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Abstract—Spiking Neural Networks (SNNs), despite being
energy-efficient when implemented on neuromorphic hardware
and coupled with event-based Dynamic Vision Sensors (DVS),
are vulnerable to security threats, such as adversarial attacks,
i.e., small perturbations added to the input for inducing a
misclassification. Toward this, we propose DVS-Attacks, a set of
stealthy yet efficient adversarial attack methodologies targeted
to perturb the event sequences that compose the input of the
SNNs. First, we show that noise filters for DVS can be used as
defense mechanisms against adversarial attacks. Afterwards, we
implement several attacks and test them in the presence of two
types of noise filters for DVS cameras. The experimental results
show that the filters can only partially defend the SNNs against our
proposed DVS-Attacks. Using the best settings for the noise filters,
our proposed Mask Filter-Aware Dash Attack reduces the accuracy
by more than 20% on the DVS-Gesture dataset and by more than
65% on the MNIST dataset, compared to the original clean frames.
The source code of all the proposed DVS-Attacks and noise filters
is released at https://github.com/albertomarchisio/DVS-Attacks.

Index Terms—Spiking Neural Networks, SNNs, Deep Learning,
Adversarial Attacks, Security, Robustness, Defense, Filter,
Perturbation, Noise, Dynamic Vision Sensors, DVS, Neuromorphic,
Event-Based.

I. INTRODUCTION

Spiking Neural Networks (SNNs) represent energy-efficient
learning models in a wide variety of machine learning
applications, e.g., autonomous driving [1], healthcare [2], and
robotics [3]. Unlike traditional (i.e., non-spiking) Deep Neural
Networks (DNNs), the SNNs are more closely related to
the human brain’s processing [4]. Indeed, the event-based
communication between neurons makes them biologically
plausible. Moreover, SNNs are appealing for being implemented
in resource-constrained embedded systems [5], due to a
good combination of power/energy efficiency and real-time
classification performance. In fact, compared to the equivalent
DNN implementations, SNNs exhibit a lower computational
load, as well as a reduction in the latency, by leveraging the
spike-based communication between neurons [6].

Efficient SNNs are typically implemented on a specialized
neuromorphic hardware [7], which is able to exploit the
asynchronous communication mechanism between neurons and
the event-based propagation of the information through layers.
These characteristics led to an increasing interest in developing
neuromorphic architectures like IBM TrueNorth [8] and Intel
Loihi [9]. Another advancement in the field of neuromorphic
hardware has come from the new generation of event-based
camera sensors, such as the Dynamic Vision Sensor (DVS) [10].
Unlike a classical frame-based camera, the DVS emulates the
behavior of the human retina, by recording the information in

*These authors contributed equally to this work.

form of a sequence of spikes, which are generated every time a
change of light intensity is detected. The event-based behavior
of these sensors pairs well with SNNs implemented onto the
neuromorphic hardware, i.e., the output of a DVS camera can
be used as the direct input of an SNN to process events in
real-time.

A. Target Research Problem and Scientific Challenges

Different security threats challenge the correct functionality
of DNNs and SNNs. The DNN trustworthiness has been
extensively investigated in recent years [11], highlighting that
one of the most critical issues is the adversarial attacks,
i.e., small and imperceptible input perturbations to trigger
misclassification [12]. Although some initial studies have
been conducted [13][14][15][16], the SNN trustworthiness is
a relatively new and unexplored problem. More specifically,
DVS-based systems have not yet been investigated for
SNN security. Moreover, the methods for defending SNNs
against such adversarial attacks can be inspired from
the recent advancements of the defense mechanisms for
DNNs, where studies have focused on adversarial learning
algorithms [17], loss/regularization functions [18], and image
preprocessing [19]. The latter approach basically consists
of suppressing the adversarial perturbation through dedicated
filtering. Noteworthy, for the SNN-based systems feeded by
DVS signals, the attacks and preprocessing-based defense
techniques for frame-based sensors cannot be directly applied
due to differences in the signal properties. Therefore,
specialized noise filters for DVS sensors [20] must be employed.

