyon and Elisseeff, 2006). Some of the most effective 

and widely used feature extraction techniques are Principal Component Analysis (PCA) (Jolliffe, 2002; 

Higdon et al., 2013; Van Der Maaten et al., 2009; Wu et al., 2018; Nagel et al., 2020), the Active Subspace 

Method (ASM) (Constantine, 2015; Erdal and Cirpka, 2019) and AutoEncoders (AEs) (Holden et al., 2006; 

Wang et al., 2016; Monisha et al., 2019; Roma et al., 2021). Finally, Sensitivity Analysis (SA) methods have 

the same objective as feature selection, but they achieve it by ranking the input parameters and variables 

according to their influence on the outputs of the model (Borgonovo & Plischke, 2016; Saltelli et al., 2008; 

Sudret, 2008). In this paper, SA-based techniques are chosen for two reasons: i) as for feature selection, 

they retain a subset of the original input parameters/variables (without performing any transformation on 

them), which allows a more direct physical interpretation of the PSS critical regions (coherently with the 

main scope of the work) and ii) differently from feature selection approaches, they do not require the 

solution of typically burdensome optimization problems to search for the best and most representative 

subset of inputs (which is a relevant issue in the presence of long-running codes). Among the SA techniques, 

it is possible to identify two families: Local and Global. The Local approach to SA considers small variations 

of each input parameter around its nominal value, whereas Global SA allows to quantify the contribution of 

an input to the variability of the output, computed over the entire range of both the input and the output 

(Saltelli et al. 2008). Global SA offers higher capabilities than Local SA, especially when model responses are 

not regular (e.g., non-linear and non-monotonic), but at a higher computational cost (Di Maio et al. 2014). 

Global SA methods can be divided into three categories (Borgonovo and Plischke 2016): 1) RBSA methods, 

2) VBSA methods and 3) DBSA methods. RBSA or non-parametric methods (Saltelli and Marivoet 1990) 

exploit regression techniques to fit a regression model on a set of I/O relations and to use the regression 

coefficients as indices of sensitivity. RBSA methods are typically the simplest ones, also associated to the 

lowest computational cost, but their performance strongly depends on the output form which is often 

required to be linear. Indeed, if the regression model does not fit the underlying I/O relationships (e.g., in 

case of non-smoothness), the SA performs poorly. VBSA methods (Saltelli et al. 2010) quantify the 

contribution of each input parameter (first-order effect) and each possible two- or high-order interaction 

among multiple parameters to the total output variance. The ratio of such contribution to the total variance 

is taken as sensitivity coefficient (Razavi and Gupta 2015). VBSA methods are the most widespread, because 

they do not introduce any hypothesis on the model since they do not carry out any approximation of it. 

Anyway, VBSA methods are unable to distinguish between output structures (i.e., how the output values 

are organized in the state-space) with identical global variances, but different distributions and spatial 

organizations (Razavi and Gupta 2015). Thus, they may suffer for output multimodality since, by definition, 

the calculation of variance in case of a multimodal variable is not trivial. On the other side, DBSA or moment-



 

 

independent methods (e.g., Hellinger distance, Kullback-Liebler divergence etc.) (Di Maio et al. 2014) rank 

the input variables most affecting the entire output distribution and they may overcome the issue of non-

smoothness and multimodality, if the output distribution is properly approximated, despite its irregular 

form, by means of FMMs technique (Di Maio et al. 2015). FMMs are classically implemented for pattern 

recognition to approximate the output distribution, even in case of multimodality, by identifying the output 

clusters (corresponding to the different output modes) and, hence, representing the output as a linear 

combination of known distributions, also called components (e.g., Gaussian, Exponential, etc.). Anyway, 

FMMs can be also adopted as a support for SA: indeed, the output clustering is mapped to the input space 

and, in the end, the contribution of each input to the clustering of the output is ranked according to the 

different DBSA methods.  

FMMs application for SA entails following at the beginning the same procedure adopted in case of the 

more general pattern recognition: the primary goal is to find the appropriate type and number of 

components (�) to approximate the output distribution, given a set of I/O relations (see Appendix A). The 

best � is historically determined through the application of the Expectation Minimization (EM) algorithm 

(Dempster et al. 1977). However, classical EM presents several drawbacks: it is a local method, thus, it is 

sensitive to initialization and, for certain kinds of mixtures, it may converge toward an estimate at the 

boundary of the parameter space where the likelihood is unbounded (Figueiredo and Jain 2002). For the 

case study of 3�'� , we propose the SNOB algorithm, introduced for the first time in (Wallace 1968) and, 

then, updated through the years and implemented in MATALAB by (Statovic 2020). It exploits the MML 

inference criterion:  

�V;|M+,'-(N�� W U �V�W + �V4W + ~ �VΘ�W + �VM+,'-(N�� |;W�
��b ,  (1) 

where M+,'-(N�� U ^Pb, … , P(` are the output values of the transients simulated and ; U^5b, … , 5� , Θb, … , Θ�` are the mixture parameters (5� and 3VP|Θ�W are the weight and PDF of the �-th 

component, respectively). The output approximation is encoded in a message, which comprises all its terms. 

The lower is the encoding of this information, i.e., ��;�M+,'-(N�� �, the lower is the message length and, hence, 

the more accurate is the output distribution approximation with that mixture of components (Kasarapu and 

Allison 2015). In particular, �V�W represents the encoding of the number of components (�), �V4W the 

encoding of the weights (4), ∑ �VΘ�W���b  the encoding of the component parameters (Θ�) and ��M+,'-(N�� �;� the encoding of the data. All these terms are logarithmic and in the most favorable situations 

they could assume negative values. To sum up, the MML criterion (1) is a trade-off between the complexity 

of the model and the goodness of fit (Olvier et al. 1996); indeed, when a new component is added, the 

encoding of the new component parameters increases the message length, whereas the term  ��M+,'-(N�� �;� 

reduces it due to the improved fit quality.  



 

 

The SNOB algorithm allows the user to choose among several types of distributions (i.e., model space), 

e.g., Gaussian, Weibull, Exponential etc. The algorithm automatically finds the best � according to the 

distribution types and provides in output the MML metric that can be used to justify the model space 

selection. The solution associated to the lowest MML value is the most accurate for the case study.  

Once the parameters of the mixture of models are known, the output distribution is completely 

characterized: some of the clusters obtained may be representative of safe conditions, whereas others 

represent failure conditions. For Global SA, the focus is shifted to the input space and the output clustering 

is exploited to cluster also the inputs. The PDFs of each input variable (I�) with the conditioning on the 

different �-th clusters are constructed, i.e., 3VI�| Θ��W, and, then, the difference between 3VI�| Θ��W and 

the input common distribution, i.e., 3VI�W is measured according to one of the DBSA methods introduced 

before (e.g., Hellinger distance, Kullback-Liebler divergence). These measures allow ranking the input 

variables contribution to the different output clusters, with special attention to the clusters of interest, e.g., 

those related to the failure of the system, and, finally, the most important inputs are selected.  

 Iterative Metamodel Training (AK-MCS)  

After reducing the number of input parameters through the dimensionality reduction, a surrogate 

metamodel is constructed to approximate the real model I/O relationships on the reduced input space, i.e., J U �V�yW, where �y z 
�{  ⊂ ℝy (8 <   is the dimensionality of the reduced space). Among the several 

options available in literature (Jin et al. 2001), we resort to Gaussian Processes (GPs) and particularly to one 

specific category of GPs: the Kriging metamodels (Kleijnen 2009). Kriging metamodels can fit numerous 

response functions without adding further complexity and they are non-stationary, which is useful for the 

specific aim of the present work of characterizing CRs, because the metamodel can be refined in proximity 

of the CR limit surface. This can be achieved by training the Kriging with simulations whose outputs are 

concentrated nearby the limit surface and, indeed, adaptive training strategies have been recently 

developed to this aim. In the present paper, the metamodel-based AK-MCS framework developed in (Turati 

et al. 2017) is followed. A Kriging metamodel is initially built according to a small I/O training set, i.e., ^D+,'-(, M+,'-(`-(, whose simulations have been generated by Latin Hypercube Sampling (LHS) (McKay et 

al. 1979). Then, the metamodel refinement is carried out through the AK-MCS iterative procedure, which 

consists of the following steps (Puppo et al. 2021), for each 0-th iteration (the algorithm is also sketched in 

Fig. 4 for the sake of clarity): 

1. Construction: a Kriging metamodel is constructed with the available I/O training set ^D+,'-(, M+,'-(` 

defined on the reduced space.  

2. Generation of random input combinations: a large number %�*� of new input configurations D U�Hb, … , H����� is generated by means of LHS, so as to evenly span the input space.  



 

 

3. Metamodel Evaluation: the Kriging metamodel is exploited to estimate the output corresponding to 

the D input combinations: MO U �P$b, … , P$���� �.  

4. Convergence check: convergence of the metamodel refinement process can be verified up to an a 

priori-defined convergence (e.g., a certain error metric) or stopping criterion (e.g., a limit on the 

computational budget, expressed in terms of a maximum number of BE-TH code simulations). 

Several criteria have been introduced to adaptively verify the convergence of the kriging training 

process. (Bichon et al., 2008; Echard et al., 2011) have introduced the Expected Feasibility Function 

(EFF) as a quantitative indicator of the trade-off between a detailed, refined search in proximity of 

the failure threshold and a more thorough, global exploration of the overall system state-space: the 

iterations are stopped when the largest value the EEF over the input space falls below a predefined 

limit (e.g., EFF < 0.001 in (Bichon et al., 2008)). (Echard et al., 2011) adopts the the >-learning 

function (2) to improve the modeling performance of Kriging preferably across the failure surface. 

