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Abstract: A method called PCR (Platform Centered Reduction) is designed to more effectively
perform complex iterative and nonlinear calculations required for the dynamic response of turbine
blades damped by dry friction contacts between rigid dampers and airfoil-to-neck platform. The
key feature of PCR is to represent all nonlinear forces on the blade platform by means of only six
degrees of freedom at a point located within the platform volume, regardless of the number of
damper–platform contact elements. Despite reducing the effort and computational time by more than
one order of magnitude, the method proves to be fully accurate by a check against the corresponding
nonlinear Finite Elements (FE) calculation. It is also shown that the limit exciting force, indicating
the upper capability to dampen vibrations, can be calculated with a simple linear modal analysis.
In order to search for the best blade–damper match, the preferred graph represents relevant bending
stresses on the airfoil against excitation forces. A detailed application of the method concerns two
significantly different blade sizes, by varying parameters such as neck length and damper centrifugal
force. Finally, it is emphasized that a final check by a complete FE analysis is still possible as a purely
linear solution fed by sets of contact forces previously determined through the PCR at any desired
frequency and excitation.

Keywords: friction; damping; turbine; reduced order modeling

1. Introduction

Gas turbines operate under dynamic loads and in a wide range of temperatures. Due to
the circumferential non-uniformity of the gas flow, severe dynamic stresses may be induced
in the bladed arrays, thus leading to high cycle fatigue (HCF) failures. The reduction and
control of these dynamic stresses is paramount to ensure a reliable and long operating life
of gas turbines. This goal is typically achieved by increasing structural damping through
friction [1]. Friction damping devices are available in different configurations: they may
be integral to the blade, such as shrouds [2–4] or blade roots [5], or may be separate
components, such as underplatform dampers. The last type of device is a relatively simple
prismatic component inserted between the blade platforms and performs three functions:

1. It seals the high temperature gas stream from the blade root cooling air.
2. It provides friction damping.
3. It serves as an elastic constraint between adjacent blades.

Points 2 and 3 co-operate to reduce resonant vibration amplitudes and to shift the
blades’ resonant frequency. Points 2 and 3 are a by-product of contact and friction and,
as such, are influenced by the amplitude of the dynamic excitation force on the blade,
i.e., their effect is linked through a nonlinear relation to the amplitude of the excitation
force. A convenient way to characterize underplatform dampers is to exploit the two linear
limits corresponding to minimum excitation levels (highest resonance frequency) and to
maximum excitation levels (lowest resonance frequency). The former when the damper is
in full-stick, i.e., its effect is reduced to a pure elastic coupling between the blade platforms,
and the latter when the damper slides freely against the corresponding platform interfaces.
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Studies available in the literature dwell both on measuring and on predicting the fre-
quency response of blades under various sources of nonlinearity. The Frequency Response
Function (FRF) of the blade is the object of experimental observations that are compared
with those produced by numerical models: this is the case from the early pioneering 1980
studies [1] through the decades down to the latest achievements where numerical models
have reached a high level of complexity and, as increasingly claimed, “fidelity”: see [6–10]
just to quote a few. To achieve this goal, several numerical tools are necessary, e.g., a proper
representation of friction contacts [11–14], an efficient computational strategy to solve the
nonlinear equilibrium equations in the frequency domain [15–18] and finally methods to
reduce the size of the nonlinear system of equations [4,19,20]. Apart from testing their
predictive capabilities against experimental evidence, numerical codes can be used to
perform optimization studies and sensitivity analyses during the design stage [7]. With
this goal in mind, the authors have developed a 3-step optimization procedure.

Step 1 is to filter out all those geometries that would lead to undesirable kinematics
and contact forces [21,22].

Step 2 is to identify those ranges of parameters that are better in terms of added
stiffness and damping [23].

Step 3 comes from the need to complete the picture by exploring how the basic
geometrical design parameters of blades interact with the damper parameters, then for
which parameters combination a designer may find the best blade–damper match in view
of the vibratory response under resonant excitation.