As per our knowledge, the generation of adversarial attacks
for DVS signals is an unexplored and open research problem.
Towards this, we propose DVS-Attacks, a set of adversarial
attack methodologies for DVS signals, and test them in
scenarios where noise filters are employed as a defense
mechanism against them. Since the DVS cameras contain
also the temporal information, the generation of adversarial
perturbation is technically different w.r.t. traditional adversarial
attacks on images, where only the spatial information is
considered. Hence, the temporal information needs to be
leveraged for developing the attack and defense mechanisms.
The steps involved in this work are visualized in Fig. 1.

B. Motivational Case Study

As a preliminary study for motivating our research in
the above-discussed directions, we perform the following
experiments. We trained a 4-layer SNN with 2 convolutional
layers and 2 fully-connected layers, for the DVS-Gesture
dataset [21] using the SLAYER method [22] in a DL-
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Fig. 1: Overview of the steps involved in this work. Our novel contributions
are highlighted in colored boxes.

workstation equipped with two Nvidia GeForce RTX 2080 Ti
GPUs. For each frame of events, we perturb the testing dataset
by injecting normally-distributed random noise and measure
the classification accuracy. Moreover, to mitigate the effect of
the perturbations, the Background Activity Filter (BAF) and
the Mask Filter (MF) of [20] are applied, with various filter
parameters. The accuracy results w.r.t. different noise magnitude
are shown in Fig. 2. As indicated by pointer 1 in Fig. 2, the
filter may potentially reduce the accuracy of the SNN when
no noise is applied. More specifically, more than 20% drop
is noticed on the MF with T = 25, and lower differences
for the other filters. However, in the presence of noise, the
SNN becomes much more robust when the filter is applied.
For example, when considering normal noise with a magnitude
of 0.55, the BAF with s = 1 and t = 5 contributes to 64%
accuracy improvement (see pointer 2 ). On the other hand,
BAFs with s ≥ 2 do not increase the accuracy much, compared
to the unfiltered SNN. Moreover, MFs with T ≥ 100 work
even better than the BAFs in the presence of large perturbations.
Indeed, the perturbations with magnitude of 1.0 are filtered out
relatively well by the MFs with large T (see pointer 3 ), while,
for the same noise magnitude, both the MFs with T ≤ 50
and the BAF with s = 1 and t = 5 achieve an accuracy of only
≈33-34% (see pointer 4 ). The key message learnt from the
above case study is that the noise filters for DVS can potentially
restore a large portion of accuracy that would have been dropped
due to the perturbations. Therefore, this motivates us to employ
such filters as defense methods against adversarial attacks.
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Fig. 2: Analyzing the impact of applying the normally-distributed noise to the
DVS-Gesture dataset, in the presence of BAF and MF noise filters.

C. Our Novel Contributions
• We propose DVS-Attacks, a set of different adversarial attack

methodologies generating perturbations for DVS signals;
(Section IV). As per our knowledge, these are the first
proposed attack algorithms for event-based neuromorphic
systems.

• In particular, the MF-Aware Dash Attack is specifically
designed to be resistant against the Mask Filter defense, by
generating perturbations only on a limited set of frames;

(Section IV-E).
• The experimental results on the DVS-Gesture and NMNIST

datasets show that all the attacks are successful when no filter
is applied. Moreover, the noise filters cannot fully defend
against the DVS-Attacks, which represent a serious security
threat for SNN-based neuromorphic systems; (Section V).

• For reproducible research, we released the source code
of all the proposed DVS-Attacks methodologies, and filters
for DVS-based SNNs at https://github.com/albertomarchisio/
DVS-Attacks.
Before proceeding to the technical details, Section II presents

an overview of SNNs, noise filters for DVS signal, adversarial
attacks, and security threats for SNNs. Moreover, Section III
discusses the threat model employed in this work.

II. BACKGROUND AND RELATED WORK

A. Spiking Neural Networks (SNNs)
SNNs are considered as the third generation neural

networks [23]. Compared to the traditional DNNs, they exhibit
better biological plausibility [4] and high resilience [24][25][26]
compared to the traditional DNNs [27][28]. Another key
advantage of SNNs over the traditional DNNs is their improved
energy-efficiency [29][30] when implemented on Neuromorphic
chips like Intel Loihi [9] or IBM TrueNorth [8]. Moreover, the
recent development of DVS sensors [10] has further reduced
the energy requirements of the complete system [31][32].

