
24 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Column generation for minimizing total completion time in a parallel-batching environment / Alfieri, A.; Druetto, A.;
Grosso, A.; Salassa, F.. - In: JOURNAL OF SCHEDULING. - ISSN 1094-6136. - ELETTRONICO. - 24:(2021), pp. 569-
588. [10.1007/s10951-021-00703-9]

Original

Column generation for minimizing total completion time in a parallel-batching environment

Publisher:

Published
DOI:10.1007/s10951-021-00703-9

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2929750 since: 2021-10-08T08:24:55Z

Springer

Journal of Scheduling
https://doi.org/10.1007/s10951-021-00703-9

Column generation for minimizing total completion time in a
parallel-batching environment

A. Alfieri1 · A. Druetto2 · A. Grosso2 · F. Salassa1

Accepted: 10 August 2021
© The Author(s) 2021

Abstract
This paper deals with the 1|p − batch, s j ≤ b| ∑C j scheduling problem, where jobs are scheduled in batches on a single
machine in order to minimize the total completion time. A size is given for each job, such that the total size of each batch
cannot exceed a fixed capacity b. A graph-based model is proposed for computing a very effective lower bound based on
linear programming; the model, with an exponential number of variables, is solved by column generation and embedded
into both a heuristic price and branch algorithm and an exact branch and price algorithm. The same model is able to handle
parallel-machine problems like Pm|p − batch, s j ≤ b| ∑C j very efficiently. Computational results show that the new lower
bound strongly dominates the bounds currently available in the literature, and the proposed heuristic algorithm is able to
achieve high-quality solutions on large problems in a reasonable computation time. For the single-machine case, the exact
branch and price algorithm is able to solve all the tested instances with 30 jobs and a good amount of 40-job examples.

Keywords Price and branch · Column generation · Parallel batching · Scheduling

1 Introduction

In manufacturing system management, capacity is a key fac-
tor in matching supply with demand, i.e., having a system
that is able to produce what is needed to satisfy customer
demand.

Several factors negatively impact system capacity. The
most frequently studied ones are those related to system bal-
ancing and to part batching when setup times are present,
as severe bottlenecks and/or small batches can significantly
reduce system capacity, thus leading to the inability of the

B A. Druetto
alessandro.druetto@unito.it

A. Alfieri
arianna.alfieri@polito.it

A. Grosso
andrea.grosso@unito.it

F. Salassa
fabio.salassa@polito.it

1 Department of Management and Production Engineering,
Politecnico di Torino, Turin, Italy

2 Department of Computer Science, Università di Torino, Turin,
Italy

manufacturing system to respond in a timely way to the mar-
ket demand (Cachon and Terwiesch 2012).

Batches induced by setup times are called serial batches,
and although they are very important in manufacturing sys-
tems, they are not the only type of batches that can be present
on the shop floor. Transfer batches and parallel batches can
also be found inmanufacturing systems, thefirst being related
to the capacity of the material handling resources, and the
second, as the serial ones, to the capacity of the machines.

Although both serial and parallel batches are related to and
affect machine capacity, their nature is very different. Serial
batches are due to the presence of setup times, while parallel
batches stem from the ability of machines to accommodate
and manufacture several jobs at the same time. They are less
studied than serial and transfer batches because they are less
frequent; however, they are no less important.

Specifically, parallel batches can be found in many manu-
facturing processes where heating operations are necessary,
such as inmoldmanufacturing (Liu et al. 2016) and the semi-
conductor industry (Mönch et al. 2012), or when there are
sterilization phases (Ozturk et al. 2012), just to cite a few
examples.

In all these cases, operations take quite a long time, and
the machines are usually batch machines that can accom-
modate several parts and process them simultaneously and

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-021-00703-9&domain=pdf
http://orcid.org/0000-0002-8605-0193

Journal of Scheduling

exactly to virtually share the long processing time among all
the parts processed at the same time. Each part has an indi-
vidual size, and batch machines (e.g., batch oven for heating
treatments or autoclaves for sterilization operations) have a
limited capacity; therefore, the number of parts that can be
in a single batch is limited.

Due to the limited capacity of the batch machine, and thus
to the limited number of parts that can be accommodated in it,
when several jobs have to be processed on the batchmachine,
they have to be partitioned in several batches. When batches
have been created, their processing has to be scheduled on
the machine, and this decision is obviously intertwined with
batch creation. Moreover, the two decisions (i.e., how to cre-
ate batches and how to sequence themon the batchmachines)
strictly depend on the objective of the shop floor manager
(minimizing the number of tardy jobs, minimizing the max-
imum delay, reducing the total flow time, maximizing the
machine utilization, etc.).

In this paper, the above-described parallel-batch problem
is considered. Specifically, given a set of jobs that are all avail-
able at the same time, the paper addresses how to partition
them in batches and how to sequence batches on machines,
with the objective of minimizing the total completion time.

With respect to the current literature, the problem address-
ed in the paper is the same problem as in Rafiee Parsa et al.
(2016), with the main difference that it is extended to the
parallel-machine case. Following the three-field notation of
Graham et al. (1979), the problems studied in the paper
are 1|p − batch, s j ≤ b| ∑C j and Pm|p − batch, s j ≤ b|∑

C j .
A fundamental work in the field of parallel-batch pro-

cessor scheduling is that of Uzsoy (1994), where a single-
batch processing machine problem is studied with regard to
makespan and total flow time criteria. In particular, in this
work, nonidentical job sizes are taken into account, and com-
plexity results are also provided.

A large part of the literature on parallel batching is
devoted to the minimization of the makespan criterion—e.g.,
Damodaran et al. (2006), Dupont and Dhaenens-Flipo
(2002), Rafiee Parsa et al. (2010), Li (2017) and Muter
(2020)—while the total flow time problems have been less
studied (Jolai Ghazvini and Dupont 1998; Rafiee Parsa et al.
2016).

Thework in JolaiGhazvini andDupont (1998) and amodi-
fied version of the genetic algorithm presented inDamodaran
et al. (2006) have been used as benchmark procedures for
the hybrid max-min ant system presented in Rafiee Parsa
et al. (2016). Different objective functions dealing with tar-
diness and lateness have also been addressed (e.g., Wang
2011; Malapert et al. 2012; Kosch and Beck 2014; Cabo
et al. 2015).

Other recent works on single- and parallel-machine batch-
ing problems are Beldar and Costa (2018), Jia et al. (2018)

and Ozturk et al. (2017). In Ozturk et al. (2017), the authors
address a problem with unit size jobs and maximum comple-
tion time objective. In Beldar and Costa (2018) and Jia et al.
(2018), instead, the total completion time criterion is consid-
ered, although Jia et al. (2018) consider the weighted version
and equal processing time for all jobs, while in Beldar and
Costa (2018) only the single-machine case is tackled, with
constraints on cardinality and size of job batches.

A very recent contribution based on column generation
is Ozturk (2020), where the fundamental model is a time-
indexed formulation, with a set-partition problem as master,
followed by a constructive heuristic that combines parts of
the relaxed formulation.

The contribution of this paper is threefold.

– Anewgraph-basedmodel for 1|p − batch, s j ≤ b| ∑C j

is developed; such amodel induces a very large linear pro-
gramwith an exponential number of variables, which can
be handled by standard column generation techniques.
The pricing step is efficiently solved by dynamic pro-
gramming. The new model provides the strongest linear
relaxation currently available in the literature for the stud-
ied problems.

– A heuristic procedure of the so-called price and branch
type—following the terminology of
Desrosiers and Lübbecke (2011)—relying on the graph
model is developed. This procedure allows one to gener-
ate high-quality solutions (with certified optimality gaps)
for fairly large instances in short computation times.
The column generation procedure is also embedded in
an exact branch and price procedure that is able to
deliver optimal solutions for 1|p − batch, s j ≤ b| ∑C j

instances with up to 40 jobs—previous state-of-the-art
results in Azizoglu and Webster (2000) were limited to
25 jobs.

– The graph-based model and the related column genera-
tion procedure and heuristic are also extended to multi-
machine problems—Pm|p − batch, s j ≤ b | ∑C j ,
Rm|p − batch, s j ≤ b| ∑C j , etc. Computational expe-
rience shows that Pm|p − batch, s j ≤ b| ∑C j for up to
five machines and 100 jobs is solvable by the proposed
approach with no significant loss of solution quality with
respect to the single-machine case.

The remainder of the paper is structured as follows. The
columngeneration approach for the1|p − batch, s j ≤ b| ∑C j

problem is developed in Sect. 2, while Sect. 3 presents the
extension of the approach to the parallel-machine case, with
special attention to the case with identical parallel machines.
Computational results are reported in Sect. 4. Section 5 con-
cludes the paper, discussing directions for future research.

123

Journal of Scheduling

2 Single-machinemodels

This section deals with the single-machine problem. The new
graph-based model is established in Sect. 2.1; the column
generation procedure that solves its continuous relaxation is
developed in Sect. 2.2, while in Sect. 2.3 a “price and branch”
heuristic is formulated. The same algorithmic elements allow
us to formulate an exact branch and pricemethod in Sect. 2.4.

In the remainder of the paper, the following notation is
used. N = {1, 2, . . . , n} denotes the set of jobs to be sched-
uled; for each job j ∈ N , its processing time p j and its size
s j , both integers, are given. The machine has a given inte-
ger capacity denoted by b. When a subset of jobs is packed
in a batch B, pB = max{p j : j ∈ B} is used to indicate
the batch processing time. Every batch B is required to have
∑

j∈B s j ≤ b. The machine processes the jobs in a batch
sequence S = (B1, B2, . . . , Bt), where each job j in the kth
batch Bk shares the batch completion time: C j = CBk =
∑k

l=1 pBl ∀ j ∈ Bk . The 1|p − batch, s j ≤ b| ∑C j prob-
lem calls for creating the batches and sequencing them in
order to minimize f (S) = ∑

j∈N C j .
The problem is known to be NP-hard (Uzsoy 1994). A

mixed-integer linear programming (MILP) model for this
problem, as given by Rafiee Parsa et al. (2016), is as fol-
lows, where the variable x jk = 1 if job j is scheduled in the
kth batch; the model always arranges the jobs in n batches
(B1, B2, . . . , Bn), some of which can be empty. Other vari-
ables of the model are the completion time CBk of the kth
batch—note that the model allows for empty batches; the
variable pBk that represents the processing time of the kth
batch; and the variable C j corresponding to the completion
time of job j .

minimize
n∑

j=1

C j (1)

subject to
n∑

k=1

x jk = 1 j = 1, . . . , n (2)

n∑

j=1

s j x jk ≤ b k = 1, . . . , n (3)

pBk ≥ p j x jk j = 1, . . . , n, k = 1, . . . , n
(4)

CB1 ≥ pB1 (5)
CBk ≥ CBk−1 + pBk k = 2, . . . , n (6)
C j ≥ CBk − M

(
1 − x jk

)
j = 1, . . . , n, k = 1, . . . , n

(7)

pBk ,CBk ,C j ≥ 0 j = 1, . . . , n, k = 1, . . . , n
(8)

x jk ∈ {0, 1} j = 1, . . . , n, k = 1, . . . , n
(9)

The total completion time is expressed by (1). Constraint
set (2) ensures that each job is assigned to exactly one batch,
and since all the jobs assigned to a batch cannot exceed the
batch capacity, constraint set (3) has to be defined. Constraint
set (4) represents the fact that the processing time of a batch
is the maximum processing time of all the contained jobs.
The completion time for the first batch is simply its process-
ing time, since it is the first to be processed by the machine,
as stated in constraint (5). Constraint set (6), instead, ensures
that the completion time for each of the other batches is eval-
uated as the sum of its processing time and the completion
time of the previous batch. Constraint set (7) specifies that
the completion time of a job must be the completion time of
the corresponding batch (the constant M must be very large).

