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Abstract
Given a finite set of independent random variables, assume one can observe their
sum, and denote with s its value. Efron in 1965, and Lehmann in 1966, described
conditions on the involved variables such that each of them stochastically increases
in the value s, i.e., such that the expected value of any non-decreasing function of the
variable increases as s increases. In this paper, we investigate conditions such that this
stochastic monotonicity property is satisfied when the assumption of independence is
removed. Comparisons in the stronger likelihood ratio order are considered as well.

Keywords Stochastic orders · Likelihood ratio order · Logconcave densities ·
Schur-constant survival functions

Mathematics Subject Classification Primary 60E15 · 90B25; Secondary 62E99

1 Introduction

Consider a sample {X1, X2, . . . , Xn} of independent and identically distributed ran-
dom variables having finite expected value, and denote with S = ∑n

i=1 Xi their sum.
If one considers the expected value of any of the variables Xi given that S = s ∈ R,
i.e., E[Xi |S = s], then it is easy to verify that E[Xi |S = s] = s/n; thus, such a
conditioned expected value of Xi increases in s. However, this property is no longer
satisfied if a stronger stochastic comparison is considered, such as, for example, the
usual stochastic order, as the following simple counterexample shows. To this aim,
recall that, given the variables Y1 and Y2, then Y1 is said to be smaller than Y2 in the
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usual stochastic order (denoted by Y1 ≤ST Y2) if, and only if, E[φ(Y1)] ≤ E[φ(Y2)]
for all non-decreasing functions φ for which the expectations exist, or, equivalently,
if P[Y1 > y] ≤ P[Y2 > y] for all y ∈ R (see, e.g., Belzunce et al. 2015 or Shaked
and Shanthikumar 2007 for details, properties and applications of the usual stochastic
order and other stochastic comparisons).

Example 1.1 Let X1 and X2 be two independent discrete random variables that can
assume values in {0, 1, 2, 3} with probabilities {1/6, 1/6, 1/6, 1/2}, respectively, and
let S = X1 + X2. Then,

P[X1 > 0|S = 2] = 2/3 > P[X1 > 0|S = 3] = 5/8

and

P[X1 > 1|S = 2] = 1/3 < P[X1 > 1|S = 3] = 1/2,

so that [X1|S = 2] and [X1|S = 3] are not comparable in the usual stochastic order,
i.e., [X1|S = s] is not stochastically increasing in s.

The monotonicity of E[φ(Xi )|S = s] in s for a non-decreasing function φ can find
a wide range of applications in different research contexts, for example, in statistical
estimation and testing when one can just observe the sum of the sample andmust make
inferences on the distribution of the Xi , or in applied probability modeling, where one
can observe only the total number of individuals in a population but needs to take
decisions based on the proportion of a specific sub-category of members.

For this reason, sufficient conditions for the expectation E[φ(Xi )|S = s] to be
increasing in s for any non-decreasing function φ have been investigated and finally
provided by Efron in Efron (1965), who proved the following statement. For it, recall
that an absolutely continuous random variable X is said to have a logconcave density
fX if it satisfies

ln( fX (λx + (1 − λ)y)) ≥ λ ln fX (x) + (1 − λ) ln fX (y)

for all λ ∈ (0, 1) and all x, y in the support of X . Logconcavity of the density is a
well-known property, which is satisfied by a large number of remarkable distributions,
such as the normal or the exponential distributions, and has a straightforward analog
definition for discrete random variables (see, e.g., Bagnoli and Bergstrom 2005 or
Saumard and Wellner 2014 for two recent comprehensive surveys). Moreover, it must
be pointed out that alternative nomenclatures are commonly used in the literature for
this property, such as PF2 (Polya functions of order 2) or I L R (increase in likelihood
ratio) densities.

Proposition 1.1 (Efron 1965) Let {X1, X2, . . . , Xn} be a set of independent random
variables having logconcave densities, let S = ∑n

i=1 Xi be their sum, and let φ :
R
n → R be a real measurable function non-decreasing in each of its arguments.

Then, E[φ(X1, X2, . . . , Xn)|S = s] is a non-decreasing function of s.
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Proposition 1.1 provides conditions for stochastic monotonicity in s of the whole
random vector (X1, X2, . . . , Xn) given S = s, which, in general, is a stronger property
rather than the stochastic monotonicity in s of [Xi |S = s] for any i = 1, . . . , n.
Also, the assumption of identical distribution for the Xi is not required. However,
independence is still required.

The stochasticmonotonicity property stated in Proposition 1.1 can be of interest in a
variety of fields. It has been applied, for example, in queueing theory (see, e.g.,Masuda
1995 and Shanthikumar and Yao 1987), in economic theory (Edered 2010; Wang
2012), in stochastic comparisons of order statistics (Boland et al. 1996; Zhuang et al.
2010), in dependence modeling (Block et al. 1985; Hu and Hu 1999) and in statistical
testing, estimation and regression (Cohen and Sackrowitz 1987, 1990; Hwang and
Stefanski 1994). An interesting and exhaustive list of references where the property
has been applied can be found in Saumard and Wellner (2018). Moreover, alternative
proofs or generalizations of this property have been provided in Daduna and Szekli
(1996), where applications in queueing networks are considered, in Shanthikumar
(1987), where a more general result for which Proposition 1.1 is just a corollary
is proved, or in Liggett (2000), where a discrete version of the statement is obtained
(with applications inmodeling for interacting particle systems). A different interesting
generalization is also described in the recent paper (Oudghiri 2021)

In particular, an important alternative result was proved one year later by Lehmann,
in Example 12 in Lehmann (1966). In it, he showed that under the same assumptions
on the variables Xi (except for one of them), the monotonicity property holds for a
stronger stochastic order, i.e., for the likelihood ratio order. Given the variables Y1 and
Y2 having densities g1 and g2, Y1 is said to be smaller than Y2 in the likelihood ratio
order (denoted by Y1 ≤LR Y2) if, and only if, the ratio g1(y)/g2(y) is non-increasing
in y over the union of the supports of Y1 and Y2 (for details see, e.g., Belzunce et al.
2015 or Shaked and Shanthikumar 2007). It must be pointed out that the likelihood
ratio order is stronger than the usual stochastic order, in the sense that if Y1 ≤LR Y2,
then Y1 ≤ST Y2, but not the vice versa.

