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Collective migration occurs throughout the animal
kingdom, and demands both the interpretation
of navigational cues and the perception of other
individuals within the group. Navigational cues
orient individuals toward a destination, while it
has been demonstrated that communication between
individuals enhances navigation through a reduction
in orientation error. We develop a mathematical model
of collective navigation that synthesises navigational
cues and perception of other individuals. Crucially,
this approach incorporates uncertainty inherent to cue
interpretation and perception in the decision making
process, which can arise due to noisy environments.
We demonstrate that collective navigation is more
efficient than individual navigation, provided a
threshold number of other individuals are perceptible.
This benefit is even more pronounced in low
navigation information environments. In navigation
“blindspots”, where no information is available,
navigation is enhanced through a relay that connects
individuals in information-poor regions to individuals
in information-rich regions. As an expository case
study, we apply our framework to minke whale
migration in the North East Atlantic Ocean, and
quantify the decrease in navigation ability due to
anthropogenic noise pollution.
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1. Introduction
Many animals routinely migrate long distances; spectacular examples include the pole-to-pole
flights of Arctic terns and the transoceanic migrations of many whale species [1,2]. Topography,
the geomagnetic field, celestial information, and chemical signals can all serve to orient animals
en-route [3–5]. Navigational cues may be interpreted in combination, or an animal may switch
from a cue suitable for long-distance migration to a cue suitable for precise navigation when close
to the destination [6,7]. Frequently, migrations are conducted as a group and there is significant
interest in the extent to which the “wisdom of the crowd” improves navigation performance.
Improvement may arise from group heterogeneity, where knowledgeable individuals take on
a leadership role, but is also hypothesised to occur in a homogeneous population through the
“many wrongs” principal of navigation. Here, pooling information across the group reduces
individual-level uncertainty via averaging [8–11]. As an example, homing pigeons display
improved homing behaviour when travelling in a small flock, compared to when flying solo [12].

Collective navigation demands communication with, or perception of, other group members.
These interactions in turn influence an individual’s behavioural response [13,14]. The complexity
and range of interaction will vary significantly with an animal’s sensory machinery, along with
the environment through which the animals are moving. For example, sound transmission
through water permits whales to communicate with each other through “whalesong” and other
vocalisations, up to estimated distances of hundreds of kilometres [7,15]. Even on land, calls
may travel several kilometres between elephants [16]. As such, a superficially dispersed animal
population may be migrating as a group through communication across long distances.

Navigation also requires a robust evaluation of orienteering cues; the quality of orienteering
information is unlikely to be uniform across the travel route. In animal populations with
established social networks, such as whale societies, information from a dominant member may
be considered more valuable than information from other members [17,18], suggesting that the
navigation may be easier in the presence of knowledgeable individuals. Alternatively, as the
distance between the navigating individual and its target decreases, cues may become stronger,
as for audible information, or weaker, as for detecting geomagnetic field differences. Journeys
may require passage through blindspots, regions of space with diminished quality of navigational
information. Blindspots may form naturally, for example due to adverse weather conditions, or
through anthropological activity. Recently, significant attention has been devoted to the state
of the marine “soundscape” [19]. Human oceanic activity has substantially increased over the
last century, with extreme noise sources and raised ambient noise levels a result of shipping,
offshore construction, and naval operations [20,21]. This anthropogenic noise pollution has had
a broad impact on the ocean-dwelling organisms that rely on auditory information [19]. For
example, various cetaceans adjust the volume and frequency of their calls to account for marine
noise [22–24], a behaviour known as the Lombard effect. However, this only provides partial
compensation and the adjusted calls may encode less information. It has been estimated that
species including minke whales (Balaenoptera acutorostrata) and humpback whales (Megaptera
novaeangliae) could lose ∼80% of their communication distance in the presence of increased
human activity [22,23].

Numerous mathematical models have been proposed to describe population movements
in response to external navigation cues [25–28]. Theoretical models of communication-based
collective navigation are often individual-based random walk models [29,30], where the
behaviour of each individual is explicitly defined; though continuum models have also been
proposed [8]. A common strategy has been to abstract interactions between individuals into
a generic set of attraction, repulsion and alignment interactions [10,31–35]. Interactions occur
up to a maximum interaction range, or a defined number of neighbours [11]. Codling et al.
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employ this approach and demonstrate that group-based navigation is more efficient than
individual navigation [10], provided that the environment is not highly turbulent. However,
a widespread assumption in previous models of collective navigation is that an individual
uniformly perceives the behaviour of certain other individuals within the population. While this
may be reasonable if the population is tightly clustered, it is less clear that this assumption holds
for more dispersed populations. For example, in the presence of marine noise, the quality and
strength of perceived information may decrease markedly with distance [7]. Alternatively, for
visual cues, the asymmetry of visual fields can restrict the directions from which a cue may
be obtained, leading the spatial or topological structure of the population to impact on cue
perception [36–38]. Whether a similar effect occurs for an auditory cue is less clear due to the
physics of sound transmission through water. Another common assumption is that alignment
interactions only rely on the (circular) mean of all observed headings to determine an optimal
heading. Such an approach neglects all information regarding the variance in the observed
headings. Consider a set of observed headings that are tightly clustered around the resultant
mean heading compared to a set of observed headings, with the same resultant mean, but that
are widely spread across all possible headings. It is plausible that the individual in the latter case
would have less confidence in the resultant mean heading, compared to the first case. However,
this reflection of decision making under uncertainty is typically not present in mathematical
models. Certain approaches to modelling animal decision making between discrete options have
been proposed previously [39–41]. In contrast, we seek to translate the uncertainty in the set of
observed headings into uncertainty regarding a potential heading. It is currently unclear how the
uncertainty in communication or perception may affect the ability of the population to undergo
navigation due to the corresponding uncertainty in heading selection.