Model (1)–(9) is known to be very weak. A state-of-the-
art solver like CPLEX can waste hours over 15-job instances,
with optimality gaps of 100% at the root branching node.

2.1 A new problem formulation

This paper proposes a new model where a batch sequence
is represented as a path on a graph. Let B = {B ⊆
N : ∑

j∈B s j ≤ b} be the set of all possible batches. Define
a (multi)graph G(V , A) with vertex and arc sets as follows

V = {1, 2, . . . , n + 1},
A = {(i, k, B) : i, k ∈ V ; i < k; B ∈ B; |B| = (k − i)} .

Each arc in A is a triple (i, k, B) with head k and tail i and
an associated batch B with (k − i) jobs; it will represent
the batch B scheduled in a batch sequence such that exactly
n− i+1 jobs are scheduled from batch B up to the end of the
sequence. For each arc (i, k, B), a cost is defined as cikB =
(n − i + 1)pB , with pB = max{p j : j ∈ B}, and where
the (n − i + 1) factor precisely models the abovementioned
(n − i + 1) jobs to the end of the sequence. Note that in G,
a path

P=[(i1, k1, B1), (i2, k2, B2), . . . , (ir , kr , Br)] (i� = k�−1)

connecting nodes from i1 to kr has the property

r∑

�=1

|B�| =
r∑

�=1

(k� − i�) =
r∑

�=1

k� −
r∑

�=1

i�

=
r∑

�=1

k� −
r∑

�=2

k�−1 − i1 = kr − i1, (10)

Property 1 highlights the relationship between feasible
batches and paths of the above-defined graph.

Property 1 Each feasible batch sequence S corresponds to
a path P in G(V , A) from 1 to n + 1 such that the set

123

Journal of Scheduling

V 1 2 3 4 5 6 7 8 9 10 11

B1 = {5, 6, 8}

B2 = {3, 4, 10}

B3 = {1, 2}

B4 = {7, 9}

N ={1, 2, . . . , 10}

P =[(1, 4, B1), (4, 7, B2), (7, 9, B3), (9, 11, B4)] ⇐⇒ S = (B1, B2, B3, B4)
10∑

j=1

Cj(S) =
4∑

κ=1

CBκ (S)|Bκ|

=|B1|pB1+

|B2|(pB1 + pB2)+

|B3|(pB1 + pB2 + pB3)+

|B4|(pB1 + pB2 + pB3 + pB4)

=10pB1 + 7pB2 + 4pB3 + 2pB4 =
∑

(i,k,B)∈P

(n − i+ 1)pB =
∑

(i,k,B)∈P

cikB .

Fig. 1 Batch sequence as a path on a graph. The job set N is partitioned over the arcs of P . C j (S) is the completion time of job j induced by
sequence S. The path provides information about partitioning the jobs into batches B1, B2, B3, B4 and their ordered sequence

of jobs N is partitioned over the arcs in P, and f (S) =
∑{cikB : (i, k, B) ∈ P}.
Proof Refer to Fig. 1 for an illustration of the idea. The
one-to-one mapping of batch sequences to paths is easily
established. Given a batch sequence S = (B1, B2, . . . , Bt),
the path

P = [(i1, k1, B1), (i2, k2, B2), . . . , (it , kt , Bt)] (11)

can be built from arcs of G, choosing the arcs from the arc
set of G as follows:

i1 = 1, k1 = i1 + |B1|
i� = k�−1, k� = i� + |B�| for � = 2, . . . , t

(12)

Note that kt−i1 = ∑t
�=1 |B�| = n, and hence kt = n+1, and

P is a path from 1 to n + 1 in G; the job set N is guaranteed
to be partitioned over the arcs of P because it is partitioned
in the batches of S by hypothesis.

On the other hand, given a path P like (11) from node
1 to node n + 1 of G, such that {B : (i, k, B) ∈ P} forms
a partition of N , it can be easily seen that the arcs of P
satisfy (12) by connectivity of the path, and every

∑
j∈B s j ≤

b for all (i, k, B) ∈ P by definition of the arc set A. Hence,
S = (B1, B2, . . . , Bt) with the B1, . . . , Bt defined by the
arc-batches of P is a feasible batch sequence.

It remains to be proven that f (S) = ∑
(i,k,B)∈P cikB .

For an arc (iq , kq , Bq) in position q on P , the number of
jobs scheduled from Bq to Bt is

∑t
�=q |B�| = kt − iq =

(n + 1 − iq). The objective function for the batch sequence
is

f (S) =
n∑

j=1

C j =
t∑

�=1

CB�
|B�| =

t∑

�=1

[(�∑

κ=1

pBκ

)
|B�|

]

= |B1|pB1 +
|B2|pB1 + |B2|pB2 +
|B3|pB1 + |B3|pB2 + |B3|pB3 +
. .

|Bt |pB1 + |Bt |pB2 + |Bt |pB3 + . . . + |Bt |pBt .

Adding by column, it can be rewritten as:

f (S) = pB1

t∑

�=1

|B�| + pB2

t∑

�=2

|B�| + pB3

t∑

�=3

|B�|

+ · · · + pBt |Bt |

=
t∑

q=1

pBq (n − iq + 1) =
∑

(i,k,B)∈P

cikB .

��

Example Figure 2 shows an example of a full graph
with all possible batches. In this small four-job example,
p1, . . . , p4 = 42, 37, 21, 16, s1, . . . , s4 = 3, 4, 6, 8 and
b = 10, and batches can contain one or two jobs at most;
note how the graph size is already quite large, even for this
small example.

123

Journal of Scheduling

Fig. 2 Example of a full graph with b = 10 and four jobs. Job sizes are
s1 = 3, s2 = 4, s3 = 6, s4 = 8

A path from node 1 to node 5 in this graph represents
a feasible schedule if the job set {1, 2, 3, 4} is partitioned
over the arcs of the path. For example, the path P =
[(1, 2, {4}), (2, 4, {1, 3}), (4, 5, {2})] represents the feasible
batch sequence S = ({4}, {1, 3}, {2}). In such sequence, the
reader can easily compute that C4 = 16, C1 = C3 = 58,
C2 = 95 and C1 + C2 + C3 + C4 = 227; in the path
P , the arc costs are, by definition, c(1,2,{4}) = 4p4 = 64,
c(2,4,{1,3}) = 3p1 = 126, c(4,5,{2}) = p2 = 37, and the total
cost of P is c(1,2,{4}) + c(2,4,{1,3}) + c(4,5,{2}) = 227.

On the other hand, a path like P ′ = [(1, 2, {3}), (2, 4,
{1, 3}), (4, 5, {3})]does not represent a feasible batch sequence
since it fails to partition the job set {1, 2, 3, 4} over its arcs.

By Property 1, then, an optimal solution for the
1|p − batch, s j ≤ b| ∑C j problem can be computed by
identifying on the very large graph G(V , A) a minimum-
cost path from node 1 to node n + 1 such that the job set N
is exactly partitioned over the “B” components of the arcs in
that path. This problem can be modeled by a very large linear
program that includes features of a shortest path/minimum
cost flow model as well as partition constraints, as fol-
lows. Let aB ∈ {0, 1}n be the incidence column-vector of
job set B, whose j th component (aB) j = 1 if j ∈ B,
and 1 = (1, 1, . . . , 1)T an all-ones column-vector with n
components. Define binary decision variables xikB for each
(i, k, B) ∈ A, so that xikB = 1 if arc (i, k, B) is on the opti-
mal path from 1 to (n + 1). The linear program is written as
follows.

minimize
∑

(i,k,B)∈A

cikB xikB (13)

subject to
∑

(k,B) :
(i,k,B)∈A

xikB −
∑

(k,B) :
(k,i,B)∈A

xki B =

⎧
⎪⎨

⎪⎩

1 i = 1

0 i = 2, . . . , n

−1 i = n + 1

(14)

∑

(i,k,B)∈A

aBxikB = 1 (15)

xikB ∈ {0, 1} (i, k, B) ∈ A (16)

The objective function (13) together with the flow con-
servation constraints (14) is a classical formulation of
the shortest path problem as a special case of a single-
source single-sink minimum-cost flow linear program (see
for example Ahuja et al. 1993). The vector expression
of constraint (15) represents a group of n set-partitioning
constraints on the job set N = {1, 2, . . . , n}, enforc-
ing the requirement that the job set is exactly partitioned
over the arcs selected to be in the path—in scalar form,
∑

(i,k,B)∈A(aB) j xikB = 1 ∀ j ∈ N .