In SNNs, the input is encoded using spikes, which propagate
to the output through neurons and synapses. In a Leaky-
Integrate-and-Fire (LIF) neuron, which is the most commonly
adopted spiking neuron model, each input spike contributes to
increasing the neuron membrane potential V over time. As
shown in Fig. 3, when V overcomes a threshold Vth, an output
spike is released by the neuron, and propagated to the neurons
of the following layer.

Output 
Spikes

Vth

V

T

Input 
Spikes

SPIKING 
NEURON

INPUT 
SPIKETRAINS OUTPUT 

SPIKETRAINSSYNAPSES

NEURONS

Fig. 3: Overview of an SNN’s functionality, focusing on the evolution over
time of the membrane potential of a spiking neuron.

Event-based cameras [10] are the new generations of bio-
inspired sensors for the acquisition of visual information,
directly related to the light variations in the scene. Instead
of recording frames with a precise timing, the DVS cameras
work asynchronously, recording only positive and negative
brightness variations in the scene. Each event is encoded with
four components (x, y, p, t), which represent the x-coordinate,
the y-coordinate, the polarity, and the timestamp, respectively.
Compared to classical frame-based image sensors, the event-
based sensors consume significantly lower power, since the
events are recorded only when a brightness variation in the
scene is detected. This means that, in the absence of light
changes, no information is recorded, leading close to zero power
consumption. Hence, DVS sensors can be efficiently deployed
at the edge and directly coupled to neuromorphic hardware for
low-power SNN-based applications.
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B. Noise Filters for Dynamic Vision Sensors

DVS sensors are mainly affected by background activity
noise, caused by thermal noise and junction leakage
current [33]. When the DVS is stimulated, a neighborhood of
pixels is usually active at the same time, generating events.
Therefore, the real events show a higher spatio-temporal
correlation than the noise-related events. This empirical
observation is exploited for generating the Background
Activity Filter (BAF) [20]. The events are associated with
a spatio-temporal neighborhood, within which the correlation
between them is calculated. If the correlation is lower than a
certain threshold, the events are likely due to noise and thus are
filtered out; otherwise they are kept. The procedure is reported
in Algorithm 1, where S and T are the only parameters of the
filter and are used to set the dimensions of the spatio-temporal
neighborhood. The larger S and T are, the lower the number
of events are filtered out. The decision of the filter is made by
the comparison between te −M [xe][ye] and T (lines 15-16 of
Algorithm 1). If the first term is lower, then the event is filtered
out.

Algorithm 1 : Background Activity Filter for event-based sensors.

1: Being E a list of events of the form (x, y, p, t)
2: Being (xe, ye, pe, te) the x-coordinate, the y-coordinate, the

polarity and the timestamp of the event e respectively
3: Being M a 128× 128 matrix
4: Being S and T the spatial and temporal filter’s parameters
5: Initialize M to zero
6: Order E from the oldest to the newest event
7: for e in E do
8: for i in (xe − S,xe + S) do
9: for j in (ye − S, ye + S) do

10: if not (i == xe and j == ye) then
11: M [i][j] = te
12: end if
13: end for
14: end for
15: if te −M [xe][ye] > T then
16: Remove e from E
17: end if
18: end for

Another type of scenario in which spontaneous noise activity
is generated on the pixels which have low temporal contrast.
In this case, a Mask Filter (MF) is required to filter-out such
noise [20]. The procedure reported in Algorithm 2 shows that,
compared to the BAF, the MF has only the temporal parameter
T . If the activity of a pixel exceeds T , the mask is activated
(lines 14-15 of Algorithm 2). After all the pixel coordinates
of the mask are set, each event generated on a coordinate in
which the mask is active is removed (lines 20-21). Both the
BAF and MF have been implemented and evaluated in the
presence of intrinsic and parasitic noise of DVS sensors, while
their application as a defense mechanism against adversarial
attacks is still unexplored.

C. Adversarial Attacks and Security Threats for SNNs in the
Spatio-Temporal Domain

Currently, adversarial attacks are deployed on a wide range of
deep learning applications [11]. They represent a serious threat
for safety-critical applications, like surveillance, medicine,

Algorithm 2 : Mask Filter for event-based sensors.