The smaller >VHW, the higher the metamodel accuracy and precision in the region close to the limit 

state (correspondingly, the higher the advantage in including the simulation result corresponding to H in the current DoE). In this respect, when the smallest value of >VHW over the input space exceeds 

a predefined threshold (e.g., >VHW > 2 in (Cox and John, 1997; Echard et al., 2011)), the algorithm 

stops. However, it has been demonstrated that in several contexts, the EEF and the >-learning 

function (2) converge slowly to the failure region (Echard et al., 2011; Dubourg et al., 2013). Thus, 

other metrics have been introduced, relying on cross-validation to quantify both the kriging 

modelling performance and the convergence rate of the adaptive training process. In practice, the 

entire DoE ̂ D, M` is divided into a training set ̂ D+,'-(, M+,'-(` and a validation set ̂ D.'/ , M.'/` with 

the following properties: ^D+,'-( , M+,'-(` ∩ ^D.'/, M.'/` = ∅ and ^D+,'-( , M+,'-(` ∪ ^D.'/, M.'/` = ^D, M`. The kriging regression model is, then, built using the training subset and its prediction 

capabilities are quantified using the validation set. The leave-one-out (LOO) algorithm is a particular 

case, in which the training set is selected as ^D, M`\H-. In (Allen, 1971) the mean squared error is 

estimated by a LOO approach and is termed Predicted REsidual Sum of Squares (PRESS). Instead, in 

(Dubourg et al., 2013; Turati et al., 2017) an error factor is computed by LOO cross-validation to 

assess the uncertainty affecting the failure probability values produced by kriging, and to quantify 

its prediction performance and convergence rate of the adaptive training procedure.  

In this paper, we use only the computational cost as a stopping criterion (i.e., we set a maximum 

number of simulations foreseen for the metamodel training): this choice is motivated by the 

significant computational effort typically associated to the dimensionality reduction phase carried 

out before this step (Section 3.1) and by the relevant amount of time needed to carry out a single 

transient simulation in the present application (i.e., around 4.3h on average). Nevertheless, it is 

important to notice that, even if a rigorous convergence/stopping criterion is not used, the evolution 

of the metamodel accuracy with the iterations is still checked by means of an a priori-defined 

(typically small-sized) validation set ^D.'/ , M.'/`, made by %.'/ I/O relations: this allows to have at 



 

 

least a rough idea of the kriging performance during and at the end of the training process. Further 

(numerical) implementation details are reported in Section 4, devoted to the application results. 

5. Selection: if convergence at step 4 is not verified, the best candidate subset D∗ ⊂ D of input 

combinations is added to the Kriging training set by evaluating the corresponding outputs M∗ with 

the long-running model. The %&'() best candidates are selected among D according to their 

learning function values. >-function (Echard et al. 2011; Turati et al. 2017) has been chosen for the 

analysis among the several options available in literature (Xiao et al. 2018):  

>VHW U |J+K,�L − "#$ VHW|9#$ VHW ,  (2) 

where >VHW measures the distance, expressed in terms of metamodel standard deviation 9#$ VHW 

between the mean value of the metamodel prediction "#$ VHW, corresponding to H and the failure 

threshold J+K,�L. In general, the smaller is the >-function value, the closer is the predicted output 

to the limit surface and, hence, the higher the interest in adding that point to ^D+,'-( , M+,'-(`. The 

best candidate inputs need to be spread over the domain, but it might occur that, due to the 

correlation, the points with the lowest > values result to be all restricted to the same portion of the 

input domain, providing a small amount of information when added to ^D+,'-( , M+,'-(`. Some 

techniques can be implemented to overcome this problem: e.g., in (Turati et al. 2017) it is proposed 

to cluster the input domain to evenly “spread” the candidates over it. 

Once the best candidates have been selected and sent in input to the real model which evaluates 

the corresponding output, ^D+,'-( , M+,'-(` is updated and steps 1 to 5 are repeated until step 4 is 

verified. 



 

 

 

Figure 4: Flow diagram of the iterative metamodel training algorithm (AK-MCS) 

A large amount of works has been devoted, in the last few years, to the intelligent, iterative improvement 

of the AK-MCS algorithm. Only few of the most relevant techniques are listed hereafter: the Adaptive 

Kriging-Importance Sampling (AK-IS) (Echard et al. 2013); the Meta Adaptive Kriging-Importance Sampling2 

(MetaAK-IS2) (Cadini et al. 2014), which combines AK-IS and Meta-IS (Dubourg et al. 2013); the Active 

learning and Kriging-based SYStem reliability method (AK-SYS) (Fauriat and Gayton 2014); the Adaptive 

Kriging-Line Sampling (AK-LS) (Lu et al. 2015); the AK-Subset Simulation (AK-SS) (Huang et al. 2016) and the 

AK-Subset Simulation-Importance Sampling (AK-SS-IS) (Tong et al. 2015); the Polynomial Chaos Kriging (PCK) 

(Schöbi et al. 2017); the AK-MCSi algorithm, employing sequential MCS and multipoint enrichment 

techniques to allow parallelization (Lelievre et al. 2018); the Active Learning Kriging-Kernel Density 

Estimation-Importance Sampling (ALK-KDE-IS) (Yang et al. 2018); the ALK-Evolutionary Multimodal 

Optimization-Importance Sampling (ALK-EMO-IS) (Yang and Cheng 2020) and the ALK-Multimodal Adaptive 

Importance Sampling-Truncated Candidate Region (ALK-MAIS-TCR) (Yang et al. 2020); the Multifidelity 

Efficient Global Reliability Analysis (MfEGRA) method (Chaudhuri et al. 2021); the Adaptive Multi-Fidelity 

sparse Polynomial Chaos Kriging (AMF-PCK) technique (Zhao et al. 2021) and the Adaptive Kriging-based 

Directional Sampling (AK-DS) (Zhang et al. 2021). The objective of all the methods listed above is the efficient 

propagation of uncertainties, physically described by different probability distributions, through the 

(expensive) system models, for the accurate and precise estimation of (small) failure probabilities. On the 



 

 

contrary, as already highlighted in the Introduction, in this work we are not performing any uncertainty 

propagation nor probability estimation, but rather we carry out an inverse analysis for identifying and 

characterizing – in a multimodal landscape – the combinations of values of the design and/or operational 

input variables driving a particular type of nuclear safety system to failure, i.e., the so-called failure region). 

 CR Representation & Information Retrieval  

The Kriging metamodel obtained at the end of the procedure described in Section 3.2 must provide 

predictions of the output with satisfactory level of accuracy, especially in proximity of the CRs limit surfaces; 

this can be verified with an external validation set. Thus, a large number of new input combinations H (e.g., 

several thousands) is, then, generated, by LHS and provided in input to the metamodel; the critical ones, 

i.e., P$ U �VHW ] J+K,�L, are exploited for characterizing the shape and cardinality of the CRs (Puppo et al. 

2021). In mathematical terms, this is equivalent to solving the inverse problem H U ��bVP$W, with P$ ]J+K,�L. Once this is done, CRs can be graphically represented by means of high-dimensional data 

visualization techniques, like scatter plots or Parallel Coordinates Plot (PCP).   

In brief, scatter plots show the two-dimensional projections of the CRs over all possible pairs of inputs 

(this is useful to visualize the shape of the CRs). Moreover, in case of many input parameters involved, 

multiple scatter plots can be collected together in the so-called Scatter PLOt Matrix (SPLOM), providing a 

more complete view (Sedlmair et al. 2013).   

On the other hand, PCP (Inselberg 2009) allows representing all the critical input combinations in a 

unique plot: all the   input variables (coordinates), normalized on their respective ranges, are reported on 

vertical axes and lined up horizontally; then, each input combination is represented by a horizontal line 

connecting the corresponding input variables values on the vertical axes. In this way, the analyst is provided 

with exemplary patterns of typical critical conditions for the system operation.  

 Application  

The framework illustrated in Section 3 has been applied for the characterization of the CRs of the PSS 

introduced in Section 2. In the following Sections, the relevant steps of this application are illustrated in 

detail with reference to the characterization of the CRs relative to the multimodal output variable 

“maximum pressure value inside the PV” (3�'�).   

 Dimensionality Reduction  

With the aim of defining the I/O training set to construct an accurate metamodel for the approximation 

of the PSS response with respect to 3�'� output, the input vector dimensionality has been reduced from 



 

 

  to 8 (8 <  U 5); hence, a reduced model dealing with the reduced input vector �y  z 
�{  ⊂ ℝy can 

be constructed. The DBSA method supported by FMMs technique has been implemented to tackle 3�'� 

non-smoothness and multimodality (see Fig. 2) by identifying the different output clusters and, finally, 

selecting the most relevant inputs contributing to the output distribution. In particular, the analysis has 

been restricted only to those input parameters significantly affecting the output clusters connected with 

the critical conditions, i.e., those with 3�'� around 75.5 �u�.  

A total of 200 RELAP5-3D simulated transients have been used for the FMMs development (see Appendix 

A) with the SNOB algorithm, introduced in Section 3.1. The SNOB algorithm is based on the EM and selects 

the best number of components (�), guided by the MML criterion (see equation (1)).  

The goal of the FMMs application is not to approximate the 3�'� distribution in the best way possible, 

whatever the number of components, but to obtain a good fit while ensuring that the � components 

reproduce the underlying physics of the problem. The SNOB algorithm gives the optimal fitting of the 3�'� 

multimodal distribution with � U 3 Gaussian distributions (whose characteristic parameters, i.e., mean 

value " and standard deviation 9 are reported in Table 4). In order to rank the most relevant inputs by 

means of one of the DBSA methods introduced in Section 3.1, firstly, it is necessary to assign each output 

variable in the set of 200 RELAP5-3D simulations to the cluster that generated it. In particular, it is assumed 

that the sample P-  belongs to the �-th cluster, if it returns the highest probability value when substituted 

into the PDF expression of that cluster.  