2.2 Continuous relaxation for the new graph-based
formulation: column generation

The continuous relaxation of (13)–(16), where the integrality
constraints (16) are relaxed to

xikB ≥ 0 (i, k, B) ∈ A, (16’)

is solved by means of a column generation procedure.
Model (13)–(16’) is the master problem: a restricted master
problem is made of a subset A′ ⊂ A of arcs. Introduc-
ing dual variables u1, u2, . . . , un+1 for constraints (14) and
v1, . . . , vn for constraints (15), the dual of (13)–(16’) is

maximize u1 − un+1 +
n∑

j=1

v j (17)

subject toui − uk +
∑

j∈B
v j ≤ cikB (i, k, B) ∈ A. (18)

Solving the restrictedmaster problem leads to a basic feasible
solution for themaster problem and values for dual variables/
simplexmultipliers u, v. Pricing the arcs (i, k, B) ∈ A corre-
sponds to finding themost violated dual constraints (18). The
strategy developed in this paper is to price the arcs separately
for each pair of indices i, k with i < k, therefore determining
minimum (possibly negative) reduced costs

c̄ikB∗ = min
B

{

cikB − (ui − uk) −
∑

j∈B
v j :

∑

j∈B
s j ≤ b, |B| = (k − i)

}

= min
B

{

pB(n − i + 1) −
∑

j∈B
v j :

∑

j∈B
s j ≤ b, |B| = (k − i)

}

− (ui − uk).

(19)

For fixed indices i, k with i < k, the (ui − uk) part of (19) is
constant, and the cardinality of B is also fixed at |B| = k− i .

123

Journal of Scheduling

Finding the batch B that minimizes (19) for each given pair
of indices i, k with i < k and given batch processing time
pB can be done by exploiting the dynamic programming
state space of a family of cardinality-constrained knapsack
problems where items correspond to jobs. Assume that the
jobs are indexed by longest processing time (LPT) order, so
that

p1 ≥ p2 ≥ · · · ≥ pn .

Define, for r = 1, . . . , n,

gr (τ, �) = max

{ n∑

j=r

v j y j :
n∑

j=r

s j y j ≤ τ,

n∑

j=r

y j = �, y j ∈ {0, 1}
}

,

where gr (τ, �) is the optimal value of a knapsack with profits
v j and sizes s j , limited to items/jobs r , r + 1, . . . , n, total
size≤ τ and cardinality �. Variable y j is set to 1, i.e., y j = 1,
if item/job j is included in the solution.

Optimal values for gr (τ, �) can be recursively computed
(see Kellerer et al. 2004) as

gr (τ, �) = max

{
gr+1(τ − sr , � − 1) + vr (yr = 1)

gr+1(τ, �) (yr = 0)

with boundary conditions

gr (τ, 1) =
{

vr if sr ≤ τ (yr = 1)

0 otherwise (yr = 0)
r = 1, . . . , n, τ = 0, . . . , b

gr (τ, 0) = 0 r = 1, . . . , n, τ = 0, . . . , b

gr (τ, �) = −∞ if � > n − r + 1 or τ < 0.

The corresponding optimal job sets are denoted by Br (τ, �);
such sets can be retrieved by backtracking. The following
property establishes that the state space gr (τ, �) is sufficient
for pricing all relevant arcs.

Property 2 Let L = {1} ∪ { j > 1 : p j < p j−1}. For any
given pair of indices i, k with i < k, an arc with minimum
reduced cost (i, k, B∗) is one of

(i, k, Br (b, k − i)) r ∈ L. (20)

Proof Every arc (i, k, B) can be shown to have a reduced
cost not less than some of the arcs in (20). Let c̄ikB = (n −
i+1)pB −∑

j∈B v j −(ui −uk) be the reduced cost of an arc
(i, k, B). Recall that |B| = k − i , and the jobs are numbered
in non-increasing order of processing times. Choose r as
the smallest job index such that pr = pB . Note that B ⊆

Algorithm 1 Pricing procedure.
1: function NewCols(N , b, u, v) � u, v = vectors of multipliers
2: Sort and renumber jobs in N such that p1 ≥ p2 · · · ≥ pn ;
3: Set H = ∅; � Set of negative-reduced cost arcs
4: for � = 1, . . . , n do
5: Set r := 1, done := false;
6: while not done do
7: Retrieve gr (b, �) and B = Br (b, �);
8: for i = 1, . . . , n − � + 1 do
9: Set k = i + �;
10: Compute c̄ikB = pB(n− i +1)− (ui −uk)− gr (b, �);

11: if c̄ikB < 0 then
12: Set H := H ∪ {(i, k, B)};
13: end if
14: end for
15: Set r := min{ j : p j < pr };
16: If no such index exists, set done := true;
17: end while
18: end for
19: return H ;
20: end function

{r , r + 1, . . . , n} and r ∈ L . Consider knapsack gr (b, k − i)
and the associated optimal subset Br = Br (b, k − i). The
batch B is a feasible solution for knapsack gr (b, k−i); hence∑

j∈B v j ≤ gr (b, k − i); also, because of the choice of r ,
pBr ≤ pr = pB . Thus,

c̄ikB = (n − i + 1)pB − ∑
j∈B v j − (ui − uk) ≥

≥ (n − i + 1)pBr − gr (b, k − i) − (ui − uk) = c̄ikBr .

��

All the relevant arcs with minimum reduced cost can
be generated by the procedure reported in Algorithm 1
(NewCols).

The size of the state space required for the pricing is
bounded by O(n2b), while the pricing procedure can have
two bottlenecks:

(a) the O(n3) effort due to the three nested loops on lines 4,
6, 8. The while on line 6 can be executed n times in the
worst case;

(b) filling the state space gr (τ, �), which requires at most
O(n2b) arithmetic operations. A memorized dynamic
programming table is used, so that the execution of the
top-down recursion for computing an entry gr (τ, �) is
deferred until the first time the value is queried. Then,
the value is kept in storage and accessed in O(1) time if
it is queried again.

Because of these two possible bottlenecks, the running time
of NewCols is bounded from above by O(max(n3, n2b)).

123

Journal of Scheduling

Algorithm 2 Generation of initial arcs
function InitCols(N , b)

Sort jobs in N such that p1 ≤ p2 ≤ · · · ≤ pn ;
Set H ← ∅ � Set of initial arcs
for j := 1, . . . , n do

Set B = { j};
for h := j + 1, . . . , n do

if
∑

j∈B s j + sh ≤ b then
Set B := B ∪ {h};
Set H ← H ∪ {(i, i + |B|, B) : i = 1, . . . , n − |B| + 1};

end if
end for

end for
return H ;

end function

Algorithm 3 Price and branch procedure
1: A′ ← InitCols(N , b);
2: G(V , A′) ← restricted master problem
3: while true do
4: z ← continuous optimum of G(V , A′)
5: u, v ← optimal multipliers
6: H ← NewCols(N , b,u, v)
7: if |H | = 0 then
8: CG − LB ← z — continuous optimum, lower bound
9: CG − UB ← integer solution computed over G(V , A′) � Use

branch and bound
10: break
11: end if
12: A′ ← A′ ∪ H
13: end while

2.3 Heuristic procedure: price and branch

The column generation described in the previous section is
used to solve the continuous relaxation of the master prob-
lem. Once the relaxed optimum has been found, the resulting
restricted master problem is taken, the variables are set to
binary type, and the resulting MILP is solved using CPLEX
in order to obtain a heuristic solution for the master. This
is often called “price and branch,” as opposed to the exact
approach of branch and price.

In order to generate the initial column set, the jobs are
sorted in order of shortest processing time (SPT), and all pos-
sible arcswith feasible batches composedofSPT-consecutive
jobs are generated (Algorithm 2, InitCols).

The complete heuristic procedure is sketched in Algo-
rithm 3.

2.4 Exact approach: branch and price

Given the strong relaxation from the column generation
procedure, a natural step is trying to embed it in an exact
algorithm—branch and price. The main issue in this step is
being able to preserve the pricing problem structure at every
node in the search tree. Trying to use the classical branching
scheme from Foster and Ryan (1976), which leverages the

partitioning constraints forcing pairs of jobs to always/never
be batched together, would require handling disjunctive con-
straints in the pricing problem. This would make the latter a
strongly NP-hard disjunctive knapsack problem, ruling out
the possibility of using the dynamic programming procedure
of Algorithm 1 (unless P=NP).

Still, branching can be performed on a compact for-
mulation of the problem, building the batch sequence by
scheduling one job at a time starting from the first posi-
tion. The basic branching mechanism adopted here is the
same as described in Uzsoy (1994) and Azizoglu and Web-
ster (2000). Let S = (B1, B2, . . . , Bt) be a partial (possibly
empty) batch sequence built at the current search node, and
N̂ = N \ (B1 ∪ B2 ∪ · · · ∪ Bt) the set of unscheduled jobs at
such node. If the node is not fathomed by bound, two types
of branching can take place.

(I) A new unscheduled job j ∈ N̂ is added to Bt , provided
that

∑
i∈Bt si + s j ≤ b.

(II) Batch Bt is closed, and a new one Bt+1 is started, choos-
ing its longest job among the j ∈ N̂ .

New jobs are added to the open batch in non-increasing order
of processing time; hence, if a job j has been added to Bt ,
no other job j ′ with p j ′ > p j will enter the same batch in
successive branches. Also, batch Bt is closed only if it is
maximal: as far jobs that can be added to Bt without exceed-
ing the capacity b, this will prevent type II branches from the
current node.

The column generation-based relaxation is solved at each
node of the search tree; batches from the partial batch
sequence (B1, B2, . . . , Bt−1) correspond, in the relaxation,
to arc-variables fixed at 1. At non-root nodes, the “open”
batch Bt at the end of the partial sequence is handled by
imposing constraints on the state space to be searched in the
pricing step. The following can be observed:

– Only items corresponding to jobs in j ∈ N̂ concur to
form the state space.

– For pricing arcs (i, k, B)with i = ∑t−1
κ=1 |Bκ |, B ⊇ Bt—

these are arcs extending the “open” batch at the tail of
the partial sequence—the items in Bt are preloaded in
the knapsack; hence, only states gr (τ, �) with capacity
τ ≤ (b − ∑

i∈Bt si) and index r > max{i : i ∈ Bt } are
solved.

– For all other arcs, a pricing with full capacity b is per-
formed.

The nodes in the search tree are expanded in depth-first
order. Feasible solutions are generated at the root node by
running the price and branch procedure in Algorithm 3, and
at the leaves of the search tree when the batch sequence is
completed. Although Algorithm 3 implies running a branch

123

Journal of Scheduling

and bound itself, it is very fast for the tested problem sizes
and allows us to achieve the highest-quality feasible solu-
tions. Running quick and dirty heuristics at the intermediate
nodes did not significantly improve the performance during
preliminary testing.

3 Parallel-machinemodels

Model (13)–(16) is readily extended to parallel-machine
cases. Consider the fairly general Rm|p − batch, s j ≤ b|∑

C j problem with m parallel unrelated machines. Let p jh

be the processing time of job j on machine h. A special type
of arc with empty batches is added to the graph developed
for the single-machine case, using the arc set

A = {(i, k, B) : i, k ∈ V ; i < k; B ∈ B; |B| = (k − i)} ∪
∪ {(1, k,∅) : k = 2, . . . , n + 1} .