1: Being E a list of events of the form (x, y, p, t),
2: Being (xe, ye, pe, te) the x-coordinate, the y-coordinate, the

polarity and the timestamp of the event e respectively,
3: Being M a N ×N matrix, where N is the size of the frames,
4: Being activity a N×N matrix, representing the number of event

produced by each pixel,
5: Being T, the temporal threshold passed to the filter as a parameter,

6: Initialize activity to zero
7: for x in range(N) do
8: for y in range(N) do
9: for e in E do

10: if (x, y) == (xe, ye) then
11: activity[x][y]+ = 1
12: end if
13: end for
14: if activity[x][y] > T then
15: M [x][y] = 1
16: end if
17: end for
18: end for
19: for e in E do
20: if M [xe][ye] == 1 then
21: Remove e from E
22: end if
23: end for

and autonomous driving [34]. The objective of a successful
attack is to generate small imperceptible perturbations to fool
the network. Recently, adversarial attacks for SNNs have
been explored, working in black-box [14] and white-box
settings [13]. Sharmin et al. [15] proposed a methodology to
attack (non-spiking) DNNs, and then the adversarial examples
mislead the equivalent converted SNNs. Liang et al. [16]
proposed a gradient-based adversarial attack methodology for
SNNs. Venceslai et al. [35] proposed a methodology to attack
SNNs through bit-flips triggered by adversarial perturbations.
Towards adversarial robustness, recent works demonstrated that
SNNs are inherently more robust than DNNs, due to the effect
of effects of discrete input encoding, non-linear activations, and
structural parameters [36][37]. However, none of these previous
works analyze attacks or defenses on frames of events, coming
from DVS cameras.

While in adversarial attack algorithms for images the
perturbations are only added in the spatial domain, an
attack on the DVS signal must introduce perturbations also
in the temporal domain. As per our knowledge, there are
no existing adversarial attack methodologies for event-based
cameras coupled with SNN processing hardware. Some related
works can be found in the field of attacks on video
signals, i.e., sequences of events. State-of-the-art adversarial
attacks on videos include, among others, sparse adversarial
perturbations [38], where only a small subset of frames are
perturbed. In this way, the attack is stealthy, because only a
few frames are perturbed, and effective, due to the temporal
interaction between consecutive frames. Another state-of-the-art
method is represented by the adversarial framing [39], where
the perturbation is added to the border of the frames and the
misclassification is achieved. However, frames of events cannot
be treated as videos, since the latter contain the information

3
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Fig. 4: Threat model considered in this work. Different types of adversarial attacks are considered, and different types of noise filters are applied as defense.

of pixel intensities for every frame, while do not contain
other types of information, such as the polarity. Hence, the
adversarial attacks for videos cannot be directly applied to DVS
signals.

III. THREAT MODEL

The system that we use in our experiments is composed of
a DVS camera, for recording the scenes of the environment as
sequences of events, and a given SNN implemented onto the
neuromorphic hardware. As shown in Fig. 4, the adversarial
attacks and noise filters for defense are located at the input of
the SNN, and have access to modify the sequences of events.
We conduct several experiments with different combinations of
attacks and defenses. The noise filters described in Section II-B
have been employed as defense methods. For the combinations
in which both attacks and defenses are present in the system,
the modifications generated by the attack are applied before the
filter operation. In this way, the filter has the ability to filter
out any events that have been generated or modified by the
attack algorithm, thus aiming at making the defense stronger.
The detailed description of the adversarial attack methodologies
is discussed in the following Section IV.

IV. OUR PROPOSED DVS-ATTACKS METHODOLOGIES

A. Sparse Attack

The proposed Sparse Attack is an iterative algorithm, which
progressively updates the perturbation values based on the loss
function (lines 6-12 of Algorithm 3), for each frame series
of the dataset D. A mask M determines in which subset of
the frames of events the perturbation should be added (line 7).
Then, the output probability and the respective loss, obtained
in the presence of the perturbation, are respectively computed
in lines 9 and 10. Finally, the perturbation values are updated
based on the gradients of the inputs w.r.t. the loss (line 11).