We develop a random walk model of communication-based collective navigation that
incorporates uncertainty in the process of acquiring external guidance information. The random
walk is biased according to a combination of observations of the heading of other individuals,
balanced against the navigation information inherent to an individual. We examine the navigation
performance of individuals governed by this model in a range of idealised information fields that
represent the natural variability of navigation information. We demonstrate that communication
results in a significant increase in navigation performance, provided that an individual can
observe sufficiently many other individuals to overcome the uncertainty in communication.
This increase in performance is most pronounced in the presence of information blindspots. To
illustrate the utility of the framework we consider a case study of minke whale migration through
the North East Atlantic Ocean, and examine how increased ambient noise due to drilling and
other anthropogenic sources may inhibit migration.

2. Methods
Consider an individual labelled i located in a two-dimensional plane at position xi(t) and
navigating towards a target at xtarget. We model the individual’s movement path as a velocity
jump random walk [42], an alternation between fixed velocity runs and reorientations. The
duration of each run is sampled from an exponential distribution, parametrised by a turning
rate parameter µ, which dictates the frequency at which an individual reorients. For simplicity
we impose quasi-instantaneous reorientation events, a constant turning rate and a fixed speed, s;
these assumptions can be relaxed when tailored to a specific case study. For clarity of presentation,
we presume a scaling such that s= 1. Velocities here are therefore unit vectors equivalent to an
individual’s heading, and the formulae can be trivially modified for the case s 6= 1. An individual
with a heading represented by angle θi, and corresponding velocity vi, moves according to

dxi
dt

= vi.
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Figure 1. (a)-(e) Different types of information fields. The information field can either (a) be constant, (b) increase or (c)

decrease as an individual approaches the target location, (d) contain a region of negligible information or (e) be randomly

distributed. (f)-(i) Schematic highlighting the differences between (f) individual navigation and (g)-(i) collective navigation.

For individual navigation, differences in navigation ability arise due to differences in the local inherent information. For

collective navigation, differences in navigation ability may arise from (g) observing other individuals heading in similar

directions, (h) observing other individuals in higher information regions, or (i) observing more individuals. We illustrate

how this increase in navigation performance occurs by presenting (j),(k) the von Mises distributions (magenta) inferred

from sets of observed headings that (j) are clustered to various degrees around a central heading or (k) include different

numbers of observations. Distributions that are concentrated around the peak indicate decreased navigation uncertainty,

as an individual is more likely to move in the direction of the target. Colours in the histograms indicate navigation ability,

as in (f)-(i).
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Navigation is encoded through the selection of a new heading at reorientation. We assume that
this selection depends both on the inherent information available to an individual based on its
current location, and on the group information obtained through communication with (or the
perception of) other individuals (Figure 1). Model complexity is minimised by neglecting both
repulsion and attraction, and we note that their effects have been considered in previous models
[10]. We also assume that the post-reorientation heading is independent of the pre-reorientation
heading. New headings are sampled from a von Mises distribution [43],

vM(θ|κ, φ) = 1

2πI0(κ)
eκ cos(θ−φ),

where I0(κ) denotes the modified Bessel function of order zero. The von Mises distribution is
parametrised by a location parameter, φ, and a concentration parameter, κ. The location parameter
reflects the most likely heading and an increasing concentration parameter increases the certainty
of it being selected.

Inherent information
Inherent information refers to the knowledge obtained when an individual samples navigation
cues at its current position. The type of cue, an organism’s sensory processes, and the environment
could all impact on the strength of this information. We assume inherent information is
incorporated according to the von Mises distribution, where the concentration parameter κ is
given by Ω(xi(t)). Therefore, Ω(xi(t)) defines the strength of the inherent information field
for an individual currently located at xi(t). We assume that the location parameter is given
by arg(xtarget − xi(t)); that is, the distribution resulting from inherent information is centred
around the direction of the target location. We consider a range of inherent information fields,
as presented in Figure 1, which are defined mathematically as

Ω(x) =



Ω0 (Constant information),

Ωmin + 0.5(Ωmax −Ωmin)
(
tanh(ω{|x− xtarget| − γ}) + 1

)
(Increasing information),

Ωmin + 0.5(Ωmax −Ωmin)
(
tanh(−ω{|x− xtarget| − γ}) + 1

)
(Decreasing information),

Ix/∈cΩ0 (Information void),

ξ ∼Uniform(0, 2Ω0) (Random information),

where Ω0 is the background information value for the constant information field. For the
increasing and decreasing information fields, Ωmin and Ωmax are the minimum and maximum
information values, respectively; γ is the distance from the target of the midpoint information
value, and; ω is the information slope parameter. For the void information field, c is the set of
locations inside an information void, and; I is an indicator function, equal to one if an individual
is located outside of the information void, and zero otherwise.

