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Efficient generative modeling of protein sequences
using simple autoregressive models

Jeanne Trinquierm, Guido Uguzzoni3'4, Andrea Pagnani3'4'5, Francesco Zamponi2 & Martin Weigt 124

Generative models emerge as promising candidates for novel sequence-data driven
approaches to protein design, and for the extraction of structural and functional information
about proteins deeply hidden in rapidly growing sequence databases. Here we propose
simple autoregressive models as highly accurate but computationally efficient generative
sequence models. We show that they perform similarly to existing approaches based on
Boltzmann machines or deep generative models, but at a substantially lower computational
cost (by a factor between 102 and 103). Furthermore, the simple structure of our models has
distinctive mathematical advantages, which translate into an improved applicability in
sequence generation and evaluation. Within these models, we can easily estimate both the
probability of a given sequence, and, using the model's entropy, the size of the functional
sequence space related to a specific protein family. In the example of response regulators,
we find a huge number of ca. 108 possible sequences, which nevertheless constitute only the
astronomically small fraction 10~80 of all amino-acid sequences of the same length. These
findings illustrate the potential and the difficulty in exploring sequence space via generative
sequence models.
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ARTICLE

he impressive growth of sequence databases is prompted

by increasingly powerful techniques in data-driven mod-

eling, helping to extract the rich information hidden in raw
data. In the context of protein sequences, unsupervised learning
techniques are of particular interest: only about 0.25% of the
more than 200 million amino-acid sequences currently available
in the Uniprot database! have manual annotations, which can be
used for supervised methods.

Unsupervised methods may benefit from evolutionary rela-
tionships between proteins: while mutations modify amino-acid
sequences, selection keeps their biological functions and their
three-dimensional structures remarkably conserved. The Pfam
protein family database?, e.g., lists more than 19,000 families of
homologous proteins, offering rich datasets of sequence-
diversified but functionally conserved proteins.

In this context, generative statistical models are rapidly gaining
interest. The natural sequence variability across a protein family
is captured via a probability P(ay,..., a;) defined for all amino-acid
sequences (daj,..., ar). Sampling from P(ay,..., ar) can be used to
generate new, non-natural amino-acid sequences, which is an
ideal case that should be statistically indistinguishable from the
natural sequences. However, the task of learning P(ay,..., ar) is
highly non-trivial: the model has to assign probabilities to all 20~
possible amino-acid sequences. For typical proteins of lengths,
L =50 — 500, this accounts for 109°—109°0 values, to be learned
from the M =103-10° sequences contained in most protein
families. Selecting adequate generative model architectures is thus
of outstanding importance.

The currently best explored generative models for proteins are
so-called coevolutionary models3, such as those constructed by
the Direct Coupling Analysis (DCA)*-® (a more detailed review
of the state of the art is provided below). They explicitly model
the usage of amino acids in single positions (i.e., residue con-
servation) and correlations between pairs of positions (i.e., resi-
due coevolution). The resulting models are mathematically
equivalent to Potts models” in statistical physics, or to Boltzmann
machines in statistical learning®. They have found numerous
applications in protein biology.

The effect of amino-acid mutations is predicted via the log-
ratio log { P(mutant)/P(wildtype)} between mutant and wildtype
probabilities. Strong correlations to mutational effects determined
experimentally via deep mutational scanning have been
reported” !0, Promising applications are the data-driven design of
mutant libraries for protein optimization'!-13, and the use of
Potts models as sequence landscapes in quantitative models of
protein evolution!41>,

Contacts between residues in the protein fold are extracted
from the strongest epistatic couplings between double mutations,
i, from the direct couplings giving the name to DCA®. These
couplings are essential input features in the wave of deep-learning
(DL) methods, which currently revolutionize the field of protein-
structure prediction!6-19,

The generative implementation bmDCA® is able to generate
artificial but functional amino-acid sequences?®2!, Such obser-
vations suggest novel but almost unexplored approaches towards
data-driven protein design, which complement current approa-
ches based mostly on large-scale experimental screening of ran-
domized sequence libraries or time-intensive bio-molecular
simulation, typically followed by sequence optimization using
directed evolution, cf. refs. 2223 for reviews.

Here we propose a simple model architecture called arDCA,
based on a shallow (one-layer) autoregressive model paired with
generalized logistic regression. Such models are computationally
very efficient, they can be learned in few minutes, as compared to
days for bnDCA and more involved architectures. Nevertheless,
we demonstrate that arDCA provides highly accurate generative

models, comparable to the state of the art in mutational-effect
and residue-contact prediction. Their simple structure makes
them more robust in the case of limited data. Furthermore, and
this may have important applications in homology detection?*,
our autoregressive models are the only generative models we
know about, which allow for calculating exact sequence prob-
abilities, and not only non-normalized sequence weights. Thereby
arDCA enables the comparison of the same sequence in different
models for different protein families. Last but not least, the
entropy of arDCA models, which is related to the size of the
functional sequence space associated with a given protein family,
can be computed much more efficiently than in bmDCA.

Before proceeding, we provide here a short review of the state
of the art in generative protein modeling. The literature is
extensive and rapidly growing, so we will concentrate on the
methods being most directly relevant as compared to the scope of
our work.

We focus on generative models purely based on sequence data.
The sequences belonging to homologous protein families and are
given in form of multiple sequence alignments (MSA), ie., as a
rectangular matrix D = (a]'|i = 1, ...,L;m = 1, ..., M) containing
M aligned proteins of length L. The entries a}" equal either one of
the standard 20 amino acids or the alignment gap “-”. In total, we
have g =21 possible different symbols in D. The aim of unsu-
pervised generative modeling is to learn a statistical model P(ay,...,
ar) of (aligned) full-length sequences, which faithfully reflects the
variability found in D: sequences belonging to the protein family
of interest should have comparably high probabilities, unrelated
sequences very small probabilities. Furthermore, a new artificial
MSA D' sampled sequence by sequence from model P(ay,..., ar)
should be statistically and functionally indistinguishable from the
natural aligned MSA D given as input.