Algorithm 3 : Sparse Attack Methodology.
1: Being M a mask able to select only certain frames
2: Being D an event-based dataset
3: Being P a perturbation to be added to the images
4: Being prob the output probability of a certain class
5: for d in D do
6: for i in max iteration do
7: Add P to d only on the frames selected by M
8: Calculate the prevision on the perturbed input
9: Extract prob for the actual class of d

10: Update the loss value as loss = −log(1− prob)
11: Calculate the gradients and update P
12: end for
13: end for

B. Frame Attack
The Frame Attack is a simple yet effective attack

methodology, which consists of adding a frame around the
sample (lines 6-8 of Algorithm 4). It does not require any
expensive calculations, because the same perturbation (which
coincides with the frame) is added to all the samples. In
a dataset made of large images, such as the DVS-Gesture
(128 × 128) it is also not so easy to spot, while with the
perturbations on the NMNIST dataset (34 × 34) result more
evident. One drawback is due to the overhead added to the
samples in terms of events. In fact, since the attack targets every
pixel of the boundary, for every frame, the number of events
dramatically increases. Therefore, the size of the samples and
the inference latency to process the events with the SNN and
the filters increase as well.

Algorithm 4 : Frame Attack Methodology.
1: Being D an event-based dataset
2: Being d ⊂ D a (C×N ×N ×T ) tensor, where C represents the

channels, N represents the frame dimensions, and T the sample
duration

3: for d in D do
4: for x in range(N) do
5: for y in range(N) do
6: if x == 0 or x == N − 1 or y == 0 or y == N − 1

then
7: d[:, x, y, :] = 1
8: end if
9: end for

10: end for
11: end for

C. Corner Attack
The Corner Attack, as the name suggests, targets the corner

of the images. It starts by modifying only two pixels at the
top-left corner (lines 10-11 of Algorithm 5) and then, if it is
not successful in fooling the SNN (line 16), it moves to the
other corners. If some samples remain correctly classified, after
hitting all 4 corners, the size of the perturbation increases and
the algorithm resumes from the first corner. Before the updating
phase, both when it changes corner or when it increase its size,
the attack is applied to every sample in the dataset that was
not yet corrupted. In this way, as the algorithm proceeds, the
number of samples reduces and the the process is sped up.
The main feature of this attack is that not all the samples are
modified by the same amount of perturbation. For example,
while the majority of the samples are misinterpreted by the
SNN after few iterations, other samples are perturbed for longer
time, thus making the attack easier to spot.

D. Dash Attack
The Dash Attack methodology is designed taking inspiration

from the Corner Attack. Indeed, the two algorithms are quite

4



Algorithm 5 : Corner Attack Methodology.

1: Being D an event-based dataset made of (C×N×N×T ) tensors,
where C represents the number of channels, N the size, and T the
duration of the sample

2: S is a list of the samples that compose D
3: x = 0
4: y = 2
5: left = True
6: while S is not empty do
7: for s in S do
8: for i in range(N) do
9: for j in range(N) do

10: if i == x and (left and j < y or left and j ≥
N − y − 1) then

11: s[:, i, j, :] = 1
12: end if
13: end for
14: end for
15: The perturbed sample s is fed to the SNN, which produces

a prediction P
16: if P is incorrect then
17: Remove s from S
18: end if
19: end for
20: if x == 0 then
21: x = N − 1
22: else
23: left = left xor 1
24: x = 0
25: if left then
26: y = y + 1
27: end if
28: end if
29: end while

similar. The main difference is that in the Dash Attack only
two pixels are targeted every time. The main structure of the
algorithm is the same as for the Corner Attack, as the Dash
Attack starts by targeting the top-left corner and by modifying
the first two pixels. Moreover, the x, y coordinates are updated,
in order for the attack to hit only two consecutive pixels (see
lines 19-29 of Algorithm 6). Hence, this attack results to be
very difficult to spot, and the introduced perturbations do not
cause a large overhead of events on the samples. Moreover, all
the samples under the Dash Attack are modified by the same
amount of perturbations.

E. MF-Aware Dash Attack

The main issue of the above-discussed attacks, as will be
demonstrated in Section V, is their intrinsic weakness against
the MF. In fact, they targeted both channels (‘on’ and ‘off’
events) of the same pixels for all the duration of the sample.
This leads to a clear distinction between the pixels affected
by the attack and those that are not. In fact, the number of
events produced by the targeted pixels is significantly higher
than the events associated to the other pixel coordinates that
were not hit by the attack. In addition, we have to consider the
fact that the proposed attacks mainly focus on the boundaries
of the images, thus they do not tend to overlap with useful
information. In other words, in the datasets that we used the
subject is typically centered. Hence, by hitting the perimeter or
the corners, the risk of superimposing adversarial noise to the
main subject is low. These considerations explain why the MF

Algorithm 6 : Dash Attack Methodology.

