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ABSTRACT
Several emerging classes of interactive applications are demanding
for extremely low-latency to be fully unleashed, with edge comput-
ing generally regarded as a key enabler thanks to reduced delays.
This paper presents the outcome of a large-scale end-to-end mea-
surement campaign focusing on task-offloading scenarios, showing
that moving the computation closer to the end-users, alone, may
turn out not to be enough. Indeed, the complexity associated with
modern networks, both at the access and in the core, the behavior of
the protocols at different levels of the stack, as well as the orchestra-
tion platforms used in data-centers hide a set of pitfalls potentially
reverting the benefits introduced by low propagation delays. In
short, we highlight how ensuring good QoS to latency-sensitive
applications is definitely a multi-dimensional problem, requiring to
cope with a great deal of customization and cooperation to get the
best from the underlying network.

CCS CONCEPTS
• Networks → Network measurement; Network performance
analysis;

KEYWORDS
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1 INTRODUCTION
To face the increasing demands for low-latency communication,
the edge computing paradigm, which brings powerful, cloud-like
infrastructure closer to the end-users, is gaining momentum. Simi-
larly to the driving reasons for the deployment of Content Delivery
Networks (CDN), this paradigm allows to keep the traffic local,
reducing the physical distance that needs to be traveled by network
packets [11, 20]. Still, the ongoing shift from cloud to edge comput-
ing mostly targets only one of the many components of the overall
E2E latency, the propagation delay, as it is strictly proportional to
the proximity between the two endpoints. While being definitely
a necessary precondition to meet strict latency goals, potentially
decreasing also the probability of packet congestion and the pro-
cessing overhead introduced by routers along the path, this E2E
distance shortening, alone, may turn out not to be sufficient.

Indeed, focusing on the bigger picture, it is possible to pinpoint
four additional classes of overhead to be considered. First, the com-
plementary components of the network latency, mainly including
transmission, forwarding (classical switches and routers, as well as
more complex middle-boxes such as load balancers and firewalls)
and queuing delays, both in case of wired and wireless access net-
works. Second, the overhead ascribable to the transport layers, and
in particular to the behavior induced by the congestion control

algorithms leveraged by the TCP protocol to modulate the trans-
mission rate. Third, the design of the (likely distributed) application,
including the high-level communication protocols (e.g. HTTP, Web-
Sockets [10], MQTT [2], . . . ), security, as well as the impact of the
complex orchestration platforms, such as OpenStack and Kuber-
netes, which are becoming the de-facto standard inside data-centers
of any sizes [8]. Although bringing the isolation and the agility
typical of the cloud-native world, these orchestrators come along
with various abstractions (e.g. in terms of service exposition), which
could impact the communication latency. Forth, the computation
time, i.e. the actual time spent by the back-end server to execute
the desired task and generate the results returned to the client.
Although completely independent from the network performance
and strictly related to the business logic of the specific application,
it nonetheless accounts in the total latency budget. To this end, it
is worth remembering that offloaded computations are typically
resource-intensive (e.g. machine-learning oriented), hence requir-
ing non-negligible time even if specialized hardware, such as GPUs,
is available [5]. Table 1 summarizes the main factors contributing
to the E2E latency, assessing to what extent each one is expected to
be influenced by different network and application-related aspects.

In this paper we perform a wide range of latency measurements
to comprehensively assess whether the edge-computing promises
of extremely low network latency do actually translate into similar
application-level performance (i.e. whether the propagation delay
dominates the other latency factors), hence meeting the stringent
requirements set forth for computation offloading. Unlike most pre-
vious investigations (e.g. [4, 7]), which compared the performance
of cloud and edge computing in terms of network latency only (i.e.
by means of pings), we focus on the E2E transaction time. In other
words, we consider the entire task offloading process, i.e., from
the transmission of the request message to the reception of the
corresponding results, to get a broader picture of how much the dif-
ferent components in the communication chain impact on the final
performance. Overall, this paper makes two major contributions.

Table 1: The degree of influence of different network and
application aspects on the various latency components.

Delay factor Distance Network
topology

Network
bandwidth

Msg.
size

App
design

Propagation high high low low low
Transmission low low high high low
Forwarding med high low med low
Queuing med high high med low
TCP-related high low med high med
App-related low low low med high



First, it presents the main results of the latency investigation, ana-
lyzing the E2E latency while changing multiple variables, including
application behavior, access network, servers location and service
exposition. Second, it shares the main lessons learned, describing
the unexpected pitfalls that can drastically reduce the overall per-
formance and the possible solutions for each of them.

The remainder of the paper is organized as follows. Section 2 de-
tails the experimental setup and motivates the metrics adopted for
the evaluation. Section 3 presents the outcome of the main measure-
ments, highlighting the pitfalls possibly impairing the performance
of delay-sensitive applications. Section 4 focuses on access net-
works, evaluating buffering-related problems and the latency over-
head introduced by wireless networks. Section 5 reviews previous
related investigations, while Section 6 draws the main conclusions.

2 MEASUREMENT SETUP
In this section, we describe the experimental setup leveraged for the
measurements, detailing the considered task offloading scenario,
the characteristics of the test application and the different back-
end locations. Second, we present the three main latency metrics
considered during the evaluation, motivating the differences and
justifying the focus on the application-level flow completion time.
Finally, we show a comparison between stateless and persistent
connections, and briefly analyze the MQTT messaging protocol.

2.1 Scenario
In our investigation, we focused on a classical computation of-
floading scenario characterized by a client/server architecture. The
former, as an example, may represent an autonomous robot, which
periodically sends messages, including sensor readings and camera
frames, to a back-end server. This, in turn, performs the appropri-
ate computations and returns the results to the requester. In order
to evaluate the latency in a wide range of situations, as well as
simplify the configuration and the reproducibility of the measure-
ments, we developed a custom application1 that periodically sends
ping-pong frames over a WebSocket and performs the appropriate
measurements. We leveraged WebSockets as they provide persis-
tent, full-duplex communication channels compatible with the tra-
ditional HTTP protocol, hence passing through reverse proxies (i.e.
L7 load-balancers), which are increasingly common in data-centers.
At the same time, we selected Protocol Buffers2 as data serialization
mechanism, since they experimentally proved to introduce lower
overhead compared to classical solutions such as XML and JSON
(Section 2.3). Although focusing on the E2E transaction time, the
application does not simulate the actual computation, as dependant
on the specific task and unrelated from the network performance. In
other words, as soon as the server receives a request, it immediately
replies back with a response of the proper size.

The test application is characterized by two main degrees of
configuration. First, in terms of transmission interval, i.e., the time
elapsing between the dispatch of two subsequent requests. In our
evaluation, we mainly experimented with intervals ranging from
10ms to 1 s, hence considering both high-frequency transmissions

1The latency-tester developed for these measurements is open-source, and freely
available on GitHub: https://github.com/richiMarchi/latency-tester
2https://developers.google.com/protocol-buffers

Table 2: An overview of approximate distance (as the crow
flies) between the client and server locations considered.