A way to achieve this goal is the above-mentioned use of
Boltzmann-machine learning based on conservation and coevo-
lution, which leads to pairwise-interacting Potts models, i.e.,
bmDCA®, and related methods?>-27. An alternative imple-
mentation of bmDCA, including the decimation of statistically
irrelevant couplings, has been presented in?® and is the one used
as a benchmark in this work; the Mi3 package?® also provides a
GPU-based accelerated implementation.

However, Potts models or Boltzmann machines are not the
only generative-model architectures explored for protein
sequences. Latent-variable models like Restricted Boltzmann
machines®® or Hopfield-Potts models®! learn dimensionally
reduced representations of proteins; using sequence motifs, they
are able to capture groups of collectively evolving residues3?
better than DCA models, but are less accurate in extracting
structural information from the learning MSA3!,

An important class of generative models based on latent
variables are variational autoencoders (VAE), which achieve
dimensional reduction, but in the flexible and powerful set of
deep learning. The DeepSequence implementation? was origin-
ally designed and tested for predicting the effects of mutations
around a given wild type. It currently provides one of the best
mutational-effect predictors, and we will show below that arDCA
provides comparable quality of prediction for this specific task.
The DeepSequence code has been modified in3* to explore its
capacities in generating artificial sequences being statistically
indistinguishable from the natural MSA; it was shown that its
performance was substantially less accurate than bmDCA.
Another implementation of a VAE was reported in3°; also in this
case the generative performances are inferior to bmDCA, but the
organization of latent variables was shown to carry significant
information on functionality. Furthermore, some generated
mutant sequences were successfully tested experimentally. Inter-
estingly, it was also shown that learning VAE on unaligned
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Fig. 1 Schematic representation of the arDCA approach: Starting from an MSA of homologous sequences, we use maximum-likelihood inference to
learn an autoregressive model, which factorizes the joint sequence probability P(a, ..., a;) into conditional single-residue probabilities P(a;|a;_1,..., a1).
Defining the statistical energy E(ay, ...,a;) = —logP(a;, ..., ;) of a sequence, we consequently predict mutational effects and contacts as statistical energy
changes when substituting residues individually or in pairs, and we design new sequences by sampling from P(aj, ..., a;).

sequences decreases the performance as compared to pre-aligned
MSA as used by all before-mentioned models. This observation
was complemented by Ref. 3¢, which reported a VAE imple-
mentation trained on non-aligned sequences from UniProt, with
length 10 < L < 1000. The VAE had good reconstruction accuracy
for small L <200, which however dropped significantly for larger
L. The latent space also in this case shows an interesting orga-
nization in terms of function, which was used to generate in silico
proteins with desired properties, but no experimental test was
provided. The paper does not report any statistical test of the
generative properties (such as a Pearson correlation of two-point
correlations), and the publicly not yet available code makes a
quantitative comparison to our results currently impossible.

Another interesting DL architecture is that of a Generative
Adversarial Network (GAN), which was explored in3” on a single
family of aligned homologous sequences. While the model has a
very large number of trainable parameters (~60 M), it seems to
reproduce well the statistics of the training MSA, and most
importantly, the authors could generate an enzyme with only 66%
identity to the closest natural one, which was still found to be
functional in vitro. An alternative implementation of the same
architecture was presented in38, and applied to the design of
antibodies; also in this case the resulting sequences were validated
experimentally.

Not all generative models for proteins are based on sequence
ensembles. Several research groups explored the possibility of
generating  sequences  with  given  three-dimensional
structure®®-41, e.g. via a VAE*? or a Graph Neural Network?3,
or by inverting structural prediction models*4-47. It is important
to stress that this is a very different task from ours (our work does
not use structure), so it is difficult to perform a direct comparison
between our work and these ones. It would be interesting to
explore, in future work, the possibility to unify the different
approaches and to use sequence and structure jointly for con-
structing improved generative models.

In summary, for the specific task of interest here, namely,
generate an artificial MSA statistically indistinguishable from the
natural one, one can take as reference models bmDCA?85 in the
context of Potts-model-like architectures, and DeepSequence?? in
the context of deep networks. We will show in the following that
arDCA performs comparably to bmDCA, and better than
DeepSequence, at a strongly reduced computational cost. From
anecdotal evidence in the works mentioned above, and in
agreement with general observations in machine learning, it
appears that deep architectures may be more powerful than
shallow architectures, provided that very large datasets and

computational resources are available33. Indeed, we will show that
for the related task of single-mutation predictions around a wild
type, DeepSequence outperforms arDCA on rich datasets, while
the inverse is true on small datasets.