1: Being D an event-based dataset made of (C×N×N×T ) tensors,
where C represents the number of channels, N the size, and T the
duration of the sample

2: S is a list of the samples that compose D
3: xmin = 0, x = 0, y = 2
4: left = True
5: while S is not empty do
6: for s in S do
7: for i in range(N) do
8: for j in range(N) do
9: if i == x and (left and (j == y or j == y− 1) or

left and (j == N − y or j == N − y + 1)) then
10: s[:, i, j, :] = 1
11: end if
12: end for
13: end for
14: The perturbed sample s is fed to the SNN, which produces

a prediction P
15: if P is incorrect then
16: Remove s from S
17: end if
18: end for
19: if x == xmin then
20: x = N − xmin − 1
21: else
22: left = left xor 1
23: x = xmin

24: if left then
25: y = y + 1
26: end if
27: end if
28: if y > N/2 then
29: xmin = xmin + 1
30: end if
31: end while

is successful for restoring the original SNN accuracy. Indeed,
the targets are easily identifiable given their high number of
events, and the filter does not remove useful information, since
modifications are mainly conducted at the edge of the image.

Based on these premises, we have designed an attack aiming
at being resistant to the MF, which we call MF-Aware Dash
Attack. It receives as a parameter th, which is correlated to the
T parameter of the MF (recall from Algorithm 2), and it uses it
to set a limit on the number of frames that can be changed for
each pixel (line 11 of Algorithm 7). Therefore, the algorithm
targets a couple of pixels to be perturbed, as in case of the
Dash Attack. However, after modifying th frames, it moves to
the following ones (lines 16-18). The visual effect generated by
the MF-Aware Dash Attack is that of a dash advancing along a
line. The smaller the parameter th is, the faster will the dash
seem moving along the image.

V. EVALUATION OF THE DVS-ATTACKS IN THE PRESENCE
OF NOISE FILTERS

A. Experimental Setup
We conducted experiments on two datasets, the DVS-

gesture [21] and the NMNIST [40]. The former is a collection
of of 1077 samples for training and 264 for testing, divided
into 11 classes, while the latter is a spiking version of the
original frame-based MNIST dataset [41]. It is generated by
an ATIS event-based sensor [42] that is moved while capturing

5



Algorithm 7 : MF-Aware Dash Attack Methodology.

1: Being D an event-based Dataset made of (2 × N × N × T )
tensors, where N represents the frame dimensions, and T the
sample duration

2: S is a list of the samples that compose D
3: th is a parameter associated the activity threshold of the MF
4: x = 0 , y0 = 2, left = True
5: while S is not empty do
6: for s in S do
7: th = th0, y = y0
8: for t in T do
9: for i in range(N) do

10: for j in range(N) do
11: if i == x and t < th and (left and (j == y

or j == y − 1) or left and (j == N − y or
j == N − y + 1)) then

12: s[0, i, j, t] = 1
13: end if
14: end for
15: end for
16: if t == th then
17: th = th+ th0 , y = y + 2
18: end if
19: end for
20: The perturbed sample s is fed to the SNN, which produces

a prediction P
21: if P is incorrect then
22: Remove s from S
23: end if
24: end for
25: if x == 0 then
26: x = N − 1
27: else
28: left = left xor 1 , x = 0
29: if left then
30: y0 = y0 + 1
31: end if
32: end if
33: end while

the MNIST images projected on a LCD screen. It consists
of 60,000 training and 10,000 testing samples. As classifier
for the DVS-gesture dataset, we employed the 4-layer SNN
as described in [22], with two convolutional layers and two
fully-connected layers, and trained it for 625 epochs with the
SLAYER backpropagation method [22], using a batch size of
4 and learning rate equal to 0.01. We measured a test accuracy
of 92.04% on clean inputs. As classifier for the NMNIST
dataset, we employed a multilayer perceptron with two fully-
connected layers [22], trained for 350 epochs with the SLAYER
backpropagation method [22], using a batch size of 4 and
learning rate equal to 0.01. The test accuracy on clean inputs
is 95%. We implemented the SNNs on a DL-workstation with
two Nvidia GeForce RTX 2080 Ti GPUs, using the PyTorch
framework [43]. We also implemented the adversarial attack
algorithms and the noise filters in PyTorch. The experimental
setup and tool-flow in a real-world setting is shown in Fig. 5.