Proposition 1.2 (Lehmann 1966) Let {X1, X2, . . . , Xn} be a set of independent ran-
dom variables having logconcave densities, except for X1, and let S = ∑n

i=1 Xi be
their sum. Then, [X1|S = s] is non-decreasing in the likelihood ratio order in s, i.e.,
[X1|S = s1] ≤LR [X1|S = s2] whenever s1 ≤ s2.

Note that, since the likelihood ratio order implies the usual stochastic order, under
the same assumptions one has [X1|S = s1] ≤ST [X1|S = s2] whenever s1 ≤ s2.
Also note that in this statement, as for the previous one, the independence between
the variables Xi is assumed.

Among the main reasons of interest in Proposition 1.2 is the fact that for many para-
metric families of distributions the likelihood ratio order coincides with the ordering
between the parameters. This is the case, for example, of the exponential family, the
Poisson family, and the normal family (with respect to the mean μ, for fixed variance
σ 2). Thus, for example, uniformly most powerful likelihood tests through the value
of statistic S can be determined for composite hypothesis on the parameter, according
to the Karlin–Rubin theorem (see, e.g., Brown et al. 1976).
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In practical situations, however, the assumption of independence seems to be too
restrictive. This is the case in many applicative fields like in reliability, where items
subjected to common environments are usually considered, or in actuarial sciences,
where policyholders may have family relationships or share the same media channels.
In these cases the independence assumption is not fulfilled, and the above monotonic-
ity properties can be unsatisfied despite the logconcavity property for the involved
variables is satisfied, as shown in the following counterexample.

Example 1.2 Let (X1, X2) be a randomvector having the bivariateGumbel exponential
distribution, i.e., be such that its joint survival function is

F̄(x1, x2) = P(X1 > x1, X2 > x2) = exp[−(α1x1 + α2x2 + γ x1x2)]

for x1, x2 ≥ 0,α1, α2 > 0 andγ ∈ [0, α1α2] ⊆ R
+. Here, X1 and X2 have exponential

distributions; thus, they have logconcave densities.
Observe that the density of [X1|S = s] is

f[X1|S=s](x) =
{

f (x,s−x)
fS(s)

if x ∈ [0, s];
0 if x > s;

where f is the joint density of (X1, X2), whose analytical expression, for (x1, x2) ∈
[0,∞)2, is

f (x1, x2) = (α1α2 − γ + α1γ x1 + α2γ x2 + γ 2x1x2) exp[−(α1x1 + α2x2 + γ x1x2)],

being zero elsewhere. The ratio between the densities of [X1|S = s1] and [X1|S = s2],
for s1 ≤ s2, is then given by

f[X1|S=s1](x)
f[X1|S=s2](x)

=
{

f (x,s1−x)
f (x,s2−x) · fS(s2)

fS(s1)
if x ∈ [0, s1];

0 if x ∈ (s1, s2];

which is defined in the union of the supports of [X1|S = s1] and [X1|S = s2] (that is,
in (0, s2)).

With straightforward calculations, it is easy to verify that such a ratio is increasing
for x ∈ [0, s1], but then it collapses to zero in (s1, s2]. For example, for α1 = α2 = 1,
γ = 0.5, s1 = 1 and s2 = 2, the ratio assumes values 1.81 for x = 0, 2.20 for x = 0.5,
2.56 for x = 1− and 0 for x ∈ (1, 2). Thus, it does not satisfy monotonicity, and
[X1|S = s1] and [X1|S = s2] are not comparable in the likelihood ratio order.Actually,
they are also not comparable in the usual stochastic sense, since the corresponding
survival functions do intersect.

Taking also into account the fact that there are few results where the distribution of
the sum of dependent random variables is available in a closed form (see, e.g., Navarro
and Sarabia 2020 for a detailed discussion on this topic), it becomes important to
understand when the properties of monotonicity described above are satisfied also for

123



Stochastic monotonicity of dependent variables given their…

dependent variables, even without explicitly knowing the distribution of their sum. To
the best of our knowledge, generalizations to dependent variables of Proposition 1.1
have been provided only in the recent paper (Saumard and Wellner 2018), while no
generalizations of Proposition 1.2 are available in the literature.

Therefore, the aim of this paper is to provide such generalizations of Proposi-
tion 1.2 and further generalizations of Proposition 1.1 in the case that the variables
X1, X2, . . . , Xn do not satisfy independence. The new extensions of Proposition 1.1
provided here describe conditions on the joint distribution of the Xi that seem easier
to be verified, and show that the class of bivariate distributions satisfying the property
is wider than the one described in Saumard and Wellner (2018). Also, some gener-
alizations in case of random vectors having more than two components are provided
here.

Together with this, monotonicity properties for [S|X1 = x] in x , which follow
easily from the main results, are presented as well

The rest of the paper is organized as follows. Section 2 considers the case of bivariate
vectors (X1, X2), while the multivariate case, i.e., the case (X1, X2, . . . , Xn) for n >

2, is considered in Sect. 3. Illustrative examples are provided in both sections. Finally,
some conclusions are given in Sect. 4.

2 The bivariate case

First we consider the generalization of Proposition 1.2, for which, given an absolutely
continuous randomvector (X1, X2), one can observe that themonotonicity of [X1|S =
s] in s in the likelihood ratio order is actually equivalent to a property of its joint density
which is related to the notion of total positivity. To this aim, remember that a function
φ : R2 → R

+ is said to be Totally Positive of order 2 (shortly, T P2) in its arguments
(x1, x2) if, and only if, for any x, y in R2 it satisfies

φ(x)φ(y) ≤ φ(x ∧ y)φ(x ∨ y),

where the operators ∧ and ∨ denote coordinatewise minimum and maximum, respec-
tively.