Group information
Under collective navigation, the individual’s inherent information can be enhanced by other
individuals attempting to travel toward the same target. This information transfer can occur
nonlocally through mechanisms that involve auditory, visual or other forms of communication.
Consider an individual that perceives n other individuals with velocities vj , j ∈ [1, n]. Each
observation can be regarded as a sample from a von Mises distribution. This distribution will
have similar parameters to the von Mises distribution sampled by individual i, presuming
the maximum communication distance is not large compared to the length over which the
background information changes. As such, we can construct the maximum likelihood estimates
(MLEs) of φ and κ for the von Mises distribution governing the heading of the observed
individuals. Of course, we are not suggesting that the individual is actually calculating the MLEs;
rather, it is a convenient way of converting observations into a measure of average behaviour and
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certainty regarding that average behaviour. The MLE for the location parameter φ̂ is simply the
argument of the sum of the observations [44]:

φ̂= arg
(∑

j

vj

)
.

As individuals select a heading that is informed by the headings of other individuals this
represents an alignment-type interaction, where individuals each seek to travel in the same
direction. Other possible interactions include attraction or repulsion [10,45], where the individual
moves towards or away from the centre of the observed neighbours. Attraction-type interactions
may be particularly relevant in the final stages of migration, where an individual could signal its
navigational success to the remainder of the population upon reaching the destination. However,
as alignment-type interactions are relevant throughout the long migration process, we restrict
our focus to these interactions at present. Further, including additional model complexity runs
the risk of confounding or obscuring the relationship between uncertainty in observed headings
and navigation performance.

It is plausible that information regarding an observed individual’s heading becomes
diminished due to the distance the information travels before reaching the decision-making
individual. This can happen, as an example, due to ambient noise disturbing an auditory signal.
To account for this, a weighting kernel,K(r), can be used to describe the relative weighting placed
on a signal as a function of distance between individuals, and hence the MLE for the location
parameter will be

φ̂= arg
(∑

j

K
(
||xi(t)− xj(t)||

)
vj

)
.

The MLE for the concentration parameter, κ̂, requires the following inverse problem to be solved,
either via an approximation or through numerical techniques [44],

1

n

∣∣∣∣∣∣∣∣∑
j

vj

∣∣∣∣∣∣∣∣= I1(κ̂)

I0(κ̂)
,

where Im(κ̂) denotes the modified Bessel function of order m. If all observations are in a similar
direction, then the MLE of the concentration parameter will be large, which implies that the
individual has a high level of confidence in the location parameter. We can similarly include a
weighting kernel to describe the relative weighting of information, which results in the MLE for
the concentration parameter arising from

||
∑
j K(||xi(t)− xj(t)||)vj ||∑
j K(||xi(t)− xj(t)||)

=
I1(κ̂)

I0(κ̂)
.

Here we will restrict our choice of weighting kernel to the Heaviside function

K(r) =H(rmax − r).

This implies that an individual places equal weight on observations of all individuals within
a radius, rmax, but ignores all other individuals. We refer to this radius as the perceptual range,
the maximum distance over which a signal or cue can be perceived, for example mimicking the
maximum perception distance relevant to communication through auditory and visual signals.
Other natural choices for K(r) could include an exponential or power-law decay with distance,
see for example [46]. Perceptual error could be directly imposed, as per previous studies [10],
via the addition of a noise term to each observed heading. The strength of this noise term may
be constant, or depend on a variable such as distance. Here we focus on uncertainty that arises
organically due to the discrepancies present in the set of observed headings.
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Combining inherent and group information
The question remains regarding how to combine observed headings acquired nonlocally from the
group with the inherent information available to an individual. Here we simply assume that the
individual weights the observed headings against its inherent information:

φ̂= arg

(
(1− α)

[∑
j K(||xi(t)− xj(t)||)vj∑
j K(||xi(t)− xj(t)||)

]
+ αv̂i

)
, (2.1)

where α is the relative strength that an individual places on its inherent information with respect
to heading and v̂i is the heading sampled from the distribution corresponding to the individual’s
inherent information. If α= 0, the individual neglects inherent information and follows the
crowd. If α= 1, the individual relies solely on inherent information. If α= 1/2, the individual
places equal weight on inherent and group information. If α= 1/(n+ 1) then the individual
places equal weight on each observed individual, including itself. Another possibility is to allow
α to vary according to, for example, the social relationships between individuals [17], such as for
knowledgeable whale matriarchs, or the number of observed neighbours. However, for simplicity,
here we restrict ourselves to constant α values for the entire population.

A similar weighting approach can be taken with the MLE estimate of the concentration
parameter: ∣∣∣∣∣∣(1− β)(∑j K(||xi(t)− xj(t)||)vj

)
+ βv̂i

∣∣∣∣∣∣
(1− β)

∑
j K(||xi(t)− xj(t)||) + β

=
I1(κ̂)

I0(κ̂)
, (2.2)

where β is the relative strength that an individual places on its inherent information with
respect to concentration. The parameters α and β can be considered as the relative strength of
social connections between the individual and its observed neighbours [17]. An investigation
into the influence of the choice of α and β indicates that an approximately equal weighting
between inherent and group information results in optimal navigation performance across a
broad spectrum of information fields (Supplementary Information).

Concentration parameter estimation
As detailed in Equation (2.2), the MLE for the concentration parameter can be calculated from n

observations obtained from a von Mises distribution [43]. In [47] it is noted that this estimate is
biased for either small κ or n values, both of which are likely to occur in group navigation. The
authors proposed a correction which provides a less-biased mean, but exploring its distribution
(compared to the uncorrected estimate) reveals that the reduction in bias is partly achieved
through mapping the MLE of a large number of samples to zero (Supplementary Figure 1).
While reducing the bias of the MLE for the concentration parameter is important, this reduction
therefore occurs at the expense of a severely distorted distribution.