B. Results for the Sparse Attack
The Sparse Attack on DVS frames is successful on both

benchmarks, as the accuracy is drastically decreased to 15.15%
for the DVS-Gesture dataset (see pointer 1 in Fig. 6), and to
4% for the NMNIST dataset (see pointer 2 ). By looking at
the adversarial examples reported at the left side of Fig. 6, no
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SNN Training
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(NMNIST, 
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SNN Models
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Neuromorphic HWNvidia RTX 
2080 Ti
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DVS
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Fig. 5: Experimental setup, tool-flow, and integration with the system.

significant perturbations are perceived, thus making the Sparse
Attack stealthy. However, the accuracy can be easily restored
using a noise filter. When the BAF filter is employed, for a wide
range of the (s, t) parameters the SNNs’ accuracy overcomes
90% (see pointers 3 ). When the MF is used, a low T does not
protect well against the Sparse Attack, but when T ≥ 50 for
the DVS-Gesture dataset (see pointer 4 ) and when T ≥ 25
for the NMNIST dataset (see pointer 5 ), high robustness is
achieved.

C. Results for the Frame Attack

The results for the experiments conducted on the Frame
Attack are reported in Fig. 7. As expected, the perturbations
are perceivable in the form of a line added to the border of
the visualized shot. This feature is much more accentuated on
the NMNIST dataset, where the resolution is of 34 × 34
pixels, while the perturbations are less distinguishable on the
128 × 128 examples of the DVS-Gesture dataset. The accuracy
under attack drops to 9.85% and 8% for the two datasets,
respectively. However, the BAF does not work well as a defense
against the Frame Attack. As highlighted by pointers 1 in
Fig. 7, there exist no combinations of the (s, t) parameters of
the BAF for which the SNNs’ accuracy significantly increases.
Indeed, the accuracy difference compared to the attack without
filter is relatively low. On the other hand, the MF results to be
a successful defense, because the SNNs’ accuracy is high for
large values of T (see pointer 2 ).

D. Results for the Corner Attack

The Corner Attack is visibly stealthier than the Frame Attack.
Indeed, the perturbations are only added in the corner of the
images. For example, the perturbation is noticeable in the top-
left corner of the first example of the NMNIST dataset (see
pointer 1 in Fig. 8), or in the bottom-left corner of the second
example (see pointer 2 ). Moreover, the SNNs are completely
fooled by the Corner Attack, since the accuracy without noise
drops to 0% (see pointers 3 ). The BAF works relatively better
for the DVS-Gesture dataset, compared to the MNIST dataset.
However, the accuracy in the presence of the BAF filter as
defense remains very low. The peak reached with s = 1 and
t = 5 has an accuracy of only 15.15% for the SNN on the DVS-
Gesture dataset (pointer 4 ). Similarly to the Frame Attack, also
the Corner Attack can be successfully mitigated when the MF
with large T is applied (see pointers 5 ).

E. Results for the Dash Attack

The Dash Attack performs in a similar way as the Corner
Attack, but the perturbations are not strictly confined in a corner.
In this way, the perturbations introduced by the attack result
very similar to the inherent background noise generated by
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Fig. 6: Evaluation of the Sparse Attack: frame samples and accuracy when the BAF and MF are applied, for (a) DVS-Gesture and (b) NMNIST.
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Fig. 7: Evaluation of the Frame Attack: frame samples and accuracy when the BAF and MF are applied, for (a) DVS-Gesture and (b) NMNIST.

the DVS camera recording the events. For instance, the attack
perturbations on the examples for the NMNIST dataset (see
pointers 1 in Fig. 9) might be confused with the inherent
background noise (see pointers 2 ). Compared to the Corner
Attack, while the accuracy of the SNNs under the Dash Attack
without filter drops to 0%, the BAF defense produces a slightly
higher SNN accuracy for the DVS-Gesture dataset. However,
the accuracy peak of 28.41% (see pointer 3 ), obtained in the
presence of the BAF with s = 1 and t = 10, remains too low to
consider the BAF as a good defense method against the Dash
Attack. Once again, a good defense for robust SNNs is achieved
by the MF with large T (see pointers 4 ).