Proposition 2.1 Let the vector (X1, X2) have a joint density f . Then, the following
conditions are equivalent:

(a) The function f (x, s − x) is T P2 in (x, s);
(b) [X1|S = s1] ≤LR [X1|S = s2] whenever s1 ≤ s2;
(c) [S|X1 = x1] ≤LR [S|X1 = x2] whenever x1 ≤ x2.

Proof For the equivalence between points (a) and (b) observe that, for any x, s ∈ R,

f[X1|S=s](x) = f (x, s − x)
∫ +∞
−∞ f (x, s − x)dx

= f (x, s − x)

A(s)
,
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where A(s) = ∫ +∞
−∞ f (x, s−x)dx . Taking into account that a function of one variable

does not affect the T P2 property, one can immediately observe that the ratio
f[X1 |S=s1](x)
f[X1 |S=s2](x)

is non-decreasing if, and only if, f (x, s − x) is T P2 in (x, s).
For the equivalence between points (a) and (c), one can reasoning as above, just

observing that

f[S|X1=x](s) = f (x, s − x)
∫ +∞
−∞ f (x, y − x)dy

= f (x, s − x)

B(x)
,

where B(x) = ∫ +∞
−∞ f (x, y − x)dy. 
�

Let us see some examples of bivariate random vectors that satisfy the conditions of
Proposition 2.1.

Example 2.1 Let (X1, X2) have a Gompertz distribution, i.e., be such that it has joint
survival function

F̄(x1, x2) = exp[−θ(eα1x1+α2x2 − 1)]

for x1, x2 ≥ 0, α1, α2 > 0 and θ ∈ [1,∞). The corresponding joint density is

f (x1, x2) = α1α2θ(θeα1x1+α2x2 − 1) exp[−θ(eα1x1+α2x2 − 1) + α1x1 + α2x2]
= h(α1x1 + α2x2),

where h(t) = α1α2θ(θet − 1) exp[−θ(et − 1) + t], t ≥ 0.
With straightforward computations, one can verify that h(t) is logconcave, i.e., that

the ratio h(t + s)/h(t) is decreasing in t for every s ≥ 0. Assume that α1 < α2, and
observe that in this case

f (x, s − x) = h((α1 − α2)x + αs) = h(βx + α2s)

for a negative β (and βx + α2s ≥ 0). Thus, for x1 ≤ x2 and s1 ≤ s2,

f (x2, s2 − x2)

f (x2, s1 − x2)
= h(βx2 + α2s2)

h(βx2 + α2s1)
≥ h(βx1 + α2s2)

h(βx1 + α2s1)
= f (x1, s2 − x1)

f (x1, s1 − x1)
,

i.e., f (x, s − x) is T P2 in (x, s).
Thus, for 0 < α1 < α2, and any θ ∈ [1,∞), one can apply Proposition 2.1

obtaining that [X1|S = s] is non-decreasing in the likelihood ratio order in s and that
[S|X1 = x] is non-decreasing in the likelihood ratio order in x .

Example 2.2 Let (X1, X2) have a bivariate Pareto distribution, i.e., be such that it has
joint survival function

F̄(x1, x2) = (
1 + α1x1 + α2x2

)− 1
γ
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for x1, x2 ≥ 0, α1, α2, γ > 0. The corresponding density is

f (x1, x2) = α1α2
1 + γ

γ 2

(
1 + α1x1 + α2x2

)− 2γ+1
γ ,

so that

f (x, s − x) = α1α2
1 + γ

γ 2

(
1 + (α1 − α2)x + α2s

)− 2γ+1
γ .

It is easy to verify that the latter is T P2 in (x, s) if, and only if, α1 ≥ α2. In this case,
[X1|S = s] is non-decreasing in the likelihood ratio order in s. On the contrary, if
α1 ≤ α2, then [X2|S = s] is non-decreasing in the likelihood ratio order in s.

It is interesting to observe that X1 and X2, marginally, have Pareto distributions,
i.e., they have densities

fi (x) = 1

γ

(
1 + x

)− γ+1
γ , x ≥ 0,

for i = 1, 2, which are logconvex. Thus, this example shows that logconcavity of the
density is not a necessary condition for the monotonicity of [X1|S = s] in likelihood
ratio order.

If the vector satisfies properties similar to those stated in Proposition 2.1, then
also Proposition 1.1 in the bivariate case can be generalized to dependent variables.
Since the comparison considered next is the usual stochastic order between random
vectors, rather than between random variables, we recall here its definition. Given
the random vectors Y1 = (Y1,1,Y1,2, . . . ,Y1,n) and Y2 = (Y2,1,Y2,2, . . . ,Y2,n), then
Y1 is said to be smaller than Y2 in the usual stochastic order (denoted by Y1 ≤ST

Y2) if, and only if, E[φ(Y1)] ≤ E[φ(Y2)] for all functions φ : Rn → R that are
non-decreasing in each argument and for which the expectations exist. Equivalently,
Y1 ≤ST Y2 if P[Y1 ∈ U] ≤ P[Y2 ∈ U] for any upper set U ⊆ R

n , i.e., a set
such that (y2,1, y2,2, . . . , y2,n) ∈ U whenever y1,i ≤ y2,i for all i = 1, 2, . . . , n and
(y1,1, y1,2, . . . , y1,n) ∈ U (see Shaked and Shanthikumar 2007 for details).

To prove such a generalization, which is an adaptation to the case of dependent
variables of the proof given in Efron (1965) for Proposition 1.1, we need a preliminary
statement.