On-prem 1
Turin

AWS
Milan

AKS CH
South

AKS/AWS
France

AKS/AWS
UK South

On-prem 1 <1 km 125 km 275 km 575 km 925 km
On-prem 2 5 km 125 km 275 km 575 km 925 km
Home Net. 35 km 150 km 300 km 600 km 950 km

and slow-paced requests. Second, in terms of message sizes, both
concerning the requests issued by the client and the responses re-
turned by the server. Sticking to the peculiarities of the scenario, we
simulated asymmetric flows characterized by inputs bigger than the
corresponding output [23]. Specifically, we considered the follow-
ing three representative configurations: (i) Command and control,
characterized by symmetric 1 kB requests and responses. This setup
simulates a remote control system and represents a lower bound in
terms of latency, given that it introduces very limited transmission
delay due to the dispatch of a single packet per message. (ii) Teleme-
try, encompassing 10 kB requests and 1 kB responses emulating the
periodic transmission of a set of sensor readings (e.g. originating
from radars and lidars 2D) to the back-end. (iii) Image recognition,
considering 100 kB requests and 1 kB responses to represent the
cyclical dispatch of camera frames for processing.

Although the precise numbers can definitely vary based on the
specific situation, these arrangements are deemed to represent the
three main classes of frame sizes, hence achieving the desired cov-
erage during the investigation to assess the effects of message size
variations on the E2E latency. Bigger message sizes have not been
considered as, complemented with fast sending intervals, would
lead to extremely high bandwidth requirements (e.g., 1MB frames
sent every 10ms would roughly correspond to 1Gbps), as well as
the total latency would be dominated by the transmission delay.

Focusing on the actual deployments, to probe the different factors
influencing the communication latency, we repeated the measure-
ments considering multiple configurations summarized in Table 2.
As for the server, we leveraged a lightly-loaded Kubernetes cluster
located at the university premises (Turin, Italy), as well as a sub-
set of popular cloud providers. More in detail, we selected three
increasingly distant Microsoft AKS instances (Switzerland North,
France Central and UK South), and three Amazon EC2 instances
(Milan, Paris and London). Although farther data-centers may not
be appropriate to fulfill very strict latency requirements, they have
nonetheless been considered to assess whether the performance
could be acceptable in case of less demanding applications. On the
other hand, the client-side of the measurement tool has been hosted
first on one server at the university premises (located in a differ-
ent part of the campus with respect to the Kubernetes cluster), as
well as another one inside the corporate network of a partner com-
pany also based in Turin. Both represent best-case access networks
for task offloading, being characterized by wired connections and
1Gbps links. Second, we hosted the client on a laptop connected
to a domestic network served by a broadband, fiber-to-the-cabinet
(FTTC) Internet access (100Mbps / 20Mbps). This fostered the in-
vestigation of issues afflicting less performing networks, as well as
the impact of wireless access. Although the various deployments

https://github.com/richiMarchi/latency-tester
https://developers.google.com/protocol-buffers
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Figure 1: A schematic abstracting a possible organization of
the data-centers leveraged by a telecom operator.

are possibly characterized by different computing power, they are
deemed not to significantly impact the measurements, as no re-
source intensive task is performed by the end-points.

The matrix of client and server locations, complemented by
the different combinations of parameters, is expected to reflect
the wide range of scenarios that can be encountered in the task-
offloading landscape. To this end, Fig. 1 presents an abstraction of
the possible topology of the data-centers leveraged by a telecom
operator, characterizing for each one the range of users and the
expected E2E distance. Our measurements exploiting public cloud
data-centers definitely fall between the regional and the national
DC distance range, while the on-premise tests represent a lower
bound for the edge data-center scenario. All measurements were
repeated multiple times, to obtain statistically relevant results and
evaluate the latency stability during the day and across multiple
days. All in all, we gathered hundreds of hours of measurements,
corresponding to millions of raw latency samples, thus paving the
way for accurate analysis even when focusing on high percentiles.

2.2 Latency Metrics
Three main metrics can be considered with respect to latency mea-
surements. First, the network-level round-trip-time (RTT), which is
typically evaluated by means of the ping or traceroute tools. Ex-
tremely simple, this measurement represents an estimation of the
bare performance of the underlying network, thus without includ-
ing the overhead introduced by higher-level protocols and transport
delays. Still, it is associated with different caveats, as ICMP and UDP
probes are often blocked by the firewalls of corporate networks and
cloud providers, as well as they may be discarded by data-center
load balancers. Additionally, these probes are typically character-
ized by lower forwarding priority compared to other traffic, hence
leading to possibly inconsistent results [15]. Second, the transport-
level RTT, hence focusing on the performance of the actual TCP
stream, in terms of the time required to send one segment and re-
ceive the corresponding acknowledgement. This metric, which can
be evaluated using the analysis tools provided by network sniffers
such as tskark and wireshark, may not represent a complete E2E
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Figure 2: Latency distribution at network, TCP and app-level,
considering the dispatch of 1 kB and 100 kB requests.

latency measure (e.g., in case a reverse proxy is used, which termi-
nates the client TCP connection), as well as it has to deal with the
TCP optimizations, such as delayed ACKs, which may slightly alter
the outcome. Still, it proved to be of extreme value to discern TCP-
level (e.g. buffering-related) issues from application-level latency.
Third, application-level RTT, to assess the entire flow completion
time (FCT) from the beginning of the request transmission to the
complete reception of the corresponding response from the server.
Unlike previous metrics, this E2E measurement includes both the
network delays strictly speaking, as well as the time required to
transmit the messages. Yet, it allows to evaluate the actual QoS
that is perceived by the final application, taking into account also
the specificity of the infrastructure and the effects of middle-boxes
such as load balancers and proxies. It is worth noting that all the
three previously mentioned metrics represent RTT measurements,
as they relax the requirement for precisely synchronized clocks
imposed by the evaluation of one-way delays.