Results

Autoregressive models for protein families. Here we propose a
computationally efficient approach based on autoregressive
models, cf. Fig. 1 for an illustration of the approach and the
model architecture. We start from the exact decomposition

P(ay,...,ar) = P(a,) - P(ayla,) - - - Pagla;_y,...,a1), (1)

of the joint probability of a full-length sequence into a product of
more and more involved conditional probabilities P(a;|a; i,..., a;) of
the amino acids a; in single positions, conditioned to all previously
seen positions a; ..., a;. While this decomposition is a direct
consequence of Bayes’ theorem, it suggests an important change in
viewpoint on generative models: while learning the full P(a;,..., a)
from the input MSA D is a task of unsupervised learning
(sequences are not labeled), learning the factors P(aja; 1,..., a;)
becomes a task of supervised learning, with (a; ..., a;) being the
input (feature) vector, and a; the output label (in our case a cate-
gorical g-state label). We can thus build on the full power of
supervised learning, which is methodologically more explored than
unsupervised learning#8->0,

In this work, we choose the following parameterization,
previously used in the context of statistical mechanics of
classical’! and quantum®? systems:

i-1
exp { hi(a;) + j; ]ij(aiv aj)}

z(a;_y, ..., a,)

with z(a;_,,....a;) =2, exp{h(a;) + ZJ’;{ Ji{a;,a)} being a
normalization factor. In machine learning, this parameterization
is known as soft-max regression, the generalization of logistic
regression to multi-class labels®0. This choice, as detailed in the
section “Methods”, enables a particularly efficient parameter
learning by likelihood maximization, and leads to a speedup of
2-3 orders of magnitude over bmDCA, as is reported in Table 1.
Because the resulting model is parameterized by a set of fields h,(a)
and couplings Ji(a, b) as in DCA, we dub our method as arDCA.

Besides comparing the performance of this model to bmDCA
and DeepSequence, we will also use simple "fields-only” models,
also known as profile models or independent-site models. In these
models, the joint probability of all positions in a sequence

(@)

P(“i'“ifla-“val): 5
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Table 1 The table summarizes the data used (protein families, sequence lengths L and numbers M, together with the Pearson correlations between empirical and model-

generated connected correlations C;; and C;i, for bmDCA, for arDCA using entropic or direct positional orders, and for DeepSequence (the highest values are emphasized in

bold).

t/min t/min

entropy
bmDCA
1.5
1.7
1.5
1.8
1.2

entropy
arDCA
1.2

1.6

1.2

1.4

ciik
0.9

Cijic

C,-,-k dir.

Cijk ent.

C,'l'

C,-J- dil’.
arDCA
0.96
0.97
0.95
0.96
0.96

C,'l' ent.
arDCA
0.97
0.97
0.96

bmDCA
204

arDCA

DeepSeq

0.80
0.77
0.65
0.92
0.92

bmDCA
0.83
0.85
0.92
0.88
0.92

arDCA
0.82
0.76
0.87
0.88
0.91

arDCA
0.84
0.78
0.87
0.89
0.93

DeepSeq

0.81

0.84
0.93
0.95
0.95

bmDCA
0.95
0.97
0.97
0.93
0.95

53 13600

PFO0014

2088

137605
36690

70
80

12

PFO0076
PFO0595

4003

1489
3905

823798 0.96

7515

PFO0072
PF13354

0.97

202

The entropies/site and computational running times for model learning (on a single Intel Xeon E5-2620 v4 2.10 GHz CPU) is also provided for arDCA and bmDCA. Best values for each measure are evidenced. Similar results for the 32 protein families with deep-mutational

scanning data are given in the Supplementary Table 2.

any conditioning to the sequence context. Using maximum-
likelihood inference, each factor fi(a;) equals the empirical
frequency of amino acid g; in column i of the input MSA D.

A few remarks are needed.

Eq. (2) has striking similarities to standard DCA%, but also
important differences. The two have exactly the same number of
parameters, but their meaning is quite different. While DCA has
symmetric couplings Ji;(a, b) = J;i(b, a), the parameters in Eq. (2)
are directed and describe the influence of site j on site i for j<i
only, i.e., only one triangular part of the J-matrix is filled.

The inference in arDCA is very similar to plmDCA3, ie., to
DCA based on pseudo-likelihood maximization®. In particular,
both in arDCA and pImDCA the gradient of the likelihood can be
computed exactly from the data, while in bmDCA it has to be
estimated via Monte Carlo Markov Chain (MCMC), which
requires the introduction of additional hyperparameters (such as
the number of chains, the mixing time, etc.) that can have an
important impact on the quality of the inference, see® for a
recent detailed study.

In plmDCA each a; is, however, conditioned to all other a; in
the sequence, and not only by partial sequences. The resulting
directed couplings are usually symmetrized akin to standard Potts
models. On the contrary, the Ji(a,b) that appear in arDCA
cannot be interpreted as “direct couplings” in the DCA sense, cf.
below for details on arDCA-based contact prediction. However,
pImDCA has limited capacities as a generative model®:
symmetrization moves parameters away from their maximum-
likelihood value, probably causing a loss in model accuracy. No
such symmetrization is needed for arDCA.

arDCA, contrary to all other DCA methods, allows for
calculating the probabilities of single sequences. In bmDCA, we
can only determine sequence weights, but the normalizing factor,
ie., the partition function, remains inaccessible for exact
calculations; expensive thermodynamic integration via MCMC
sampling is needed to estimate it. The conditional probabilities in
arDCA are individually normalized; instead of summing over g-
sequences, we need to sum L-times over the g states of individual
amino acids. This may turn out as a major advantage when the
same sequence in different models shall be compared, as in
homology detection and protein family assignment®®>7, cf. the
example given below.

The ansatz in Eq. (2) can be generalized to more complicated
relations. We have tested a two-layer architecture but did not
observe advantages over the simple soft-max regression, as will be
discussed at the end of the paper.

Thanks, in particular, to the possibility of calculating the
gradient exactly, arDCA models can be inferred much more
efficiently than bmDCA models. Typical inference times are given
in Table 1 for five representative families, and show a speedup of
about 2-3 orders of magnitude with respect to the bmDCA
implementation of?8, both running on a single Intel Xeon E5-
2620 v4 2.10 GHz CPU. We also tested the Mi3 package?®, which
is able to learn similar bmDCA models in a time of about 60 min
for the PF00014 family and 900 min for the PF00595 family,
while running on two TITAN RTX GPUs, thus remaining much
more computationally demanding than arDCA.