F. Results for the MF-Aware Dash Attack

Fig. 10 shows the results for the experiments conducted on
the MF-Aware Dash Attack, for different values of the parameter
th. While the stealthiness of the adversarial examples (Fig. 10
reports the samples generated with th = 150 for the DVS-
Gesture dataset and th = 20 for the NMNIST dataset) is
similar to the Corner and Dash Attacks, the behavior of the
MF-Aware Dash Attack in the presence of noise filters is much
different. Moreover, the accuracy of the SNNs under attack
without filter are different from 0, reaching up to 7.95% for
th = 50 on the DVS-Gesture dataset (see pointer 1 in Fig. 10).

The SNNs defended by the BAF show discrete robustness,
in particular when s = 3 and t = 1. In such scenario, the
accuracy reaches 59.09% when the MF-Aware Dash Attack with
th = 50 is applied to the SNN for the DVS-Gesture dataset (see
pointer 2 ). However, when t ≥ 5, the SNN accuracy is lower
than 31.44% for the DVS-Gesture dataset (see pointer 3 ) and
lower than 13% for the NMNIST dataset (see pointer 4 ). The
key advantage compared to the above-discussed attacks resides
in the behavior of the MF-Aware Dash Attack in the presence
of the MF. If T ≥ th, the SNN accuracy becomes lower than
23.5% for the the DVS-Gesture dataset (see pointer 5 ) and
lower than 2% for the NMNIST dataset (see pointer 6 ). On
the contrary, the behavior when T < th is similar to the results
obtained for the other attacks. For example, the curve relative to
the MF-Aware Dash Attack with th = 50 for the DVS-Gesture
dataset achieves 71.21% accuracy for T = 25 (see pointer 7 ),
which is 20.83% lower than the original SNN accuracy.

G. Key Observations Derived from the Experiments
By analyzing in more detail the results for the different types

of attacks, we can derive the following key observations:
• All the attack algorithms belonging to the DVS-Attacks set are

successful when no filter is applied, since the SNNs’ accuracy
is significantly decreased.
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Fig. 8: Evaluation of the Corner Attack: frame samples and accuracy when the BAF and MF are applied, for (a) DVS-Gesture and (b) NMNIST.
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Fig. 9: Evaluation of the Dash Attack: frame samples and accuracy when the BAF and MF are applied, for (a) DVS-Gesture and (b) NMNIST.

• The Sparse Attack is the stealthiest attack, while Corner,
Dash and MF-Aware Dash Attacks are sthealtier than the
Frame Attack.

• The BAF achieves good defense only for the Sparse Attack,
while all the other attacks can fool SNNs defended by the
BAF. Some accuracy is recovered for the MF-Aware Dash
Attack, but a considerable accuracy loss is measured.

• Different (s, t) parameters of the BAF need to be evaluated
for obtaining the highest accuracy, and the the combinations
of these parameters can vary according to different attack
algorithms.

• The MF with large T is a good defense for almost all the
attacks, but it does not work well with the MF-Aware Dash
Attack, since it is an adversarial attack specifically designed
for being resistant to the MF.

• The best MF-Aware Dash Attack, that is with th = 50 for
the DVS-Gesture dataset, and with th = 10 for the NMNIST
dataset, can reduce the accuracy by at least 20% and 65%
for the two datasets, respectively.

VI. CONCLUSION

In this paper, we designed DVS-Attacks, a set of
adversarial attack methodologies for SNNs, which introduce the
perturbations into the sequences of events. Therefore, they are

suitable for neuromorphic systems supplied by DVS cameras.
Moreover, two types of noise filters, namely the Background
Activity Filter and the Mask Filter, are applied as defenses. The
experimental results show the high success of the attacks, since
the SNNs cannot be completely defended by the noise filters.
Therefore, they represent critical security threats for SNN-based
neuromorphic systems supplied by event-based sensors. We
released the source code of the DVS-Attacks and noise filters at
https://github.com/albertomarchisio/DVS-Attacks.
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