Fig. 2 presents a two-hour long evaluation of the latency distri-
bution considering the three previously mentioned metrics. Client
and server are located in distant areas of the campus network and
interconnected by means of a 1Gbps L3 network. Request messages
are dispatched every 10ms, while pings are issued every 1 s. The
Nagle’s algorithm is enabled (although we obtained equivalent re-
sults regardless of its status) and the application sets the PSH TCP
flag. Looking first at the ping results, it is possible to observe two
main aspects: first, the extremely good performance achieved at
the network level, with the median latency (P50) equal to 0.47ms
and the 99th percentile (P99) at 0.62ms only. Second, the relevant
divergence between the responses from a physical server and those
returned by its preceding router (i.e., its default gateway), with the
latter reporting twice as much delay. Focusing now on 1 kB applica-
tion messages, the bare network performance is mostly translated
into the actual flow completion time (P50= 0.95ms, P99= 1.13ms),
with a limited overhead introduced both at TCP and application-
level. Finally, considering the Image recognition scenario (i.e. 100 kB
requests), it becomes evident the latency contribution ascribable
to the transmission of the messages (even though relatively small),
and theoretically accounting for approx. 0.85ms. Although intu-
itive, this aspect needs obviously to be considered when designing
latency-sensitive applications, given also the resulting longer tail
at higher percentiles, which makes it harder to provide QoS guar-
antees. At the same time, the TCP-level RTT is lower than in the
1 kB message case, given the mitigation of the effect introduced by
delayed ACKs due to the transmission of multiple network packets.
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2.3 Stateless vs Persistent Connections
Let focus now on a preliminary comparison between two widely
adopted communication approaches for HTTP-based distributed ap-
plications. First, we consider a completely stateless approach, char-
acterized by the establishment of a new connection for each differ-
ent transaction.3 Second, we use a single, persistent, and full-duplex
communication channel, as the one provided by the WebSocket
abstraction. Hence, avoiding the overhead required to re-establish
a new TCP connection for each request.

Fig. 3 presents the distribution of the application-level FCT in
these two situations, simulating a task offloading scenario from the
on-premise client to an AKS instance located in North Switzerland,
and characterized by a median TCP-level RTT (P50) of 7.2ms. It
is evident at a first glance the significant difference in terms of
performance. Focusing on 1 kB frames, the FCT is dominated by
the propagation time, accounting for a single RTT in case of per-
sistent channels (P50≈ 7.9ms). Yet, stateless interactions are more
demanding, requiring an additional iteration to complete the TCP
handshake (P50≈ 17.7ms) and, if security is required, one more to
setup the TLS session4 (P50≈ 28.0ms). Moreover, new connections
need to be established through L7 proxies, if any, further increasing
the perceived latency. Still, even more relevant differences emerge
when considering bigger request sizes, a fact boiling down to the
underlying behavior of the TCP protocol. Indeed, newly established
TCP connections incur in the slow start phase, hence progressively
probing for the bandwidth available by sending increasing amounts
of segments. In turn, this causes the 100 kBmessage to require mul-
tiple RTTs to be transmitted, compared to the single iteration when
the congestion window (cwnd) has already reached the steady-state.
Finally, it is worth noting that the additional latency associated
with the stateless approach is proportional to the network-level
RTT, hence increasing the farther the two endpoints are.

Learning 1: Latency-sensitive distributed applications should
leverage persistent connections as much as possible, to avoid the
establishment overhead of stateless TCP and benefit from the in-
creased TCP cwnd values and throughput at steady state.
3To fully highlight the connection establishment overhead, we disabled HTTP keep-
alive, hence effectively leveraging different underlying TCP connections.
4The interactions necessary to establish a TLS connection depend on the version of the
protocol: TLS 1.2 and earlier require two RTTs, while TLS 1.3 reduced the overhead to
one RTT only. Furthermore, it also supports a 0-RTT configuration, to allow resumption
of existing connections with no additional latency [19]. Fig. 3 refers to TLS 1.3 with a
default configuration.
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Figure 4: App-level FCT comparison betweenWebSocket and
MQTT-based communication, for a client hosted on-premise
and a server (along with the broker), on AWS Milan.

This result justifies the adoption of persistent connections for the
rest of the evaluation. Similarly, switching from JSON to Protocol
Buffers for payload serialization reduced the associated transmis-
sion and reception processing overhead by 1ms to 2ms in case of
100 kB messages, complemented by a more compact FCT distribu-
tion even with smaller sizes. All in all, this highlights how every
single design choice can have an extremely significant impact on
the QoS offered by the application. Hence, raising the need for
cautious decisions throughout the entire development of latency-
sensitive applications, to avoid impairing the underlying network
and losing the advantages offered by close-by data-centers.

Learning 2: When dealing with low-latency requirements, it
is necessary to adopt efficient data serialization mechanisms and
libraries, to achieve good performance both in terms of resulting
message size and, most importantly, encoding/decoding time.

2.4 Publish/Subscribe IoT Messaging Transport
Concluding our preliminary analysis, we now focus on a brief com-
parison between persistent WebSocket connections and MQTT, a
lightweight publish/subscribe messaging transport that is becom-
ing increasingly common in many industrial and IoT scenarios [17].
As for the latter, we leveraged once more a ping-pong approach,
with a client publishing to a first topic and measuring the delay
before the response is echoed back by the server on a second one.

Fig. 4 presents the results of the evaluation, considering a client
deployed on-premise and the server on AWS Milan. For the sake of
fairness between the two approaches, we co-located the message
broker (Eclipse Mosquitto5) along with the server, hence avoiding
the introduction of additional network overhead. Furthermore, we
evaluated all three QoS levels supported by theMQTT specifications
about message delivery [2], namely at most once (0), at least once (1)
and exactly once (2). Focusing on the actual numbers, it is possible
to draw two main observations. First, the relatively limited latency
difference between WebSocket and MQTT-based communication
(QoS 0 and 1), with the latter abstraction accounting from 0.3ms
up to 1ms in case of bigger request sizes. Second, the twice as
much delay associated with MQTT QoS 2, given the more complex
interaction required to ensure the desired guarantees. Finally, it
is worth mentioning we needed to explicitly disable the Nagle’s
algorithm on the message broker, to prevent high latency issues
experienced with MQTT QoS 1 and 2.
5https://mosquitto.org/

https://mosquitto.org/


Learning 3:MQTT and the associated message broker introduce
limited overhead compared to TCP, at least when QoS 0 or QoS 1
and the proper configuration are used. Conversely, the additional
delay becomes relevant when the highest QoS is required.

Learning 4: Latency-sensitive applications shall disable the Na-
gle’s algorithm to prevent unexpected delays if small packets, either
data or control, are transmitted over a TCP connection.

3 LATENCY MEASUREMENTS AND PITFALLS
This section presents the outcome of a set of close-up investiga-
tions analyzing specific aspects deemed to negatively influence the
delays experienced by latency-sensitive applications, highlighting
at the same time the pitfalls encountered during the measurement
campaign. Specifically, we start focusing on a comparison between
different common approaches to host and expose a back-end service
in a data-center, before characterizing an application behavior that
turned out to have unexpected effects on the FCT. Finally, we move
on and analyze the impact of possible core-network inefficiencies.
All the measurements refer to wired networks, while leaving for
the subsequent section the investigation in case of wireless access.