The positional order matters. Eq. (1) is valid for any order of the
positions, i.e., for any permutation of the natural positional order
in the amino-acid sequences. This is no longer true when we
parameterize the P(a;|a;_1,..., a;) according to Eq. (2). Different
orders may give different results. In Supplementary Note 1, we
show that the likelihood depends on the order and that we can
optimize over orders. We also find that the best orders are
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Fig. 2 Generative properties of arDCA for PF00072. Panels a-c compare the single-site frequencies fi(a) and two-site and three-site connected
correlations Cj(a, b) and Cji(a, b, ¢) found in the sequence data and samples from models, for arDCA (blue) and bmDCA (red). Panels d-g show different
samples projected onto the first two principal components of the natural data. Datasets are the natural MSA (d) and samples from arDCA (e), bmDCA (),
and a profile model (g). Results for other protein families are shown in Supplementary Figs. 5-6.

correlated to the entropic order, where we select first the least
entropic, i.e. most conserved, variables, progressing successively
towards the most variable positions of highest entropy. The site
entropy s; = —>_, f(a)log f(a) can be directly calculated from
the empirical amino-acid frequencies f;(a) of all amino acids a in
site 1.

Because the optimization over the possible L! site orderings is
very time-consuming, we use the entropic order as a practical
heuristic choice. In all our tests, described in the next sections, the
entropic order does not perform significantly worse than the best-
optimized order we found.

A close-to-entropic order is also attractive from the point of
view of interpretation. The most conserved sites come first. If the
amino acid on those sites is the most frequent one, basically no
information is transmitted further. If, however, a sub-optimal
amino acid is found in a conserved position, this has to be
compensated by other mutations, ie., necessarily by more
variable (more entropic) positions. Also, the fact that variable
positions come last, and are modeled as depending on all other
amino acids, is well interpretable: these positions, even if highly
variable, are not necessarily unconstrained, but they can be used
to finely tune the sequence to any sub-optimal choices done in
earlier positions.

For this reason, all coming tests are done using increasing
entropic order, i.e., with sites ordered before model learning by
increasing empirical s; values. Supplementary Figs. 1-3 shows a
comparison with alternative orderings, such as the direct one
(from 1 to L), several random ones, and the optimized one, cf.
also Table 1 for some results.

arDCA provides accurate generative models. To check the
generative property of arDCA, we compare it with bmDCA?, i.e.,
the most accurate generative version of DCA obtained via
Boltzmann machine learning. bmDCA was previously shown to
be generative not only in a statistical sense, but also in a biological
one: sequences generated by bmDCA were shown to be

statistically indistinguishable from natural ones, and most
importantly, functional in vivo for the case of chorismate mutase
enzymes20. We also compare the generative property of arDCA
with DeepSequence3®3* as a prominent representative of deep
generative models.

To this aim, we compare the statistical properties of natural
sequences with those of independently and identically distributed
(iid.) samples drawn from the different generative models
P(ay,..., ar). At this point, another important advantage of arDCA
comes into play: while generating i.i.d. samples from, e.g., a Potts
model requires MCMC simulations, which in some cases may
have very long decorrelation times and thus become tricky and
computationally expensive?$>> (cf. also Supplementary Note 2
and Supplementary Fig. 4), drawing a sequence from the arDCA
model P(aj,.., a;) is very simple and does not require any
additional parameter. The factorized expression Eq. (1) allows for
sampling amino acids position by position, following the chosen
positional order, cf. the detailed description in Supplementary
Note 2.

Figures 2a—c show the comparison of the one-point amino-acid
frequencies fi(a), and the connected two-point and three-point
correlations

Cij(aa b) = fij(a7 b) _fz(a)f](b) )
Cyula,b,0) = fyu(a,b,0) — f,(a, Bf(O) — fula, Of (b)
— Fulb, Of (@) + 2f @)f (D) (0),

(€)

of the data with those estimated from a sample of the arDCA
model. Results are shown for the response-regulator Pfam family
PF000722. Other proteins are shown in Table 1 and Supplemen-
tary Note 3, Supplementary Figs. 5-6. We find that, for these
observables, the empirical and model averages coincide very well,
equally well, or even slightly better than for the bmDCA case. In
particular, for the one-point and two-point quantities, this is
quite surprising: while bmDCA fits them explicitly, ie., any
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deviation is due to the imperfect fitting of the model, arDCA does
not fit them explicitly, and nevertheless obtains higher precision.

In Table 1, we also report the results for sequences sampled
from DeepSequence®3. While its original implementation aims at
scoring individual mutations, cf. Section “Predicting mutational
effects via in-silico deep mutational scanning”, we apply the
modification of ref. 34 allowing for sequence sampling. We
observe that for most families, the two-point and three-point
correlations of the natural data are significantly less well
reproduced by DeepSequence than by both DCA implementa-
tions, confirming the original findings of ref. 34 Only in the
largest family, PF00072 with more than 800,000 sequences,
DeepSequence reaches comparable or, in the case of the three-
point correlations, even superior performance.

A second test of the generative property of arDCA is given by
Fig. 2d-g. Panel d shows the natural sequences projected onto
their first two principal components (PC). The other three panels
show generated data projected onto the same two PCs of the
natural data. We see that both arDCA and bmDCA reproduce
quite well the clustered structure of the response-regulator
sequences (both show a slightly broader distribution than the
natural data, probably due to the regularized inference of the
statistical models). On the contrary, sequences generated by a
profile model Py ofay,... ar) =1I; fia;) assuming independent
sites, do not show any clustered structure: the projections are
concentrated around the origin in PC space. This indicates that
their variability is almost unrelated to the first two principal
components of the natural sequences.

