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1  

Abstract— The evolution of smartphone technology has made 
their use more common in dermatological applications. Here we 
studied the feasibility of using an inexpensive smartphone 
microscope for the extraction of dermatological parameters and 
compared the results obtained with a portable dermoscope, 
commonly used in clinical practice. Forty-two skin lesions were 
imaged with both devices and visually analyzed by an expert 
dermatologist. The presence of a reticular pattern was observed 
in 22 dermoscopic images, but only in 10 smartphone images. 
The proposed paradigm segments the image and extracts texture 
features which are used to train and validate a neural network 
to classify the presence of a reticular pattern. Using 5-fold cross-
validation, an accuracy of 100% and 95% was obtained with the 
dermoscopic and smartphone images, respectively. This 
approach can be useful for general practitioners and as a triage 
tool for skin lesion analysis. 
 

I. INTRODUCTION 

Skin cancer incidence is increasing among fair-skinned 
individuals worldwide [1]. Teledermatology is the practice of 
sending digital images of skin lesions with relevant clinical 
information to a dermatologist for their opinion, and 
promising results in terms of diagnostic accuracy have been 
shown [2]. The technological development in smartphones 
has also led to an increase of their use in medical applications 
[2], [3]. 

 Numerous studies in literature have faced the issue of the 
digital analysis of dermatological images [4]. Recently, a 
dermatologist-level classification of skin cancer was obtained 
using deep neural networks [5], showing the high level of 
accuracy that can be achieved with the same networks. 
Numerous smartphone apps exist for melanoma detection, but 
they rely only on the smartphone camera and studies have 
shown how these applications are inferior to in-person 
consultations and can have a high rate of incorrect melanoma 
classification [6]. Studies have also been done using 
dermoscopes coupled with smartphones [7], but the device is 
costly (~$900). Recently, an inexpensive derma-specific 

 
 

microscope was proposed by the South Korean company 
Nurugo (Nurugo Derma, NurugoTM, cost: ~$50).  
The images acquired with the Nurugo Derma can provide 
high resolution images and can possibly allow the extraction 
of important dermatological features. 

Dermatologists typically rely on global or peculiar 
features for the differentiation between benign melanocytic 
lesions and melanoma. Among important global features is 
the presence of a reticular pattern with a symmetric 
distribution, which can be defined as a pigment network 
covering most parts of the nevus [3]. If just a reticular pattern 
with a symmetric distribution is observed, the lesion is more 
likely diagnosed as a melanocytic nevus, whereas if the 
reticular pattern is observed without symmetry and in 
combination with two or more other patterns or vessels or 
veil, the lesion is more likely diagnosed as melanoma [3]. 

The analysis of texture features has been used in many 
applications [8], and specifically in dermatology [9]. The main 
objective of this study is to compare the extraction of 
dermatological parameters (i.e., reticular pattern presence), 
from melanocytic lesions using a portable dermoscope and the 
Nurugo Derma, as a proof of concept. In particular, we show 
it is possible to determine the presence of a reticular pattern 
that is not observed with the naked eye, using smartphone-
acquired images, texture features, and neural networks. 

 

II. MATERIALS AND METHODS 

A. Image database 
Forty-two cutaneous nevi were imaged with both a portable 

dermoscope (HEINE DELTA®20 T, Heine Optotechnik, 
Herrsching, Germany) and the Nurugo Derma (NurugoTM), 
making a total of 84 acquired images. The study was approved 
by the local ethics committee. 

 The dermoscopic images had a calibration factor equal to 
0.012 mm/pixel (image size: 1704 x 2272 pixel2). The Nurugo 
Derma images were acquired using an iPhone 6s, and the 
calibration factor was equal to 0.0047 mm/pixel (image size: 
4032 x 3024 pixel2). 

 An expert dermatologist (F.V.) with over 10 years of 
experience manually segmented the nevi in all images and 
annotated if the presence of a reticular pattern was visually 
observable or not. Fig. 1 shows examples of the images used. 
A reticular pattern was visually observed in 22 dermoscopic  
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images (52%), whereas in the Nurugo Derma images, it was 
visually observed in only 10 images (24%). A reticular pattern 
was never observed in the smartphone-acquired images when 
not observed in the dermoscopic images. 

  

B. Automatic algorithm architecture 
Image preprocessing and segmentation:  

The first step of our automatic algorithm paradigm is the 
segmentation of the nevi within the image. In order to do so, 
some preprocessing steps were first done on both the 
dermoscopy and smartphone images (Fig. 2A and 2E). 

 First of all, since the smartphone-acquired images present 
artifacts due to illumination, they were first pre-processed to 
remove any glare that may be present on the image due to the 
smartphone flash. To do so, an adaptive thresholding 
technique was done on the image in order to obtain a mask 
that defines the glare pixels. The image was then interpolated 
with neighborhood pixel values to remove the glare. 
Secondly, a hair removal technique using Gabor filters was 
employed for both the dermoscopy and Nurugo Derma 
images so as to remove these features which can modify the 
texture feature calculation (Fig. 2B and 2F). 