Arcs (i, k, B) ∈ A are given machine-dependent costs
chikB = pBh(n − i + 1), with pBh = max{p jh : j ∈ B}.
Empty arcs (1, k,∅) are given costs ch1k∅ = 0, k = 2, . . . , n+
1, h = 1, . . . ,m.
Remark Now Eq. (10) holds, in G, only for paths of non-
empty arcs connecting nodes from i1 to kr , i.e., for

P = [(i1, k1, B1), (i2, k2, B2), . . . , (ir , kr , Br)]
with B1 �= 0

∑r
l=1 |Bl | = kr − i1 holds. Note that at most the first arc in

a path can be empty (if i1 = 1 and B1 = ∅).
Empty arcs are all added to the restricted master problem

from the beginning, so they do not need to be considered
in the dynamic programming pricing procedure. A feasible
solution is composed of m batch sequences

Sh = (Bh
1 , . . . , Bh

th), h = 1, . . . ,m (21)

processed by the m machines. Such batch sequences corre-
spond to m paths (one path for each machine) from node 1
to n + 1 on the non-empty arcs of which the set of jobs is
exactly partitioned. Such paths will have an empty arc as first
arc. Note that if (i, k, B) is on the hth path, this means that
n− i + 1 jobs will be scheduled from B to the end of the hth
batch sequence.

Property 1 can be easily extended to the multi-machine
case. Figure 3 shows a sketch of the proof with m = 2. The
empty arcs act as placeholders.

The idea is formalized as follows.

Property 3 Each feasible set of batch sequences {Sh}mh=1 cor-
responds to a set of paths {Ph}mh=1 such that the job set
N is partitioned over the non-empty arcs of {Ph}mh=1, and∑

j∈N C j (S1, . . . , Sm) = ∑m
h=1

∑
(i,k,B)∈Ph c

h
ikB .

Proof A one-to-one mapping between feasible solutions
{Sh}mh=1 and collections of paths {Ph}mh=1 is quickly estab-
lished.

Suppose that a feasible collection of batch sequences
S1, . . . , Sm is given. Take amachine h and its batch sequence
Sh = (B1, . . . , Bt)—the dependence on h is dropped from
the batch notation in order to keep it simple. The batch
sequence Sh can be empty (i.e., the solution leaves machine
h idle) or not.

If Sh = ∅, define Ph = [(1, n+1,∅)]with a single empty
arc.

If Sh �= ∅, by definition of the arc set A, the following
arcs belong to the graph G:

(it , kt , Bt) kt = n + 1, it = kt − |Bt |
(i�, k�, B�) k� = i�+1, i� = k� − |B�| � = t − 1, . . . , 1

(i0, k0, ∅) k0 = i1, i0 = 1 if i1 > 1.

If i1 = 1, arc (i0, k0,∅) is omitted. The arcs are chosen so
that k� = i�+1, kt = n + 1, and the first arc has a tail in node
1.

In both cases addressed above, Ph identifies a path from
node 1 to node n + 1. Repeat the construction for each
machine h = 1, . . . ,m to obtain the collection of paths
P1, . . . , Pm ; the partition of the job set over the non-empty
chosen arcs is guaranteed by the fact that the batches in
{Sh}mh=1 already form a partition of N by hypothesis.

On the other hand, given a collection of paths P1, . . . , Pm ,
all connecting node 1 to node n + 1, with the job set N par-
titioned over the non-empty arcs of such collection, take a
machine indexh, and let Ph = [(i0, k0, B0), (i1, k1, B1), . . . ,

(it , kt , Bt)]. The batch sequence Sh is defined by Sh =
(B1, . . . , Bt) if B0 = ∅; otherwise Sh = (B0, . . . , Bt).
Note that, by definition of the arc set A, at most B0 can
be empty. If Ph = [(1, n + 1,∅)], Sh = ∅, and machine h
is left idle. Repeat for each machine h = 1, . . . ,m in order
to obtain a batch sequence for each machine. The feasibility
of S1, . . . , Sm is guaranteed by the fact that by hypothesis,
the job set N is partitioned over the set of non-empty arcs of
P1, . . . , Pm .

It remains to be proven that
∑n

j=1 C j (S1, . . . , Sm) =
∑m

h=1
∑

(i,k,B)∈Ph c
h
ikB . To this end, it is sufficient to prove

that on each machine h,

∑

B∈Sh

∑

j∈B
C j =

∑

(ikB)∈Ph

cikB

then,
∑

j∈N C j = ∑m
h=1

∑
B∈Sh

∑
j∈B C j , and the result

follows. Consider machine h and sequence Sh with the cor-
responding path Ph = [(i0, k0, B0), (i1, k1, B1), . . . , (it , kt ,
Bt)], with i0 = 1, kt = n + 1. For the first arc (i0, k0, B0),
either B0 = ∅ or B0 �= ∅.

123

Journal of Scheduling

V 1 2 3 4 5 6 7 8 9 10 11

∅ B1 B2

∅
B3 B4

N ={1, 2, . . . , 10}
S1 =(B1, B2)

S2 =(B3, B4)

B1 ={5, 6, 8}
B2 ={3, 4, 10}
B3 ={1, 2}
B4 ={7, 9}

P1 =[(1, 5, ∅), (5, 8, B1), (8, 11, B2)]

P2 =[(1, 7, ∅), (7, 9, B3), (9, 11, B4)]
10∑

j=1

Cj =
2∑

h=1

∑

B∈Sh

|B|CB

=|B1|pB1,1+

|B2|(pB1,1 + pB2,1)+

|B3|pB3,2+

|B4|(pB3,2 + pB4,2)

= 6pB1,1 + 3pB2,1︸ ︷︷ ︸
c15,8,B1

+ c18,11,B2

+ 4pB3,2 + 2pB4,2︸ ︷︷ ︸
c27,9,B3

+ c29,11,B4

=
∑

(i,k,B)∈P1

c1ikB +
∑

(i,k,B)∈P2

c2ikB .

Fig. 3 Batch sequences on two machines as a collection of two paths on a graph. The job set N is partitioned into B1, B2, B3, B4. The two paths
provide a partition into batches and sequencing information

Assume B0 = ∅. Let pB�,h be the processing time of
batch B� onmachine h. The algebraic manipulations proceed
similarly to the proof of Property 1.

∑

B∈Sh

∑

j∈B
C j =

t∑

q=1

|Bq |CBq

= |B1|pB1,h +
|B2|pB1,h + |B2|pB2,h +
|B3|pB1,h + |B3|pB2,h + |B3|pB3,h +
. .

|Bt |pB1,h + |Bt |pB2,h + |Bt |pB3,h + . . . + |Bt |pBt ,h

=pB1,h

t∑

�=1

|B�| + pB2,h

t∑

�=2

|B�|

+ pB3,h

t∑

�=3

|B�| + · · · + pBt ,h |Bt |

=
t∑

q=1

pBq ,h(n − iq + 1) =
t∑

q=1

chiq kq Bq =
∑

(i,k,B)∈Ph

chikB ,

where the last sum can be extended to all the arcs in Ph , since
for the first arc (1, k0,∅) ∈ Ph , ch1,i1,∅ = 0.

If B0 �= ∅, then, by Eq. (10),
∑n

�=0 |B�| = kt − i0 = n;
hence, all the jobs of the problem are scheduled on machine
h while the other machines must be left idle. The analysis

is reduced to a single-machine case, and Property 1 ensures
that

∑
B∈Sh

∑
j∈B C j = ∑

(i,k,B)∈Ph c
h
ikB . ��

Model (13)–(16) can be extended to the parallel-machine
case using multi-commodity flow constraints.

minimize
m∑

h=1

∑

(i,k,B)∈A

chikBx
h
ikB (22)

subject to
∑

(k,B) :
(i,k,B)∈A

xhikB −
∑

(k,B) :
(k,i,B)∈A

xhki B

=

⎧
⎪⎨

⎪⎩

1 i = 1

0 i = 2, . . . , n

−1 i = n + 1

h =1, . . . ,m

(23)
m∑

h=1

∑

(i,k,B)∈A

aBxhikB = 1 (24)

xhikB ∈ {0, 1} (i, k, B) ∈ A, h = 1, . . . ,m
(25)

Here, xhikB = 1 if batch B is on the hth path. Flow conserva-
tion constraints (23) require that one unit of each commodity

123

Journal of Scheduling

is routed from node 1 to node n+1. Constraints (24) enforce
the exact partitioning of the whole job set across the arcs
belonging to the m paths.

In the column generation framework, with each restricted
master optimum, constraint multipliers are computed:

uh1, u
h
2, . . . , u

h
n+1 for constraints (23), h = 1, . . . ,m,

v1, v2, . . . , vn for constraints (24).

The reduced cost is then minimized separately for each com-
bination of pairs of indices i, k with i < k and machine h,
searching for arcs (i, k, B) with reduced costs

c̄hikB∗ = min
B

{

pBh(n − i + 1) −
∑

j∈B
v j :

∑

j∈B
s j ≤ b, |B| = k − i

}

− (uhi − uhk).

This requires calling NewCols m times, once per machine,
since the LPT ordering on each machine is different, and
thus so is the state space gr (τ, �). Hence, the running time
for pricing increases to O(mmax(n3, n2b)).

A somewhat better situation arises in the case of identical
parallelmachines,with problem Pm|p − batch, s j ≤ b| ∑C j .
Since each job j has the same processing time p j on every
machine, the state space gr (τ, �) used for pricing is com-
mon to all the machines, and a slightly modified version
of NewCols can do the entire pricing, still keeping the
running time within O(max(n3, n2b)). The procedure is
reported in Algorithm 4. The key observation is that the
pB and

∑
j∈B v j components of the reduced costs chikB

are machine-independent, and only the largest difference
�uik = maxh{(uhi − uhk)} is strictly needed in order to
compute the minimum reduced costs. Such largest differ-
ences are precomputed in time O(mn2) on line 3. For any
(i, k, B), let r be the smallest index such that pr = pB , and
let Br = Br (b, k − i); then, similarly to what was proved in
Property 2:

c̄hikB =(n − i + 1)pB −
∑

j∈B
v j − (uhi − uhk) ≥

≥(n − i + 1)pBr − gr (b, k − i) − (uhi − uhk) ≥
≥(n − i + 1)pBr − gr (b, k − i) − �uik .