From these observations, we conclude that arDCA provides
excellent generative models, of at least the same accuracy as
bmDCA. This suggests fascinating perspectives in terms of data-
guided statistical sequence design: if sequences generated from
bmDCA models are functional, also arDCA-sampled sequences
should be functional. But this is obtained at a much lower
computational cost, cf. Table 1 and without the need to check for
convergence of MCMC, which makes the method scalable to
much bigger proteins.

Predicting mutational effects via in-silico deep mutational
scanning. The probability of a sequence is a measure of its
goodness. For high-dimensional probability distributions, it is
generally convenient to work with log probabilities. Using
inspiration from statistical physics, we introduce a statistical
energy

E(ay,...,a;) = —logP(ay, ...,a;), (4)

as the negative log probability. We thus expect functional
sequences to have very low statistical energies, while unrelated
sequences show high energies. In this sense, statistical energy can
be seen as a proxy of (negative) fitness. Note that in the case of
arDCA, the statistical energy is not a simple sum over the model
parameters as in DCA, but contains also the logarithms of the
local partition functions z,(a;_y,..., a1), cf. Eq. (2).

Now, we can easily compare two sequences differing by one or
few mutations. For a single mutation a; — b;, where amino acid g;
in position i is substituted with amino acid b;, we can determine
the statistical-energy difference

P(ay,...,a;_,b,a;,,...

9 aL)

AE(a; — b;) = —log )
) aL

Pay,....a,_1,8;,a; ;... ®)
If negative, the mutant sequence has lower statistical energy; the
mutation a; — b; is thus predicted to be beneficia. On the
contrary, a positive AE predicts a deleterious mutation. Note that,
even if not explicitly stated on the left-hand side of Eq. (5), the
mutational score AE(a; — b;) depends on the whole sequence

background (a,..., a;—1, iy 1,-..,41) it appears in, i.e., on all other
amino acids a; in all positions j # i.

It is now easy to perform an in-silico deep mutational scan, i.e.,
to determine all mutational scores AE(a; — b;) for all positions
i=1, .., L and all target amino acids b; relative to some reference
sequence. In Fig. 3a, we compare our predictions with experi-
mental data over more than 30 distinct experiments and wildtype
proteins, and with state-of-the-art mutational-effect predictors.
These contain in particular the predictions using plmDCA (aka
evMutation!0), variational autoencoders (DeepSequence33), evo-
lutionary distances between wildtype, and the closest homologs
showing the considered mutation (GEMME?®8)—all of these
methods take, in technically different ways, the context-
dependence of mutations into account. We also compare it to
the context-independent prediction using the above-mentioned
profile models.

It can be seen that the context-dependent predictors outper-
form systematically the context-independent predictor, in
particular for large MSA in prokaryotic and eukaryotic proteins.
The four context-dependent models perform in a very similar
way. There is a little but systematic disadvantage for plmDCA,
which was the first published predictor of the ones
considered here.

The situation is different in the typically smaller and less
diverged viral protein families. In this case, DeepSequence, which
relies on data-intensive deep learning, becomes unstable. It
becomes also harder to outperform profile models, e.g., plmDCA
does not achieve this. arDCA performs similarly or, in one out of
four cases, substantially better than the profile model.

To go into more detail, we have compared more quantitatively
the predictions of arDCA and DeepSequence, currently con-
sidered as the state-of-the-art mutational predictor. In Fig. 3b, we
plot the performance of the two predictors against each other,
with the symbol size being proportional to the number of
sequences in the training MSA of natural homologs. Almost all
dots are close to the diagonal (apart from few viral datasets), with
15/32 datasets having a better arDCA prediction and 17/32 giving
an advantage to DeepSequence. The figure also shows that arDCA
tends to perform better on smaller datasets, while DeepSequence
takes over on larger datasets. In Supplementary Fig. 7, we have
also measured the correlations between the two predictors. Across
all prokaryotic and eukaryotic datasets, the two show high
correlations in the range of 82-95%. These values are larger than
the correlations between predictions and experimental results,
which are in the range of 50-60% for most families. This
observation illustrates that both predictors extract a highly similar
signal from the original MSA, but this signal may be quite
different from the experimentally measured phenotype. Many
experiments actually provide only rough proxies for protein
fitness, like e.g. protein stability or ligand-binding affinity. To
what extent such variable underlying phenotypes can be predicted
by unsupervised learning based on homologous MSA thus
remains an open question.

We thus conclude that arDCA permits a fast and accurate
prediction of mutational effects, in line with some of the state-
of-the-art predictors. It systematically outperforms profile
models and plmDCA and is more stable than DeepSequence
in the case of limited datasets. This observation, together with
the better computational efficiency of arDCA, suggests that
DeepSequence should be used for predicting mutational effects
for individual proteins represented by very large homologous
MSA, while arDCA is the method of choice for large-scale
studies (many proteins) or small families. GEMME, based on
phylogenetic information, astonishingly performs very similarly
to arDCA, even if the information taken into account seems
different.

6 | (2021)12:5800 | https://doi.org/10.1038/s41467-021-25756-4 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