We therefore propose an alternative approach, where we repeatedly generate samples for fixed
n and κ (i.e. a set of n headings obtained from the von Mises distribution with a concentration
parameter κ) and determine the (uncorrected) κ̂ value for each sample. We repeat this process
for a wide range of n and κ values and construct the distribution of κ values that give rise to a
specific κ̂ value for a fixed n value, which can be considered as the likelihood function, P (κ|κ̂, n).
We pre-calculate a look-up table of P (κ|κ̂, n) for 1≤ n≤ 25 and 0≤ κ̂≤ 25, which addresses
the issues associated with both insufficient observations and small κ values. In the model, an
individual is informed by n observations and calculates κ̂ via Equation (2.2). We then sample
from the likelihood function P (κ|κ̂, n) to provide an estimate of the concentration parameter
of the von Mises distribution of the observed data. A comparison with the distributions from
the uncorrected and corrected maximum likelihood estimate reveals that the likelihood function
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Figure 2. Navigation behaviour for 100 individuals in a constant information field. (a) The number of individuals remaining

in the system over time. (b) The average number of neighbours within the perceptual range. (c) The distance between

the target location and the average location of the individuals. Results are presented for a perceptual range of 0 (black,

dashed), 5 (blue), 10 (magenta), 20 (orange), 50 (purple) and 500 (green). Parameters used are α= β = 0.5 and Ω0 =

1. All data are the average of ten realisations of the model.

approach reduces the bias present without significantly inflating the number of estimates of the
concentration parameter that are zero (Supplementary Figure 1).

Model simulation
Initially, we distribute 100 individuals within a square of size 40, uniformly at random. The centre
of this square is located at a distance of 300 from the target location. Initial headings are sampled
according to the local inherent information. Individuals undergo motion at a fixed velocity until
a reorientation event occurs. During a reorientation event, individuals undertake a three step
process:

• First, an individual samples a heading from a von Mises distribution where the
distribution parameters are informed by the inherent information;

• Second, an individual infers von Mises distribution parameters from a weighted
combination of its sampled heading and the observed headings of the neighbours within
its perceptual range via Equations (2.1) and (2.2), and;

• Third, the individual samples a heading from this inferred von Mises distribution and
undergoes motion in the newly-sampled direction. Note that the second and third step
only occur if there are other individuals within the perceptual range; otherwise the
originally-sampled heading is retained.

When an individual arrives within a distance of 10 from the target location it is considered to have
successfully navigated to the target, and is removed from the system. Unless stated otherwise
we assume an implicit rescaling such that s= µ= 1. Consequently, the minimum mean migration
time is ∼ 280 time units, which occurs if all individuals move in a straight line towards the
target. Therefore, over the course of this journey each individual will, on average, re-evaluate
its environment for navigation information several hundred times. For each simulation we track
the number of individuals yet to reach the target location, the average number of neighbours
within an individual’s perceptual range, and the average distance to the target of the individuals
yet to reach the target location. All simulations are performed in Matlab R2020b, with the CircStat
Toolbox employed for the necessary circular statistics [48].

3. Results and Discussion
We first investigate navigation in a constant information field for a suite of perceptual ranges,
and present the results in Figure 2. A perceptual range of zero corresponds to an individual



9

S
ubm

itted
to

R
oyalS

ociety
Interface

.....................................

navigating via inherent information only. Notably, we do not observe a monotonically increasing
relationship between perceptual range and navigation ability, similar to the results observed by
Codling et al. [10]. Rather, small perceptual ranges reduce navigation performance (compared to
purely local navigation) and an improvement only occurs above a certain threshold. Examining
the average number of neighbours offers insight into the root of this phenomenon. Perceptual
ranges of five yield fewer than five neighbours throughout the simulated migration. This implies
that relying on relatively few observations reduces navigation ability due to the uncertainty
present in that small set of observations. If we consider the heading selection mechanism in the
model, navigation using only inherent information corresponds to a single sample from a von
Mises distribution centred around the heading of the target site, for a specified concentration
parameter. In contrast, when group information is incorporated, navigation corresponds to a
sample from an inferred von Mises distribution, constructed from a weighted combination of the
aforementioned target heading sample and the headings of observed neighbours. The inferred
distribution is not necessarily centred around the heading of the target, and for few observations
the increase in the concentration parameter above background is insufficient to compensate for
the increased variance in the location parameter. The decrease in performance is ameliorated
by the presence of additional individuals within the perceptual range, as extra observations
provide both a more reliable estimate of the heading of the target location and a further increase
in the concentration parameter, ultimately improving navigation performance. We observe in
Figure 2(a) that a perceptual range of 10, corresponding to between 10 and 20 neighbours,
results in navigation performance that is more efficient than local navigation. The benefit of
additional neighbours appears to plateau around 30 neighbours, as perceptual ranges of 20, 50
and 500 (effectively perceiving the entire population) demonstrate a similar navigation ability. We
observe this phenomena across a suite of background information levels and perceptual ranges
(Supplementary Figure 2). The nonmonotonic relationship between navigation performance
and perceptual range has been observed previously [10]. However, in such models, where
uncertainty is a predetermined parameter, the relationship becomes monotonic for sufficiently
low uncertainty [10]. This is in contrast to our model, where uncertainty arises organically from
the set of observed headings, and the nonmonotonic relationship is present for all investigated
levels of background information.