While the first two steps are stand-alone, i.e., they are performed independently of the
blades and only as a function of the damper shape and the relative displacement between
adjacent blade platforms, the search for the best match between a damper and a given blade
is very demanding from the computational point of view as it requires repeated dynamic
nonlinear coupled analyses of the blade–damper system. The approach to Step 3 proposed
in this paper aims at drastically reducing the size of the nonlinear system by adopting a
special representation of the dynamic behavior of the blade. In detail, platform and neck
can be accurately represented using simple beam elements, while realistic airfoils can be
modeled using standard FE codes and Component Mode Synthesis (CMS) techniques. The
advantages of this approach are:

1. representing the kinematics of the platform by means of the displacements and the
rotations of just one appropriate single point allows all the nonlinear contact forces
distributed on the underplatform/damper interfaces to be represented by means of
the “dynamically equivalent” concentrated forces and moments applied at that point;

2. modeling the neck by means of beams represents the reality in its most simple,
straightforward and time-honored way, and is fully compatible with the advantages
of describing the kinematics of cross-sections (of neck and platform) in terms of a
single point displacements and rotations;

3. the airfoil CMS reduction is performed only once, as the airfoil is kept constant during
optimization calculations.

A consequence of point 1 is that, as shown in [24,25], the whole effect of friction
forces on a platform can be reduced to time-variable nonlinear forces and moments (half
of them dynamically irrelevant due to neck shape), i.e., the size of the linear system to be
solved reduces to that of one beam element node, independently of the number of contact
points. This makes the proposed approach very convenient in capturing, representing, and
clarifying the role of frictional phenomena on the blade/damper system.

Section 2 of this paper offers a brief description of the method, i.e., the reduction
strategy here called Platform Centered Reduction first presented in [25], proves its accuracy
and shows a sample of results to demonstrate the potential of the platform-centered
representation of friction forces.

The novel contributions of the present paper can be found in Sections 3–5 and are
summarized in the following.
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Section 3 presents two realistic models of gas turbine blades of different sizes and
derives the key parameters to build the corresponding PCR reduced representations.

Section 4 takes advantage of the efficiency ensured by the PCR to investigate the
influence of the blade size on the sensitivity of the response to design parameters. The
insights provided by the combined use of the limit excitation force and allowable stress
concepts are highlighted.

Section 5 emphasizes the benefits of the PCR in terms of computational time reduction
and proposes a procedure to obtain a full FE response featuring friction effects through the
combined use of PCR pre-computed contact forces and a simple full FE linear response.

2. Method
2.1. Model

It has been shown in [24] that it is possible to define a modeling procedure and a
related numerical treatment capturing the essential elements of a turbine blade for its
damper-coupled optimization. In more detail:

• the neck is represented through a series of beam elements;
• the platform, due to its size and shape behaves as a rigid body, in particular regarding

the kinematic relationship between its central point P and its contact points with the
dampers (see Figure 1);

• although it is sure that points R and N are connected rigid body kinematics and
equilibrium, it is expedient here to represent the platform as a series of two beams;

• this modeling choice allows the beam area moments of inertia to be adjusted in
such a way that local contributions to elastic deformabilities at the airfoil–platform
junction (point R) and at the neck–platform junction (point N) are correctly taken into
account [24].

Figure 1. (Left) 3D view of the platform PCR representation through six DoFs (three displacements
and three rotations) at point P. (Right) 3D view of the damper rigid body representation through six
DoFs (three displacements and three rotations) at point D.

Contrary to the previous paper [24], where a simplified airfoil was represented by a
series of beam elements, in this paper, a realistic airfoil with taper and torsion is introduced
(see Figure 2). After a Component Mode Synthesis (CMS) reduction of the airfoil, its root
cross-section DoFs are mutually constrained on a rigid translating and rotating plane, then
coupled to the upper surface of the platform (point R), in a manner consistent with the
model of the platform and of the neck beams. With reference to Figure 2, the reduced airfoil
retains only those points that are strictly necessary for the application of the aerodynamic
forces (a single point E is here considered), for monitoring of the main movements tracing
the oscillation amplitudes (points A,B,C), for coupling the airfoil to the platform (points
N and R).
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Obviously, no one prevents that, in a case of special geometric complexity of the neck,
it can be represented with a solid FEM model instead of beams (see Figure 2), reducing it
with the CMS procedure after having constrained the points of the end surfaces on planes,
as described above for the airfoil. However, the decisive advantage of representing the
neck with a series of beam elements is to allow the exploration of different geometries
without having to modify a CAD model and re-mesh it.