Finally, note that also taking into account different capac-
ities for each machine, or even different job sizes on each
machine, simply requires one to specify the knapsack family
used. Details are omitted for the sake of concision.

Algorithm 4 Pricing procedure for identical parallel
machines.
1: function NewCols(N , b, u, v) � u, v = vectors of multipliers
2: Sort and renumber jobs in N such that p1 ≥ p2 · · · ≥ pn ;
3: Set �uik = maxh{uhi − uhk } for 1 ≤ i < k ≤ n + 1; � O(mn2)

time
4: Set H = ∅; � Set of negative-reduced cost arcs
5: for � = 1, . . . , n do
6: Set r := 1, done := false;
7: while not done do
8: Retrieve gr (b, �) and B = Br (b, �);
9: for i = 1, . . . , n − � + 1 do
10: Set k = i + �;
11: Compute c̄ikB = pB(n − i + 1) − �uik − gr (b, �);
12: if c̄ikB < 0 then
13: Set H := H ∪ {(i, k, B)};
14: end if
15: end for
16: Set r := min{ j : p j < pr };
17: If no such index exists, set done := true;
18: end while
19: end for
20: return H ;
21: end function

4 Computational results

The proposed algorithms discussed in the previous sections
have been tested on randomly generated instances. For gen-
erating job data, the same approach as in Uzsoy (1994)
and Rafiee Parsa et al. (2016) has been used. Specifically, all
job processing times are drawn from a uniform distribution
p j ∈ [1, 100], while job sizes s j are drawn from four possi-
ble uniform distributions, labeled by σ ∈ {σ1, σ2, σ3, σ4}:

σ1 : s j ∈ [1, 10] σ3 : s j ∈ [3, 10]

σ2 : s j ∈ [2, 8] σ4 : s j ∈ [1, 5] .

In both Uzsoy (1994) and Rafiee Parsa et al. (2016), the
machine capacity is fixed at b = 10.

Since the pricing procedure has a pseudo-polynomial run-
ning time, instances with b = 30 and b = 50 have also been
generated in order to assess how the procedure behaves with
a larger capacity. Single-machine instances have been gener-
ated with n ∈ {20, 40, 60, 80, 100} and with all four σ size
distributions. For each n, σ and b combinations, 10 random
instances have been generated.

With the same job data, the corresponding instances of
the parallel-machine problem Pm|p − batch, s j ≤ b| ∑C j

have been solved for m = 2, 3, 5 identical machines.
For testing the heuristics in the parallel-machine case and

the branch and price exact approach for the single machine,
only b = 10 instances have been used.

All the tests were run in a Linux environment with an
Intel Core i7-6500U CPU @ 2.50GHzprocessor;
C++ language was used for coding the algorithms, and

123

Journal of Scheduling

CPLEX 12.8, called directly from C++ environment using
CPLEX callable libraries, was used to solve relaxed and
mixed-integer programs. The source code and instances are
available.1

Results for the price and branch heuristic in both the
single-machine and parallel-machine cases are discussed
in Sect. 4.1, whereas Sect. 4.2 deals with the results of
the exact branch and price procedure in the single-machine
case.

4.1 Evaluation of the heuristic algorithms

Both the columngeneration-based lower boundCG − LB and
the objective value of the heuristic solution CG − UB have
been evaluated. As far as the quality of the lower bound is
concerned, the continuous relaxation of model (1)–(9) is not
a realistic competitor, zero being the typical value found by
CPLEX at the root branching node. Amoremeaningful com-
parison can be performed against the combinatorial lower
bound proposed by Uzsoy (1994). Such bound is based on
a relaxation of 1|p − batch, s j ≤ b| ∑C j to a preemptive
problem on b parallel machines (refer to Uzsoy 1994 for
details). This lower bound is referred to as PR in the follow-
ing.

As far as the evaluation of CG − UB is concerned, it was
difficult to compare the obtained results with the known lit-
erature, as neither the test instances nor the computer codes
used byUzsoy (1994) andRafieeParsa et al. (2016) have been
made available. Hence, some comparisons have been made
with the results of Rafiee Parsa et al. (2016), using instances
of the same type,, but for this reason, the comparison has to be
taken with some care. On the other hand, when CPLEX is fed
with model (1)–(9) and given some time, its internal heuris-
tics do generate a number of heuristic solutions, although it
has no chance of certifying optimality. Hence, CPLEX has
been run on some set of instances in order to obtain heuristic
solutions with a time limit of 300 s.

The times required to compute CG − LB and CG − UB are
reported separately. The gap between CG − UB and CG − LB
is evaluated as

gap = CG − UB − CG − LB

CG − UB
· 100%.

Single machine

Tables 1, 2 and 3 show the results over an increasing number
of jobs with batch capacity b = 10, 30 and 50, respectively;
theCG − UBwas computed usingCPLEXwith a time limit of
60 s. Values are shown as the average over each 10-instance

1 https://drive.google.com/drive/folders/10g243gICweI_wNvqDh8vx
L8G_OXg-Fk3?usp=sharing compilation and execution parameters
are available in the makefile included.

group for the time, and as an average, maximum (worse) and
minimum (best) over each 10-instance group for the gap.
Column opt reports the number of instances (out of 10) in
which the solution can be certified to be the optimum, i.e., in
which CG − UB = CG − LB. The comparison between the
CG − LB value and Uzsoy’s PR lower bound is also reported,
computing the average, maximum and minimum over each
10-instance group of the ratio CG − LB/PR.

In Table 1, it can be seen that with b = 10, the computa-
tion of CG − LB is fast, with average CPU time less than 1
s in almost all cases (i.e., with any number of jobs). The σ4
instances are the most time-demanding, with the only aver-
age computation time above 1 s. This is because a larger
set of columns is usually generated on such instances. The
computation of CG − UB is, as expected, the heaviest part of
the procedure, with greater CPU time. However, the CPLEX
time limit is reached only in the cases n = 80, 100 and
σ = σ4. Again, σ4 instances were the most demanding of
CPU time, because of the larger set of columns to be han-
dled. The certified solution quality was very good, with an
average optimality gap usually below 1.5%, and only one
case (n = 80, σ = σ4) above 5%.

From Table 1, it can be easily seen that CG − LB perfor-
mance is much better than PR in every combination, ranging
from an average 9% gain when n = 100 and σ = σ4 to an
average 29% when n = 20 and σ = σ4. These values also
suggest that PR performs better for large n; in fact, when a
high number of batches are required in the feasible solutions,
the usually weak parallel-machine relaxation of PR becomes
slightly stronger.

FromTable 2, it can be seen that theCPU time forCG − LB
increases; this is expected, since a larger number of possible
batches are generated with an increase in capacity. The larger
reduced master problems obviously also affect the compu-
tation of CG − UB, which reaches the time limit in all cases
for n = 80, 100. The average optimality gaps worsen, but
the largest increase is not found on σ4 instances; instead, it
affects σ1 instances more heavily, especially for large n.

Overall, increasing the capacity also increases the distance
between the two lower bounds CG − LB and PR; CG − LB
performs better in every combination, ranging from an aver-
age 10% gain when b = 30, n = 100 and σ = σ3, to an
average of 81% when b = 30, n = 20 and σ = σ4. This is
reasonable, since PR is based on a preemptive relaxation to b
parallel machines, and allowing the splitting of jobs on more
machines weakens the relaxation.

Table 3 shows the results of the tests with capacity b = 50
that confirm the impact of b. The instances belonging to class
σ4 are still the most computationally demanding, both for
lower bounding and heuristic solution. Instanceswithσ = σ1
are theworst in terms of solution quality—with the exception
of small 20-job instances—but, curiously, the gap decreases
on n = 80 instances when passing from b = 30 to b = 50.

123

https://drive.google.com/drive/folders/10g243gICweI_wNvqDh8vxL8G_OXg-Fk3?usp=sharing
https://drive.google.com/drive/folders/10g243gICweI_wNvqDh8vxL8G_OXg-Fk3?usp=sharing