Table 4: FMMs components parameters 

Cluster name   "  [bar] 9  [bar] 

Low-pressure (green) 70.0 1E-3  

Medium-pressure (orange) 72.6 2.48 

High-pressure (red) 75.9 0.04 

 



 

 

 

The three Gaussian distributions and their related output clusters are reported in Fig. 5. A “low-pressure” 

cluster on the left is associated with the system safe conditions (in green in Fig. 5) and is approximated by 

a Dirac’s delta distribution. It represents the 3�'�  concentration around 70.0 bar, corresponding to all 

those transients in which the decay heat is correctly removed by the PSS and the pressure never increases 

Figure 5: vwxH clustering according to � U � Gaussian distributions 



 

 

(122 simulations out of 200). Thus, in these simulations, 3�'� is always equal to the pressure value at the 

beginning of the transient, i.e., 70.0 bar. The remaining 78 outputs are almost equally split among the 

“medium-pressure” cluster in the middle (safe conditions, but with lower safety margin) and the “high-

pressure” cluster on the right (critical conditions). They are associated to two Gaussian distributions 

(respectively orange and red in Fig. 5), with the second that is more peaked. Both clusters include transients 

in which the pressure initially increases beyond 70.0 bar, due to the AV delayed opening with respect to the 

MSIV closure: this causes the PV to remain without vapor outlets. The only difference is that 3�'� values in 

the “high-pressure” cluster reach J+K,�L U 75.5 �u�, causing the SRV opening, whereas in most of the 

transients assigned to the “medium-pressure” cluster the pressure increases without reaching J+K,�L.  

The output clustering performed is exploited to identify those input variables that most affect the output 

clusters (DBSA) by constructing the PDF of each input I� conditioned on each �-th cluster, i.e., 3VI�| Θ��W. 

In particular, the conditional PDFs are constructed by assigning the input variables belonging to the set of 

200 RELAP5-3D simulations to the same cluster of the associated outputs; then, the PDF 3VI�| Θ��W is 

created using only the I� inputs assigned to the �-th cluster. In this way, it is possible to measure the 

difference between 3VI�| Θ��W and the original (unconditional) input distribution of I�, i.e., 3VI�W, and 

to use this difference to rank I�. For the case study, the Hellinger distance method for SA (Gibbs and Su 

2002; Di Maio et al. 2014) is adopted:  

��� U  � 12 � ��3VI�W − �3VI�| Θ��W �c �I� �b/c, (3) 

 

with ��� that needs to satisfy the inequality 0 ] ��� ] 1. The quantity ��� represents the importance 

of the !-th input in affecting the  �-th cluster of the output distribution: the higher the ��� value with 

respect to the one of the other input parameters, the greater the relative importance of I�.  

For the analysis of 3�'�, special attention is paid to the “high-pressure” cluster, since it is the one 

connected with the failure of the PSS function (critical conditions). Hence, for each input parameter, the 

corresponding ��� value referred to this cluster (i.e. with � U 3) is exploited as a sensitivity index. Fig. 6 

reports a comparison between the �d� values calculated for each of the five input parameters.  

As it can be deduced from Fig. 6, the two valves operation delays, i.e., 
���  and 
����� , mostly 

affect 3�'� “high-pressure” cluster and hence they are more likely to generate those scenarios in which 

the pressure increases towards J+K,�L, with the consequent SRV opening. Therefore, the problem 

dimensionality is reduced from  U 5  to 8 U 2, and a reduced model (dealing with a reduced input vector) 

is obtained: i.e., �V�yW U J, with  �y z 
�{  ⊂ ℝy and J still equal to 3�'� .  



 

 

 

 

 

 Iterative Metamodel Training (AK-MCS) 

After the dimensionality reduction previously presented, the input parameters used to model the 

generic PSS behaviour with respect to 3�'� are only 
��� and 
�����; thus, a Kriging metamodel has 

been built to mimic the RELAP5-3D model I/O relationships on a reduced space of dimensionality 8 U 2.  

For the purpose of CRs exploration, the fact that 3�'� can approach J+K,�L U 75.5 �u� only if 
��� >
�����, with a quite significant interval of time between the two valves actions, has led to adjust the 

range of variation of 
����� from 
����� U 0 ÷ 7200 ��� to 
����� U 0 ÷ 480 ���: this has 

allowed to be coherent with 
��� U 0 ÷ 720 ��� (see Table 2) and to avoid sampling far from the limit 

surface.  

Following the criterion proposed in (Loeppky et al. 2010), who suggests a number of training simulations %+,'-( \ 108, the Kriging metamodel has been initially constructed with an I/O training set ^D+,'-(, M+,'-(`-( of 25 RELAP5-3D runs (obtained in correspondence of input values generated by LHS). In 

particular, the construction has been performed by means of the UQLab Software Framework for 

Uncertainty Quantification (Marelli and Sudret 2014). UQLab provides a straightforward parametrization of 

the Kriging (Lataniotis et al. 2019): constant, linear, polynomial, or arbitrary trends, related to elliptic and 

separable correlation kernels, based on many possible one-dimensional distribution families (e.g., Gaussian, 

Figure 6: Hellinger distance for each input parameter (Hw) evaluated with respect to the high-pressure cluster 



 

 

Exponential, Matérn, or user-defined). The hyperparameters can be estimated through the Cross-Validation 

(CV) or the ML methods using different optimization techniques (local or global). The best Kriging setting 

for the specific study of 3�'� output has been established by testing different Kriging features with the CV 

procedure. In particular, the Kriging best setting has resulted to be: 

 Trend type: Ordinary  

 Family of correlation functions: Exponential   

 Type of correlation functions: Ellipsoidal 

 Estimation method: CV 

 Optimization method: Genetic Algorithm (GA) 

Then, the Kriging metamodel has been adaptively refined with a focus on the CR limit surface by 

enriching ^D+,'-(, M+,'-(` within the AK-MCS framework introduced in Section 3.2. The AK-MCS procedure 

has been here tailored to the specific case study of the PSS introduced in Section 2, in relation to the 

pressure output evolution during a SBO accident. The details of the steps concerning the AK-MCS 

application are reported in what follows, for each 0-th iteration: 

1. Construction: a Kriging metamodel is constructed with the available I/O training set ̂ D+,'-(, M+,'-(`, 

which increases its size with the iterations. The metamodel accuracy is improved specifically near J+K,�L U 75.5 �u�.  

2. Generation of random input combinations: %�*� U 10.000 new input combinations D U�Hb, … , H����� (of reduced dimensionality 8 U 2) are sampled with LHS (see the input ranges 

defined at the beginning of this Section).  

3. Metamodel evaluation: the sampled input combinations D are run through the Kriging metamodel 

to predict the corresponding output values (i.e., maximum vessel pressure): MO U �P$b, … , P$�����.  

4. Convergence check: a convergence or stopping criterion regarding the computational cost has been 

defined. The maximum number of simulations foreseen for the metamodel training has been set to 

100, due to the significant computational cost associated to the dimensionality reduction procedure 

carried out before (200 RELAP5-3D simulations required). Thus, considering that ^D+,'-( , M+,'-(`-( 

is constituted by 25 simulations, only 75 simulations can be iteratively added during the AK-MCS 

procedure; when the size of ^D+,'-( , M+,'-(` reaches its maximum value, the procedure stops. 

5. Selection: if the convergence criterion at step 4 is not verified, new I/O simulations related to the 

so-called best candidate subset, i.e., D∗ ⊂ D, are conducted, and the corresponding inputs and 

outputs ̂ D∗, M∗` are added to ̂ D+,'-(, M+,'-(` to refine the metamodel. The %&'() best candidates D∗ are randomly selected among the Dcombinations according to their >-function values (see 

equation (2)), in order to choose them close to J+K,�L. They should present a low > value, but at the 

same time not be “clustered” in the same area of the input space (i.e., too similar to each other). 

Actually, combinations that are close in the input space share similar > values and, hence, the 

candidates should be selected not only according to the %&'() lowest > values, because they would 



 

 

all be restricted in the same area of the domain, instead of spanning the whole input space. Thus, %&'() U 7 or 8 candidates are added at each 0-th iteration, according to the same rationale 

presented in (Puppo et al., 2021). Once D∗combinations have been selected and the corresponding 

RELAP5-3D transients simulated with the RELAP5-3D code to obtain the output M∗, ^D+,'-(, M+,'-(` 

is enriched and steps 1 to 5 are repeated until convergence at step 4 is verified.  

The AK-MCS procedure has been stopped at iteration 01-( U 10, when the maximum number (100) of 

RELAP5-3D simulations allowed for the construction of the training set ^D+,'-( , M+,'-(` has been reached. 

The evolution of the metamodel accuracy with the iterations has been followed through the introduction 

of an a priori-defined validation set ̂ D.'/, M.'/`, made by %.'/ I/O relations. Some recommendations about 

how to determine the best %.'/ can be found in (Martin and Simpson 2005; Iooss 2009; Wu et al. 2018), 

but no definitive guidelines are available. Considering the available computational budget, a validation set 

of 50 RELAP5-3D simulations with the outputs mainly distributed around J+K,�L has been constructed to 

measure the accuracy increase, especially in proximity of the limit surface. The metamodel has been used 

to predict the outcomes MO.'/ U �P$b, … , P$����� corresponding to the %.'/  input combinations of the 

validation set (D.'/); then, the accuracy has been quantified through Quality Indicators (QIs), comparing MO.'/ to the real outputs evaluated with the RELAP5-3D model. The closer the Kriging prediction to the 

RELAP5-3D output, the better the QI value calculated and the higher the accuracy. The QIs adopted are the 

following: the well-known Root-Mean-Square Error (RMSE) and two different predictivity indicators, namely 

respectively 7b, defined in (Iooss 2009), and 7c presented by (Lataniotis et al. 2019): 

8 q U   ~ VP$- − P-Wc%�.'/
-�b , (4) 

7b U 1 − ∑ VP$- − P-Wc �.'/-�b∑ VPQ.'/ − P-Wc�.'/-�b , (5) 

7c U %.'/ − 1%.'/ ¡ ∑ VP$- − P-Wc �.'/-�b∑ VPQ.'/ − P-Wc�.'/-�b ¢, (6) 

where P-  is the �-th output of the set ^D.'/ , M.'/`, P$-  is the corresponding Kriging prediction and PQ.'/ is 

the mean value of all the validation outputs evaluated with the RELAP5-3D model. RMSE and 7c should be 

as low as possible, whereas 7b tends to 1 as the prediction accuracy increases. The RMSE has the same unit 

of measure of the physical quantity of interest (3�'�) and, hence, it can be directly compared to the 

maximum pressure to understand whether the level of accuracy is satisfactory. It can be also normalized 

(NRMSE) dividing it by PQ.'/. 7b and 7c have similar expressions and, differently from 8 q, they also 

account for the variability of P-  in the set.  