Figure 2. (Left) Assembling procedure to build the PCR model. (Right) Full FE (ANSYS) model: used
for tuning the PCR model and for a final linearized response check. Fixed boundary conditions are
applied at the connecting end of both models.

2.2. Proof of Accuracy

It should be noted that, regardless of the chosen number of contact points (reduced
to the strict minimum compatible with bending an torsion in the example of Figure 1
even if there is no theoretical limit to their number), the maximum size of the nonlinear
problem to be solved never exceeds the value 6, i.e., the number of rigid body DoFs at
point P. Nonetheless, this platform-centered reduction is performed without any significant
sacrifice in the accuracy of blade/damper dynamics and stress at those critical points that
have bearing on fatigue behavior because the platform effectively behaves, to a high degree,
as a rigid body.

The statement above has been proven by comparing the results of the PCR model to
that of the full FE reference model shown in Figure 2. Further details on Blade A chosen as
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a test case are given in Section 3. The full FE-PCR comparison has been performed both on
linear (i.e., no damper) and nonlinear cases. Table 1 gives a summary of the assessment
of equivalence.

The full FE model allows displacements (static and modal) to be determined together
with stresses at any location. The PCR model allows displacements to be calculated at
any point which was predetermined on the airfoil (in our case, points E,A,B,C are the
essential ones) plus displacements and rotations at beam-end points. While knowledge of
cross-sectional moments at point R produces nominal stresses including σmax at the airfoil
root (see Figure 3a), which is the maximum stress location for the first mode of vibration
with and without damper. For the sake of the comparison shown in Table 1, radial stresses
are taken 1 mm above the airfoil–platform junction to avoid the influence of the notch effect
dependent on the local fillet radius, a factor to be determined separately.

Table 1. Comparison between the Full FE and the PCR freestanding blade models for the smaller
Blade A (see Section 3). Static analysis results refer to a unit force FE applied at point E along the
x-axis. Modal analysis results refer to the first bending mode.

Equivalence Indicator Symbol Full FE PCR

(dyn.) Resonance Frequency f1 (Hz) 381.2 381.3

(dyn.) Mode shape

uA/uE 2.797 2.792

uB/uE 3.065 3.061

uC/uE 2.948 2.943

αP/uE (rad/m) 8.98·10−3 8.67·10−3

γP/uE (rad/m) 2.407 2.402

(static) Platform rotation γP (rad) 4.148·10−6 4.146·10−6

(static) Airfoil tip displacement at point C uC
wC

(m) 3.45·10−6

2.92·10−7
3.46·10−6

2.69·10−7

(static) Max. stress at airfoil “root” σmax (MPa) 0.783 0.779

Figure 3. Full FE model vs. PCR model, Blade A. (a) Comparison of stresses at airfoil root; (b) com-
parison of nonlinear forced response results (tip trailing edge, point B) for increasing values of the
excitation force |FE|. The response is here normalized by the excitation force magnitude |FE|.

Finally, the equivalence between PCR and full FE has been further confirmed by
comparing the results of the PCR model to those of the full FE model, shown in Figure 3b
for two representative nonlinear response cases, i.e., under mid-length periodic excitation
force FE having amplitude 4 and 5 N.
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2.3. A Worked-Out Example of Application

Through the example illustrated in this section, we can understand the reason why
the proposed method is effective in offering the designer indications regarding the most
important trends and relationships between the design parameters and the performance of
the system.

It should be noted that the validity of the proposed method is independent of the
chosen blade–damper pair used as a test case. Further details on the test case used to
produce the results shown in Figures 3b, 4 and 5 and Table 1 can be found in Section 3 (see
Blade A).