Journal of Scheduling

Table 1 Results for CG − UB
and CG − LB with b = 10

Param Times (s) Gap (%) CG − LB/PR

n σ CG-LB CG-UB Avg Worst Best Avg Min Max Opt

20 σ1 0.01 0.04 1.30 3.20 0.00 1.25 1.19 1.31 2

σ2 0.01 0.03 1.55 3.63 0.00 1.22 1.20 1.27 2

σ3 0.01 0.03 0.63 3.30 0.00 1.19 1.15 1.21 7

σ4 0.01 0.09 2.15 4.63 0.82 1.29 1.23 1.37 0

40 σ1 0.03 0.58 1.30 2.34 0.20 1.20 1.16 1.25 0

σ2 0.03 0.39 1.17 2.14 0.24 1.16 1.13 1.19 0

σ3 0.02 0.18 0.89 1.87 0.00 1.18 1.13 1.27 1

σ4 0.07 1.89 2.61 4.03 0.45 1.19 1.15 1.22 0

60 σ1 0.14 8.34 0.91 2.03 0.23 1.17 1.12 1.21 0

σ2 0.12 1.62 0.98 1.90 0.34 1.13 1.10 1.15 0

σ3 0.05 0.44 0.49 1.09 0.00 1.16 1.13 1.20 1

σ4 0.39 30.41 2.57 3.97 0.94 1.14 1.12 1.16 0

80 σ1 0.41 7.96 0.74 1.88 0.28 1.14 1.11 1.17 0

σ2 0.36 24.06 0.82 1.40 0.07 1.11 1.09 1.13 0

σ3 0.19 1.89 0.47 0.85 0.17 1.15 1.12 1.19 0

σ4 0.88 limit 5.78 10.77 2.20 1.11 1.10 1.12 0

100 σ1 0.73 8.76 0.46 0.82 0.06 1.13 1.11 1.14 0

σ2 0.45 4.03 0.41 0.75 0.14 1.14 1.11 1.16 0

σ3 0.32 0.81 0.17 0.68 0.00 1.15 1.12 1.20 2

σ4 1.61 limit 4.44 7.66 1.34 1.09 1.08 1.10 0

Table 2 Results for CG − UB
and CG − LB with b = 30

Param Times (s) Gap (%) CG − LB/PR

n σ CG-LB CG-UB Avg Worst Best Avg Min Max Opt

20 σ1 0.02 0.07 1.03 3.69 0.00 1.46 1.36 1.66 3

σ2 0.02 0.08 1.28 3.77 0.00 1.39 1.29 1.49 5

σ3 0.01 0.05 1.10 5.46 0.00 1.35 1.30 1.40 4

σ4 0.02 0.09 0.00 0.00 0.00 1.81 1.62 2.11 10

40 σ1 0.21 3.11 3.13 6.43 0.21 1.30 1.23 1.39 0

σ2 0.18 1.72 3.83 5.62 2.33 1.27 1.21 1.33 0

σ3 0.10 2.95 4.37 6.29 2.98 1.20 1.17 1.26 0

σ4 0.71 2.19 1.18 5.13 0.07 1.51 1.41 1.60 0

60 σ1 0.77 limit 6.78 10.27 3.51 1.22 1.18 1.27 0

σ2 0.72 37.44 5.21 8.46 1.88 1.20 1.17 1.22 0

σ3 0.42 30.35 3.74 5.79 1.44 1.15 1.13 1.18 0

σ4 2.38 10.59 2.28 4.24 0.05 1.36 1.31 1.41 0

80 σ1 1.68 limit 11.05 17.40 3.40 1.21 1.16 1.23 0

σ2 1.41 limit 11.68 41.32 2.65 1.16 1.13 1.20 0

σ3 0.88 limit 7.94 12.24 3.53 1.12 1.11 1.13 0

σ4 4.75 limit 7.01 18.67 2.41 1.29 1.27 1.32 0

100 σ1 3.27 limit 15.43 18.54 12.12 1.16 1.13 1.19 0

σ2 2.87 limit 9.23 11.46 3.08 1.13 1.12 1.14 0

σ3 1.79 limit 11.66 15.45 8.87 1.10 1.09 1.11 0

σ4 8.85 limit 6.38 9.54 3.32 1.26 1.23 1.29 0

123

Journal of Scheduling

Table 3 Results for CG − UB
and CG − LB with b = 50

Param Times (s) Gap (%) CG − LB/PR

n σ CG-LB CG-UB Avg Worst Best Avg Min Max Opt

20 σ1 0.02 0.09 0.00 0.00 0.00 1.70 1.48 1.94 10

σ2 0.02 0.09 0.10 0.38 0.00 1.65 1.53 1.77 7

σ3 0.02 0.08 0.28 2.66 0.00 1.52 1.35 1.62 7

σ4 0.02 0.10 0.00 0.00 0.00 2.13 1.90 2.39 10

40 σ1 0.35 1.29 1.58 3.58 0.00 1.44 1.38 1.51 2

σ2 0.44 1.31 1.78 3.16 0.35 1.41 1.34 1.54 0

σ3 0.30 1.09 2.24 4.82 0.00 1.34 1.29 1.40 1

σ4 0.75 2.45 0.11 0.81 0.00 1.80 1.67 1.87 8

60 σ1 1.39 23.59 4.47 6.64 1.24 1.38 1.30 1.44 0

σ2 1.45 8.38 2.54 5.54 0.08 1.32 1.29 1.37 0

σ3 0.76 13.37 4.30 6.65 1.81 1.23 1.20 1.27 0

σ4 6.72 12.56 1.25 2.73 0.00 1.52 1.43 1.64 3

80 σ1 3.43 limit 7.40 10.26 3.17 1.32 1.27 1.38 0

σ2 3.71 limit 3.95 4.64 2.63 1.26 1.24 1.27 0

σ3 1.93 limit 4.94 10.32 2.00 1.19 1.17 1.20 0

σ4 18.34 limit 1.90 4.85 0.11 1.46 1.42 1.51 0

100 σ1 7.09 limit 15.66 58.23 8.14 1.23 1.19 1.27 0

σ2 7.04 limit 7.19 10.33 4.27 1.21 1.19 1.23 0

σ3 3.50 limit 7.86 11.47 3.51 1.15 1.14 1.17 0

σ4 38.65 limit 3.26 5.70 0.84 1.39 1.35 1.47 0

The worst average gap is reached with n = 100 and σ = σ1
(15.66%). Also, PR worsens considerably with respect to
CG − LB.

Rafiee Parsa et al. (2016) provide a hybrid max-min ant
system (HMMAS) that is, to thewriters’ knowledge, a state-of-
the-art heuristic. A very recent paper from the same authors
has been published on the same problem (Rafiee Parsa et al.
2019) where a new approach, a hybrid neural network (HNN),
is proposed. In this new paper, a comparison with HMMAS is
presented and, as in the previous case, only capacity b = 10
is considered; a statistical analysis is also presented. The
quality of the results with the new procedure HNN is not bet-
ter than with HMMAS; on the contrary, the average quality
appears to be slightly worse. Neither the source code nor
the tested instances appear to be currently available even
though this new paper was recently published; hence, an
attempt to compare CG − UBwith HMMASwas made by test-
ing CG − UB on generated instances of the same type and
size as those used in Rafiee Parsa et al. (2016). Moreover,
as in Rafiee Parsa et al. (2016), only the capacity b = 10
was investigated; the comparison performed was limited to
such values. The reader being warned of the difficulty of
such comparison, Table 4 points to the following situation:
The results show that the performance ofCG − UB, evaluated
against Uzsoy’s lower bound PR, seems to be very similar to
that of HMMAS. Thus, it can be speculated that the two algo-
rithms could give similar results for the upper bound when

Table 4 Comparison between
HMMAS (values from Rafiee
Parsa et al. 2016) and CG − UB
algorithms

Param Heuristic/PR

n σ HMMAS CG-UB

20 σ1 1.25 1.27

σ2 1.25 1.24

σ3 1.21 1.20

σ4 1.28 1.31

40 σ1 1.19 1.21

σ2 1.19 1.18

σ3 1.18 1.19

σ4 1.20 1.22

60 σ1 1.17 1.18

σ2 1.16 1.14

σ3 1.18 1.17

σ4 1.18 1.17

80 σ1 1.16 1.15

σ2 1.16 1.12

σ3 1.16 1.15

σ4 1.16 1.18

100 σ1 1.16 1.13

σ2 1.15 1.14

σ3 1.15 1.16

σ4 1.15 1.14

123

Journal of Scheduling

Table 5 Comparison between
CPLEX-UB (300 s) and
CG − UB

Param CPLEX-UB Gap (%) CG − UB Gap (%)

n σ Avg Worst Best #Win Avg Worst Best #Win

20 σ1 1.15 3.73 0.00 8 1.31 3.27 0.00 6

σ2 1.17 3.58 0.00 7 1.56 3.73 0.00 7

σ3 0.69 3.30 0.00 8 0.63 3.30 0.00 10

σ4 3.51 7.14 0.82 4 2.15 4.63 0.82 9

40 σ1 9.60 14.63 5.97 0 1.30 2.34 0.20 10

σ2 9.34 16.02 5.43 0 1.17 2.14 0.24 10

σ3 4.41 8.13 2.34 0 0.89 1.87 0.00 10

σ4 12.03 18.16 9.09 0 2.61 4.03 0.45 10

60 σ1 49.28 77.33 38.61 0 0.91 2.03 0.23 10

σ2 48.86 59.69 33.98 0 0.98 1.90 0.34 10

σ3 33.78 41.74 22.84 0 0.49 1.09 0.00 10

σ4 45.86 66.77 24.59 0 2.57 3.97 0.94 10

80 σ1 73.77 88.55 59.86 0 0.74 1.88 0.28 10

σ2 66.12 77.45 53.45 0 0.82 1.40 0.07 10

σ3 52.79 73.82 38.40 0 0.47 0.85 0.17 10

σ4 84.09 102.96 62.95 0 5.78 10.77 2.20 10

they are run on the same instance set. The availability of
CG − LB allows us to confirm a narrower optimality gap for
CG − UB.

The quality of CG − UB has been compared to the quality
of the heuristic solution reached by CPLEX (CPLEX-UB)
after 300 s of computation using model (1)–(9). The CPLEX
optimality gap is generallywell above 90%because the lower
bound is zero or almost zero. Regardless, using the proposed
stronger lower bound, a more realistic optimality gap can be
computed for CPLEX as

CPLEX-UB − CG − LB

UB∗ · 100%,

with UB∗ = min{CPLEX-UB,CG − UB}.

Thegap forCG − UB is recomputed as (CG − UB−CG − LB)/

UB∗ · 100% for uniformity.
The comparison is reported in Table 5, in terms of aver-

age, worst and best gap, as in the previous comparison.
Column #win counts the number of instances (out of 10)
for which each algorithm achieves the best solution. In the
case of a draw, a “win” is counted for both, so the two
columns can sum to more than 10. Instances with n = 20,
40, 60, 80 and b = 10 have been tested. CPLEX ran for
the full 300 s on all instances, without proving optimal-
ity for any of them. CG − UB ran with the same 60 s time
limit as in Table 1. Basically, except for the small n = 20
instances, the CPLEX solution is consistently worse than
CG − UB.

Parallel machines

With the same data, the Pm|p − batch, s j ≤ b| ∑C j prob-
lem has been solved withm = 2, 3 and 5machines. The tests
have been limited to the case b = 10. The time limit for the
branch and bound phase of the heuristic was raised to 180
s. The results are reported in Tables 6, 7 and 8. Apparently,
increasing the number of machines has a very mild impact
on the CPU time needed for computing the lower bound.
The growth of the computational cost is much higher for the
branch and bound phase, but with a certain variability on the
four classes of instances, with classes σ1 and σ4 exhibiting
the largest growth. Again, class σ4 broke the time limit in
all the instances. The quality of the solution, as measured by
the percentage gap, does not suffer seriously, except for the
case n = 100, m = 5, σ = σ4. The worst average gap of
14.09% is caused by a single instance with a very large gap
of 81.62%; if a larger but still acceptable time limit of 300 s
is allowed, the average gap for this class decreases to 4.63%
(max gap 12.56%).

Uzsoy’s bound PR is easily extended to the parallel-
machine case, allowing a relaxation tomb parallel machines.
Tables 6, 7 and 8 also compare CG − LBwith PR extended to
the parallel-machine case. The ratio between the two bounds
is apparently unaffected by the increase in m.