 Subsequently, both dermoscopic and Nurugo Derma 
images were automatically segmented using the same 
technique. First the image was converted to the LAB color 

space and to gray scale, Igray, by intersecting the color planes: 
𝐼"#$% = (𝑎 + 𝑏) − 𝐿. Then, the grayscale image was low-pass 
filtered (average filter, 0.18mm x 0.18mm) and the contrast 
was enhanced (Fig. 2C and 2G). Finally, a k-means algorithm 
with two classes was employed to obtain the final 
segmentation (Fig. 2D and 2H). 

Texture feature extraction:  

After automatic segmentation, our paradigm extracts 
texture features from within the segmented region-of-interest 
(ROI) of the preprocessed image on the three color layers (i.e., 
red, green and blue layers) and on the grayscale image. The 
parameters were computed by custom developed software in 
MATLAB (The MathWorks, Natick, MA, USA). 

First-order statistical descriptors 

Five features that are based on first-order statistics were 
extracted from the ROI: pixel intensity mean, variance, 
skewness, kurtosis and entropy. These features depend on the 
single gray level of the pixel (Table 1). 

Haralick and Galloway descriptors 

Haralick’s features are based on the calculation of the gray 
level co-occurrence matrix (GLCM) [10], which measures the 
number of times a specific intensity pattern between adjacent 
pixels is repeated. Since adjacency can be measured in four 
principal directions, the GLCM is computed using four 
angles: 0°, 45°, 90° and 135°. The Haralick features 
mathematically describe the GLCM through the calculation 
of the features reported in Table 1.  

 The  Galloway features are based on the run length matrix 
(RLM) R, where each element R(i,j) corresponds to the 
number of pixels with run length j and intensity i in a given 
direction [11]. The Galloway features are mathematical 
descriptors of the runs of the RLM (Table 1). These features 
are also directional, so they are computed using the same 4 
angles (0°, 45°, 90°, and 135°).  

Since both the Haralick and Galloway features are 
computed for four directions, a total of 40 of these descriptors 
are extracted for each ROI. 

 
Figure 1. Example of images used. First column: dermoscopic images; 
second column: Nurugo Derma images. First row (A, B): example of reticular 
pattern visible in both images. Second row (C, D): example of reticular 
pattern not visible in either image. Last row (E, F): example reticular pattern 
visible in dermoscopic image (E) but not in Nurugo image (F). 
 

 
Figure 2. Summary of segmentation method. First row: dermoscopic 
image, second row: Nurugo Derma image. (A,E): Original images. (B,F): 
Preprocessed images. (C,G): LAB grayscale filtered and contrast-
enhanced images. (D,H): Final segmentation. The manual segmentation 
is shown in the dotted black line, whereas the automatic segmentation is 
shown with the solid green line.   
 



 

 

 

Reticular pattern classification:  

There were a total of 180 features for each image: 5 first-
order and 40 Haralick and Galloway descriptors, which were 
calculated on 4 images (i.e., red, green, blue layers and 
grayscale image). Due to the limited data in our current 
database and the large number of features that were 
calculated, feature selection was first employed to help reduce 
the problem of overfitting of the model. Therefore, collinear 
variables were removed by the Belsley collinearity 
diagnostics technique [12]. 

The remaining features were then used to train and test a 
neural network (NN) using 5-fold cross-validation. Since we 
are interested in determining if the reticular pattern can be 
extracted from the images acquired with an inexpensive 
smartphone microscope even when visually not observed, the 
visual reticular pattern presence or absence of the 
dermoscopic images was taken to be the output class for both 
NNs. Then, two different NNs were used, one for the images 

acquired with the clinical dermoscope and one for the Nurugo 
Derma-acquired images. The same test and train cross-
validation folds were used for the two NNs. Several network 
configurations were tested, varying the network parameters 
(#units, #layers, activation functions and learning rate) and, 
for each configuration, the train and test set errors for each 
fold were evaluated. The optimal neural network was chosen 
in two steps: first, the networks that had a classification error 
standard deviation over the 5 folds below 0.10 for both train 
and test sets were selected. Among these, the network that 
gave forth the highest classification accuracy was selected as 
the final NN configuration. 

Performance validation:  

To validate the segmentation, the automatic segmentation 
mask was compared to the manually segmented mask and the 
precision, recall, and Dice coefficient were calculated. 

 On the other hand, the quality of the reticular pattern 
presence classification was evaluated by calculating the 
average confusion matrix of the final classification obtained 
over the 5-fold cross-validation. 

 

III. RESULTS 

 

A. Segmentation results 
All 84 images were correctly processed. The dermoscopic 

image segmentation showed a final precision, recall, and Dice 
coefficient equal to 91%, 89%, and 90%, respectively. On the 
other hand, the images acquired with a smartphone and the 
Nurugo Derma had final performance values equal to 92%, 
85%, and 88%, respectively. 