As shown in Figure 3b, the nonlinear frequency response function changes the location
and value of its maximum depending on the dynamic excitation here represented by the
“proof” force FE. Providing an estimate of FE is not an easy task. If experimental data
are available, methodologies typical of output-only methods [26], such as operational
modal analysis may be used to estimate the excitation levels starting from the recorded
mode shape. However, predicting the actual operating conditions and linking them to the
excitation level during the early design stage may not be possible. It is therefore convenient
to monitor, at the present stage, blade–damper configurations as a function of the FE level
and to rank them according to the maximum FE they can withstand before reaching their
HCF limit.

The left-hand portion of Figure 4 shows the results of the forced response in terms of
maximum bending stress of the blade. The forced response is run for different excitation
levels FE ranging from 0.1 N to 6 N. It is convenient to condense the information on
the location of the peak of the different responses (see black points in Figure 4) in terms
of frequency and stress amplitude. The right-hand portion of Figure 4 tracks the stress
amplitude of the peak as a function of the excitation level FE.

Figure 4. (Left) Maximum bending stress on the blade (at airfoil root) as a function of frequency.
Different excitation levels are explored |FE| = [0.1, 6] N. (Right) Maximum bending stress vs. FE.

Figure 5a shows why it is convenient to perform the same “tracking” procedure for
an extended range of FE values. Figure 5b adds the frequency for the FRF maximum. The
curve in Figure 5a can be split into three regimes:

1. Stick/Microslip: the resonance frequency is close to fstick, the (low) hysteretic damping
prevails and the stress levels are growing ≈ linearly with FE.

2. Gross Slip: the resonance frequency is lower than fstick but still higher than f f ree.
This is the preferred working condition, dominated by friction and not by hysteretic
damping. The stress levels still increase with a constant rate; however, the slope of the
FE − σmax curve is significantly lower if compared with the one detected at regime 1.

3. Advanced gross slip: the resonance frequency is close to f f ree as the damper slides
freely between the platforms for the majority of the period of vibration. At the level
of a single contact point, it can be observed that the distance traveled by the damper
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with respect to the platform in stick condition is negligible (i.e., lower by more than
one order of magnitude) with respect to the distance traveled in slip. In this condition,
friction becomes incapable of dissipating the input energy, as already observed by [27].
This regime is once again dominated by hysteretic damping, which is typically low.
As a result, the slope of the FE − σmax starts increasing exponentially. It can be argued
that the higher the value of this FE limit value, the better the matching between blade
and damper.

Figure 5. (a) Maximum bending stress on the blade (at airfoil root) as a function of FE, same case as
Figure 4 for extended |FE| range; (b) resonance frequency as a function of FE.

2.4. A Priori Estimate of the Excitation Limit Force

The combined analysis of Figure 5a,b reveals the presence of an upper limit value for
the excitation force, here called Flim, for which the damper ceases to be effective and the
blade frequency (and mode shape) tends to its free-standing value. Being able to estimate a
priori the limit force Flim, without resorting to nonlinear calculations, is undoubtedly a huge
asset for blade–damper designers. The concept of limit excitation force is not new. In 1930,
Den Hartog [27] remarked that, in the case of a single mass-spring system (Figure 6a), when
the ratio between the energy dissipated by a constant friction force FF over a sliding range
of 2u (Eout = 4 · FF · u) and the energy injected in the system by the external sinusoidal
excitation Ein = π · FE · u falls below one, i.e., FF/FE ≤ π

4 , the amplitude of motion of the
system will grow infinitely large (limited only by hysteretic damping if present).

This limit is valid for any friction damped system; however, its expression needs to be
corrected if multiple DoFs are present. Indeed, when f → f f ree, the mode shape tends to
that of the free standing blade. It is therefore possible to express the displacement uE of
point E, as a function of the rotation of the platform γP using the quantity uE, f ree/γP, f ree,
readily available through the computation of the eigenvector of the free-standing blade
corresponding to the mode of interest (the first in the present case). Therefore, when the
system tends to the free vibration condition:

Ein = π · FE · uE = π · Flim · γP
uE, f ree
γP, f ree

(1)

Eout = η · 4 · ∆MP · γP (2)

where:

• Eout is the area within the γP −MP hysteresis cycle shown in Figure 6b;
• η is an efficiency coefficient < 1 due to the fact that, unlike the Den Hartog case,

the cycle area is reduced due to the non-infinite stiffness of the tangential contact;
however, at resonance, the gross-slip part prevails and η → 1.
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The moments of the contact forces about point P are, see Figure 7, MP+ during
clockwise rotation γP+ and MP− during counter-clockwise rotation γP−. However, what
matters here is the amplitude 2∆MP = MP+ −MP−.