4.2 Evaluation of the branch and price approach

The branch and price exact algorithm has been tested on the
single-machine b = 10 generated instances. The reference
algorithm for the exact approaches on 1|p − batch, s j ≤ b|

123

Journal of Scheduling

Table 6 Results for CG − UB
and CG − LB with b = 10 and 2
parallel machines

Param Times (s) Gap (%) CG − LB/PR

n σ CG-LB CG-UB Avg Worst Best Avg Min Max Opt

20 σ1 0.03 0.12 0.78 2.00 0.00 1.24 1.18 1.29 2

σ2 0.03 0.09 1.43 4.78 0.00 1.21 1.19 1.25 2

σ3 0.02 0.07 0.57 3.04 0.00 1.18 1.14 1.19 7

σ4 0.04 0.22 2.08 4.11 0.00 1.28 1.22 1.35 1

40 σ1 0.06 0.82 1.14 2.28 0.01 1.19 1.16 1.24 0

σ2 0.05 0.90 1.08 1.73 0.23 1.16 1.13 1.18 0

σ3 0.03 0.22 0.75 1.39 0.00 1.18 1.13 1.26 1

σ4 0.13 5.01 2.07 3.73 0.37 1.18 1.15 1.22 0

60 σ1 0.25 10.22 0.83 1.64 0.23 1.16 1.12 1.20 0

σ2 0.21 1.72 0.90 1.56 0.32 1.12 1.10 1.15 0

σ3 0.13 0.60 0.38 1.00 0.01 1.16 1.13 1.20 0

σ4 0.49 76.71 2.35 3.72 1.69 1.14 1.12 1.16 0

80 σ1 0.62 45.96 0.76 1.94 0.21 1.14 1.10 1.17 0

σ2 0.54 40.97 0.71 1.00 0.08 1.11 1.09 1.13 0

σ3 0.35 3.29 0.46 0.76 0.18 1.14 1.12 1.18 0

σ4 1.30 limit 5.65 10.31 1.33 1.11 1.10 1.12 0

100 σ1 1.08 19.16 0.44 0.77 0.07 1.13 1.11 1.14 0

σ2 0.79 3.66 0.41 0.73 0.12 1.13 1.11 1.16 0

σ3 0.59 1.63 0.21 0.66 0.00 1.15 1.11 1.20 2

σ4 2.25 limit 7.19 26.27 1.08 1.09 1.08 1.10 0

Table 7 Results for CG − UB
and CG − LB with b = 10 and 3
parallel machines

Param Times (s) Gap (%) CG − LB/PR

n σ CG-LB CG-UB Avg Worst Best Avg Min Max Opt

20 σ1 0.03 0.13 0.52 1.29 0.00 1.24 1.18 1.29 3

σ2 0.03 0.10 1.15 2.90 0.00 1.21 1.19 1.25 2

σ3 0.03 0.08 0.45 2.49 0.00 1.18 1.14 1.19 7

σ4 0.05 0.30 1.77 3.61 0.00 1.30 1.23 1.36 1

40 σ1 0.12 1.68 1.11 2.02 0.00 1.19 1.16 1.24 1

σ2 0.09 1.00 0.88 1.38 0.00 1.16 1.13 1.18 1

σ3 0.06 0.43 0.80 1.64 0.00 1.17 1.12 1.25 1

σ4 0.19 4.81 1.76 3.37 0.19 1.19 1.16 1.22 0

60 σ1 0.35 3.89 0.73 1.54 0.24 1.16 1.12 1.20 0

σ2 0.32 3.47 0.86 1.50 0.29 1.12 1.10 1.15 0

σ3 0.24 1.09 0.38 1.12 0.00 1.15 1.13 1.19 1

σ4 0.62 76.82 2.00 3.92 1.01 1.15 1.12 1.16 0

80 σ1 1.04 16.93 0.62 1.57 0.18 1.14 1.10 1.16 0

σ2 0.75 47.57 0.71 1.12 0.08 1.11 1.09 1.12 0

σ3 0.58 3.99 0.47 0.72 0.19 1.14 1.12 1.18 0

σ4 1.49 limit 5.23 13.93 1.20 1.12 1.10 1.13 0

100 σ1 1.99 20.33 0.44 0.73 0.07 1.12 1.11 1.14 0

σ2 1.12 4.92 0.39 0.69 0.12 1.13 1.10 1.16 0

σ3 1.18 2.83 0.17 0.65 0.00 1.15 1.11 1.20 2

σ4 3.09 limit 5.44 19.24 1.58 1.09 1.08 1.10 0

123

Journal of Scheduling

Table 8 Results for CG − UB
and CG − LB with b = 10 and 5
parallel machines

Param Times (s) Gap (%) CG − LB/PR

n σ CG-LB CG-UB Avg Worst Best Avg Min Max Opt

20 σ1 0.05 0.20 0.47 1.95 0.00 1.27 1.18 1.30 2

σ2 0.05 0.16 0.84 1.77 0.00 1.22 1.20 1.24 3

σ3 0.05 0.10 0.30 1.57 0.00 1.19 1.15 1.20 7

σ4 0.05 0.26 0.83 2.20 0.00 1.36 1.27 1.44 2

40 σ1 0.23 1.94 0.91 1.59 0.24 1.19 1.17 1.23 0

σ2 0.18 1.62 0.71 1.25 0.00 1.16 1.14 1.19 1

σ3 0.15 0.68 0.72 1.79 0.02 1.17 1.13 1.24 0

σ4 0.27 6.02 1.28 2.43 0.32 1.21 1.17 1.26 0

60 σ1 0.53 5.34 0.70 1.25 0.25 1.16 1.13 1.20 0

σ2 0.55 7.23 0.81 1.78 0.34 1.12 1.10 1.15 0

σ3 0.45 2.17 0.36 0.89 0.00 1.15 1.13 1.19 1

σ4 0.69 89.00 1.65 3.14 0.37 1.16 1.13 1.18 0

80 σ1 1.33 17.41 0.61 1.56 0.11 1.14 1.11 1.16 0

σ2 0.93 38.02 0.62 0.99 0.01 1.11 1.09 1.12 0

σ3 0.78 4.37 0.39 0.60 0.16 1.14 1.12 1.17 0

σ4 1.53 limit 2.50 4.57 1.27 1.13 1.11 1.14 0

100 σ1 2.76 20.14 0.43 0.79 0.05 1.12 1.11 1.14 0

σ2 1.41 6.34 0.38 0.61 0.12 1.13 1.10 1.15 0

σ3 1.54 3.50 0.16 0.63 0.00 1.14 1.11 1.19 2

σ4 3.22 limit 14.09 81.62 0.87 1.10 1.09 1.11 0

∑
C j is the branch and bound of Azizoglu and Web-

ster (2000), which was developed for the weighted version
1|p − batch, s j ≤ b| ∑w jC j , but the authors also reported
results for the unweighted version. In the latter case, the
lower bound of Azizoglu and Webster reduces to Uzsoy’s
bound. The branch and price procedure presented in Sect. 2.4
is based on the same branching scheme as Azizoglu and
Webster (2000), with the same dominance conditions. The
comparison considered here is between:

– The branch and price equipped with the proposed lower
bound CG − LB obtained by column generation and the
CG − UB heuristic for the root node upper bound—see
Sect. 2.4.

– The branch and bound based on the same branching
scheme, with the same dominance conditions, equipped
with:

– an evaluation of two different lower bounds of
increasing complexity as described in Azizoglu and
Webster (2000) Sect. 3, using the best one for the
actual lower bound;

– the procedure described in Azizoglu and Webster
(2000) Sect. 2.4 for the root node upper bound and
evaluated at every non-leaf node to further improve
the quality of the upper bound.

– The node exploration policy in both algorithms was kept
depth-first.

The results are reported in Table 9 for instances with up to
40 jobs. Cumulative results for all 40 instances are reported
by number of jobs, across job size distributions. Specifically,
for times, nodes and gap, the average value is reported, while
for the number of found optima, the total sum over the 40
instances is reported.

Both exact methods were run with a 900 s time limit.
The table compares the CPU time and the number of open
nodes. Column Opt counts the number of certified optima
obtained within the time limit. On the left part of the table,
the results for the branch and price equipped with CG − LB
and CG − UB are reported; the right side shows the results
for the branch and bound equipped with a lower bound and
the heuristic by Azizoglu and Webster.

By allowing the branch and price to run without a time
limit, all optimal values of the 40-job instances were also col-
lected, even though a few instances required several hours of
computation; hence, the GAP columns report the percentage
gap 100 ·(UB−OPT)/OPT between the best upper bound UB
obtained within the time limit and the exact optimum OPT
for both algorithms.

The branch and bound has impressively fast node process-
ing, since Uzsoy’s bound has a very cheap running time. As
the number of jobs increases, the more accurate lower bound
obtained by column generation allows the branch and price
to outperform the competitor. The latter algorithm is able
to optimally solve all instances with up to 30 jobs and more

123

Journal of Scheduling

Ta
bl
e
9

C
om

pa
ri
so
n
of

ex
ac
ta
pp
ro
ac
he
s

Pa
ra
m

B
ra
nc
h
an
d
pr
ic
e
(C
G

−
L
B
an
d
C
G

−
U
B
)

B
ra
nc
h
an
d
bo
un
d
(A

zi
zo
gl
u
an
d
W
eb
st
er

20
00
/d
ep
th
-fi
rs
t)

T
im

es
(s
)

N
od
es

G
A
P

O
PT

T
im

es
(s
)