As a further test we consider a set of simulations in which the number of individuals, N , and
rmax are both altered such that Nr2max is kept constant. This ensures that approximately the same
number of observed neighbours are within the perceptual range throughout each simulation. The
resulting simulations (Supplementary Figure 4) show that the proportion of remaining individuals
remains similar for each perceptual range considered, corroborating our hypothesis that the
number of observed neighbours is the critical measure that informs navigation ability.

We next investigate navigation across the random, increasing and decreasing background
information fields, illustrated in Figure 1. We calculate the time taken for 90% of the population
to reach the target location for these fields, as well as for three constant information fields,
and summarise the findings in Figure 3 (for detailed statistics, see Supplementary Figures 2
and 3). Unsurprisingly, increasing the background level of information improves navigation
performance. Navigation behaviour for the random information field is similar to that observed
for the constant information field with the same mean information level, suggesting that
local fluctuations in background information do not significantly impact navigation ability
compared to the mean background information. The expected nonmonotonic relationship
between perceptual range and navigation ability is present in all cases. This relationship is less
distinct for the decreasing information field and the higher constant information field, as the
higher background information allows the population to remain together. In contrast, there is
a stronger relationship between the perceptual range and the navigation ability for the increasing
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for 90% of the population to arrive at the target location, compared to navigation based on purely inherent information

(denoted here as t∗). Results are presented for a perceptual range of 0 (black), 5 (blue), 10 (magenta), 20 (orange), 50

(purple) and 500 (green). Parameters used are α= β = 0.5 and Ω0 = 1, Ω0 = 0.25, Ω0 = 4, Ω0 = 1, and Ωmax =

2, Ωmin = 0.5, ω= 1/50, γ = 50, respectively. All data are the average of ten realisations of the model.
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Figure 4. Navigation behaviour for 100 individuals in a chasm information field. (a) A schematic representation of the

field. (b) The number of individuals remaining in the system over time. (c) The average number of neighbours within the

perceptual range. (d) The distance between the target location and the average location of the individuals. Results are

presented for a perceptual range of 0 (black, dashed), 5 (blue), 10 (magenta), 20 (orange), 50 (purple) and 500 (green).

We note that the levelling off of the distance to the target statistics under low perceptual ranges is due to a few individuals

remaining trapped in the information void. Parameters used are Ω0 = 1, c = {x | 125≤ ||x− xtarget|| ≤ 175}, imposing

a void of fixed width 50, and α= β = 0.5. All data are the average of ten realisations of the model.

information field and the lower constant information field, due to the reduced background
information, and corresponding population dispersal.

Void information fields
We now turn our attention to void information fields, which describe a migration route that
involves passage through one or more regions with negligible navigation information. We
consider two forms of void information field: chasm fields, which contain a single void of fixed
width that must be traversed en-route to the target, and; patchy fields, which contain multiple
voids of variable size and shape. We first consider the chasm information field, and present the
navigation behaviour in Figure 4. Notably, navigating using inherent information only becomes
ineffective. Considering the distance between the centre of the population and the target location
(Figure 4(d)) we observe that navigation is effective until reaching the region of zero information.
At this point, unbiased random motion is required to navigate through the zero information
region. Upon reaching the target-side of the void, an individual once more receives non-negligible
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Figure 5. Effective concentration parameter and the average number of neighbours as a function of the distance to the

target location for 100 individuals in a chasm information field with a void of width (a),(d) 50, (b),(e) 100 and (c),(f) 150

for perceptual ranges of 20 (blue), 50 (magenta) and 500 (orange). The results for purely local navigation correspond

to the dashed black line. Parameters used are α= β = 0.5, Ω0 = 1 and (a),(d) c = {x | 125≤ ||x− xtarget|| ≤ 175},
(b),(e) c = {x | 100≤ ||x− xtarget|| ≤ 200}, (c),(f) c = {x | 75≤ ||x− xtarget|| ≤ 225}. All results are the average of ten

realisations of the model.

information concerning the location heading.

In contrast, individuals that incorporate group information can observe individuals that may
be outside of the zero information region, conferring a non-zero level of information regarding the
heading of the target location. Intuitively, increasing the perceptual range increases the navigation
ability of individuals. For a void of width fifty, navigation ability does not dramatically improve
for perceptual ranges larger than twenty, corresponding to a range where an individual almost
always observes neighbours outside the void. Note that even where an individual is itself unable
to observe a neighbour located outside of the zero information region, the neighbours that it does
observe could themselves be observing such individuals. Thus, improved navigation follows via
a relay of information from individuals outside to individuals deep inside the void.

To shed further light on this phenomenon we calculate the effective concentration parameter
and the number of neighbours as a function of distance from the target location for three different
perceptual ranges and three sizes of information void, and present the results in Figure 5. The
effective concentration parameter at each distance to the target is obtained from fitting a von Mises
distribution to the differences between individual headings (at that distance to the target) and the
target heading. As expected, the effective concentration parameter decreases inside the void, and
this decrease is ameliorated by larger perceptual ranges. For larger voids, a prolonged decrease in
the effective concentration parameter is observed. Notably, this decrease is asymmetric around the
void midpoint. This asymmetry appears to arise through a short-lived persistence in navigation
performance in the random walk as the individuals initially move into the void. Eventually,
nearly all individuals find themselves within the void and group navigation provides a reduced
but, crucially, non-negligible benefit. Subsequently, individual motion approaches an unbiased
random walk and the group becomes disperse. As some individuals emerge on the target-side
of the void, information begins to flow through to the individuals still within the void, causing
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Figure 6. Navigation behaviour for 100 individuals in a fractional Brownian information field for different sizes of

noise structures generated with (a)-(d) m= n= 400, (e)-(h) m= n= 100 and (i)-(l) m= n= 25 spatial nodes (see

Supplementary Information). (a),(e),(j) Representative images of each randomly-generated field. (b),(f),(j) The number of

individuals remaining in the system over time. (c),(g),(k) The average number of neighbours within the perceptual range.