It should be noted that the gross slip limits MP+ and MP− are simple functions of the
gross-slip contact forces, then of platform angles θL and θR, the friction coefficient µ, the
centrifugal load on the damper [23]. As an example, with reference to the simplified 2D
representation shown in Figure 8 valid for a pure bending mode, one can express MP+ as:

MP+ = (|F+
L1 · (xL1 − xP)|+ |F+

L2 · (xL2 − xP)|) cos(θL − arctan(µ))

− |F+
R · (xR − xP)| cos(θR + arctan(µ))

+ |F+
L1 · (yL1 − yP)| sin(θL − arctan(µ))

− |F+
L2 · (yL2 − yP)| sin(θL − arctan(µ))

(3)

Finally, Flim can be written as:

Flim =
4∆MP

π
uE, f ree
γP, f ree

(4)

Through a very straightforward linear procedure, Equation (4) can easily be extended
to cases other than a single “proof” excitation force.

Figure 6. (a) Den Hartog 1 DoF oscillator; (b) simplified representation of a blade. The hysteresis
cycles produced by friction are shown below each system.

Figure 7. Representation of contact forces and their moments about platform point P for an In-Phase
mode of vibration.
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Figure 8. Detail of forces on a damper (bottom row) and corresponding forces and their moments on the two adjacent
platforms in contact with that damper for an In-Phase mode of vibration.

3. The Test Cases

This section presents the two blades used as demonstrators within this paper. Their
CAD models are shown in Figure 9, while their relevant dimensions and features for the
first bending mode of vibration are reported in Table 2. Both blades are modeled after real
turbine blades known to the authors. Blade A represents a blade from the last-stage of an
aircraft Low Pressure Turbine (LPT), while Blade B is modeled after a turbine for power
generation. Apart from the overall size, Blade A is more slender, as reflected by the higher
Ln/hn ratio. Another relevant difference is the La/Ln ratio, higher in the case of Blade B.
This results in significant differences in the free-standing mode shape (check uE, f ree/γP, f ree
values in Table 2).

Both blades are equipped with the same pre-optimized damper cross-section shape [21]
and are tested for the same In-Phase mode of vibration. Contact parameters (contact
stiffness values and friction coefficients) necessary for the simulation are taken from experi-
ments recounted in [21,22,28].

Figure 9. CAD model front and top view of the two blades investigated with this paper. The figure indicates proportions,
and the values for symbols are shown in Table 2.



Appl. Sci. 2021, 11, 5171 10 of 16

Table 2. Relevant geometrical parameters and characteristics of Blades A and B. CF∗ is the nominal
centrifugal force on the damper (rounded to the next hundred) based on information on damper
mass, disk radius, and rotational speed (not shown).

Parameter Blade A Blade B

Ln 20 mm 20 mm

Lp 10 mm 15 mm

La 120 mm 400 mm

hn− - 25 mm

hn+ - 35 mm

hn 8 mm -

b 45 mm 180 mm

CF∗ 900 N 4000 N

f1, f ree 381 Hz 211 Hz

uE, f ree/γP, f ree 0.4 m/rad 1.2 m/rad

4. Representation and Interpretation of Results

This section applies the PCR method described in Section 2 to illustrate its results in
the case of two damper-blade combinations characterized by very different dimensions,
and how their suggested graphical representation effectively supports the analysis (and
helps to draw conclusions) about blade–damper coupling. To this purpose:

• the neck length Ln is assigned the values (20,30) mm to explore the influence of neck
flexibility, which bears on the blade mode shape; it is worth noting that the stiffness
and mass matrices of the PCR blade are parametrically linked to Ln, and no re-meshing
procedure is required;

• the centrifugal load on the damper is assigned its nominal value CF∗ and 0.5 · CF∗;
the 0.5 scaling factor is compatible with a realistic 50% reduction of the mass of the
damper (e.g., by removing the lower portion not in contact with the blades) or with a
30% reduction of the disk rotational speed.