a 0.8
:
= * A
$50.7 ; - A
© = »*
= 1 4 2 H = 3
go-e . *lg.x‘*::- * e
° B 4 4 o ¢ 4 & g ¢ = ®
05 . A 4 e st oagoa . A g 3
© * ¢ s 8 ¢ A
[ ¢ = ! L] *
£o4 . . ¢
19
203 "a,
(L A arDCA L]
S Profile ¢ * t
£ 0.2 = DeepSequence =
3 o plmDCA
20.1 % GEMME
0.0 Prokaryotic or eukaryotic Viral n
N\ N R B
& ‘f’ée‘{\q,e\\@f&“\ S @?90\\?’(’0‘3’& S 'o@c@\ <& @\ %\(\Q? e ”\é 6~o<° %&z&\o%&;@;%&\g%@o;@@
> © o RIS < NG Q
DN AN NN bobeoQ@cbO 6 S P DR R
O R OO A SRS & FIIS SN
S ONSSNNNG Q' @ I\ O A S & \0 W @ O O @R o N W
PN Y A SO QTN P AP X o Q& R
IR TS <& 0@(\\(\\%» Q‘o k‘\\ (Obfb e\ *v\oQ & NN
O\ 3) XL W e WO @ ‘\397 PN RIS &
P & N coo\/\\“\ "\V\e\"’& \9\(\ & - Lot
I & \‘\O «‘,o(\ \(.\\0 ’b\\O «‘(’\\@ N \\)eQ
O o\ & xO {{\
S 2 ANl
b 0.81 @ Prokaryotic or eukaryotic
= Viral
c 071 e Small effective number of sequences (0-5000) ®
.8 @® Medium effective number of sequences (5000-10000) ‘
L 0.6 . Large effective number of sequences (10000-30000)
o
g
o 0.5 [ ] . ®
()
9 (.41
c 0.
(]
S
O 0.3
()
2
O 0.2
()
o 0.14
0.01
0.0 01 0.2 03 0.4 05 0.6 0.7 08

arDCA Prediction

Fig. 3 Prediction of mutational effects by arDCA. Panel a shows the Spearman rank correlation between results of 32 deep-mutational scanning
experiments and various computational predictions. We compare arDCA with profile models, pImDCA (aka evMutation'®), DeepSequence33, and
GEMME>?, which currently are considered the state of the art. Detailed information about the datasets and the generative properties of arDCA on these
datasets are provided in Supplementary Note 4. Panel b shows a more detailed comparison between arDCA and DeepSequence, the symbol size is
proportional to the sequence number in the training MSA for prokaryotic and eukaryotic datasets (blue dots). Viral datasets are indicated by red squares.

Extracting epistatic couplings and predicting residue-residue
contacts. The best-known application of DCA is the prediction of
residue-residue contacts via the strongest direct couplings®. As
argued before, the arDCA parameters are not directly inter-
pretable in terms of direct couplings. To predict contacts using
arDCA, we need to go back to the biological interpretation of
DCA couplings: they represent epistatic couplings between pairs
of mutations®. For a double mutation a; — b;, a; — bj, epistasis is
defined by comparing the effect of the double mutation with the
sum of the effects of the single mutations, when introduced
individually into the wildtype background:

AAE(b;, b)) = AE(a; — by, a; — b))

(6)
— AE(a; — b;) — AE(aj — bj)7

where the AE in arDCA is defined in analogy to Eq. (5). The
epistatic effect AAE(b;, b;) provides an effective direct coupling
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between amino acids b;b; in sites i,j. In standard DCA,
AAE(b;, b)) is actually given by the direct coupling Ji(b;, b)) —
Jii(bi» @) — Jif(ai, b)) + Jif(a;, a;) between sites i and j.

For contact prediction, we can treat these effective
couplings in the standard way (compute the Frobenius norm
in zero-sum gauge, apply the average product correction, cf.
Supplementary Note 5 for details). The results are represented
in Fig. 4 (cf. also Supplementary Figs. 8-10). The contact maps
predicted by arDCA and bmDCA are very similar, and both
capture very well the topological structure of the native
contact map. The arDCA method gives in this case a few
more false positives, resulting in a slightly lower positive
predictive value (panel c). However, note that the majority of
the false positives for both predictors are concentrated in the
upper right corner of the contact maps, in a region where the
largest subfamily of response-regulators domains, character-
ized by the coexistence with a Trans_reg C DNA-binding
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Fig. 4 Prediction of residue-residue contacts by arDCA as compared to bmDCA. Panels a and b show the true (black, upper triangle) and predicted
(lower triangle) contact maps for PFO0072, with blue (red) dots indicating true (false) positive predictions. Panel ¢ shows the positive predictive values
(PPV, fraction of true positives in the first predictions) as a function of the number of predictions.

domain (PF00486) in the same protein, has a homo-
dimerization interface.

One difference should be noted: for arDCA, the definition of
effective couplings via epistatic effects depends on the reference
sequence (dj,..., ar), in which the mutations are introduced; this is
not the case in DCA. So, in principle, each sequence might give a
different contact prediction, and accurate contact prediction in
arDCA might require a computationally heavy averaging over a
large ensemble of background sequences. Fortunately, as we have
checked, the predicted contacts hardly depend on the reference
sequence chosen. It is therefore possible to take any arbitrary
reference sequence belonging to the homologous family and
determine epistatic couplings relative to this single sequence. This
observation causes an enormous speedup by a factor M, with M
being the depths of the MSA of natural homologs.

The aim of this section was to compare the performance of
arDCA in contact prediction when compared to established
methods using exactly the same data, i.e., a single MSA of the
considered protein family. We have chosen bmDCA in coherence
to the rest of the paper, but apart from little quantitative
differences, the conclusions remain unchanged when looking to
DCA variants based on mean-field or pseudo-likelihood approx-
imations, cf. Supplementary Fig. 9. The recent success of Deep-
Learning-based contact prediction has shown that the perfor-
mance can be substantially improved if coevolution-based contact
prediction for thousands of families is combined with supervised
learning based on known protein structures, as done by popular
methods like RaptorX, DeepMetaPSICOV, AlphaFold, or
trRosettal®19, We expect that the performance of arDCA could
equally be boosted by supervised learning, but this goes clearly
beyond the scope of our work, which concentrates on generative
modeling.