B.  Texture and classification results 
After removing the collinear variables, there was a total of 

38 final features employed for the dermoscopic images (mR, 
E1R, SkR, KtR, Icon0R, Icor0R, IEntr0R, Ihmb0R, Icon45R, Icor45R, IEntr45R, 
Ihmb45R, Isym90R, Icon90R, Icor90R, IEntr90R, Icon135R, Ihmb135R, SRE0R, 
LRE0R, GLNU0R, RLNU0R, RP0R, SRE45R, LRE45R, RLNU45R, 
SRE90R, LRE90R, GLNU90R, RLNU90R, RP90R, SRE135R, 
LRE135R, E1G, 𝜎/0, E1B, SkB, E1gray).  

For the Nurugo Derma images, on the other hand, a final 
number of 32 features were used (𝜎/1, SkR, KtR, Isym0R, Icor0R, 
IEntr0R, Ihmb0R , Isym45R, Icor45R, Ihmb45R, Icon90R, Icor90R, Isym135R, 
Icon135R, IEntr135R, SRE0R, LRE0R, RLNU0R, SRE45R, GLNU45R, 
RLNU45R, SRE90R, LRE90R, GLNU90R, RLNU90R, RP90R, 
SRE135R, LRE135R, E1B, SkB, KtB, Icon45B). 

The architectures for the final neural networks employed 
for the reticular pattern presence classification are shown in 
Fig. 3A and 3B. The trained NN obtained a 100% accuracy 
rate in all 5 cross-validations folds for both the train and the 
test set when considering the dermoscopic images. For the 
Nurugo Derma images, the final average accuracy for the 
training set was equal to 95 ± 2%., whereas for the test set the 
average accuracy was equal to 95 ± 6%. 

 

Table 1. Mathematical description of texture features 
Feature name Mathematical description 

Mean (m) 𝑚 =3 3
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Galloway gray-level non-
uniformity (GLNU) 𝐺𝐿𝑁𝑈 =
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Galloway run length non-
uniformity (RLNU) 𝑅𝐿𝑁𝑈 =
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Galloway run percentage 
(RP) 𝑅𝑃 =
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I(x,y) denotes the input ROI. Nl is the number of gray levels, hist is the 
normalized histogram counts. 𝜎>, 𝜎%, 𝜇%, 𝜇% are the standard deviations and 
means of 𝑃>, 𝑃%, the marginal probability density functions. 𝑝>(𝑖) =
𝑖Gbentry in the marginal-probability matrix obtained by summing the rows 
of 𝑃(𝑖, 𝑗). Ng represents the number of gray values in the image (i.e., the 
numberof rows of R). Nr represents the number of runs (i.e., the number of 
columns of R). 
 



 

 

 

IV. DISCUSSION AND CONCLUSIONS 

This work has shown that the proposed approach can 
effectively segment and extract texture parameters from 
dermoscopic and Nurugo Derma smartphone-acquired images 
and subsequently classify the presence or absence of a reticular 
pattern. Specifically, it can be appreciated how the deep 
learning technique is able to correctly classify 100% of the 
dermoscopic images in each cross-validation fold. This result 
can be expected since the reticular pattern was able to be 
visually appreciated in the images, confirming how the NN 
was able to correctly learn which features reflect the reticular 
pattern presence. More importantly, however, the deep 
learning approach was able to reach a very high accuracy 
(95%) also with the Nurugo Derma images, in which a 
reticular pattern was visually appreciated only in 45% (10/22) 
of the images that actually presented a reticular pattern. This 
shows how the extracted texture features coupled with an 
effectively trained NN can extract information from the image 
that is unable to be appreciated by the naked eye. In fact, the 
extracted texture features, which present a majority of red layer 
features, are able to effectively describe neighboring pixel 
patterns relevant to the reticular pattern.  

 The study proposed here is to be considered as a proof-
of-concept, demonstrating how it is possible to extract 
important dermatological features from Nurugo Derma 
smartphone-acquired images. The study is limited by its small 
database size and the lack of a classification between benign 
and malignant lesions. However, the results presented here are 
an important demonstration of the potential capabilities of this 
approach. We are currently working to amplify the database to 
include a much larger number of images and to include also 
melanocytic malignant lesions and epithelial lesions (like Non 
Melanoma Skin Cancer), and plan to further validate the 
proposed technique and compare it with other classification 
methods.  

 In conclusion, the proposed method is very inexpensive, 
it is easily accessible and usable, and could find a good use by 
general practitioners to help them address expert 
dermatologists only in doubtful or urgent cases, and it could 
also be useful as a triage tool. 
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Figure 3. Neural network (NN) configurations and classification results. (A) NN architecture for dermoscopic images. (B) Average confusion matrix for 
dermoscopic images. (C) NN architecture for Nurugo images. (D) Average confusion matrix for Nurugo images. 

 