The evaluation of the best match between the different possible combinations for the
two blade sizes is based on the method that leads to Figure 5a and its interpretation.

Preliminarily, it should be noticed that the diverging trend followed by the curves as
they approach the respective Flim asymptote is obtained here by calculating the nonlinear
response for FE = 0.9Flim. However, the corresponding points are not visible in Figures 10
and 11 as the stress level is well above the 150 MPa value chosen for the representation.
The cross-comparison of Figures 10 and 11 allows us to put into evidence what follows.

• For both blades A and B, a longer, more flexible, neck is always beneficial: the limit
“proof” excitation force Flim is higher and the maximum fatigue bending stresses σmax
are lower than in the case of a shorter neck through the whole FE span. This is mainly
due to the fact that the ratio γP, f ree/uE, f ree is larger (i.e., the platform rotation is larger
for the same displacement at the excitation point) when the neck is more flexible. In
the present case, the values of this ratio range from 2.5 to 3.5 for blade A, from 0.8 to
1.3 for blade B. It must be remembered that the damper’s capability for In Phase blade
vibration increases with the amount of rotation of the platform.

• The consequence of reducing the CF value looks more complex, due to the curve
crossing, but is readily justified. In effect, since in full sliding all the forces are pro-
portional to the value of CF, so are those of the frictional moment ∆MP and of Flim.
Thus, with a reduced CF, the asymptote is reached earlier. However, on the other
hand, regardless of CF, the initial full stick section on the curve is mostly determined
by the stick constraint between damper and platform, which is independent on neck
length. Since the first slip initiation in one of the contacts occurs for a lower contact
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force, the curve for smaller CF breaks off from full stick at a lower FE value than that
for higher CF. This combination necessarily produces the intersection of curves.

A first criterion for judging the effectiveness of the damper in relation to the blade is
certainly the Flim limit value of the “proof” excitation force, which must be kept away from
danger through a safety factor. In Figures 10 and 11, allowable limits Fall are tentatively set
at 50% of Flim. They are based on the observation that in the curves for the lowest values
of CF = 0.5CF∗, and 0.5Flim corresponds to the beginning of the steeper asymptotic slope.
A caveat to avoid misunderstandings: due to this choice, the Fall = 0.5Flim for CF = CF∗

happens to coincide with the Flim for the CF = 0.5CF∗.
However, second criterion, it is also necessary to judge the exciting forces by the

alternating fatigue stresses they produce. Figures 10 and 11 show on the ordinates a
maximum stress information (dotted line), which is a key parameter, being directly linked
to the HCF safety of the blade. The procedure used to estimate the allowable nominal
bending stress σa,bend is based on the airfoil data shown in Table 3 and is thoroughly
described in the following paragraphs.

Figure 10. Blade A. Maximum “nominal” bending stress vs. FE for: (a) the shorter neck Ln = 20 mm,
full and half CF values, (b) the longer neck Ln = 30 mm, full and half CF values. Shaded areas
represent the maximum assumed span of the proof excitation force FE. The horizontal dashed line
represents the allowable nominal bending stress σa,bend.

Figure 11. Blade B. Maximum “nominal” bending stress vs. FE for : (a) the shorter neck Ln = 20 mm,
full and half CF values; (b) the longer neck Ln = 30 mm, full and half CF values. Shaded areas
represent the maximum assumed span of the proof excitation force FE. The horizontal dashed line
represents the allowable nominal bending stress σa,bend.
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Table 3 summarizes the relevant data for both blades. In the same line adopted
in [24,25], the variable part of the excitation force due to flow irregularities is a sinusoidal
component whose amplitude is estimated within the limits of 1% to 5% of the nominal
aerodynamic force on the blade.

Blade A, already presented in [24,25], has a circumferential force at 60 N and a bending
component at 73 N; hence, the two limits for the time-variable bending force amplitude are
0.7 and 3.5 N, respectively.

Blade B, scaled for the same velocity triangles, has a circumferential force at 490 N, a
bending component at 590 N, hence 1% to 5% limits for the bending force amplitude at 5.9
and 30 N, respectively.