3.1 Hosting the Back-end Service
Focusing on a task offloading scenario, it is reasonable to assume
the back-end computations to be performed in a data-center, either
public or private. Still, multiple applications, or even instances
of the same component, typically need to coexist on the same
infrastructure, to better leverage the resources available and avoid
reserving entire bare-metal servers to single tasks. Hence, raising
the need for orchestration solutions, which essentially take care of
the execution, resilience and isolation of multiple services.

Sticking to cloud-native, open-source solutions, Kubernetes is
gaining momentum and has therefore been chosen for our investi-
gation. Still, many choices are possible when it comes to make the
desired HTTP services reachable from the clients. Supposing an 𝑛

nodes cluster, with the target application running in a container
hosted on node 𝑥 , it is possible to consider two main alternatives.
First, the back-end can be exposed leveraging a Kubernetes LoadBal-
ancer service6, which takes care of assigning a routable IP address
to the service and appropriately announcing it to the network in-
frastructure (e.g. through the BGP protocol or gratuitous ARPs)7.
If a specific flag of the service, namely ExternalTrafficPolicy, is set
to Local, the incoming requests are directly forwarded to the node
hosting the back-end, 𝑥 in this case. Conversely, when ExternalTraf-
ficPolicy is set to Cluster (i.e., the default one), the traffic may incur
in a second hop, reaching first node 𝑦 and then being forwarded
to node 𝑥 , which actually hosts the application. This allows better
overall load-spreading in presence of multiple replicas, at the cost
of possibly increased latency. The same situations can also be repro-
duced using a NodePort service (as done in these measurements for
additional control), though this requires the nodes to be assigned
routable addresses and it imposes limitations on the ports that can
be used. The second alternative involves a reverse proxy, which
6https://kubernetes.io/docs/concepts/services-networking/service/
7It is worth noting the LoadBalancer service is a functionality that is either offered
by the cloud provider hosting the Kubernetes cluster or enabled by an additional
component, such as MetalLB, in case of on-premise deployments.
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Figure 5: App-level FCT comparison varying the approach
used to host and expose the back-end service. The box-plot
refers to three scenarios characterized by increasing request
sizes, while the lower graph represents a 110-hours long close-
up analysis at high percentiles in case of 10 kB frames.

consists of an application-level load balancer in charge of termi-
nating the TCP and TLS connections, possibly exposed through
a Kubernetes LoadBalancer service. This represents the single en-
try point for many services and it forwards each request to the
appropriate back-end. In this study we selected the NGINX Ingress
Controller (community edition – v0.44) with default settings, being
it by far the most used solution in Kubernetes today [8].

Fig. 5 presents the outcome of a twelve-hours long evaluation,
comparing the three alternatives considered above (i.e. load bal-
ancer in Local and Cluster modes, and reverse proxy), comple-
mented by different combinations in terms of security. Finally, the
application is also hosted on a bare-metal server, to assess the over-
head introduced by the container abstraction and orchestration
(i.e. Kubernetes). Client and server are both executed on-premise,
leveraging the low network latency offered by the campus network
to better highlight the actual differences. The box-plot represents
the extension of the quartiles, as well as of the 1st and the 99th
percentile (a representative set of outliers is shown as individual
points) of the FCT for messages of three different sizes. Results are
very similar both for the application executed on the bare-metal
server and the ones exposed through the load balancer, with no rel-
evant variations introduced by TLS when the connection is already
established. Still, the load balancing Cluster policy is associated
with slightly higher latency (0.1ms – 0.2ms), ascribable to the addi-
tional hop. Differently, the usage of a reverse proxy caused a more
relevant overhead (0.5ms– 1ms at P99), confirming the impact
introduced by the additional software component.

Learning 5: In the majority of cases, the different Kubernetes
service-exposition approaches introduce a negligible delay, thus
requiring extremely low propagation delays to be of any relevance.

Learning 6: The adoption of TLS to secure network traffic has
practically no impact at run-time with powerful enough devices,

https://kubernetes.io/docs/concepts/services-networking/service/


while it possibly introduces a significant overhead during the con-
nection establishment phase (Fig. 3).

Moving on, the lower part of Fig. 5 shows a 110-hours long close-
up analysis of the results associated with 10 kB requests (although
the trend is expected to be similar also in the other cases), focusing
on higher percentiles to better pinpoint the latency distribution in
the context of strongly demanding scenarios. Indeed, mission and
safety critical applications may definitely require extremely high
reliability [16], as missing even a single deadline could turn out to
have catastrophic effects. In an effort to achieve high confidence,
we collected almost 40 million latency samples: a new request is
dispatched every 50ms, and all the measurements are executed in
parallel to uniform the impact of possible temporary network prob-
lems. In a nutshell, while the different alternatives are relatively
aligned up to P90, and even P99, they start to diverge at higher
percentiles. Given the definitely more stable results obtained in the
bare server scenario compared to the other cases, it looks like most
of the overhead, especially at high percentiles, is related to the ap-
plication execution by the end-point devices, both client and server
(e.g., temporary load bursts, job scheduling, interrupt handling, . . . ),
likely due to the higher number of software components involved
(e.g., application running in containers instead of bare hardware,
the introduction of the reverse proxy). Sure enough, part of the
bare server outliers has also the same cause, albeit to a lesser extent
thanks to the reduced complexity.

Learning 7: Given the nature of the latency long tail measure-
ments and the apparently underloaded conditions of the enterprise
network, the possible improvements that could be achieved by in-
troducing QoS/slicing technologies in the above infrastructure is
questionable. Similar results have been achieved also on some ISP
core networks, particularly when reaching the closest data-centers.

Learning 8: Distributed approaches leveraging shared infras-
tructure (both network and compute) are hardly applicable in mis-
sion and safety critical scenarios due to the FCT rise after P99. Still,
more complex setups (i.e., based on containers and optionally re-
verse proxies) are characterized by worse performance, thus raising
the need for careful analyses about trade-offs between simplicity
and performance when requiring high reliability.

3.2 Slowed Down Low-Frequency Applications
Given the necessity to use persistent connections and the use-cases
considered during the measurements, the application, and so the
underlying TCP connection, alternates active periods characterized
by the actual transmission of request data and idle instants, i.e.
waiting for the next sending slot. Although apparently irrelevant at
first sight, this aspect turned out to have devastating effects on the
performance perceived by the application, as represented in Fig. 6.

The graph compares the app-level FCT with the client deployed
on-premise and the server hosted on AKS Switzerland North, con-
sidering 100 kB request messages to simulate the offloading of an
image recognition task. All parameters are kept constant between
one measurement and the other, varying only the interval between
the transmission of subsequent messages. Numbers show how the
FCT starts to grow as soon as the send interval exceeds 200ms,
with the median value boosting from 9 to 31ms if the application
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Figure 6: App-level FCT comparison varying the interval be-
tween the dispatch of one 100 kB request and the subsequent,
while maintaining unchanged all the other variables.

remains idle for more than 1 s between two requests. In other words,
the duration of the application duty cycle is indirectly, as well as
unexpectedly, impacting the offered QoS.