Estimating the size of a family’s sequence space. The MSA of
natural sequences contains only a tiny fraction of all sequences,
which would have the functional properties characterizing a
protein family under consideration, i.e., which might be found in
newly sequenced species or be reached by natural evolution.
Estimating this number A of possible sequences, or their entropy
S=1logN, is quite complicated in the context of DCA-type
pairwise Potts models. It requires advanced sampling
techniques®0-61,

In arDCA, we can explicitly calculate the sequence probability
P(a;, .., ar). We can therefore estimate the entropy of the
corresponding protein family via

S = _Zal,...,a,/P(al’ ..,a;)logP(ay, ...,a;)
= (E(ala "'7aL)>P7

where the second line uses Eq. (4). The ensemble average (:)p can

7)

8

be estimated via the empirical average over a large sequence
sample drawn from P. As discussed before, extracting ii.d.
samples from arDCA is particularly simple due to their particular
factorized form.

Results for the protein families studied here are given in
Table 1. As an example, the entropy density equals S/L = 1.4 for
PF00072. This corresponds to N/ ~ 1.25 - 10°® sequences. While
being an enormous number, it constitutes only a tiny fraction of
all gL' ~1.23- 10148 possible sequences of length L = 112. Inter-
estingly, the entropies estimated using bmDCA are systematically
higher than those of arDCA. On the one hand, this is no surprise:
both reproduce accurately the empirical one-residue and two-
residue statistics, but bmDCA is a maximum entropy model,
which maximizes the entropy given these statistics*. On the other
hand, our observation implies that the effective multi-site
couplings in E(aj,..,ar) resulting from the local partition functions
z{(a;_1,...» a1) lead to a non-trivial entropy reduction.

Discussion

We have presented a class of simple autoregressive models, which
provide highly accurate and computationally very efficient gen-
erative models for protein-sequence families. While being of
comparable or even superior performance to bmDCA across a
number of tests including the sequence statistics, the sequence
distribution in dimensionally reduced principal-component
space, the prediction of mutational effects, and residue-residue
contacts, arDCA is computationally much more efficient than
bmDCA. The particular factorized form of autoregressive models
allows for exact likelihood maximization.

It allows also for the calculation of exact sequence probabilities
(instead of sequence weights for Potts models). This fact is of
great potential interest in homology detection using coevolu-
tionary models, which requires comparing probabilities of the
same sequence in distinct models corresponding to distinct pro-
tein families. To illustrate this idea in a simple, but the instructive
case, we have identified two subfamilies of the PF00072 protein
family of response regulators. The first subfamily is characterized
by the existence of a DNA-binding domain of the Trans_reg C
protein family (PF00486), the second is by a DNA-binding
domain of the GerE protein family (PF00196). For each of the
two subfamilies, we have extracted randomly 6000 sequences used
to train sub-family specific profile and arDCA models, with P,
being the model for the Trans_reg C and P, for the GerE sub-
family. Using the log-odds ratio log {P,(seq)/P,(seq)} to score all
remaining sequences from the two subfamilies, the profile model
was able to assign 98.6% of all sequences to the correct sub-
family, and 1.4% to the wrong one. arDCA has improved this to
99.7% of correct, and only 0.3% of incorrect assignments, redu-
cing the gray-zone in sub-family assignment by a factor of 3-4.
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Furthermore, some of the false assignments of the profile model
had quite large scores, cf. the histograms in Supplementary
Fig. 11, while the false annotations of the arDCA model had
scores closer to zero. Therefore, if we consider that a prediction is
reliable only if there are no wrong predictions for a larger log-
odds ratio score, then the score of arDCA is 97.5% while one of
the profile models is only 63.7%.

The importance of accurate generative models becomes also
visible via our results on the size of sequence space (or sequence
entropy). For the response regulators used as an example
throughout the paper (and similar observations are true for all
other protein families we analyzed), we find that "only” about
1098 out of all possible 10148 amino-acid sequences of the desired
length are compatible with the arDCA model, and thus suspected
to have the same functionality and the same 3D structure of the
proteins collected in the Pfam MSA. This means that a random
amino-acid sequence has a probability of about 1073 to be
actually a valid response-regulator sequence. This number is lit-
erally astronomically small, corresponding to the probability of
hitting one particular atom when selecting randomly in between
all atoms in our universe. The importance of good coevolutionary
modeling becomes even more evident when considering all pro-
teins being compatible with the amino-acid conservation patterns
in the MSA: the corresponding profile model still results in an
effective sequence number of 10%4, i.e., a factor of 102 larger than
the sequence space respecting also coevolutionary constraints. As
was verified in experiments, conservation provides insufficient
information for generating functional proteins, while taking
coevolution into account leads to finite success probabilities.

Reproducing the statistical features of natural sequences does
not necessarily guarantee the sampled sequences to be fully
functional protein sequences. To enhance our confidence in these
sequences, we have performed two tests.

First, we have reanalyzed the bmDCA-generated sequences of
ref. 20, which were experimentally tested for their in-vivo chor-
ismate-mutase activity. Starting from the same MSA of natural
sequences, we have trained an arDCA model and calculated the
statistical energies of all non-natural and experimentally tested
sequences. As is shown in Supplementary Fig. 12, the statistical
energies have a Pearson correlation of 97% with the bmDCA
energies reported in ref. 20. In both cases, functional sequences
are restricted to the region of low statistical energies.

Furthermore, we have used small samples of 10 artificial or
natural response-regulator sequences as inputs for trRosetta!?, in
a setting that allows for protein-structure prediction based only
on the user-provided MSA, ie., no homologous sequences are
added by trRosetta, and no structural templates are used. As is
shown in Supplementary Fig. 13, the predicted structures are very
similar to each other, and within a root-mean-square deviation of
less than 2 A from an exemplary PDB structure. The contacts
maps extracted from the trRosetta predictions are close to
identical.

While these observations do not prove that arDCA-generated
sequences are functional or fold into the correct tertiary structure,
they are coherent with this conjecture.