Lemma 2.1 Let g : R2 → R
+ be a function which is T P2 on its arguments, and it is

defined on the whole R2. If y1 ≤ y2 and equality

∫ x1
−∞ g(z, y1)dz

∫ +∞
−∞ g(z, y1)dz

=
∫ x2
−∞ g(z, y2)dz

∫ +∞
−∞ g(z, y2)dz

, (1)

holds, then x1 ≤ x2.
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Proof First observe that, by the well-known Basic Composition Formula (see, e.g.,
Karlin 1968), if g(z, y) is T P2 in (z, y), then the integral

∫ x

−∞
g(z, y)dz =

∫ +∞

−∞
1(−∞,x](z)g(z, y)dz

is T P2 in (x, y), being the indicator function 1(−∞,x](z) a T P2 function in (x, z).
It follows that, for x2 < ∞ and y1 ≤ y2, one has

∫ x2
−∞ g(z, y1)dz

∫ +∞
−∞ g(z, y1)dz

≥
∫ x2
−∞ g(z, y2)dz

∫ +∞
−∞ g(z, y2)dz

. (2)

Since g assumes nonnegative values, the equality in (1) can be obtained by reducing
the upper extreme of integration in the integral of the numerator in the left-hand side
of (2), i.e., for x1 ≤ x2. 
�

Wecannowdescribe the conditions for a vector (X1, X2) to satisfy themonotonicity
in the usual stochastic order given the value of the sum S = X1 + X2.

Proposition 2.2 Let the vector (X1, X2) have a joint density f . If f (x, s − x) and
f (s − x, x) are both T P2 in (x, s), then

[(X1, X2)|S = s1] ≤ST [(X1, X2)|S = s2]

for any s1 ≤ s2.

Proof Observe that the cumulative distribution of X1, conditioned on S = s is

FX1|S=s(x) =
∫ x
−∞ f (z, s − z)dz

∫ +∞
−∞ f (z, s − z)dz

.

Fix s1, s2 ∈ R and, for any α ∈ (0, 1), let us denote with xiα the corresponding quantile
with respect to the distribution of [X1|S = si ], i.e., let xiα be such that

FX1|S=si (x
i
α) =

∫ xiα−∞ f (z, si − z)dz
∫ +∞
−∞ f (z, si − z)dz

= α

for i = 1, 2. By Lemma 2.1 one has x1α ≤ x2α whenever s1 ≤ s2. By symmetry,
again using Lemma 2.1 but switching the arguments, one also gets y1α ≤ y2α whenever
s1 ≤ s2, where yiα is such that

FX2|S=si (y
i
α) =

∫ yiα−∞ f (si − z, z)dz
∫ +∞
−∞ f (si − z, z)dz

= α

123



Stochastic monotonicity of dependent variables given their…

for i = 1, 2. Let us now denote with (xiα, yi1−α) the point in the line x + y = si which
represents the quantile of level α for the conditional distribution of [X1|S = si ] (the
zero quantile being the upper left point in the line). Because of the arguments above,
one has, for s1 ≤ s2, that the point (x2α, y21−α) is located in the upper right orthant
having vertex (x1α, y11−α), i.e. (x1α, y11−α) ≤ (x2α, y21−α).

Consider now any upper set U, and observe that, by convexity of upper sets, the
intersectionU

⋂ {(x, y) ∈ R
2 : x + y = s1} is a segment contained in the line having

equation x + y = s1. Let us denote with (x1α1 , y
1
1−α1

) and (x1α2 , y
1
1−α2

) the coordinates
of the two extremes of such a segment, so that

P[(X1, X2) ∈ U|S = s1] = FX1|S=s1(x
1
α2

) − FX1|S=s1(x
1
α1

) = α2 − α1

for some 0 < α1 ≤ α2 < 1.
Similarly, the intersection U

⋂ {(x, y) ∈ R
2 : x + y = s2} is a segment contained

in the line x + y = s2, delimited by the points having coordinates (x2α̃1 , y
2
1−α̃1

) and

(x2α̃2 , y
2
1−α̃2

), where 0 < α̃1 ≤ α̃2 < 1 are such that

P[(X1, X2) ∈ U|S = s2] = FX1|S=s2(x
2
α̃2

) − FX1|S=s2(x
2
α̃1

) = α̃2 − α̃1.

Let us now consider the points (x2α1 , y
2
1−α1

) and (x2α2 , y
2
1−α2

) in the line x + y = s2
which correspond to the quantiles of levels α1 and α2 for the conditional distribution
of [X1|S = s2]. As seen before, (x1α1 , y

1
1−α1

) ≤ (x2α1 , y
2
1−α1

) and (x1α2 , y
1
1−α2

) ≤
(x2α2 , y

2
1−α2

); thus, (x2α1 , y
2
1−α1

) ∈ U and (x2α2 , y
2
1−α2

) ∈ U (by definition of upper

sets). It means that (x2α1 , y
2
1−α1

) and (x2α2 , y
2
1−α2

) are inU
⋂ {(x, y); x+y = s2}; thus,

also the segment that unifies (x2α1 , y
2
1−α1

) and (x2α2 , y
2
1−α2

) is a subset of the segment

that joins (x2α̃1 , y
2
1−α̃1

) and (x2α̃2 , y
2
1−α̃2

). This implies that x2α̃1 ≤ x2α1 ≤ x2α2 ≤ x2α̃2 and
therefore

P[(X1, X2) ∈ U|S = s2] = FX1|S=s2(x
2
α̃2

) − FX1|S=s2(x
2
α̃1

)

≥ FX1|S=s2(x
2
α2

) − FX1|S=s2(x
2
α1

)

= α2 − α1

= FX1|S=s1(x
1
α2

) − FX1|S=s1(x
1
α2

)

= P[(X1, X2) ∈ U|S = s1].