The progressive increase in accuracy is shown by the trends of the three QIs illustrated in Fig. 7. All the 

QIs considered show a significant improvement at the beginning; then, in the successive iterations, the 



 

 

relative improvement becomes negligible. Also for this reason, stopping the AK-MCS procedure at iteration 01-( U 10 represents a reasonable choice.  

 

 

The three QI values at the end of the AK-MCS procedure are reported in Table 5. The RMSE at the last 

iteration is satisfactory, indeed 8 q U 0.35 �u� is really low if compared to the 3�'� values in the 

simulated transients (3�'� U 70.0 ÷ 76.5 �u�). Moreover, a final %8 q U 0.46% is remarkable, since 

it can be taken, in the first instance, as a measure of the percentage error of the Kriging predictions. For 

what concerns 7b and 7c, they show a significant improvement during the successive iterations, but their 

final values are not so satisfactory, especially for the final 7b which lies far from 1. This is probably due to 

the very low variability of the validation set chosen for the analysis: indeed, most of the 3�'� values of M.'/ 
are spread on a range of only 2 bar around J+K,�L U 75.5 �u�.  

 

Figure 7: QIs evaluated with respect to a given validation set 



 

 

Table 5: QIs values at the end of the AK-MCS procedure  

 

Quality indicator RMSE [bar] NRMSE [%] ¤¥ ¤¦ 

Final value 0.35 0.46% 0.56 0.43 

 CR Representation & Information Retrieval  

The Kriging metamodel obtained at the end of the AK-MCS procedure has been demonstrated to present 

a high accuracy, especially in proximity of J+K,�L: thus, it can be used for CR characterization instead of the 

more time-demanding RELAP5-3D model. For this purpose, 10.000 new input combinations have been 

generated by LHS and, then, predicted with the metamodel to: (i) find the critical ones, i.e., P$ U �VHW \J+K,�L; and (ii) retrieve useful information about the CRs (like their number and shape).   

One single CR has been identified (see Fig. 8); moreover, given that the analysis has been restricted only 

to two parameters after dimensionality reduction, no high-dimensional data visualization techniques like 

SPLOM or PCP (see Section 3.3) were needed. The CR has been represented in the two-dimensional input 

space through a scatter plot, in which green diamonds indicate combinations leading to safe operation 

(3�'�  is kept < 75.5 �u�), whereas red crosses represent the critical input combinations of PSS functional 

failure.  

A triangle-shaped CR has been identified, showing the direct influence of both 
���  and 
����� on 

the FC “Steam release in the containment”; indeed, it is evident that 3�'� may exceed 75.5 bar only when 

the MSIV closes before the opening of the AV, i.e., when 
����� < 
��� (as introduced in Section 2). 

This occurs because the PV remains without vapor discharge outlets and, hence, the vapor builds up causing 

the PV over-pressurization. Also, Fig. 8 shows that not always 
����� < 
��� leads the PSS to fail its 

function: e.g., even if the MSIV is supposed in its reference conditions (i.e., 
����� U 0 ���), if 
��� <50 ���, 3�'� remains below J+,�LK . In general, the higher 
�����, the lower the chances to lead to 

functional failure: eventually, if 
����� > 380 ��� failure is never reached, whatever the value assumed 

by 
���.  

A word of caution is in order with respect to the results included in Fig. 8. The comparatively large size 

of the failure region (red crosses) with respect to the safe one (green diamond) does not necessarily mean 

that the PSS under analysis is “prone” to failure, since such type of conclusion can only be based on the 

quantitative assessment of the probability of occurrence of the corresponding input combinations (which is 

not performed in the present paper). In fact, the probability of functional failure of the PSS is strongly 

dependent on: (i) the structure and characteristics of the system itself, and (ii) the (data- and/or expert-

based) probability density functions of the PSS input variables. In this work, as mentioned in Section 2, the 

PSS parameters are not described by realistic probability distributions, since the objective is not to perform 

a reliability assessment of the PSS, but to show how the FMMs-based adaptive Kriging procedure can be 

exploited for the thorough exploration, identification and characterization of multi-modal critical regions. 



 

 

 

 

 Comparison with the Results obtained with SVC + AK-MCS  

An alternative approach to tackle the output non-smoothness and multimodality is represented by the 

use of a classifier. Given an I/O training set, the training outputs are clustered (e.g., by expert judgement) 

to separate the regions of different output behaviours (also called partitions). The same clusters are 

identified also in the input domain by simply assigning the training inputs to the same clusters of the 

corresponding output values. In this way, a classifier can be built according to these clustered I/O relations 

and, then, a new input combination H can be classified to one of the different input domain partitions. 

Multiple metamodels can be fitted to each cluster in the input and output space to obtain a better 

approximation (rather than constructing a unique metamodel for the whole space). Thus, the new 

combination H is predicted according to the specific metamodel developed for the partition H belongs to.  

We have here applied this approach to the PSS presented in Section 2, with respect to 3�'�  output, by 

resorting to one of the most popular classifiers, i.e., SVC (Vapnik and Cortes 1995). The results have been 

Figure 8: CR for vwxH output 



 

 

compared to the ones obtained with the framework of Section 4. In particular, a hard SVC (i.e., where one 

input combination cannot belong to different domain partitions) has been trained within the “two stage-

surrogate modelling” technique introduced in (Moustapha and Sudret 2019). A new input combination H 

whose output needed to be predicted (and identified as critical or not) has been, first, classified with the 

hard SVC (1st stage); then, the corresponding output has been predicted with the metamodel specifically 

built for the partition (cluster) which H is classified to (2nd stage).  

At first, two output domain partitions have been identified according to expert judgement: a “low-

pressure” region corresponding to 3�'� U 70.0 �u� (which occurs in most of the transients simulated, see 

Section 2), and a “high-pressure” region with 3�'� > 70.0 �u�, representing those transients in which the 

pressure rises. Thus, a binary classification results: i.e., given a certain input combination H, the 

corresponding label assigned by the classifier is ℓ- U ^−1, +1`, with the ℓ- U −1  that is associated to the 

low-pressure region and ℓ- U 1 that represents the high-pressure region.  

The SVC has been constructed (see Appendix B) according to the two output domain regions identified, 

thanks to an I/O training set and their corresponding labels §D+,'-(��* , M+,'-(��* ¨. The same training set of 200 

RELAP5-3D simulations adopted for the FMM-based approach (see Section 4.1) has been used (122 with ℓ- U −1  and 78 with ℓ- U 1). Indeed, the criterion introduced in (Basudhar et al. 2008), which proposes 

convergence points instead of a far more expensive validation set to quantify the accuracy of the SVC, has 

proven that at least 180 simulations were necessary to construct an initial, but sufficiently accurate SVC for 

the case study. Then, a Kriging metamodel has been built to predict 3�'�  only in the “high-pressure” 

region, because it was not worth exploring also the “low-pressure” region with constant 3�'� (70.0 bar). 

Then, a metamodel has been constructed with an I/O training set ^D+,'-(, M+,'-(` made by the same I/O 

relations collected for the SVC training, but taking only those classified as belonging to the high-pressure 

region (78 simulations out of 200). In this case, no dimensionality reduction has been carried out and, hence, 

the metamodel is used to mimic the RELAP5-3D model on the original input space of dimensionality  U 5, 

i.e., �V�W U J, with  � z 
��  ⊂ ℝ�. Thus, D+,'-( is a set of five-dimensional input combinations.  

The Kriging metamodel has been adaptively refined in proximity of J+K,�L U 75.5 �u� with a sort of AK-

MCS procedure (see Section 3.2), conveniently adjusted to be coupled with SVC. At each 0-th iteration, %�*� U 100.000 new input combinations D U �Hb, … , H����� have been generated by LHS and classified 

by the SVC according to the two regions identified (1st stage). Only the combinations classified as belonging 

to the high-pressure region, i.e., DF,-G ⊂  D, have been then evaluated with the Kriging metamodel to find 

the corresponding outputs (2nd stage). The most interesting input combinations among DF,-G, in terms of 

learning function > value (7-8 candidates at each iteration), have been selected for simulation with the 

RELAP5-3D model and added to ̂ D+,'-(, M+,'-(` for the metamodel refinement. This procedure is repeated 

until the level of accuracy of Kriging predictions becomes satisfactory. The I/O relations simulated at each 

iteration to enrich the metamodel training set ^D+,'-( , M+,'-(` have been labelled and exploited to enrich 

also the classifier training set §D+,'-(��* , M+,'-(��* ¨. This procedure is called SVC+AK-MCS, hereafter.  



 

 

The idea is to exploit the same number of RELAP5-3D simulations, i.e., the same computational budget, 

as the one used for the novel exploration framework implemented in Section 4.2 (FMM+AK-MCS), to refine 

both the Kriging metamodel and the SVC within SVC+AK-MCS framework, with the aim of fairly comparing 

the final Kriging accuracy. The initial metamodel training set ̂ D+,'-( , M+,'-(`-( has been adaptively enriched 

together with §D+,'-(��* , M+,'-(��* ¨, up to the limit of the available 300 simulations (the same limit as FMM+AK-

MCS). Thus, starting from §D+,'-(��* , M+,'-(��* ¨ made by 200 I/O samples (the same used for the FMMs 

application), 100 simulations have been added (only 82 of them could have been used for the Kriging 

training) and the Kriging training set size has been simultaneously increased from 78 to 160. The Kriging 

accuracy has been quantified with respect to a validation set of the same size of the one used in Section 4.2 

(i.e., 50 I/O relations). Again, the validation set is constituted by samples mainly distributed around J+K,�L, 

to verify the metamodel accuracy improvement with specific attention to the area close to the limit surface. 

Table 6 reports the values of three QIs (RMSE, 7b and 7c) computed on this validation set according to the 

Kriging metamodel obtained at the end of SVC+AK-MCS procedure.    