Autoregressive models can be easily extended by adding hidden
layers in the ansatz for the conditional probabilities P(a;|d;_1,..., a1),
with the aim to increase the expressive power of the overall model.
For the families explored here, we found that the one-layer model
Eq. (2) is already so accurate, that adding more layers only results in
similar, but not superior performance, cf. Supplementary Note 6.
However, in longer or more complicated protein families, the larger
expressive power of deeper autoregressive models could be helpful.
Ultimately, the generative performance of such extended models
should be assessed by testing the functionality of the generated
sequences in experiments similar to ref. 20,

Methods

Inference of the parameters. We first describe the inference of the parameters via
likelihood maximization. In a Bayesian setting, with a uniform prior (we discuss
regularization below), the optimal parameters are those that maximize the prob-
ability of the data, given as an MSA D = (a}"li=1,...,Lim =1,...,M) of M
sequences of aligned length L:

{7, h"}

gn x P(D h

ar; U-?l) ( ‘{Ia })

= nax log P(D h
arg (),lal) g ( |{Iv })

= argr&%))(mgl log Hi:l P(a"|al,,...,a]")

M L
=argmax >, > logP(al|a",,...,a]").
Uh) m=1i=1

Each parameter hj(a) or J;(a,b) appears in only one conditional probability P(a;a;
_15-» 1), and we can thus maximize independently each conditional probability in
Eq. (8):

M
{]:},h;‘} = arg max leogP(a;"la:'il,‘.‘,u{")

ijohi} m=

M

= argmax
b

o) m=1

—logzi(al,, ...a;")}

i—1
[hxu:") + X Iy a)
j=1

where

i1
LACTRPRES Zexp{hi(ai)+ leij(ai-,“j)} (&)
a =
is the normalization factor of the conditional probability of variable a;.
Differentiating with respect to h;(a) or to Jii(a, b), with j= 1,.., i — 1, we get the
set of equations:

1M dlogz(a ,...al")
0= Mm; [6“-“7 oh;(a) ’
(10)
1M dlogz,(al" ,...al")
0= MEI {‘9“7’ Oy J;(a, b) ’

where d,;, is the Kronecker symbol. Using Eq. (9) we find

dlogz,(a",...al"
M=P(ai =ala",,..a",

oh;(a) an
dlogz(al,,...al")
———— - =P(a; = alal" |, ...,a]" )0 .
a]ij(uv b) (at alat—lr 4y )Bal b
The set of equations thus reduces to a very simple form:
fi@) = (P(a; = alal",,....al)),,
(12)

filab)= <p(a,. =ala”,, ... a;")su],,,,b>p,

where (e)p = ﬁzle o denotes the empirical data average and fi(a), fii(a, b) is
the empirical one-point and two-point amino-acid frequencies. Note that for the
first variable (i = 1), which is unconditioned, there is no equation for the couplings,
and the equation for the field takes the simple form fi(a) = P(a; = a), which is
solved by h,(a) = log f,(a) + const.

Unlike the corresponding equations for the Boltzmann learning of a Potts
model’, there is a mix between probabilities and empirical averages in Eq. (12), and
there is no explicit equality between one-point and two-point marginals and
empirical one and two-point frequencies. This means that the ability to reproduce
the empirical one-point and two-point frequencies are already a statistical test for
the generative properties of the model, and not only for the fitting quality of the
current parameter values.

The inference can be done very easily with any algorithm using gradient
descent, which updates the fields and couplings proportionally to the difference of
the two sides of Eq. (12). We used the Low Storage BFGS method to do the
inference. We also add an L2 regularization, with a regularization strength of
0.0001 for the generative tests and 0.01 for mutational effects and contact
prediction. A small regularization leads to better results on generative tests, but a
larger regularization is needed for contact prediction of mutational effects. Contact
prediction can indeed suffer from too large parameters, and therefore a larger
regularization was chosen, coherently with the one used in plmDCA. Note that the
gradients are computed exactly at each iteration, as an explicit average over the
data, and hence without the need of MCMC sampling. This provides an important
advantage over Boltzmann-machine learning.

Finally, in order to partially compensate for the phylogenetic structure of the
MSA, which induces correlations among sequences, each sequence is reweighted by
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a coefficient w,, %

1 M

Rty = log P(a™|{J,;, b)),
{75, 1} argg:%ﬁMe“m;wm og P(a™|{J;, h;})

(13)

which leads to the same equations as above with the only modification of the
empirical average as (®)4,, = ﬁzﬁzl w,, o™, Typically, w,, is given by the
inverse of the number of sequences having least 80% sequence identity with
sequence m, and Meg=_,,W,, denotes the effective number of independent
sequences. The goal is to remove the influence of very closely related sequences.
Note however that such reweighting cannot fully capture the hierarchical structure
of phylogenetic relations between proteins.

Sampling from the model. Once the model parameters are inferred, a sequence
can be iteratively generated by the following procedure:

®  Sample the first residue from P(a;)
® Sample the second residue from P(a,|a;) where a; is sampled in the
previous step.

... L. Sample the last residue from P(ag|a;_,a;_»,..., 42,a1) Each step is very fast
because there are only 21 possible values for each probability. Both training and
sampling are therefore extremely simple and computationally efficient in arDCA.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Code availability
Codes in Python and Julia are available at https://github.com/pagnani/ArDCA.git.

Data availability

Data is available at https://github.com/pagnani/ArDCADataand was elaborated using
source data freely downloadable from the Pfam database (http://pfam.xfam.org/)?, cf.
Supplementary Table 1. The repository contains also sample MSA generated by arDCA.
The input data for Figure 3 are provided by the GEMME paper?8, cf. also Supplementary
Table 2.
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