Then the assertion follows. 
�

Note that the bivariate stochastic order implies the upper and lower orthant orders
(see Shaked and Shanthikumar 2007, p. 308) and so, under the assumptions of the
preceding proposition, we get

P(X1 ≤ x1, X2 ≤ x2|S = s1) ≥ P(X1 ≤ x1, X2 ≤ x2|S = s2)
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and

P(X1 > x1, X2 > x2|S = s1) ≤ P(X1 > x1, X2 > x2|S = s2)

for any x1, x2 and any s1 ≤ s2.
Also note that, under these assumptions, from Theorems 6.B.16 and 6.B.20 in

Shaked and Shanthikumar (2007), p. 273 and 276, we also get

(φ(X1, X2)|S = s1) ≤ST (φ(X1, X2)|S = s2)

and

(φ1(X1)|S = s1) + (φ2(X2)|S = s1) ≤ST (φ1(X1)|S = s2) + (φ2(X2)|S = s2)

for any s1 ≤ s2 and any non-decreasing functions φ, φ1 and φ2.
The following example, showing a case where Proposition 2.2 can be applied, deals

with frailtymodels. The frailty approach, introduced in Vaupel et al. (1979), provides a
tool in survival analysis tomodel the dependence of lifetimes on common environmen-
tal conditions. According to this model, the frailty (an unobservable random variable
that describes common risk factors) acts simultaneously on the hazard functions of
the lifetimes. Given the vector (X1, X2), it is said to be described by a bivariate frailty
model if its joint survival function is defined as

F̄(x1, x2) = EV

[
2∏

i=1

ḠV (xi )

]

=
∫

	

Ḡω(x1)Ḡ
ω(x2)dH(ω), x1, x2 ∈ R

+, (3)

where V is a random variable taking values in 	 ⊆ R
+ and having cumulative

distribution H , while Ḡ is any suitable survival function, commonly called the baseline
survival function of the Xi (different from the common marginal survival function of
X1 and X2 unless V = 1 a.s.). Note that this model is based on the assumption that
the components in the vector are independent given the common frailty V . Further
details on frailty models can be found in Navarro and Mulero (2020), where Time
Transformed Exponential models (a generalization of frailty models) are considered.

In the particular case that baseline survival function is of exponential type then,
as shown below, the vector satisfies the assumptions of both Proposition 2.1 and
Proposition 2.2.

Example 2.3 Let (X1, X2) have a joint survival function defined as in (3), where
Ḡ(x) = exp(−λx), with λ > 0, and where H is any cumulative distribution of a
random environment taking values in 	 ⊆ R

+. Then, its joint density function, for
x1, x2 ∈ R

+, is

f (x1, x2) =
∫

	

(λω)2e−λω(x1+x2)dH(ω),
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so that, for s ≥ 0 and x ∈ [0, s],

f (x, s − x) =
∫

	

(λω)2e−λωsdH(ω).

Being constant in x , the latter is T P2 in (x, s). Similarly, also f (s − x, x) is T P2 in
(x, s). Thus, one can apply Proposition 2.1 obtaining that [Xi |S = s1] ≤LR [Xi |S =
s2], for any i = 1, 2, whenever s1 ≤ s2, and that [S|X1 = x] ≤LR [S|X1 = y] when-
ever x ≤ y. Also, one can apply Proposition 2.2 obtaining [(X1, X2)|S = s1] ≤ST

[(X1, X2)|S = s2] whenever s1 ≤ s2.

Remark 2.1 It must be pointed out that the assumptions of Proposition 2.1 and of
Proposition 2.2 are not always satisfied for any frailty model, as the following example
shows. Let (X1, X2) have joint survival function defined as in (3), where Ḡ(x) = 1−x ,
with x ∈ [0, 1], and where V has exponential distribution with hazard rate λ = 1.
With straightforward calculations, one can get that its joint density is

f (x1, x2) = 2[1 − ln((1 − x1)(1 − x2))]−3[(1 − x1)(1 − x2)]−1, xi ∈ [0, 1],

so that

f (x, s − x) = 2[1 − ln((1 − x)(1 − s + x))]−3[(1 − x)(1 − s + x)]−1, x ∈ [0, s],

which is not T P2 in (x, s). For example, for s1 = 0.5, s2 = 0.9, x1 = 0.05 and
x2 = 0.1 one has 0.47394 = f (x1, s1−x1) f (x2, s2−x2) < f (x1, s2−x1) f (x2, s1−
x2) = 0.48041.

Proposition 2.2 can be extended to (φ1(X1), φ2(X2)) given the value of the sum
S∗ = φ1(X1) + φ2(X2) for increasing functions φ1 and φ2 as follows. The proof is
omitted being easy, but, on the contrary, the conditions described in the statement are
quite strong.

Proposition 2.3 Let the vector (X1, X2) have a joint density f and let S∗ = φ1(X1)+
φ2(X2) for two strictly increasing differentiable functions φ1 and φ2. Let ψ1 and ψ2
be the respective inverse functions. If f (ψ1(x), ψ2(s − x)), f (ψ1(s − x), ψ2(x)),
ψ ′
1(s − x) and ψ ′

2(s − x) are all T P2 in (x, s), then

[(φ1(X1), φ2(X2))|S∗ = s1] ≤ST [(φ1(X1), φ2(X2))|S∗ = s2]

for any s1 ≤ s2.

The following statements provide simple sufficient conditions for a joint bivariate
density to satisfy the conditions of Propositions 2.1 and 2.2.

Proposition 2.4 Let the vector (X1, X2) have a joint density f . If f (x1, x2) is T P2 in
(x1, x2) and lonconcave in x2 for every x1, then f (x, s−x) is T P2 in (x, s). Moreover,
if f (x1, x2) is also lonconcave in x1 for every x2, then also f (s − x, x) is T P2 in
(x, s).