Table 6: QIs at the end of SVC+AK-MCS iterative procedure 

 

Quality indicator  RMSE [bar] NRMSE [%]  ¤¥ ¤¦ 

Final value  0.85 1.12% 0.16 0.82 

 

All the QIs values are worse than those obtained by the FMM+AK-MCS framework (see Table 5). For 

example, the RMSE and NRMSE are more than twice larger, and 7b is even 3.5 times lower, meaning that 

the accuracy of the Kriging metamodel at the end of the SVC+AK-MCS procedure is lower. Indeed, Fig. 9 

shows how the adaptive exploration framework applied in Section 4, based on FMM+AK-MCS, outperforms 

the SVC+AK-MCS procedure in terms of 7band 7c, after six iterations (i.e., with 270 simulations rather than 

300) and, for what concerns the RMSE, after one iteration (i.e., with 233 simulations rather than 300).  

  



 

 

 

 

 

 

A final consideration is in order with respect to the results obtained by the proposed methodology, in 

particular with reference to the dimensionality reduction step carried out above (Sections 3.1 and 4.1). As 

already mentioned, parameterizing, and training a metamodel becomes hard or even intractable as the 

number M of input parameters increases (in particular, when M > 20), a well-known problem often referred 

to as curse of dimensionality (see, e.g., (Verleysen and François, 2005; Lataniotis et al., 2020)); similar 

challenges arise in the presence of high-dimensional model outputs (Auder et al., 2012; Gu and Berger, 

2016). However, in the case study here considered (Section 2), the number of input variables selected by 

expert judgment is quite small (i.e., equal to 5), which allows in principle: i) the construction of a relatively 

Figure 9: QIs evolution in FMM+AK-MCS strategy compared with the QIs values at the end of SVC+AK-MCS 



 

 

small-sized DoE still able to evenly cover the entire input space; and ii) a satisfactorily accurate, precise, and 

fast (iterative) training of the kriging surrogate model (Sections 3.2 and 4.2). In light of this, the 

dimensionality reduction step may not seem essential here. However, the improved performance of the 

DBSA-based AK-MCS supported by FMMs (employing a reduced input space of size R = 2 < M = 5) with 

respect to the SVC + AK-MCS (employing the full input space of size M = 5) demonstrates the advantage of 

the dimensionality reduction also in this case (see Figure 7 and Figure 9, respectively): this is particularly 

true when the analyst needs to approximate non-smooth and multimodal distributions by metamodels and, 

then, restrict the state-space to the input parameters affecting only the output clusters connected with 

system failure (which is of interest in the present application).  

 Conclusions 

There is a growing interest in PSSs applications to increase the safety level of advanced NPPs: in this light, 

the CRs characterization of PSSs becomes of paramount importance to discover the combinations of factors 

leading them to critical conditions. The adoption of innovative computational methods, like fast-running 

surrogate metamodels coupled with adaptive sampling techniques, represents a promising way to replace 

computationally demanding models and speed up the exploration of components and systems state-spaces, 

especially for the characterization of their CRs. However, a significant issue may be represented by the 

irregularity of the state-space, e.g., in case of non-smoothness and/or multimodality of the system 

response. To this purpose, we have developed a novel adaptive exploration framework, based on FMM and 

AK-MCS, capable of tackling the state-space non-smoothness and multimodality, while searching for the 

system CRs.  

The proposed framework consists of three steps: i) “dimensionality reduction”, relying on a DBSA 

method (specifically, Hellinger distance in the present work), supported by FMMs technique to approximate 

the non-smooth and multimodal output distribution and, then, restrict the analysis only to the input 

parameters affecting the output clusters connected with system failure; 2) “Iterative metamodel training”, 

based on the AK-MCS technique for the construction of an accurate Kriging metamodel to replace the 

typically long-running system model codes and predict the system response on a space of reduced 

dimensionality. The metamodel is trained with a possibly small number (e.g., few hundreds) of time-

demanding code runs; 3) “CR representation and information retrieval”, using the Kriging metamodel 

obtained at the previous step to predict a large number of new input combinations and retrieve useful 

information about the system CRs. The CRs can be, then, visualized by exploiting high-dimensional data 

visualization techniques (specifically, scatter plots in the present work).  

The framework has been applied to the exploration of the CRs of a generic PSS of an NPP, designed for 

DHR in case of reactor shut down (due to a SBO accident, in this work) in order to provide limits for the 

system safe operation. In particular, the DHR system here considered is modelled through a time-



 

 

demanding BE-TH code (RELAP5-3D model) and the success of its operation has been analyzed with respect 

to one output of interest, i.e., the maximum value of pressure reached inside the reactor PV (3�'�).  

The analysis of the PSS CRs relative to the FC “Steam release in the containment” (i.e., 3�'� > 75.5 �u�) 

has required the application of the FMM-based exploration framework, due to the strong non-smooth and 

multimodal distribution of the pressure output. The FMMs technique has been shown capable of 

approximating 3�'� distribution by identifying three different clusters, associated to three different kinds 

of responses with respect to the failure limit of 75.5 bar. Also, the Hellinger distance method for SA has 

been exploited to select the input parameters most affecting the output cluster associated to critical 

conditions. By so doing, the analysis has been restricted to two relevant input parameters out of the five 

ones initially identified: 
���  (i.e., the delay of Activation Valve opening) and 
����� (i.e., the delay of 

Main Steam Isolation Valve closure). Then, the AK-MCS technique has allowed the adaptive construction of 

an accurate Kriging metamodel (with increased accuracy nearby the J+K,�L U 75.5 �u�) to replace the time-

demanding RELAP5-3D model on the reduced input space (two-dimensional), by resorting to a limited 

number of simulations (specifically, 300 in this work). Thanks to dimensionality reduction, the Kriging 

metamodel has managed to correctly predict the output 3�'�, despite the non-smoothness and 

multimodality of its distribution (e.g., %8 q < 0.5% when evaluated with respect to a validation set 

constructed around J+K,�L).  

A comparison with an alternative state-of-the-art approach to tackle the non-smoothness and 

multimodality of a system response (not relying on FMMs-based DBSA) has been carried out. Output 

domain regions with different behaviors have been identified and, then, both the output and input space 

have been partitioned. An SVC has been trained and coupled with the AK-MCS technique, within the 

innovative “two-stage surrogate modelling” strategy proposed in (Moustapha and Sudret 2019). First, a new 

input combination is assigned to the correct domain partition, then, the corresponding output is predicted 

to identify if it is critical or not. The results, in terms of metamodel accuracy, have been compared with 

those obtained by the FMM-based exploration framework proposed in this work, considering the same 

computational budget (i.e., same number of RELAP5-3D simulations). The strategy adopting an initial 

dimensionality reduction based on a DBSA method supported by FMMs outperformed the one relying on 

SVC. This represents a strong statement in support of dimensionality reduction techniques when dealing 

with the metamodel-based exploration of abrupt, irregular, and disconnected state-spaces. 

Also, it is worth acknowledging that the proposed framework inherits the intrinsic limitations of the 

techniques employed. Actually, if the number of parameters identified after the dimensionality reduction 

is not sufficiently low to be managed by a Kriging metamodel, which suffers high-dimensionality and 

irregular output behavior, the success of the entire framework may be compromised.  

Finally, a closing remark is due with respect to the importance and usefulness of the framework here 

developed, by discussing its possible applicability within the reliability and risk analyses traditionally 

performed for nuclear systems and components. As already said, the main objective of the proposed 



 

 

framework is to thoroughly explore, find and characterize those input configurations (i.e., combinations of 

phenomenological events and/or components failure modes and/or design parameters values) which drive 

the PSS to critical states (i.e., to fail its function). Instead, for a proper evaluation of the risk of failure of the 

PSS, we would need to assess the likelihood of such hazardous and severe configurations (which is typically 

obtained by representing the uncertainties in the PSS system behavior and modeling by probability density 

functions and propagating them through the deterministic T-H code). This is beyond the scope of the 

present study. Yet, research is envisaged to combine the FMMs- and Kriging-based iterative exploration 

framework here proposed with state-of-the-art stochastic simulation techniques for the accurate and 

precise evaluation of the PSSs functional failure probability (e.g., Importance sampling-IS, Markov Chain 

Monte Carlo-MCMC, Subset Simulation-SS, Line Sampling-LS), with emphasis on: i) abrupt, multi-modal, 

possibly disconnected system state-spaces to be probed (like the one of interest in the present article) and 

ii) those challenging cases where the size of the critical region is quite small and its location is far from the 

nominal design (Schöbi et al., 2017; Yang et al. 2018; Yang and Cheng, 2020; Yang et al., 2020; Chaudhuri 

et al. 2021; Zhao et al., 2021; Zhang et al. 2021). 
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Appendix A – Finite Mixture Models (FMMs)   

Here is provided a description of FMMs construction through the classical EM Algorithm (Figueiredo and 

Jain 2002). Let assume a set of 0 output variables M+,'-(N�� U ^Pb, … , P(`, the generic P-  is said to follow a �-

component finite mixture distributions if its PDF can be written as:  

3VP-|;W U ~ 5�3��P-�Θ��,�
��b  (7) 

where ^5�, � U 1, . . , �` are the mixing parameters or weights, Θ� are the parameters of each �-th 

component and ; U ^5b, … 5� , Θb, … , Θ�` is the complete set of mixture parameters; being probabilities, 5� must satisfy:  



 

 

~ 5� U 1.�
��b  (8) 

Considering the set of samples M+,'-(N�� , the log-likelihood corresponding to a �-component mixture is:  

log 3VM+,'-(N�� |;W U log ¬ 3VP-|;W(
-�b U ~ log ~ 5�3VP-

�
��b

(
-�b |Θ�W, (9) 

and the related ML estimate reads:  

;< U arg max;  ^ log 3VM+,'-(|;W `.    (10) 

;<  cannot be found analytically since it implies to solve a non-linear equations system. Hence, the solution 

is provided through the application of EM Algorithm which interprets M+,'-(N��  as a set of incomplete data. 