From data on Table 3, for Blade A—at an airfoil temperature of 650 °C—the 106 cycles
alternating fatigue limit of René 41 is set at about 205 MPa, the constant mean stress is at
σm = 120 MPa, which times the stress intensity factor K f gives a constant maximum stress
at the junction with the platform (due to the centrifugal force on the airfoil cross-section) at
180 MPa. According to the Goodman line on the Haigh diagram, the 106 alternating fatigue
limit at that constant maximum stress is about 170 MPa, which divided times K f and a
1.3 safety factor gives an allowable nominal bending stress rounded at σa,bend = 90 MPa.

Similarly for Blade B—at an airfoil temperature of 450 °C—the 106 cycles alternating
fatigue limit of René 80 is set at about 940 MPa, the constant mean stress is at σm = 100 MPa,
which multiplied by the stress intensity factor K f is 150 MPa and gives the constant
maximum stress at the junction with the platform. According to the Goodman line on
the Haigh diagram, the 106 alternating fatigue limit at that constant maximum stress is
about 155 MPa, which divided times K f and a 1.3 safety factor gives an allowable nominal
bending stress at σa,bend = 80 MPa.

The constant bending effect of the blade due to constant aerodynamic force is not
introduced here because the centroid line of the blade can be tilted slightly forward of the
radial line, thus making it possible to design for a centrifugal bending stress which cancels
that aerodynamic bending component.

It is easily seen in Figure 10 that, for the smaller blade A, the shorter neck (20 mm)
is always problematic: for both dampers (CF∗ and 0.5CF∗), the 5% excitation gives a
maximum nominal bending stress at 90% of its limit, but, for 0.5CF∗ (Figure 10a), the
excitation force FE is slightly above (is about 60% of) the corresponding Flim, while, for
CF = CF∗, it is, of course, just 30%. The situation is slightly better for the longer 30 mm
neck (Figure 10b), where the corresponding values are respectively 44 and 22%. This
blade–damper match is a quite balanced design against both limit stresses and limit
excitation force.

On the contrary, in the case of the much larger blade B (Figure 11) in the whole 1–5%
span of the excitation forces, the limit on the excitation force FE largely dominates: in
the 1–5% excitation span, the bending stresses at the airfoil root are always lower than
25% of the σa,bend limit. Then, this blade–damper match is designed against the limit
excitation force.

However, it must be noticed inside the lower part of the excitation span, the nominal
bending stresses in blade A, with the shorter neck and damped at CF = 0.5CF∗, amount
to about 50 ÷ 60% of those for the 100% damper (i.e., CF = CF∗), the advantage being
extended to the whole range in the case of the longer neck. In the case of blade B, the
reduction is slightly less pronounced. However, in all the cases examined here, the 1–5%
excitation range coincides with the FE range in which the 50% damper has an advantage
over the 100% damper, thus recommending the choice of the lighter damper.
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Table 3. Data relevant to the estimate of fatigue limits of blades A and B.

Blade A Blade B Comments

Material René 41 René 80

Airfoil mass 0.12 kg 4.17 kg

Airfoil root area 119 mm2 2707 mm2

Mean radius 320 mm 530 mm

Mean blade speed 198 m/s 198 m/s

Rotation speed 6000 rpm 3600 rpm

Temperature 650 ◦C 450 ◦C

Number of blades 44 33

Root chord 40 mm 160 mm

Mean pitch 45 mm 110 mm

Blade circumf. force 60 N 490 N

Blade bending force 73 N 590 N

1% bend. force amplitude 0.73 N 5.9 N Alternating comp.

5% bend. force amplitude 3.5 N 30 N Alternating comp.