This three-fold latency increase is due to the algorithm suggested
in RFC 2861 [14], which aims at preventing the dispatch of exces-
sive bursts of packets if the sender remains idle for relatively long
periods of time (i.e. higher than the retransmission timer — RTO —
estimation), by progressively halving the TCP cwnd value. Although
this behavior has been recognised to strongly damage the perfor-
mance of periodic communications over persistent channels due to
cwnd shrinking and the above RFC is obsolete [9], it is nonetheless
currently enabled by default in Linux when CUBIC TCP is adopted.
Still, while this feature can be turned off modifying an appropriate
flag8, as done in the measurements shown in this paper, as well
as adopting a congestion control algorithm which leverages differ-
ent pacing techniques (e.g. BBR [3]), these modifications typically
require the control of the operating system and may not be config-
ured directly by orchestrators such as Kubernetes.9 Hence, raising
the need for careful pre-deployment analysis to ensure application
performance is not impaired by incorrect settings, as well as for
collaboration between developers and system administrators, to
provide the best QoS possible for the given scenario.

Learning 9: Latency reduction requires the collaboration of
multiple actors, including network providers, data-center providers
(e.g. to configure TCP parameters and tune reverse proxies behavior)
and application developers. Hence, possibly involving different
people/teams, even when leveraging dynamic platforms such as
Kubernetes. Indeed, application tuning, alone, is often not enough.

3.3 Core Network Analysis
Up to now, our analysis focused on the impact of the application
behavior (i.e. client side), as well as the exposition of the back-end
service (i.e. server side). We present now different measurements
to assess which characteristics of the core network could impact
the actual QoS, besides propagation and transmission delays.

8i.e., tcp_slow_start_after_idle, which is exposed through the /proc in-
terface: https://man7.org/linux/man-pages/man7/tcp.7.html
9At time of writing, the sysctl flags used to either disable the “slow start after idle”
behavior or change the congestion control algorithm are not included in the Kubernetes
safe set, and need to be allowed by the cluster administrators on a per-node basis before
being configurable when defining the application deployment (https://kubernetes.io/
docs/tasks/administer-cluster/sysctl-cluster/).

https://man7.org/linux/man-pages/man7/tcp.7.html
https://kubernetes.io/docs/tasks/administer-cluster/sysctl-cluster/
https://kubernetes.io/docs/tasks/administer-cluster/sysctl-cluster/
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Figure 7: 24-hours app-level FCT evaluation between an on-
premise client and AWS Paris, highlighting the stability of
the network over one day.

3.3.1 Temporal stability. We carried out multiple 24-hours long
measurement campaigns to assess the stability of the backbone net-
work performance between on-premise locations and data-centers,
as well as between multiple data-centers located in different re-
gions. While constant and predictable communication delays are
fundamental for many latency-sensitive applications, it seemed
intuitive to observe varying behaviors due to possible congestion
during rush hours. Fig. 7 presents the outcome of one of these eval-
uations, showing the FCT experienced between a client deployed
on-premise and a back-end service hosted on AWS Paris, while
exchanging 10 kB requests and 1 kB responses. To our surprise,
all results showed extremely stable performance, and no relevant
and consistent correlation appeared to exist between delay and
time of the day. Indeed, in all cases the medians of 24 runs were
contained in the 0.2ms to 0.5ms (≈ 1 % to 2 %) range, with only
slightly higher differences at P90 (≈ 1ms). Additionally, inter-data
center communications appeared to be even more stable, while
on-premise networks introduced slightly higher variability. For the
sake of completeness, it is worth mentioning that during one very
specific measurement (i.e. client hosted on AKS London and server
on AKS West US) we noticed an abrupt 5ms FCT (and TCP-level
RTT) drop at midnight GMT. Most probably, it depended on a sched-
uled modification of some routing configuration, which caused a
shorter path to be followed by the packets.

Learning 10: The latency between a given pair of endpoints is
virtually constant throughout the day, and across multiple days.

3.3.2 Routing Instability. While showing stable performance,
the long-run measurements uncovered at the same time a definitely
less desirable behavior, which is graphically represented in Fig. 8.
Specifically, the box-plot details the app-level FCT experienced by a
client located at the university premises communicating to a back-
end server hosted on AKS Switzerland North (although a similar
pattern reproduced also towards the other AKS regions considered).
At a first sight, it is immediately evident the extreme difference
between multiple runs, with some sessions characterized by a me-
dian around 8.5ms and others almost twice as much, 16.25ms. This
specific behavior turned out to be caused by the network topol-
ogy10 and routing policies of the Consortium GARR (i.e. the Italian
national network provider for universities and research centers).

In fact, the traffic coming from our university, located in Turin,
and directed to AKS data-centers gets forwarded by equal-cost
multi-path (ECMP) routing either towards Milan (MI2) or Rome

10https://gins.garr.it/xWeathermap/mapgen.php?slice=garrx_top
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Figure 8: 20-runs FCT evaluation between an on-premise
client and AKS Switzerland, showing the effect of inefficient
ECMP routing performed by the core network and impacting
the path followed by packets of different sessions.

(RM2). Then, the packets reach the corresponding Internet Ex-
change, MIX or NAMEX respectively, before entering the Azure
network. Still, two paths may be equivalent from the routers point
of view (e.g. based on hop count or links speed), but character-
ized by completely different performance considering other metrics
(e.g. the E2E latency, which depends also on the physical distance).
ECMP routing is typically performed at session level, to prevent
the occurrence of packet reordering: indeed, configuring a fixed
source port (as the other network parameters are constant across
subsequent runs), this variability is no longer present and all runs
stabilize around either one of the two values. We leveraged this pe-
culiarity during the other evaluations to achieve consistent results,
forcing the packets to flow through the shorter path.

Although these observations stem from a rather peculiar behav-
ior characteristic of a specific network, it is nonetheless reasonable
to assume similar problems to be present to different extents in
a wide variety of scenarios, possibly impairing latency-sensitive
applications. Additionally, being related to the core network, they
fall outside the control of system administrators, hence raising the
need for different solutions. Indeed, in presence of persistent con-
nections and multiple unequal paths, it may be wise to leverage
helpers opening parallel channels to probe for the best available
characteristics, and select the ones ensuring the desired QoS.

Learning 11: Uncontrollable core-network routing configura-
tions can unexpectedly and dramatically influence the performance
of delay-sensitive applications. Continuous monitoring is funda-
mental to quickly detect modifications and, when possible, put in
place countermeasures (e.g., forcing shortest path selection).