123



F. Pellerey, J. Navarro

Proof Observe that f (x, s − x) is T P2 in (x, s) if, and only if,

f (x2, y + ε1)

f (x2, y)
≥ f (x1, y + ε1 + ε2)

f (x1, y + ε2)
(4)

for any y ∈ R, x1 ≤ x2 and ε1, ε2 > 0.
Note that if f (x1, x2) is T P2 in (x1, x2) then

f (x2, y + ε1)

f (x2, y)
≥ f (x1, y + ε1)

f (x1, y)
, (5)

while from logconcavity of f when the first argument is fixed one has

f (x1, y + ε1)

f (x1, y)
≥ f (x1, y + ε1 + ε2)

f (x1, y + ε2)
. (6)

From (5) and (6) follows (4), thus the assertion. The T P2 property in (x, s) of f (s −
x, x) whenever f (x1, x2) is lonconcave in x1 for every x2 can be proved in the same
manner. 
�

Proposition 2.4 can be applied, for example, when one knows the marginal distri-
butions of X1 and X2 and the connecting copula, or the survival copula, of (X1, X2)

(see, e.g., Nelsen 2006 for the definition of the copula of a random vector)

Example 2.4 Let the vector (X1, X2) have a survival copula Ĉ and marginal univariate
survival functions F̄1 and F̄2, i.e., let

F̄(x1, x2) = Ĉ
(
F̄1(x1), F̄2(x2)

)
, (x1, x2) ∈ R

2

be its joint survival function. Then, as one can easily verify, its joint density can be
expressed as

f (x1, x2) = c
(
F̄1(x1), F̄2(x2)

)
f1(x1) f2(x2) (7)

for all (x1, x2) in the support of (X1, X2), where c is the secondmixed partial derivative
of Ĉ while f1 and f2 are the marginal densities (assuming all of them exist). From (7)
immediately follows that f (x1, x2) is T P2 in (x1, x2) if, and only if, c(u, v) is T P2 in
(u, v) ∈ (0, 1)2. This latter property of copulas is satisfied by a number of well-known
copulas, such as, for example, the Clayton copula, for which

c(u, v) = (1 + θ)(uv)−θ−1(u−θ + v−θ − 1)−
1
θ
−2, (u, v) ∈ (0, 1)2,

for any value of its parameter θ ∈ (0,∞) (see, e.g., Tenzer and Elidan 2016, where
a list of copulas having T P2 density is provided). Now note that logconcavity of
f (x1, x2) in x1 for every x2 is satisfied if the ratio

c
(
F̄1(x1 + y), v

)

c
(
F̄1(x1), v

)
f1(x1 + y)

f1(x1)
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is non-increasing in x1 for all y ≥ 0 and v ∈ [0, 1]. This monotonicity, in turns, is
satisfied if X1 has a logconcave density, and if the copula and the marginal survival
function F̄1 are such that

c
(
F̄1(x1 + y), v

)

c
(
F̄1(x1), v

) (8)

is non-increasing in x1 for all y ≥ 0 and v ∈ (0, 1). If, for example, X1 has an
exponential distribution, then the ratio (8) decreases if, and only if, c(au, v)/c(u, v)

increases in u for all a, v ∈ (0, 1). It turns out that if (X1, X2) has a Clayton survival
copula and exponentially distributed margins, then both [X1|S = s] and [X2|S = s]
are non-decreasing in the likelihood ratio order in s.

For the next statement recall that, as in the univariate case, a function f : Rn → R

is said to be logconcave if it satisfies

ln( f (λx + (1 − λ)y)) ≥ λ ln f (x) + (1 − λ) ln f (y)

for all λ ∈ (0, 1) and all x, y in Rn .

Proposition 2.5 Let the vector (X1, X2) have a joint density f (x1, x2) which is log-
concave and T P2 in (x1, x2). Then:

(a) [X1|S = s] and [X2|S = s] are non-decreasing in the likelihood ratio order in s;
(b) [S|X1 = x] and [S|X2 = x] are non-decreasing in the likelihood ratio order in

x;
(c) [(X1, X2)|S = s1] ≤ST [(X1, X2)|S = s2] for any s1 ≤ s2;
(d) (φ1(X1)|S = s1) + (φ2(X2)|S = s1) ≤ST (φ1(X1)|S = s2) + (φ2(X2)|S = s2)

for any s1 ≤ s2 and any non-decreasing functions φ1 and φ2.

Proof For the proof, it is enough to observe that f[X2|X1=x1](x2) = f (x1, x2)/ fX1(x1),
so that

log f[X2|X1=x1](x2) = log f (x1, x2) − log fX1(x1).

For fixed x1 the term log fX1(x1) is constant, while log f (x1, x2) is concave, by defi-
nition of logconcavity. Thus, [X2|X1 = x1] has a logconcave density. Similarly, one
can prove that [X1|X2 = x2] has a logconcave density. Thus, one can apply Propo-
sition 2.4, obtaining that both f (x, s − x) and f (s − x, x) are T P2 in (x, s). The
assertions (a) and (b) now follow from Proposition 2.1 and assertion (c) from Propo-
sition 2.2. The proof of (d) is a consequence of (c) and Theorem 6.B.20 in Shaked
and Shanthikumar (2007), p. 276. 
�

The following is an example of application of Proposition 2.5.

Example 2.5 Let (X1, X2) be an elliptical vector with scale function g : R+ → R
+

and correlation matrix �, i.e., let

f (x1, x2) = ||−1/2g
(
(x1, x2)

′ �−1 (x1, x2)
)

, (x1, x2) ∈ R
2.
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Let also  =
(
1 r
r 1

)

, where r ∈ (−1, 1), and define φ(t) = log g(t).

As stated in Proposition 1.2 of Abdous et al. (2005), f (x1, x2) is T P2 in (x1, x2)
if, and only if,

− r

1 + r
≤ inf

t∈T
tφ′′(t)
φ′(t)

≤ sup
t∈T

tφ′′(t)
φ′(t)

≤ r

1 − r
,

where T = {t ∈ R : φ′(t) < 0}. This condition is actually satisfied for every r ≥ 0
when g(t) ∝ exp(−βtα) with α ≤ (1 − r)−1 and β > 0.