Mass radius 296 mm 454 mm

Centrifugal force 14 kN 27 kN

Nominal root stress σm 120 MPa 100 MPa Mean on section

Ultimate stress σu 1060 MPa 940 MPa At temperature

Yield stress σy 810 MPa 680 MPa At temperature

106 cycl. fatigue limit σa−1 205 MPa 185 MPa Alternating stress

Stress intens. factor Kf ≈ 1.5 1.5 At airfoil root fillet

106 cycl. fatigue limit σa 185 MPa 165 MPa At mean root stress

Allow bend stress σa,bend 90 MPa 80 MPa Nominal at root

5. Platform-Centered Reduction into the Larger Picture

The results presented in Sections 2 and 4 prove that concentrating all nonlinearities
in the rigid body DOFs of the platform point P and of the damper center of mass D is an
accurate and effective modeling choice. Namely, it draws attention to essential features
of the blade–damper dynamic system such as the existence of a limit excitation force
(Section 2.4) and the interaction between the most important design parameters and the
resulting stress levels.

The purpose of this section is to highlight the advantages of the PCR in terms of
computational effort. As shown in Figure 12, this modeling choice produces a set of
12 nonlinear equations concentrated at points P and D, regardless of the chosen number
of contact points, which cease to be nonlinear degrees of freedom. The PCR method
has shown that, for applications where contact occurs between structures or portions of
structures behaving as rigid bodies, it is possible to drop the proportionality between
the number of contact points and the size of the system. This challenging task has been
undertaken in the past with numerical reduction techniques [20,29,30] based on purposely
developed projection bases. In this context, PCR configures as an alternative in which
the limit on the number of contact points is inherently overcome. Another significant
advantage of the PCR is that the «time to result» is reduced both by the size of the system
and by the fact that a smaller system needs fewer iterations to reach convergence.

Nevertheless, the PCR should not be intended as a substitute for a full nonlinear FE
calculation, when it is a must to take into account the complete geometry of the bladed
disk to offer a complete stress map at all points on the blade. A solution to the need
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of exploring different design configurations, while, at the same time, running a full FE
nonlinear analysis, has been met by the use of a reduced surrogate model trained on data
obtained through a Box–Behnken sampling of the design space [7]. As shown in Figure 13,
we suggest here, instead, to use the PCR method to isolate a few optimized blade–damper
configurations. These configurations will then be screened by a final full FE linear analysis.
In fact, once contact forces have been calculated with the PCR, they can be fed ex-post into
the full FE model excited with the corresponding force(s) and frequency. This workflow
ensures the determination of displacements and stresses at all points on the blade with
a straightforward linear solution, which can be used both for final design/certification
purposes and as an ultimate check on the accuracy of the PCR.

Figure 12. Flowchart representing a typical PCR nonlinear analysis.

Figure 13. Flowchart representing the role of the PCR reduction in a typical design loop.
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6. Conclusions

After having illustrated the rationale of the PCR method, it was shown how it must
be applied in order to choose the most convenient coupling between a blade with given
airfoil, but having a neck of variable flexibility, and a damper type invariable in shape but
variable in mass and therefore in centrifugal force.

For greater adherence to concrete needs in the design phase, the method was applied
to two models of turbine blades, conforming to real cases but of very different sizes.

Overall, the authors are confident to claim the following advantages of the PCR to
the computation:

• it is computationally inexpensive to change the shape and size of neck and damper
and damper when exploring different design configurations (no remeshing required);

• the PCR runs in a fraction of the time needed for the customary Full FE nonlinear
forced response calculation;

• the PCR’s synthetic representation makes it possible to easily observe the presence of
an excitation limit force beyond which the damper becomes ineffective and to predict
its value through a simple formula;

• once contact forces have been calculated with the PCR, they can be fed ex-post into
the Full FE model excited with the corresponding force(s) and frequency, to allow the
determination of all displacements and stresses with a straightforward linear solution.

Moreover, the claims about the advantages of the PCR to the designer are:

• the ”Platform-Centered Reduction” is proved to be effective in offering indications
to the designer on the most important trends and relationships between the design
parameters and the performance of the system;

• the very fact of concentrating all nonlinearities in the rigid body DOFs of the platform
makes it easy to draw attention to the essential: the interaction between the kinematics
of the platform (+ neck) and the airfoil;

• the proposed representation of the outcomes of the procedure in terms of a “designer’s
diagram” which shows maximum bending stress on the airfoil against excitation force
at resonance proves to effective as an engineering development tool;

• by way of an engineering application in the design phase, this was demonstrated for
two blade sizes showing the effect of varying both the neck length and the damper
centrifugal force.
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