The “missing part” is represented by a set of labels, i.e.,  R U ^SVbW, … , SV(W`, associated to the P-  values 

numbered 0, where each �-th label is a binary vector, i.e.,  SV-W U ^TbV-W, … , T�V-W`, whose components are all 

zeros except for T�V-W U 1, i.e., the SV-W component associated to the �-th distribution of the mixture that has 

generated P- . Now, the complete log-likelihood for the estimation of ;<  can be written as: 

log 3VM+,'-(N�� , R|;W U ~ ~ T�V-W log± 5�3VP-|Θ�W²�
��b

(
-�b .  

(11) 

The EM Algorithm provides a sequence of estimates §;<V:W ³�:ℎ : U 0, 1, 2 … ¨ through the alternate 

realization of two steps, until some convergence criterion is satisfied:  

 E-step: given the M+,'-(N��  estimate through the current ;<V:W, and considering that log 3�M+,'-(N�� , R�;� is linear with respect to R, the conditional expectation of the log-likelihood is 

computed through the construction of the so-called 6-function by simply evaluating the conditional 

expectation, i.e., @ ≡ ± R | M+,'-(N�� , ;<V:W², and plugging it into log 3�M+,'-(N�� , R�;�: 
 6 ¶Θ, ;<V:W· ≡  ± log 3VM+,'-(N�� , R|;W | M+,'-(N�� , ;<V:W² U log 3VM+,'-(N�� , @|;W.  (12) 

 

Knowing that T�V-W
 coefficients are of binary kind, Bayes law can be expoited to calculate their 

conditional expectation:  

B�V-W ≡  ± T�V-W | M+,'-(N�� , ;<V:W² U Pr± T�V-W U 1 | P- , ;<V:W² U 5$�V:W3 ¶P-¹Θ<�V:W·∑ 5$�V:W3 ¶P-¹Θ<�V:W·���b ,  (13) 

 

where 5� and B�V-W
 are the respectivey the a priori probability and a posteriori probability, after 

observing P- , that T�V-W U 1.  

 M-step: the mixture parameters are updated, under the constraints introduced by (8), according to:  
 



 

 

;<V: + 1W U arg max;  º7 ¶Θ, ;<V:W·»  (14) 

Appendix B – Support Vector Classifiers (SVC)  

Here is provided a description of SVC construction process in case of binary classification, i.e., when only 

two classes have been identified (Moustapha et al. 2019). Let us assume %+,'-( training input combinations 

of dimension   in the form D+,'-(��* U  ^H-  z ℝ�, � U 1, … %+,'-(` and the corresponding labels M+,'-(��* U §P-��* U ℓ- U  ^−1, +1`, � U 1, … %+,'-(¨ indicating the class of each combination. SVC classification is 

carried out according to the separating hyperplane that maximizes its distance (also known as margin) from 

the closest training combinations. The separating hyperplane can be defined as: 

^H z ℝ� ∶   A½H + �`,  (15) 

where A is the vector of hyperplane coefficients and � is the bias. The perpendicular distance of any 

input combination from this hyperplane is:  

�VH-W U |A½H- + �|‖A‖  . (16) 

It turns out that maximizing the margin corresponds to the minimization of the norm of  A under some 

constraints. Therefore, determining the separating hyperplane reduces to the following optimization 

problem: 

minÁ   bc  ‖³‖c,      subject to       P-��*VA½H- + �W − 1 \ 0,      � U ^1, … %+,'-(`, (17) 

where the constraints ensure that no samples can lie inside the area covered by the margin. The 

optimization problem is convex and it can be solved by introducing the Lagrange multipliers. After some 

algebra, the final optimization problem becomes:  

minÉ    − 12 ~ ~ �-��P-��*P���*H-½H� +�ÊË�ÌÍ
��b

�ÊË�ÌÍ
-�b ~ �-

�ÊË�ÌÍ
-�b  , 

 subject to     ∑ �-P-��* U 0,    �ÊË�ÌÍ-�b �- \ 0,       � U ^1, … %+,'-(`. 

(18) 

After finding the Lagrange multipliers ̂ �-, � U 1, … %+,'-(` and the bias �, the SVC classification of a new 

configuration can be expressed in terms of training input combinations:  

P$ ��*VH-W U  ℓVH-W U ��Î0 Ï ~ �-P-H-½
�ÊË�ÌÍ

-�b H + �Ð. (19) 

In some situations the optimization problem becomes unfeasible. A new solution is provided by allowing 

misclassifications, i.e. by relaxing the inequality constraints through the introduction of the so-called slack 

terms 2-, which measures the distance of the misclassified sample from its actual class. A penalized objective 



 

 

function is obtained in which the slack terms are minimized. Two final expressions are obtained according 

to the type of penalization:  

 Linear penalization 

minÉ    − bc  ‖A‖c + 	 ∑ 2-�ÊË�ÌÍ-�b      subject to      P-��*VA½H- + �W \ 1 − 2- ,      � U ^1, … %+,'-(`. (20) 

 Quadratic penalization  

minÉ    − bc  ‖A‖c + *c ∑ 2-c�ÊË�ÌÍ-�b      subject to      P-��*VA½H- + �W \ 1 − 2- ,      � U ^1, … %+,'-(`. (21) 

In the case where the data are not linearly separable, the training combinations are mapped into a higher 

dimensional space referred to as feature space and, therefore, the construction of the optimal separating 

hyperplane is shifted to this new space. A new classification formula is given by the sign of the following 

expression:  

A½ΦVHW + � U  ~ �-P-ÑÒÓΦVHÔW½ΦVHW + ��ÊË�ÌÍ
-�b ,  (22) 

where ΦV•W is the mapping function and hence the components of H in the feature space are VΦbVHW, … Φ�VHWW. The expression in equation (22) shows how, if one is able to calculate the inner product 

of the two vector images in the feature space, i.e., ΦVHÔW½ΦVHW, no further cumbersome operations need 

to be carried out in that space. This operation is named “kernel trick” since it is conducted thanks to kernel 

functions. Several examples of kernel functions are available in literature (e.g., Polynomial, Gaussian, 

Exponential etc.). Once the kernel function � has been chosen, the final classification reads:  

P$ ��*VH-W U ℓVH-W U ��Î0 Ï ~ �-P-  ���VHÔ, HW + ��ÊË�ÌÍ
-�b Ð.  (23) 

References 

 

Akaike, H. (1974): A New Look at the Statistical Model Identification. In IEEE Trans. Automat. Contr. 19 (6), 

pp. 716–723. DOI: 10.1109/TAC.1974.1100705. 

Allen, D (1971). The prediction sum of squares as a criterion for selecting prediction variables. Technical 

Report 23, Department of Statistics, University of Kentucky. 



 

 

Archer, G. E. B.; Saltelli, A.; Sobol, I. M. (1997): Sensitivity measures, anova-like Techniques and the use of 

bootstrap. In Journal of Statistical Computation and Simulation 58 (2), pp. 99–120. DOI: 

10.1080/00949659708811825. 

Auder, B., De Crecy, A., Iooss, B., Marques, M. (2012). Screening and metamodeling of computer 

experiments with functional outputs. Application to thermal-hydraulic computations. Reliability 

Engineering and System Safety 107, 122-131. 

Baraldi, P., Pedroni, N., Zio, E. (2009). Application of a Niched Pareto Genetic Algorithm for Selecting 

Features for Nuclear Transients Classification, International Journal of Intelligent Systems, Volume 24, 

Issue 2, pp. 118-151, DOI: 10.1002/int.20328. 

Basudhar, Anirban; Missoum, Samy; Harrison Sanchez, Antonio (2008): Limit state function identification 

using Support Vector Machines for discontinuous responses and disjoint failure domains. In Probabilistic 

Engineering Mechanics 23 (1), pp. 1–11. DOI: 10.1016/j.probengmech.2007.08.004. 

Benkedjouh, T., Medjaher, K., Zerhouni, N., Rechak, S. (2013). Remaining useful life estimation based on 

nonlinear feature reduction and support vector regression, Eng. Appl Artif. Intell. 26, 1751–1760. 

http://dx.doi.org/10.1016/j.engappai.2013.02.006. 

Bichon, B. J., Eldred, M. S., Swiler, L. P., Mahadevan, S., & McFarland, J. M. (2008). Efficient global 

reliability analysis for nonlinear implicit performance functions. AIAA Journal, 46(10), 2459-2468. 

doi:10.2514/1.34321. 

Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A. (2015) Recent advances and emerging 

challenges of feature selection in the context of big data, Knowl.-Based Syst. 86, 33–45. 

http://dx.doi.org/10.1016/j.knosys.2015.05.014. 

Borgonovo, E. (2007): A new uncertainty importance measure. In Reliability Engineering & System Safety 

92 (6), pp. 771–784. DOI: 10.1016/j.ress.2006.04.015. 

Borgonovo, E.; Castaings, W.; Tarantola, S. (2012): Model emulation and moment-independent sensitivity 

analysis: An application to environmental modelling. In Environmental Modelling & Software 34, pp. 105–

115. DOI: 10.1016/j.envsoft.2011.06.006. 

Borgonovo, Emanuele; Plischke, Elmar (2016): Sensitivity analysis: A review of recent advances. In 

European Journal of Operational Research 248 (3), pp. 869–887. DOI: 10.1016/j.ejor.2015.06.032. 

Boroson, Ethan; Missoum, Samy (2017): Stochastic optimization of nonlinear energy sinks. In Struct 

Multidisc Optim 55 (2), pp. 633–646. DOI: 10.1007/s00158-016-1526-y. 

Cadini, F.; Santos, F.; Zio, E. (2014): An improved adaptive kriging-based importance technique for 

sampling multiple failure regions of low probability. In Reliability Engineering & System Safety 131, 

pp. 109–117. DOI: 10.1016/j.ress.2014.06.023. 



 

 

Carlos, S.; Sánchez, A.; Ginestar, D.; Martorell, S. (2013): Using finite mixture models in thermal-hydraulics 

system code uncertainty analysis. In Nuclear Engineering and Design 262, pp. 306–318. DOI: 

10.1016/j.nucengdes.2013.04.030. 