3.3.3 Routing Inefficiencies. We considered different close-by
locations suitable for the deployment of the client and server com-
ponents of an application with relatively loose latency requirements
(i.e. < 30ms). Fig. 9 summarizes the outcome, considering two on-
premise hosts located in Turin, respectively in our university and
in a partner company, as well as back-ends deployed in Western
Europe public-cloud data-centers. Finally, we simulated an increas-
ingly common inter-cloud scenario, hosting the two components
of the application on different cloud providers, located in the same
region, accounting for resiliency and cost effectiveness demands.

When talking about latency, one typical assumption regards two
endpoints physically close-by being also characterized by extremely
low propagation delays. Yet, this may not necessarily turn out to
be true in all situations, as the path followed by the packets may
be much longer due to the interconnection of different network

https://gins.garr.it/xWeathermap/mapgen.php?slice=garrx_top
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Figure 9: App-level FCT comparison focusing on different
client-server locations, issuing 10 kB requests every 100ms.

providers and possible routing inefficiencies. As a representative
example, the on-premise to on-premise evaluation displayed a me-
dian FCT close to 16ms, although client and server were effectively
located in the same city, only few kilometers apart. Conversely,
much better performance has been achieved with the server hosted
on AWS Milan (IT), characterized by a P50 FCT as low as 3.5ms,
thanks to the more direct core network interconnection. Even host-
ing the server farther, on AKS Switzerland (CH), led to definitely
better results; still, the two clients experienced quite different QoS,
with the former associated with a lower median and an overall more
compact distribution. Both AKS Central France (FR) and AWS Paris
(FR) showed stable performance, although with a relatively higher
base delay (≈ 20ms) due to the increased physical distance. Moving
to farther data-centers, AWS UKwas characterized by a median FCT
latency between 27ms and 30ms, once more with different stability
depending on the client access network. Finally, the inter-cloud
scenario achieved definitely good results, although the packets had
to go through the network of two different cloud-providers.

Learning 12: Physical distance alone does not always represent
a good approximation of the propagation delay, given the possible
effects of routing inefficiencies. This aspect becomes all themore rel-
evant the more network providers are crossed, given the increased
probability of distant interconnections for economic reasons.

4 THE IMPACT OF THE ACCESS NETWORK
This section focuses explicitly on access networks, to present an
overview of the overhead introduced by different alternatives. In-
deed, the previous measurements were carried out in the best case
scenario, encompassing the 1Gbps wired links typical of corporate
networks. Still, task offloading is usually envisioned for mobile
devices, hence leveraging less performing wireless networks and
leading to the Mobile Edge Computing (MEC) paradigm [1]. More
in detail, we initially consider a residential network served by a
broadband, FTTC Internet access, measuring the latency towards
different public data-centers and analyzing the effects of buffer-
ing and parallel transmissions on FCT. Then, we experiment with
wireless networks, to characterize the additional latency overhead.

4.1 The Latency towards Public Data-Centers
Focusing on residential networks, Fig. 10 presents an FCT compari-
son between a domestic client, served by an FTTC Internet access
(100Mbps / 20Mbps), and multiple servers hosted on public data-
centers across Western Europe. Looking back at the performance
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Figure 10: App-level FCT comparison between a domestic
client and different servers hosted on public data-center lo-
cations, issuing either 1 kB or 100 kB requests every 100ms.

achieved in corporate networks (Fig. 9), it is immediately evident
the latency difference, although the clients are close-by in terms of
geographical distance (≈ 35 km). This factor, observed also in [13],
is most likely ascribed to the complexity of ISP access networks,
introducing a relevant latency overhead due to complex forwarding
policies and invasive packet processing.

More in detail, considering 1 kB messages first, AKS CH is un-
expectedly characterized by the lowest median latency (15.1ms),
being faster than the server hosted on AWS Milan, which is geo-
graphically closer (𝑃50 = 20.3ms). Similarly, it is possible to observe
a relevant difference between the two close-by UK end-points, with
AWS resulting 13ms slower than AKS. Thus, showing a limited cor-
relation between the experienced latency and the geographical dis-
tance. Additionally, it is also worth mentioning that in several cases,
with AWS Paris being the most severe, we observed ECMP-related
latency variations, hence requiring to select a fixed source port to
achieve stable performance across multiple runs. Moving to the
analysis of the results associated with 100 kB messages, the trans-
mission delay becomes clearly predominant, with approx. 60ms
added to the previous measurements, and corresponding to an
upload throughput slightly greater than 14Mbps.

Given the unexpected results, we extended the evaluation to
multiple clients located in the Turin area and served by different
ISPs, measuring the latency experienced towards the two close-by
data-centers. The results are presented in Fig. 11, and elicit twomain
considerations. First, the relatively aligned performance towards
AKS CH, with only the ISP 3 sample being characterized by lower
latency. Second, the definitely strange behavior observed by ISP 1
clients towards AWS Milan. Indeed, repeating the measurements
a day apart (i.e. ISP 1‡), the delay decreased by almost an half.
Still, all samples were in both cases consistent across consecutive
repetitions (even spaced by different hours), as well as among the
different clients. No difference was observed either from other ISPs
or from the corporate network, hence confirming the unexpected
variation to be related to some ISP 1 internal routing variation.
Finally, considering different clients located in central and southern
Italy (not shown in Fig. 11), we also measured a median FCT in the
15ms – 20ms range (with limited dispersion) towards the same two
data-centers, showing once more that the experienced E2E latency
is currently not dominated by the physical distance.

Learning 13: Residential networks are typically associated with
higher base delays compared to corporate networks, due to the
complexity of the ISP access network and commercial policies. Still,
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Figure 11: App-level FCT comparison between residential
clients located in Turin and its province (served by different
ISPs) and close-by data-centers, issuing 1 kB requests.

this additional overhead appears to be mostly independent from
the physical distance to the destination, hence limiting the possible
advantages brought in by close-by data-centers. Additionally, the
experienced latency can abruptly and inexplicably change com-
pletely, due to internal ISP routing variations.

4.2 When Packets get Stuck in Traffic
Access networks can also lead to subtler issues, especially when
delay-sensitive applications and parallel, high-throughput, trans-
fers do coexist. Considering an automotive scenario, the latter may
be represented by infotainment traffic or over-the-air updates, as
well as the transmission of diagnostic information. Fig. 12 exem-
plifies this situation, encompassing periodic command and control
interactions towards a back-end hosted on AKS Switzerland and
characterized by a base latency of 16ms. Small, 1 kB messages per-
fectly reflect the TCP-level RTT induced by the parallel transfers,
without being affected by the reduced bandwidth. Looking at the
graph, it is immediately evident how parallel file transfers, both
downstream and upstream, respectively represented by the green
(10 s – 40 s) and blue (50 s – 80 s) shaded areas, can dramatically im-
pact the application QoS. This delay increase boils down to the
behavior of TCP congestion control (CC) algorithms, which attempt
to maximize the throughput and speed-up file transfers.