(d),(h),(l) The distance between the target location and the average location of the individuals. Results are presented for

a perceptual range of 0 (black, dashed), 5 (blue), 10 (magenta), 20 (orange), 50 (purple) and 500 (green). Parameters

used are Ω0 = 1 and α= β = 0.5. All data are the average of twenty realisations of the model.

the effective concentration to increase as individuals approach the target-side of the void. Larger
perceptual ranges cause this increase to occur earlier, again demonstrating the benefit of an
increased perceptual range with respect to navigation performance.

We next consider patchy void information fields. For the random information field in Figure 3,
we treat randomness as a uniform random variable, sampled each time an individual undergoes
reorientation. This can be interpreted as randomness at a fine scale, specifically at the length
scale of the run between reorientations. It is equally plausible, though, to consider randomly-
generated information fields that exhibit local correlation between information levels. That is, if an
individual is in a low information area due to external factors, such as noise pollution, it is likely
that the surrounding area is also a low information area. We generate such random information
fields using a modified form of fractional Brownian noise; details are given in the Supplementary
Information. Three representative fields are presented in Figure 6, where each field is generated
following the same procedure but differences arise due to the number of nodes in the grid used
to generate the noise. An increase in the number of nodes corresponds to finer structure present
in the information field. For example, the information field in Figure 6(a) uses 16 times as many
nodes in each direction as in Figure 6(i), and exhibits much finer spatial structure.

For the three patchy information fields, with different scales of spatial structure, we calculate
the navigation behaviour and present the results in Figure 6. Under the finest scale of spatial
structure, which is closest to the original random information field, we again see the trend of
increased navigation ability above a threshold number of observed neighbours. For coarser spatial
structure, however, local navigation becomes less effective than the smallest perceptual range. For
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Figure 7. Comparison of migration from 55◦N, 3◦E to 62◦N, 1◦W in the North Sea for 100 individuals in the presence of

noise from oil rigs (blue) or in the presence of pristine soundscapes (magenta). (b) The number of individuals remaining

in the system over time. (c) The average number of neighbours within the perceptual range. (d) The distance between the

target location and the average location of the individuals. Parameters used are Ω0 = 1, α= β = 0.5, rmax = 114 km,

s= 8 km/h. Orange lines are a subset of simulated individual trajectories.

such information fields individuals can become trapped in low information areas, and therefore
rely on random motion to return to high information areas. The risk of becoming trapped
decreases with an increased perceptual range, as an individual can observe the movement
of neighbours in high information areas. For realistic environments, where regions of low
information may be present due to a range of external factors, this highlights the benefit of
employing group navigation.

Case study
To illustrate our approach, we consider migration through real world environments subject to
different levels of anthropogenic noise. Specifically, we consider movements of minke whales
(Balaenoptera acutorostrata) through portions of the North East Atlantic Ocean, surrounding the
British Isles. Minke whales are the most frequently observed whale in these waters, found west
of Ireland, off the north and east of Scotland and up to Iceland, Norway and beyond [49–51].
Sightings become less frequent in the southern North Sea, although seasonal aggregations have
been observed in the Dogger Bank area near Denmark [52]. Notably, minke whales sightings
remain largely confined to the April to October period and it is assumed that the population
migrates south to winter in the mid Atlantic [49,53]. We will consider two case studies of minke
whale migration: first, a south to north migration through the North Sea from feeding grounds;
second, migration through the East Atlantic Ocean, from southwest of Ireland to the west of
Norway.

While minke whales are typically seen singly, or in pods of two or three, their vocalisations
have been estimated to permit communication with conspecifics more than 100 km away [23].
Yet this calculation assumes a relatively “pristine” ocean soundscape, while modern marine
environments are subject to significant anthropogenic activities that act to amplify ambient noise
levels, such as shipping, wind farms, and oil exploration and drilling [20,21]. Minke whale
behaviour is strongly altered by ocean noise, for example through source avoidance [54–56] or
raising call intensity [23]. The latter “Lombard effect” partially compensates for the noise, yet an
∼ 80% loss of their communication range has been estimated when ambient noise is raised 20
dB [23].

Motivated by the above, we construct an approximation of the noise levels present in the North
Sea, in particular by exploiting the availability of offshore well location data (data obtained from
the UK Oil and Gas Authority [57]). Specifically, the soundscape is formed through a sum of
Gaussian noise profiles centred at each site. This is of course a simplification of the noise levels in
the North Sea, as each offshore well may or may not be currently in operation, and we also do not
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Figure 8. Comparison of migration from 50◦N, 19◦W to 65◦N, 5◦E in the East Atlantic Ocean for 100 individuals in the
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noise pollution. (c) The number of individuals remaining in the system over time. (f) The average number of neighbours

within the perceptual range. Parameters used are Ω0 = 1, α= β = 0.5, rmax = 114 km, s= 8 km/h. Orange lines are a

subset of simulated individual trajectories.

include further significant noise sources, such as those due to shipping [58]. Consequently, this
case study is primarily for illustrative purposes. Individual behaviour is modelled as detailed
previously. However, to account for the presence of coastlines, jumps in the random walk that
would result in an individual crossing onto land are aborted. Coastlines are constructed according
to the Global Self-consistent, Hierarchical, High-resolution, Geography Database [59]. Under an
ambient noise level of 65 dB it is estimated that minke whales are able to communicate up to 114
km [23] and it has been observed that minke whales travel at a speed of approximately 8 km/h
[60]. In the absence of data, we make the assumption that minke whales undergo reorientation,
on average, every 30 minutes.