Moreover, note that f (x1, x2) is logconcave if g(t) is logconcave, since (x1, x2)′ �−1

(x1, x2) is concave in (x1, x2) for any � (see Fang et al. 1990 for details). When g
is defined as above then log g(t) = −βtα , which is concave for any α ≥ 1; thus, f
satisfies the assumptions of Proposition 2.5 for that g when 1 ≤ α ≤ (1 − r)−1 and
β > 0.

Note that, as a particular case for α = 1 and β = 1/2, this example includes
the bivariate normal distributions, whose density is always T P2 when the covariance
between X1 and X2 is non-negative (see, e.g., Theorem 3.3 in Fang et al. (2002)).

3 Themultivariate case

Multivariate random vectors (X1, X2, . . . , Xn), with n > 2, are considered in this
section, and few exampleswhere themonotonicity in s of [X1|S = s] (in the likelihood
ratio order) and monotonicity in s of [(X1, . . . , Xn)|S = s] (in the usual stochastic
order) are provided, where S = ∑n

j=1 X j .
First observe that, from Proposition 2.5 (a) and (b), the following statement easily

follows.

Proposition 3.1 Given the vector (X1, X2, . . . , Xn), let Yi = ∑
j, j �=i X j . If for any i

the vector (Xi ,Yi ) has a joint density f (x, y) which is logconcave and T P2 in (x, y),
then [Xi |S = s] is non-decreasing in the likelihood ratio order in s, and [S|Xi = x]
is non-decreasing in the likelihood ratio order in x.

Note that the likelihood ratio order implies the usual stochastic order and so, under
the assumptions of the preceding proposition, we get

P(Xi > xi |S = s1) ≤ P(Xi > xi |S = s2)

and

E(φ(Xi )|S = s1) ≤ P(φ(Xi )|S = s2)

for any xi , any s1 ≤ s2 and any increasing function φ such that these conditional
expectations exist.

As an immediate example of application of this statement, one gets that the mono-
tonicity in s of [X1|S = s] in the likelihood ratio order can be satisfied for multivariate
normal distributions, as stated in the following corollary.
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Corollary 3.1 Let (X1, X2, . . . , Xn) have aN
(
μ,�

)
distribution. Then, fixed any i =

1, . . . , n and defined Yi = ∑
j, j �=i X j , by closure properties of normal distributions

the vector (Xi ,Yi ) has a bivariate normal distribution. Thus, it has a logconcave
density. Moreover, by Theorem 3.3 in Fang et al. (2002) (see also the remark before
Proposition 1.2 in Abdous et al. 2005), the density of (Xi ,Yi ) satisfies the T P2 property
if

∑
j �=i Cov(Xi , X j ) ≥ 0. Thus, from Proposition 3.1 one has that [Xi |S=s] is non-

decreasing in LR order.

Example 3.1 Let Y (having normal distribution) be a signal from an item, which
describes its working state, and assume the item fails when Y < 0. Assume also
that Y cannot be directly read, since its reading is subjected by a number n of noises,
so that what one can actually read is the “proxy” variable S = Y + X1 + · · · + Xn ,
where the Xi represent the noises. If the signal and the noises are described by a vector
(Y , X1, . . . , Xn) having a multivariate normal distribution, then by Corollary 3.1 one
has that P[Y > t |S = s] is non-decreasing in s for all t ∈ R; thus, P[Y < 0|S = s] is
non-increasing in s. It follows that if the reading of the signal is positive, i.e., if s > 0,
then the probability of failure of the item has the upper bound P[Y < 0|S = 0], which
can be easily calculated given the parameters

(
μ,�

)
of the vector (Y , X1, . . . , Xn).

Moreover, assume that T = φ(Y ) represents a non-decreasing function of the
signal Y , representing a performance of the item. Corollary 3.1 also shows that the
regression E[T |S = s] is monotone as well, when

∑n
i=1 Cov(Y , Xi ) ≥ 0, so that the

regression function with measurement error is a good proxy of the “true” regression
function in the sense described in Hwang and Stefanski (1994), even if the noises are
not independent on Y (as it is assumed, on the contrary, in Hwang and Stefanski 1994).

Another interesting case where the monotonicity property in the likelihood ratio
order is satisfied is the case of vectors having Schur-constant joint survival functions,
whose definition is recalled here. A vector (X1, X2, . . . , Xn) of random lifetimes
(i.e., of non-negative random variables) is said to have a Schur-constant joint survival
function if, for xi ≥ 0, i = 1, 2, .., n,

F̄(x1, x2, . . . , xn) = P[X1 > x1, X2 > x2, . . . , Xn > xn] = Ḡ

(
n∑

i=1

xi

)

, (9)

where Ḡ is a non-increasing function, continuous from the right, such that Ḡ(0) = 1,
limt→∞ Ḡ(t) = 0 and other conditions for which it defines a bona fide joint survival
function (see Caramellino and Spizzichino 1994 for details). The family of Schur-
constant survival functions is an important family that has been extensively considered
in a variety of applicative fields such as reliability and insurance; we refer the reader to
Caramellino and Spizzichino (1994) and references therein for applications in reliabil-
ity, and to the recent paper (Genest and Kolev 2021) for applications in extensions of
the law of uniform seniority for insurance contracts to the case of dependent lifetimes.