To this end, classical loss-based approaches, such as CUBIC, have
been shown long ago to badly interact with the buffers located be-
fore bottleneck links, progressively increasing the queue length and
leading, in the extreme cases, to the bufferbloat phenomenon [12].
Fig. 12 shows precisely this behavior, with the FCT experienced by
the delay-sensitive application starting to grow immediately at the
onset of the parallel download stream, reaching up to three times
the base latency and displaying extremely high variability. Still,
much worse performance is undergone in case of parallel upload
streams, ascribable to the lower available bandwidth characteristic
of asymmetric access links (i.e. about one fifth the downstream
direction) and the possibly bigger buffers featured by the home
gateway. Switching to BBR, a CC algorithm based on a different
approach to estimate the available bandwidth and aiming at reduc-
ing the queuing pressure on bottleneck buffers, the measured FCT
definitely improves, although remaining three times as high as in
absence of any parallel flow (50 s – 80 s).

Learning 14: Network-based bufferbloat mitigation techniques,
such as smart queue management algorithms to identify and prior-
itize latency-oriented flows, as well as possibly dedicated network
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Figure 12: FCT comparison between a domestic client and
AKS CH, showing the effects of parallel transfers and buffer-
ing with two CC algorithms. The delay-sensitive stream is
characterized by 1 kB requests/responses exchanged every
10ms; the green (10 s – 40 s) and blue (50 s – 80 s) shaded areas
represent respectively parallel download and upload flows.

slices to ensure the best performance in case of strict requirements,
may be required particularly in the access network. However, this
requires a solution to the well-known problem of accurate classifica-
tion of the incoming traffic, being able to distinguish a device when
involved in a real-time communication or in a bulk data transfer
(e.g., firmware update), which may happen at any time.

4.3 Wireless Access Links
Concluding our analysis, we finally experimented with wireless
access links. Acknowledging the typical usage of low-end devices
in many IoT applications, we leveraged a Raspberry Pi 3 Model
B+ board to host the client. As for networking, it features both
1Gbps Ethernet and dual band 802.11ac Wi-Fi, although the for-
mer is limited to ≈ 300Mbps due to internal bus limitations. To
better highlight the differences, the server was executed by a laptop
connected through a wired link to the access point, represented
by a high-end domestic modem/router (FRITZ!Box 7590). Without
claiming completeness, we believe these measurements to comple-
ment the rest of our analysis, giving an overview of the additional
overhead introduced by wireless links.

Fig. 13 presents the outcome of the evaluation, leveraging both
wired and wireless connections, the latter both close to the access
point (i.e. ≈ 1m LOS) as well as relatively far (≈ 10m NLOS), to
account for different scenarios. Additionally, we considered three
incremental message sizes, highlighting both the overhead ascrib-
able to the wireless medium and the effect related to the possible
bandwidth reduction. Finally, we disabled Wi-Fi power manage-
ment features, to prevent performance degradation. Focusing first
on 1 kB messages, it is immediately evident the latency difference
between wired and wireless links, with the median value (P50)
boosting from as low as 1ms in the first case, up to more than three
times higher (3.4ms) in the latter. Additionally, wireless samples
are associated with higher dispersion and worse performance at
high percentiles, hence being possibly inappropriate in case of strict
reliability requirements. Moving to bigger sizes, the trend is con-
firmed and rather intensified, due to the additional impact of the
lower bandwidth offered by the wireless medium (≈ 100Mbps, as
measured by the iperf3 tool). As for wireless measurements, the
physical distance from the access point turned out to have limited
impact on the P50 value, while displaying increased variability
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Figure 13: On-LAN App-level FCT comparison switching be-
tween wired and wireless access networks.

at higher percentiles when moving the client farther. Still, during
preliminary measurements (not presented in Fig. 13), we definitely
struggled more to achieve good performance in the latter case, due
to the higher sensitivity to external interference, causing latency
spikes and accidental negotiation of lower data-rates, impairing the
performance especially in case of bigger message sizes.

Learning 15: Latency-sensitive applications should leverage
wired links, if possible. If wireless is required, it is necessary to
account for the additional delay (and greater dispersion), until low
latency medium will be fully available. Power management tuning
can improve the performance at the cost of higher consumption.

5 RELATEDWORK
The increasing prominence of latency-sensitive applications, as
well as the rise of distributed paradigms such as cloud and edge
computing, has undoubtedly fostered interest in the community to
evaluate the associated performance.

Back in 2012, Choy et al. [7] analysed the on-demand gaming
scenario, evaluating the delay experienced by 2500 US users to
reach different AWS EC2 instances. They assumed 80ms as an up-
per bound latency to ensure good QoS, showing less than 70 % of
the considered end-users could meet the target. Still, they argued
leveraging CDN edge servers equipped with additional processing
units could allow 28 % more users to achieve the desired latency.
In [21] the authors compared single-cloud and multi-cloud deploy-
ments, showing 20 %– 50 % of IP prefixes would benefit from the
latter by more than 20 % in terms of lower latency, thanks to the
reduced distance to the closest data-center. Yet, users in certain
countries would still experience high RTT (i.e. > 100ms) due to the
lack of near-by data-centers and the effects of routing inefficiencies.
Recently, Charyyev et al. [4] performed a large scale latency eval-
uation between end-users, represented by Ripe Atlas nodes, and
cloud and edge locations, the latter constituted by Akamai servers.
In the end, they observed 82 % of the users could reach the closest
edge server in less than 20ms, while only half obtained comparable
performance towards cloud data-centers. Interestingly, this differ-
ence shrinks in Western Europe, given the widespread presence
of data-centers. These works strictly focused on the bare network
latency measured by means of pings or TCP-level probes, showing
the advantages of physical closeness in terms of reduced latency.
Still, low propagation delays represent just one of the different
factors influencing the application-level QoS.

Switching to full-stack evaluations, in 2017, Chen et al. [6] as-
sessed the performance of different computer vision applications

offloaded from a smartphone to edge and cloud back-ends, consid-
ering both Wi-Fi and LTE access networks. They observed better
performance leveraging edge servers, thanks to the combination of
lower latency and higher bandwidth, overall speeding up the com-
munication by 100ms – 200ms. Still, a 4G access network was asso-
ciated with higher latency, partially losing the advantages brought
in by physical closeness. Additionally, most application-level FCTs
turned out to be dominated by the server-side processing time (i.e.
accounting for hundreds of ms to even seconds in the worst case),
hence demanding for hardware accelerators and possibly reverting
the results in case of uneven computational power. Recently, Gorla-
tova et al. [13] measured the task completion latency of responsive
IoT applications, considering on-premise, conventional and server-
less cloud back-ends. Most notably, they observed definitely worse
performance associated with the latter approach, due to start-up
time and higher variability ascribable to prioritization. Generally
speaking, as expected, conventional cloud execution points were
characterized by increased communication overhead with respect
to on-premise devices, although achieving lower FCTs in case of
compute-intensive tasks, thanks to the increased available process-
ing power. Moving on, in [18], the authors evaluated the impact of
distributing the micro-services composing common applications,
such as e-commerce and social network platforms, partly at the
edge and partly in the cloud. They showed this approach to poten-
tially hide unexpected pitfalls if the components are not designed
properly, leading to worse performance than cloud-only deploy-
ments. Indeed, response times can dramatically increase due to
the interconnected nature of micro-services, requiring multiple
communications back and forth between the edge and the cloud to
answer a single request and multiplying the actual network delay.