In the first case study, we consider the change in minke whale navigation from a purported
feeding ground in the North Sea [52] to a target location in the East Atlantic Ocean either in
the presence of the anthropogenic noise in the North Sea, or in a pristine soundscape. The
pristine soundscape corresponds to a constant level of background information available to the
individuals. The information field arising from the offshore activity, as well as the navigation
results, are presented in Figure 7. We observe that the migration occurs approximately 15% slower
due to the presence of the noise pollution. This may impose a significant cost on the whales,
who must expend additional energy to successfully navigate toward their target, reducing the
energy stored for annual migration and breeding. Further, the noise pollution results in the group
structure becoming dispersed. Close-knit group structure can be beneficial in terms of defence
from predation [61], foraging [62], and, as we have demonstrated, for efficient navigation.

In the second case study, we consider potential increases in offshore noise pollution through
the East Atlantic Ocean. We examine four different levels of noise pollution: the baseline case
of approximately consistent noise; small-scale noise pollution, where 20% of the migration route
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contains significant noise pollution; medium-scale noise pollution, where 40% of the migration
route contains significant noise pollution, and; large-scale noise pollution, where the entire
migration route is enveloped by significant noise pollution. Sample trajectories under each noise
pollution condition, as well as the navigation behaviour, are presented in Figure 8. Again, we
observe that an increase in the total amount of noise corresponds to a decrease in navigation
performance. Interestingly, the sample trajectories indicate that the whales somewhat avoid the
areas of noise pollution, despite the model not containing any specific noise source avoidance
behaviour. This is likely due to the decrease in target-oriented motion in the areas of noise
pollution, resulting in random walks that cause the whales to leave the noisy area. Once outside of
the area of noise pollution, the inherent information available to the whales increases and effective
navigation toward the target location can take place. This highlights the need for areas with
pristine soundscapes, where it remains possible to communicate and acquire inherent information
effectively.

4. Conclusion
Migratory behaviour, conducted as a group across long distances, is a routine phenomena
exhibited by many animal species [1]. The consistency of migration relies on the ability of
animals to detect appropriate orienteering cues and/or to perceive group members that are
migrating toward the same target. Both cue detection and perception can be inhibited by natural
or anthropological phenomena, such as noise pollution. It is unclear how collective migration
is impacted by this uncertainty in detection and communication. We have developed a novel
mathematical model of collective migration and navigation that incorporates decision making
under uncertainty. We employ this model to investigate how different information fields impact
navigation performance, and illustrate the model via a case study application, specifically a
disruption to minke whale migration due to anthropogenic noise pollution in the North East
Atlantic Ocean.

We observe a nonmonotonic relationship between perceptual range and navigation
performance for various information fields, in which increasing the maximum perceptual range
from zero at first reduces, but subsequently improves, navigation performance, similar to
previous studies [10]. Using group information raises certainty via increasing the concentration
parameter, but at the expense of deviating the location parameter from the target heading. When
the number of observed neighbours is low, the latter outweighs the former and navigation
worsens. More observations tilts the balance the other way, and the intuitive improvement due
to group navigation is observed. This is in contrast to previous studies, where the relationship
between perceptual range and navigation performance is nonmonotonic above a threshold
prespecified level of uncertainty, but monotonic below the threshold [10]. Our results suggest that
the number of neighbours, rather than perceptual range, is the critical determinant as to whether
group information improves navigation. Further, the critical perceptual range will depend on
the degree to which the population remains clustered. Our model, though, has applied the
“metric distance” approach to communication, i.e. permitting interactions with any number of
individuals up to some fixed distance apart. This is a common assumption in models [11] and
is consistent with, for example, visual or auditory systems, where there is an upper limit on the
perceptual range. It is less certain, however, whether an individual can process more than a certain
number of neighbours; the “topological distance” model postulates that an individual reacts to a
fixed number of nearest neighbours, regardless of proximity [63]. This is more relevant for animals
that are densely clustered, such as in starling flocks, where an individual could feasibly observe
many other individuals within its perceptual range. Whether this alternative approach robustly
(i.e. regardless of the form of navigational field and degree of clustering) generates improved
navigation above a critical fixed interaction number remains to be explored.
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Lengthy migrations towards a target can be divided into a set of stages [6]: a long distance
phase, a homing phase, and a pinpointing phase. Often, distinct navigational cues will be used
in the distinct phases [6]. For example, the mechanisms used by marine turtles to home on
remote nesting beaches is believed to involve the geomagnetic field at longer distances, and
olfactory or visual information at shorter ranges [64–66]. Within such a context, void information
fields can be viewed as an information gap, where the navigator must cross some space of
low information to bridge the regions where long and short distance cues are effective. Group
navigation becomes particularly advantageous here, where for large-scale information voids
any nonzero level of group information improves navigation. An observation acquired from
a minimally more knowledgeable neighbour is sufficient to provide some target-oriented drift.
Benefits of group navigation extend to very short perceptual ranges, that is, where the perceptual
range is a full order of magnitude below the dimensions of the void region. Information reaches
the centre of the void through a relay, so that an individual deep inside the void will still receive
some information even when all of its observed neighbours are inside the void. This can occur as
just one of those neighbours’ neighbours may be in a region of high inherent information.