Proposition 3.2 Let the vector (X1, X2, . . . , Xn) have a Schur-constant joint survival
function. Then, for any i = 1, 2, . . . , n, one has that [Xi |S = s] is non-decreasing
in s in the likelihood ratio order and that [S|Xi = x] is non-decreasing in x in the
likelihood ratio order.
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Proof As proved in Caramellino and Spizzichino (1994), Proposition 2.3, a vector
(X1, X2, . . . , Xn) has Schur-constant joint survival function if, and only if, its con-
ditional distribution given S = ∑n

j=1 X j = s is the uniform distribution over the
simplex ϕs = {x j ∈ R

+ : ∑n
j=1 x j = s}. From this property, and from Equation (2.2)

in the same paper, it follows that

F̄[Xi |S=s](x) = P[Xi > x |S = s] =
(
1 − x

s

)n−1
, x ∈ [0, s] ⊆ R

+,

so that, for x ∈ [0, s],

f[Xi |S=s](x) = n − 1

sn−1 (s − x)n−2.

Therefore,

f[Xi |S=s1](x)
f[Xi |S=s2](x)

=
{(

s1
s2

)n−1 ·
(
s1−x
s2−x

)n−2
if x ∈ [0, s1];

0 if x ∈ (s1, s2],
which is non-increasing in x for s1 ≤ s2, and the first assertion follows.

The second assertion follows by considering the vector (Xi , S) and observing
that the monotonicity of f[Xi |S=s1](x)/ f[Xi |S=s2](x) in x implies the monotonicity
of f[S|Xi=x1](s)/ f[S|Xi=x2](s) in s, as shown in the proof of Proposition 2.1. 
�

For what concerns the monotonicity in s of [(X1, . . . , Xn)| ∑n
j=1 X j = s] in the

usual stochastic order, for n > 2, we have the following statement.

Proposition 3.3 Let the vector (X1, . . . , Xn)haveanabsolutely continuous andSchur-
constant joint survival function. Then, E[φ(X1, . . . , Xn)|S = s] is a non-decreasing
function of s for any non-decreasing function φ, i.e., [(X1, . . . , Xn)|S = s] is non-
decreasing in s in the usual stochastic order.

Proof We assume that the joint survival function of (X1, . . . , Xn) can be written as in
(9) for x1, . . . , xn ≥ 0. Hence its joint density is

f (x1, . . . , xn) = (−1)nḠ(n)(x1 + · · · + xn)

for x1, . . . , xn ≥ 0 (and zero elsewhere). Therefore, (−1)nḠ(n)(t) ≥ 0 for all t ≥ 0
and the joint density of (X1, . . . , Xn−1, S), with S = ∑n

j=1 X j , is

g(x1, . . . , xn−1, s) = f (x1, . . . , xn−1, s − x1 − · · · − xn−1) = (−1)nḠ(n)(s)

for x1, . . . , xn−1 ≥ 0 such that x1+ . . .+xn−1 ≤ s. Therefore, the conditional density
of [(X1, . . . , Xn−1)|S = s] is

g∗(x1, . . . , xn−1|s) = (−1)nḠ(n)(s)

fS(s)
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where the density fS of S was obtained in Caramellino and Spizzichino (1994) as

fS(s) = (−1)nḠ(n)(s)
sn−1

(n − 1)!
for s ≥ 0. Hence

g∗(x1, . . . , xn−1|s) = (n − 1)!
sn−1

for s > 0 and x1, . . . , xn−1 ≥ 0 such that x1 + · · · + xn−1 ≤ s (and zero elsewhere).
Note that g∗ is not defined for s ≤ 0.

If φ is non-decreasing and 0 < s1 ≤ s2, then we get

E[φ(X1, . . . , Xn)|S = s1] = E[φ(X1, . . . , s1 − X1 − · · · − Xn−1)|S = s1]
=

∫

D1

φ(x1, . . . , xn−1, s1 − x1 − · · · − xn−1)
(n − 1)!
sn−1
1

× dx1 . . . dxn−1

where D1 := {(x1, . . . , xn−1) : x1, . . . , xn−1 ≥ 0, x1 + · · · + xn−1 ≤ s1}. By doing
the change ui = xi/s1 for i = 1, . . . , n − 1, we get

E[φ(X1, . . . , Xn)|S = s1] = (n − 1)!
∫

D
φ(s1u1, . . . , s1un−1, s1(1 − u1

− · · · − un−1))du1 . . . dun−1

where D := {(u1, . . . , un−1) : u1, . . . , un−1 ≥ 0, u1+· · ·+un−1 ≤ 1}. Analogously,

E[φ(X1, . . . , Xn)|S = s2] = (n − 1)!
∫

D
φ(s2u1, . . . , s2un−1, s2(1 − u1

− · · · − un−1))du1 . . . dun−1.

Hence, if φ is non-decreasing and s1 ≤ s2, then

E[φ(X1, . . . , Xn)|S = s1] = (n − 1)!
∫

D
φ(s1u1, . . . , s1un−1, s1(1 − u1

− · · · − un−1))du1 . . . dun−1

≤ (n − 1)!
∫

D
φ(s2u1, . . . , s2un−1, s2(1 − u1

− · · · − un−1))du1 . . . dun−1

= E[φ(X1, . . . , Xn)|S = s2]

which concludes the proof. 
�
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Note that from Theorem 6.B.16 in Shaked and Shanthikumar (2007), p. 273, the ST
orderingobtained in theprecedingproposition canbe extended to (φ(X1, . . . , Xn)|S =
s) in s for any non-decreasing function φ : Rn → R

k .
Itmust be observed that Example 2.3 is, actually, a corollary of both Propositions 3.2

and 3.3, since the frailty model with exponential baseline survival functions reduces
to a Schur-constant model.

4 Conclusions

We have studied monotonicity properties of dependent random variables conditioned
on their sum, and we have obtained several results that extend the classic results for
independent random variables. We have considered both the likelihood ratio order and
the usual stochastic order in its univariate and multivariate versions.

The main task for future research could be the extension of the result given in
Proposition 2.2 to the multivariate case and/or to other (stronger) stochastic orders.
Proposition 3.3 can be seen as a first step in that direction. Other tasks could be to
find more models where the conditions assumed here are satisfied and so that the
monotonicity properties hold. Inference tools to check that conditions in practice
should be investigated as well.
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