Chaudhuri, A., Marques, A.N., Willcox, K. (2021): mfEGRA: Multifidelity efficient global reliability analysis 

through active learning for failure boundary location. Structural and Multidisciplinary Optimization, 

https://doi.org/10.1007/s00158-021-02892-5. 

Cox DD, John S. (1997) SDO: a statistical method for global optimization. In: Alexandrov MN, Hussaini MY, 

editors. Multidisciplinary design optimization: state-of-the-art. Philadelphia: Siam; 1997. p. 315–29. 

Constantine, P.G. (2015). Active Subspaces: Emerging Ideas for Dimension Reduction in Parameter 

Studies. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (USA), ISBN: 978-1-61197-

385-3. 

Dempster, A. P.; Laird, N. M.; Rubin, D. B. (1977): Maximum Likelihood from Incomplete Data via the EM 

Algorithm. 

Di Maio, Francesco; Nicola, Giancarlo; Zio, Enrico; Yu, Yu (2014): Ensemble-based sensitivity analysis of a 

Best Estimate Thermal Hydraulics model: Application to a Passive Containment Cooling System of an 

AP1000 Nuclear Power Plant. In Annals of Nuclear Energy 73, pp. 200–210. DOI: 

10.1016/j.anucene.2014.06.043. 

Di Maio, Francesco; Nicola, Giancarlo; Zio, Enrico; Yu, Yu (2015): Finite mixture models for sensitivity 

analysis of thermal hydraulic codes for passive safety systems analysis. In Nuclear Engineering and Design 

289, pp. 144–154. DOI: 10.1016/j.nucengdes.2015.04.035. 

Dubourg, V., Sudret, B., & Deheeger, F. (2013). Metamodel-based importance sampling for structural 

reliability analysis. Probabilistic Engineering Mechanics, 33, 47-57. 

doi:http://dx.doi.org/10.1016/j.probengmech.2013.02.002. 

Dy, J.G.; Brodley, C.E. (2004) Feature selection for unsupervised learning, J. Mach. Learn Res 5, 845–889. 

Echard, B.; Gayton, N.; Lemaire, M. (2011): AK-MCS: An active learning reliability method combining 

Kriging and Monte Carlo Simulation. In Structural Safety 33 (2), pp. 145–154. DOI: 

10.1016/j.strusafe.2011.01.002. 

Echard B, Gayton N, Lemaire M, Relun, N (2013) A combined importance sampling and kriging reliability 

method for small failure probabilities with time-demanding numerical models. Reliab Eng Syst Saf 111: 

232–240. 

Erdal, D., Cirpka, O.A. (2019). Global sensitivity analysis and adaptive stochastic sampling of a subsurface-

flow model using active subspaces. Hydrol. Earth Syst. Sci., 23, 3787–3805, https://doi.org/10.5194/hess-

23-3787-2019. 



 

 

Fauriat W, Gayton N (2014) AK-SYS: an adaptation of the AK-MCS method for system reliability. Reliab Eng 

Syst Saf 123:137–144. 

Figueiredo, M.A.T.; Jain, A. K. (2002): Unsupervised learning of finite mixture models. In IEEE Trans. 

Pattern Anal. Mach. Intell. 24 (3), pp. 381–396. DOI: 10.1109/34.990138. 

Fodor, I. K. (2002). A Survey of Dimension Reduction Techniques. Center for Applied Scientific Computing, 

Lawrence Livermore National Laboratory, 9, 1-18. 

Gibbs, Alison; Su, Francis Edward (2002): On Choosing and Bounding Probability Metrics. 

Gu, M. and Berger, J.O. (2016): Parallel Partial Gaussian Process Emulation for Computer Models with 

Massive Output, Annals Appl. Stat, 10(3):1317-1347. 

Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of machine 

learning research, 3(Mar), 1157-1182.  

Guyon, I., & Elisseeff, A. (2006). An Introduction to Feature Extraction. In I. Guyon, M. Nikravesh, S. Gunn, 

& L. A. Zadeh (Eds.), Feature Extraction: Foundations and Applications (pp. 1-25). Berlin, Heidelberg: 

Springer Berlin Heidelberg. 

Herer, C.; Dimitrov, B.; Evrard, J. M.; Lejosne, A.; Wattelle, E. (2019): IRSN Activities related to Passive 

Safety Systems Assessment. In : ICAPP 2019 - International Congress on Advances in Nuclear Power Plants. 

Higdon D, Geelhood K, Williams B, Unal C. (2013). Calibration of tuning parameters in the FRAPCON 

model. Ann Nucl Energy;52:95–102. https://doi.org/10.1016/j.anucene.2012.06.018. 

Hrinda, G. A. (2010): Snap-through instability patterns in truss structures. In : Proceedings of the 51st 

AIAA/ASME/ASCE/AHS/ASC Dynamics, and Material Conference. 

Holden AJ, Robbins DJ, Stewart WJ, Smith DR, Schultz S, Wegener M, et al. (2006). Reducing the 

Dimensionality of Data with Neural Networks; 313:504–7. 

Hu, Y., Baraldi, P., Di Maio, F., Zio, E. (2017). A Systematic Semi-Supervised Self-adaptable Fault 

Diagnostics approach in an evolving environment. Mechanical Systems and Signal Processing 88, 413–427. 

Huang, X.; Chen, J.; Zhu, H. (2016). Assessing small failure probabilities by AK–SS: An active learning 

method combining Kriging and Subset Simulation, Struct. Saf. 59, 86–95. 

Inselberg, Alfred (2009): Parallel Coordinates. Visual Multidimensional Geometry and its Application: 

Springer International Publishing. 

Iooss, Bertrand (2009): Numerical Study of the Metamodel Validation Process, 2009. 

Jin, R.; Chen, W.; Simpson, T. W. (2001): Comparative studies of metamodelling techniques under multiple 

modelling criteria 2001. 



 

 

Jolliffe, I.T., 2002. Principal Component Analysis, 2nd ed. Springer-Verlag New York. 

Kasarapu, Parthan; Allison, Lloyd (2015): Minimum message length estimation of mixtures of multivariate 

Gaussian and von Mises-Fisher distributions. In Mach Learn 100 (2-3), pp. 333–378. DOI: 10.1007/s10994-

015-5493-0. 

Kleijnen, Jack P.C. (2009): Kriging metamodeling in simulation: A review. In European Journal of 

Operational Research 192 (3), pp. 707–716. DOI: 10.1016/j.ejor.2007.10.013. 

Lanfredini, M.; Bersano, A.; D'Auria, F. (2020): A Demonstrative Application of a Methodology for Thermal-

Hydraulics Passive Systems Reliability Assessment - Extreme Cases Analysis. In : Proceedings of the 30th 

European Safety and Reliability Conference and the 15th Probabilistic Safety Assessment and 

Management Conference, 2020. 

Lataniotis, C.; Marelli, S.; Sudret, B. (2020): Extending classical surrogate modelling to high dimensions 

through supervised dimensionality reduction: a data-driven approach. International Journal for 

Uncertainty Quantification, Volume 10, Issue 1, pp. 55-82; DOI: 

10.1615/Int.J.UncertaintyQuantification.2020031935. 

Lataniotis, C.; Wicaksono, D.; Marelli, S.; Sudret, B. (2019): UQLab user manual – Kriging (Gaussian process 

modeling). Report # UQLab-V1.3-105, Chair of Risk, Safety and Uncertainty Quantification, ETH Zurich, 

Switzerland 2019. 

Law, M.H.C.; Figueiredo, M.A.T.; Jain, A. K. (2004): Simultaneous feature selection and clustering using 

mixture models. In IEEE Trans. Pattern Anal. Machine Intell. 26 (9), pp. 1154–1166. DOI: 

10.1109/TPAMI.2004.71. 

Lelièvre, N.; Beaurepaire, P.; Mattrand, C.; Gayton, N. (2018) AK-MCSi: A Kriging-based method to deal 

with small failure probabilities and time-consuming models, Struct. Saf. 73, 1–11. 

Liu, H., & Motoda, H. (2012). Feature selection for knowledge discovery and data mining (Vol. 454): 

Springer Science & Business Media. 

Loeppky, Jason L.; Moore, Leslie M.; Williams, Brian J. (2010): Batch sequential designs for computer 

experiments. In Journal of Statistical Planning and Inference 140 (6), pp. 1452–1464. DOI: 

10.1016/j.jspi.2009.12.004. 

Lu, Z.Y.; Lu, Z.Z.; Wang, P. (2015). A new learning function for Kriging and its applications to solve reliability 

problems in engineering, Comput. Math. Appl. 70, 1182–1197. 

Marelli, Stefano; Sudret, Bruno (2014): UQLab: A Framework for Uncertainty Quantification in Matlab. In : 

2nd International Conference on Vulnerability, Risk Analysis and Management (ICVRAM), Liverpool, United 

Kingdom, 2014. 



 

 

Martin, Jay D.; Simpson, Timothy W. (2005): Use of Kriging Models to Approximate Deterministic 

Computer Models. In AIAA Journal 43 (4), pp. 853–863. DOI: 10.2514/1.8650. 

McKay, M. D.; Beckham, R. J.; Conover, W. J. (1979): A Comparison of Three Methods for Selecting Values 

of Input Variables in the Analysis of Output from a Computer Code 1979. 

Missoum, S.; Gürdal, Z.; Gu, W. (2002): Optimization of nonlinear trusses using a displacement-based 

approach. In Struct Multidisc Optim 23 (3), pp. 214–221. DOI: 10.1007/s00158-002-0179-1. 

Monisha R, Mrinalini R, Britto MN, Ramakrishnan R, Rajinikanth V. (2019). Smart Intelligent Computing 

and Applications. vol. 104. https://doi.org/10.1007/978-981-13-1921-1. 

Moustapha, M.; Lataniotis, C.; Marelli, S.; Sudret, B. (2019): UQLab user manual – Support vector 

machines for classification. Report # UQLab-V1.3-112, Chair of Risk, Safety and Uncertainty Quantification, 

ETH Zurich, Switzerland. 