Navigation can be disrupted by a decrease in inherent information (i.e. reduced quality
of the external navigating cue) and/or a decrease in group information. As expected, the
loss of either information source reduces navigation performance. Notably, though, a distinct
response is observed according to the general level of inherent information: a loss of inherent
information is more disruptive when the background navigation information is high, while a loss
of group information has a more severe impact when the background navigation information is
low (Supplementary Figure 8). This reinforces the notion that group navigation is particularly
advantageous within weaker information environments and stems from the degree to which the
population spreads: low (high) information environments leads to greater (lower) spreading and
the average number of neighbours in the perceptual range is lower (higher). It is perhaps logical
to suppose, therefore, that populations will have evolved different strategies for reducing the
impact of different types of navigational disruption. This could occur, for example, by spreading
out to the limits of their perceptual range when passing through low information regions
and maintaining a tight/compact form when the perceptual range is inhibited. Against such a
strategy, spreading out could render the population vulnerable to unpredictable communication
range loss, e.g. sudden noise sources. One plausible adaptive response to a noisy environment
is to adjust the rate of heading selection. It has been observed that three-spined sticklebacks
(Gasterosteus aculeatus) update their velocities more frequently in response to a perceived threat
[45]. As such, one extension of our model is to relax the assumption of a constant turning
rate, and to allow it to vary with, for example, noise levels. It is known that certain animals,
such as night-migratory Eurasian blackcaps (Sylvia atricapilla), undertake random motion in
the absence of an expected navigation cue [67]. However, another possible adaptive response
to a noisy environment or an abrupt loss of navigation information is for the individual to
continue on a similar heading [68]. That is, an individual makes smaller changes in heading
due to an imposed correlation between the new heading and the previous heading [68,69]. It
would be instructive to compare migration paths for an individual that switches to a correlated
random walk model when entering an information void, with those of our model, where
an individual continues an unbiased, uncorrelated random walk; however, we leave this for
future work. We note that our current model does not allow the population to control their
separation through attraction/repulsion behaviour, and a natural extension is to adapt the model
to include such behaviour [10]. Admitting control of group structure can facilitate investigations
of whether particular group shapes are advantageous, such as an elongated shape to allow
information transfer across voids. “Leader-type” individuals are also likely to be important for
group structure, for example by adopting a specific spatial position with respect to the group to
maximise information transfer. Such individuals could be incorporated by imposing larger α and
β values for observed headings corresponding to “leader-type” individuals, signifying that such
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headings are more important than other headings.

We have restricted our attention to static information fields, that is, levels of inherent
information that only vary in space. Temporal variation could occur due to, for example, weather
conditions or intermittent human activity. The degree to which dynamic variation impacts on
journeys will, naturally, depend on the duration of the disruption: the return of little penguins
(Eudyptula minor) from daily foraging is delayed by heavy fog, possibly due to their reliance on
visual navigating cues [70]. The impact of longer lasting dynamic variability could, to a degree, be
inferred from the existing results. Slowly shifting cloud cover could be represented by evolving
patchy void environments, and group navigation is always beneficial in such scenarios. Dynamic
variability could also arise from the behaviour of individuals that have reached the target. The
arbitrary modelling decision here has been to remove such individuals from the system, and
hence those individuals no longer influence navigation. It is also possible that individuals actively
communicate on arrival, providing information about the target location. Such behaviour has
been suggested in humpback whale populations, where individuals sing upon reaching winter
grounds, which may attract other humpbacks to the area [71]. This behaviour can be incorporated
in our modelling framework by imposing an attraction-type interaction, rather than an alignment-
type interaction, for individuals that have arrived at the target location.

Anthropogenic activity has substantially increased ocean noise levels over the past century
[19,20]. As a case study, we have explored noise-impacted minke whale migration through the
North East Atlantic Ocean. Hypothesising that minke whales use vocal communication to share
navigation information, we have shown that increasing noise pollution decreases navigation
performance, thereby demanding longer travel times. Migration is costly, depleting an animal’s
energy reserve without any guarantee of replenishment en-route, and hence any increased
expenditure is disadvantageous to population fitness. Without an explicit representation of noise
source avoidance, pathways are diverted from high noise areas as the animal searches for a route
with adequate navigation information. Nevertheless, it remains important to stress that this study
has been primarily expository in nature, and several further extensions demand consideration.
First, as highlighted above, we have ignored the consequences of other behavioural interactions,
for example an individual changing direction and speed to avoid a noise source, or regulating
intergroup spacing. Second, we have ignored ocean currents, which could act to assist or hinder
navigation and impact on sound propagation. Third, our incorporation of noise impacts has been
rather simplistic: we neglect other potential sources, such as shipping, and we do not explicitly
include the physics of noise propagation within the ocean. These caveats aside, the framework is
highly adaptable, can be easily translated to other geographical locations, and can be extended in
a modular fashion to include data inputs such as ocean currents, bathymetry and sound profiles.

Data Accessibility. The code used to implement the mathematical framework is available at
https://github.com/DrStuartJohnston/collective-navigation. The look-up table is available at
https://melbourne.figshare.com/articles/dataset/kappaCDFLookupTable_mat/14551614.
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