Finally, Xu et al. [22] performed a wide-range measurement
study to assess the performance of 5G, given its promises for high
bandwidth, ultra reliable and low latency communication. They
evaluated physical layer QoS, E2E throughput and latency, as well
as smartphone energy consumption and they mostly experimented
with the 5G base stations deployed in their campus, leveraging the
widely adopted Non-Standalone (NSA) mode: hence, reusing legacy
4G infrastructure for the control-plane to reduce costs. The out-
come of their analysis was characterized by both lights and shades:
on the one hand, they observed increased bandwidth as well as re-
duced latency, the latter mostly thanks to the flattened core network
architecture. Still, they experienced coverage problems and sharp
degradation indoor, along with excessive handover delays due to
the shared control plane with 4G and high power consumption. Ad-
ditionally, traditional loss-based TCP congestion control algorithms
turned out to lead to poor throughput (i.e. < 33 %) due to severe
packet losses they ascribed to small buffers in the wired network
part. All in all, they concluded raising the need for optimizations in
the entire ecosystem, from the infrastructure to protocols, in order
to fully unleash the potential of 5G for applications characterized
by extremely stringent bandwidth and latency requirements.

6 CONCLUSIONS
Ensuring constrained latency to distributed applications is becom-
ing a mandatory requirement in a variety of scenarios, ranging from
automation to transportation, from medicine to entertainment.



Learning 16:While edge computing is typically assumed as a
viable solution to this need, moving data-centers close to the users
turned out to be only a small part of a bigger picture and, probably,
not even the most important one. In fact, considering the data-
center diffusion at least in Western Europe and the relatively low
propagation delays, it is currently questionable the race towards the
edge if justified by latency reductions only. Indeed, in all non-trivial
scenarios, the E2E delay would much likely be dominated by the
computation and transmission time.

This paper highlights how guaranteeing good QoS to delay-
sensitive applications is definitely a multi-dimensional problem,
requiring to focus on the entire communication stack, from net-
work parameters to transport and application-level aspects, as
well as to carefully tune a series of system variables. Still, multi-
dimensionality is associated with great complexity, since it requires
the cooperation of multiple actors to achieve the best performance.
Indeed, even considering the extreme simplicity of our measure-
ment tool, apparently insignificant design choices turned out to
drastically impact the latency performance: hence, raising the need
to thoroughly weight up every decision during the development
process. Focusing on the surrounding environment, the complexity
of modern networks, together with the interaction with transport
protocols, can possibly conceal unexpected pitfalls dramatically im-
pairing the actual performance. This strongly highlights the impor-
tance of preliminary evaluations before deploying delay-sensitive
distributed applications, anticipating possible problems and pre-
venting issues from being unnoticed until the system is delivered to
the final customers. At the same time, continuous and accurate per-
formance monitoring at multiple network levels is of fundamental
relevance even after application deployment, to ensure consistent
QoS across time and quickly identify possible variations (e.g., rout-
ing) impairing the application latency.

Learning 17: Given the number of involved actors and the diffi-
culties to reach stable numbers beyond P99, applications with strict
latency requirements should be engineered to autonomously cope
(reliably) with sudden variations and spikes, confirming once more
that building clever and robust applications is a better option than
counting on a complex and unpredictable infrastructure substrate.

Concluding, we also highlight the difficulty of obtaining FCTs
< 10ms, even considering only on-LAN communications and bare
network RTTs of 1ms or less, which is achievable e.g. in a produc-
tion factory with proper infrastructure setup. First, even in ideal
configurations, it is fundamental to take into account transmission
and processing delays, with the latter being particularly relevant
(and possibly variable) in case of non-trivial tasks. Second, applica-
tions associated with those strict requirements are typically either
mission or safety critical, hence demanding for extreme reliability
too. Still, our investigation showed how problems tend to emerge
when focusing on P99 and higher, questioning the feasibility of
leveraging shared infrastructure in these scenarios. Although better
reliability could be certainly achieved exploiting isolated network
slices to prevent interference, complemented with real-time operat-
ing systems to increase predictability, we still believe this goal to
be definitely challenging. Leave it alone meeting the 1ms target,
which would undoubtedly require a complete paradigm shift.
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A REPRODUCTION OF OUR RESEARCH
We aim to enable reproducibility of our results. In the following,
we discuss our study in terms of repeatability (i.e., the ability of
the same team to obtain the same results upon running the same
measurement), replicability (i.e., the research can be performed by a
different team with the same experimental setup), and reproducibil-
ity (i.e, the ability of independent teams to arrive at the same factual
conclusion using their own tools and measurements).1

A.1 Repeatability
As the Internet is continuously evolving and data is gathered in
live networks, repeated measurements may not necessarely yield
the same results. Hence, introducing a natural limit for precise
repeatability of our research. Nevertheless, to minimize the risk of
errors and one-time effects, we repeated the measurements multiple
times and over long periods, while explicitly highlighting in our
paper as learnings the relevant and unexpected discrepancies.

A.2 Replicability
To make our research replicable, we release the source code of our
measurement tools, our analysis scripts and the raw samples of the
results presented in this paper on GitHub:

https://github.com/richiMarchi/latency-tester

A.3 Reproducibility
While strict reproduction of our results is difficult due to the rea-
sons explained in Appendix A.1, as well as, in different cases, the
dependency from the underlying network, an independent team is
still able to obtain the same type of statistics presented in this work.
Specifically, the paper describes the characteristics of the different
scenarios considered and the configurations adopted for each mea-
surement (e.g., endpoints distance, message size and frequency).
As for the infrastructure, unless explicitly specified in the text, we
always leveraged default configurations, both for the Linux Kernel
(as supplied in Ubuntu 20.04 LTS), the Kubernetes clusters (version
1.19 and newer) and the AWS EC2 instances.

1Dror G. Feitelson. 2015. From Repeatability to Reproducibility and Corroboration.
SIGOPS Oper. Syst. Rev. 49, 1 (Jan. 2015), 3–11. https://doi.org/10.1145/2723872.2723875

https://github.com/richiMarchi/latency-tester
https://doi.org/10.1145/2723872.2723875
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