Moustapha, Maliki; Sudret, Bruno (2019): A Two-stage Surrogate Modeling Approach for the 

Approximation of Models with Non-smooth Outputs. In : UNCECOMP 2019 - 3rd ECCOMAS Thematic 

Conference on Uncertainty Quantification in Computational Science and Engineering, pp. 357–366. 

Nagel JB, Rieckermann J, Sudret B (2020). Principal component analysis and sparse polynomial chaos 

expansions for global sensitivity analysis and model calibration: Application to urban drainage simulation. 

Reliab Eng Syst Saf;195:106737. https://doi.org/10.1016/j.ress.2019.106737. 

Nossent, Jiri; Elsen, Pieter; Bauwens, Willy (2011): Sobol’ sensitivity analysis of a complex environmental 

model. In Environmental Modelling & Software 26 (12), pp. 1515–1525. DOI: 

10.1016/j.envsoft.2011.08.010. 

Olvier, Jonathan; Baxter, Rohan; Wallace, Chris (1996): Unsupervised Learning using MML. 

Pedroni, Nicola; Zio, Enrico (2017): An Adaptive Metamodel-Based Subset Importance Sampling approach 

for the assessment of the functional failure probability of a thermal-hydraulic passive system. Applied 

Mathematical Modelling 48, pp. 269-288. 

Picheny, Victor; Ginsbourger, David; Routsant, Olivier; Haftka, Raphael T.; Kim, Nam-Ho (2010): Adaptive 

Designs of Experiments for Accurate Approximation of a Target Region of target region 2010. 

Pierro, Franco; Araneo, Dino; Galassi, Giorgio; D'Auria, Francesco (2009): Application of REPAS 

Methodology to Assess the Reliability of Passive Safety Systems. In Science and Technology of Nuclear 

Installations 2009, pp. 1–18. DOI: 10.1155/2009/768947. 

Puppo, L., Pedroni, N., Bersano, A., Di Maio, F., Bertani, C., Zio, E. (2021). Failure identification in a nuclear 

passive safety system by Monte Carlo simulation with adaptive Kriging. Nuclear Engineering and Design, 

Volume 380, 111308. 



 

 

Razaaly N, Congedo, PM (2018) Novel algorithm using active metamodel learning and importance 

sampling: application to multiple failure regions of low probability. J Comput Phys 368:92–114 

Razavi, Saman; Gupta, Hoshin V. (2015): What do we mean by sensitivity analysis? The need for 

comprehensive characterization of “global” sensitivity in Earth and Environmental systems models. In 

Water Resour. Res. 51 (5), pp. 3070–3092. DOI: 10.1002/2014WR016527. 

Roma, G., Di Maio, F., Bersano, A., Pedroni, N., Bertani, C., Mascari, F., Zio, E. (2021). A Bayesian 

framework of inverse uncertainty quantification with principal component analysis and Kriging for the 

reliability analysis of passive safety systems. Nuclear Engineering and Design, Volume 379, 111230. DOI: 

https://doi.org/10.1016/j.nucengdes.2021.111230. 

Saeys, Y., Inza, I., Larrañaga, P. (2007). A review of feature selection techniques in bioinformatics, 

Bioinformatics 23, 2507–2517. http://dx.doi.org/10.1093/bioinformatics/btm344. 

Saltelli, A.; Andres, H.; Homma, T. (1993): Sensitivity Analysis of Model Output. An Investigation of New 

Techniques. 

Saltelli, A.; Marivoet, J. (1990): Non-parametric statistics in sensitivity analysis for model output: A 

comparison of selected techniques. In Reliability Engineering and System Safety. 

Saltelli, A.; Sobol, I. M. (1995): About the use of rank transformation in sensitivity analysis of model 

output. 

Saltelli, Andrea; Annoni, Paola; Azzini, Ivano; Campolongo, Francesca; Ratto, Marco; Tarantola, Stefano 

(2010): Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity 

index. In Computer Physics Communications 181 (2), pp. 259–270. DOI: 10.1016/j.cpc.2009.09.018. 

Saltelli, Andrea; Ratto, Marco; Andres, Terry; Campolongo, Francesca; Cariboni, Jessica; Gatelli, Debora et 

al. (2008): Global Sensitiviy Analysis. The Primer: John Wiley & Sons. 

Schöbi, R., Sudret, B., & Marelli, S. (2017). Rare Event Estimation Using Polynomial-Chaos Kriging. ASCE-

ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 3(2), D4016002. 

Schwarts, Gideon (1978): Estimating the Dimension of a Model. 

Sedlmair, M.; Munzner, T.; Tory, M. (2013): Empirical Guidance on Scatterplot and Dimension Reduction 

Technique Choices. 

Statovic (2020): Flexible mixture models for automatic clustering. Available online at 

https://it.mathworks.com/matlabcentral/fileexchange/72310-flexible-mixture-models-for-automatic-

clustering. 

Sudret, Bruno (2008): Global sensitivity analysis using polynomial chaos expansions. In Reliability 

Engineering & System Safety 93 (7), pp. 964–979. DOI: 10.1016/j.ress.2007.04.002. 



 

 

Tong, C.; Sun, Z.; Zhao, Q.; Wang, Q.; Wang, S. (2015) A hybrid algorithm for reliability analysis combining 

Kriging and subset simulation importance sampling, J. Mech. Sci. Technol. 29, 3183–3193. 

Turati, Pietro; Cammi, Antonio; Lorenzi, Stefano; Pedroni, Nicola; Zio, Enrico (2018a): Adaptive simulation 

for failure identification in the Advanced Lead Fast Reactor European Demonstrator. In Progress in Nuclear 

Energy 103, pp. 176–190. DOI: 10.1016/j.pnucene.2017.11.013. 

Turati, Pietro; Pedroni, Nicola; Zio, Enrico (2017): Simulation-based exploration of high-dimensional 

system models for identifying unexpected events. In Reliability Engineering & System Safety 165, pp. 317–

330. DOI: 10.1016/j.ress.2017.04.004. 

Turati, Pietro; Pedroni, Nicola; Zio, Enrico (2018b): Knowledge-driven System Simulation for Scenario 

Analysis in Risk Assessment. In: T. Aven, E. Zio (Eds.), Knowledge in Risk Assessment and Management, 

First Edition, pp. 165-220, John Wiley & Sons Ltd, 2018. 

Vapnik, Vladimir; Cortes, Corinna (1995): Support-Vector Networks. 

Verikas, A., Bacauskiene, M., (2002). Feature selection with neural networks, Pattern Recognit. Lett. 23, 

1323–1335. http://dx.doi.org/10.1016/S0167-8655(02)00081-8. 

Verleysen, M. and D. François (2005). The curse of dimensionality in data mining and time series 

prediction. In J. Cabestany, A. Prieto, and F. Sandoval (Eds.), Computational Intelligence and Bioinspired 

Systems, Volume 3512 of Lecture Notes in Computer Science, pp. 758–770. Springer Berlin Heidelberg 

Wallace, C. S.; Boulton, D. M. (1968): An Information Measure for Classification. 

Wang Y, Yao H, Zhao S (2016). Auto-encoder based dimensionality reduction. Neurocomputing; 184:232–

42. https://doi.org/10.1016/j.neucom.2015.08.104. 

Wu, Xu; Kozlowski, Tomasz; Meidani, Hadi; Shirvan, Koroush (2018): Inverse uncertainty quantification 

using the modular Bayesian approach based on Gaussian process, Part 1: Theory. In Nuclear Engineering 

and Design 335, pp. 339–355. DOI: 10.1016/j.nucengdes.2018.06.004. 

Xiao, Ning-Cong; Zuo, Ming J.; Zhou, Chengning (2018): A new adaptive sequential sampling method to 

construct surrogate models for efficient reliability analysis. In Reliability Engineering & System Safety 169, 

pp. 330–338. DOI: 10.1016/j.ress.2017.09.008. 

Yang X, Liu Y,Mi C et al (2018) Active learning Kriging model combining with kernel-density-estimation-

based importance sampling method for the estimation of low failure probability. J Mech Des 140:051402 

Yang, Xufeng; Cheng, Xin (2020): Active learning method combining Kriging model and multimodal-

optimization-based importance sampling for the estimation of small failure probability. In International 

Journal for Numerical Methods in Engineering 121 (21), pp. 4843-4864. Doi: 10.1002/nme.6495. 



 

 

Yang, Xufeng; Cheng, Xin; Wang, Tai; Mi, Caiying (2020): System reliability analysis with small failure 

probability based on active learning Kriging model and multimodal adaptive importance sampling. In 

Structural and Multidisciplinary Optimization 62, pp. 581–596. 

Zhao, H., Gao, Z., Xu, F., Xia, L. (2021): Adaptive multi-fidelity sparse polynomial chaos-Kriging 

metamodeling for global approximation of aerodynamic data. Structural and Multidisciplinary 

Optimization, https://doi.org/10.1007/s00158-021-02895-2. 

Zhang, Z., Chen, H., Xu, Y., Zhong, J., Lu, N., Chen, S. (2015). Multisensor-based real-time quality 

monitoring by means of feature extraction, selection and modeling for Al alloy in arc welding, Mech. Syst. 

Signal Process 60–61, 151–165. http://dx.doi.org/10.1016/j.ymssp.2014.12.021. 

Zhang, X., Lu, Z., Cheng, K. (2021): AK-DS: An adaptive Kriging-based directional sampling method for 

reliability analysis. Mechanical Systems and Signal Processing 156, 107610. 

Zio, Enrico; Apostolakis, George E., Pedroni, Nicola (2010). Quantitative functional failure analysis of a 

thermal-hydraulic passive system by means of bootstrapped Artificial Neural Networks. Annals of Nuclear 

Energy 37(5), pp. 639-649. 

Zio, Enrico; Pedroni, Nicola (2009). Functional failure analysis of a thermal-hydraulic passive system by 

means of Line Sampling. Reliability Engineering and System Safety 94(11), pp. 1764-1781. 

Zio, Enrico; Pedroni, Nicola (2011). How to effectively compute the reliability of a thermal-hydraulic 

nuclear passive system. Nuclear Engineering and Design 241(1), pp. 310-327. 

 

 