N
od
es

G
A
P

O
PT

n
σ

A
vg

M
ax

A
vg

M
ax

A
vg

M
ax

A
vg

M
ax

A
vg

M
ax

A
vg

M
ax

10
σ
1

0.
06

0.
48

4.
2

32
0.
00

0.
00

10
0.
01

0.
01

12
66
.3

22
22

0.
00

0.
00

10

σ
2

0.
02

0.
08

15
.6

14
7

0.
00

0.
00

10
0.
01

0.
01

95
3.
0

19
10

0.
00

0.
00

10

σ
3

0.
01

0.
05

5.
4

54
0.
00

0.
00

10
0.
01

0.
01

51
4.
9

12
44

0.
00

0.
00

10

σ
4

0.
03

0.
05

21
.5

56
0.
00

0.
00

10
0.
01

0.
01

18
95
.6

31
19

0.
00

0.
00

10

10
0.
03

0.
48

12
.7

14
7

0.
00

0.
00

40
0.
01

0.
01

11
57
.4

31
19

0.
00

0.
00

40

20
σ
1

1.
64

4.
27

82
4.
0

26
58

0.
00

0.
00

10
35
.5
5

67
.1
4

9,
55
6,
52
7.
9

18
,5
22
,6
44

0.
00

0.
00

10

σ
2

2.
84

19
.9
9

16
39
.6

11
,8
20

0.
00

0.
00

10
14
.0
7

34
.6
9

3,
55
3,
62
8.
2

9,
09
4,
59
9

0.
00

0.
00

10

σ
3

4.
38

38
.0
5

35
08
.0

31
,3
89

0.
00

0.
00

10
5.
95

16
.5
6

1,
27
6,
56
0.
2

3,
74
5,
56
7

0.
00

0.
00

10

σ
4

3.
59

13
.3
0

98
5.
1

33
51

0.
00

0.
00

10
30
.6
4

56
.1
4

7,
43
9,
53
8.
0

14
,4
84
,0
92

0.
00

0.
00

10

20
3.
11

38
.0
5

17
39
.2

31
,3
89

0.
00

0.
00

40
21
.5
5

67
.1
4

5,
45
6,
56
3.
6

18
,5
22
,6
44

0.
00

0.
00

40

30
σ
1

3.
83

19
.0
5

71
5.
9

42
12

0.
00

0.
00

10
90
0.
00

90
0.
00

13
3,
61
6,
54
0.
3

16
7,
66
2,
46
1

1.
45

4.
91

0

σ
2

82
.6
5

65
5.
98

50
,2
81
.3

46
7,
90
6

0.
00

0.
00

10
90
0.
00

90
0.
00

13
3,
30
4,
71
7.
2

14
4,
45
2,
85
1

1.
27

3.
58

0

σ
3

16
.0
6

13
6.
41

73
53
.7

67
,2
90

0.
00

0.
00

10
90
0.
00

90
0.
00

12
9,
63
7,
40
9.
5

14
5,
35
8,
43
5

0.
14

1.
05

0

σ
4

90
.9
0

30
7.
28

11
,2
55
.6

35
,8
81

0.
00

0.
00

10
90
0.
00

90
0.
00

12
6,
36
2,
35
3.
9

13
9,
36
9,
51
6

2.
16

5.
35

0

30
48
.3
6

65
5.
98

17
40
1.
6

46
,7
90
6

0.
00

0.
00

40
90
0.
00

90
0.
00

13
0,
73
0,
25
5.
2

16
7,
66
2,
46
1

1.
26

5.
35

0

40
σ
1

61
9.
85

90
1.
11

40
,8
24
.5

71
,2
68

0.
13

0.
63

6
90
0.
00

90
0.
00

10
0,
20
0,
93
1.
0

12
1,
94
7,
52
6

5.
83

9.
06

0

σ
2

54
7.
41

90
0.
93

52
,1
05
.6

15
1,
85
7

0.
18

0.
99

6
90
0.
00

90
0.
00

82
,9
62
,7
83
.4

89
,4
54
,9
46

4.
25

8.
09

0

σ
3

49
9.
44

90
0.
19

80
,4
44
.0

16
5,
19
6

0.
08

0.
51

7
90
0.
00

90
0.
00

88
,6
61
,7
88
.3

96
,7
50
,2
60

2.
18

4.
75

0

σ
4

84
1.
06

90
5.
80

25
,9
43
.0

53
,9
33

0.
93

3.
11

5
90
0.
00

90
0.
00

83
,0
33
,8
65
.0

96
,5
02
,9
79

5.
04

8.
44

0

40
62
6.
94

90
5.
80

49
,8
29
.3

16
5,
19
6

0.
33

3.
11

22
90
0.
00

90
0.
00

88
,7
14
,8
41
.9

12
1,
94
7,
52
6

4.
33

9.
06

0

123

Journal of Scheduling

Table 10 Comparison
(GAP = 100 · (UB−OPT)/OPT)
between CG − UB and real
optima with b = 10

Param Gap (%)

n σ Avg Worst Best

10 σ1 0.00 0.00 0.00

σ2 0.39 3.89 0.00

σ3 0.00 0.00 0.00

σ4 0.22 1.13 0.00

10 0.15 3.89 0.00

20 σ1 0.26 0.63 0.00

σ2 0.44 1.54 0.00

σ3 0.01 0.14 0.00

σ4 0.74 3.12 0.00

20 0.36 3.12 0.00

30 σ1 0.08 0.73 0.00

σ2 0.16 0.68 0.00

σ3 0.01 0.03 0.00

σ4 0.78 2.11 0.00

30 0.26 2.11 0.00

40 σ1 0.30 0.92 0.01

σ2 0.33 0.99 0.00

σ3 0.11 0.51 0.00

σ4 1.32 3.11 0.25

40 0.51 3.11 0.00

than half of the 40-job instances, with optimality gapsmostly
below 1%.

5 Final remarks

In this paper, column generation techniques for solving
the 1|p − batch, s j ≤ b| ∑C j problem have been explored,
generalizing such techniques to problems with parallel
machines. The exponential size model (13)–(16), handled
by means of column generation, allows one to find—to
the authors’ knowledge—the tightest known lower bound
for 1|p − batch, s j ≤ b| ∑C j . Embedded in a simple price
and branch approach, it achieves high-quality solutions for
instances up to 100 jobs in size, with certified optimality
gaps. Thus, it can be claimed that model (13)–(16) is strong:
its relaxation gives a sharp bound, and the columns generated
can be effectively composed into high-quality feasible solu-
tions. The comparison with state-of-the art (meta)heuristics
like HMMAS is admittedly problematic because of the lack
of available code and instances, but the price and branch
heuristic is, in the authors’ view, at least as accurate as the
state-of-the-art heuristics, and faster and simpler,, since it
mostly relies on a LP/MILP solver, with the addition of
some ad hoc code. Embedded in an exact algorithm, the
new lower bound allows us to extend the size of solvable

Table 11 Results for CG − UB
and CG − LB with b = 50 and
σ = σ5 considering
m = {1, 2, 3, 5} parallel
machines

Param Times (s) Gap (%) CG − LB/PR

n m CG-LB CG-UB Avg Worst Best Avg Min Max Opt

20 1 0.01 0.03 0.88 3.19 0.00 1.27 1.16 1.39 2

2 0.01 0.04 0.66 2.95 0.00 1.26 1.15 1.36 4

3 0.01 0.11 0.70 3.20 0.00 1.26 1.16 1.34 4

5 0.02 0.12 0.50 1.51 0.00 1.28 1.18 1.36 4

40 1 0.04 0.52 0.90 1.51 0.00 1.23 1.19 1.29 1

2 0.05 0.56 0.74 1.50 0.00 1.22 1.19 1.27 1

3 0.11 0.97 0.64 1.39 0.00 1.22 1.18 1.26 1

5 0.21 1.32 0.55 1.26 0.00 1.22 1.18 1.25 2

60 1 0.16 3.30 0.77 1.35 0.10 1.19 1.16 1.22 0

2 0.26 1.58 0.51 0.90 0.12 1.18 1.16 1.21 0

3 0.43 3.75 0.54 1.24 0.08 1.18 1.16 1.21 0

5 0.83 4.79 0.46 0.79 0.07 1.18 1.15 1.21 0

80 1 0.57 19.06 0.61 1.15 0.18 1.17 1.15 1.20 0

2 0.79 17.68 0.53 1.10 0.19 1.17 1.15 1.20 0

3 1.15 33.10 0.50 0.97 0.15 1.17 1.15 1.19 0

5 1.53 23.49 0.52 0.98 0.19 1.17 1.15 1.19 0

100 1 1.20 22.58 0.54 0.86 0.34 1.16 1.12 1.19 0

2 1.64 48.68 0.50 0.81 0.30 1.16 1.12 1.18 0

3 2.92 41.17 0.45 0.79 0.26 1.15 1.12 1.18 0

5 3.54 64.40 0.47 0.82 0.25 1.15 1.12 1.18 0

Time limit for CG − UB set to 60 s for the single-machine case, and to 180 s for the multiple-machine cases

123

Journal of Scheduling

1|p − batch, s j ≤ b| ∑C j instances towards 40 jobs. Hav-
ing available all optimal solutions for the single-machine
problems up to 40 jobs, the actual relative error of the
CG − UB heuristic on such instances can be seen to be
even lower than the figures estimated in the experiments of
Sect. 4.1—see Table 10.

Although all the random distributions for job data men-
tioned in the literature were used in the tests, the interested
reader might be worried about the relatively narrow distribu-
tions for job sizes given in classes σ1, . . . , σ4. Hence, some
tests were performed with capacity b = 50 and a new class
σ5, with a wider distribution of s j ∈ [1, 50]. The results
of CG − UB on such instances for the single- and parallel-
machine cases as well are summarized in Table 11, showing
that CG − UB still handles such instances within practical
time limits, guaranteeing narrow optimality gaps.

The new model relies on Property 1 in order to express
the linear objective function by means of “positional” coeffi-
cients. Property 2 is crucial for developing an efficient pricing
procedure. The approach is flexible enough to be extended
to problems with parallel machines with very limited effort,
while it is probably not simple to extend it to weighted
∑

w jC j objectives.

Acknowledgements This work has been partially supported by “Min-
istero dell’Istruzione, dell’Universitá e della Ricerca” Award “TESUN-
83486178370409 finanziamento dipartimenti di eccellenza CAP. 1694
TIT. 232 ART. 6”.

Funding Open access funding provided by Universitá degli Studi di
Torino within the CRUI-CARE Agreement.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows:
Theory, algorithms, and applications. Prentice-Hall Inc.

Azizoglu, M., & Webster, S. (2000). Scheduling a batch processing
machinewith non-identical job sizes. International Journal of Pro-
duction Research, 38(10), 2173–2184.

Beldar, P., & Costa, A. (2018). Single machine batch processing
problem with release dates to minimize total completion time.
International Journal of Industrial Engineering Computations,
9(3), 331–348.

Cabo, M., Possani, E., Potts, C. N., & Song, X. (2015). Split-merge:
Using exponential neighborhood search for scheduling a batching
machine. Computers and Operations Research, 63, 125–135.

Cachon, G., & Terwiesch, C. (2012).Matching supply with demand: An
introduction to operations management. McGraw-Hill Education.

Damodaran, P., Kumar Manjeshwar, P., & Srihari, K. (2006). Minimiz-
ing makespan on a batch-processing machine with non-identical
job sizes using genetic algorithms. International Journal of Pro-
duction Economics, 103(2), 882–891.

Desrosiers, J., & Lübbecke, M. E. (2011). Branch-price-and-cut algo-
rithms.

Dupont, L., &Dhaenens-Flipo, C. (2002).Minimizing themakespan on
a batch machine with non-identical job sizes: An exact procedure.
Computers and Operations Research, 29(7), 807–819.

Foster, B. A., & Ryan, D.M. (1976). An integer programming approach
to the vehicle scheduling problem. Operational Research Quar-
terly (1970–1977), 27(2), 367–384.

Graham, R., Lawler, E., Lenstra, J., & Rinnooy Kan, A. (1979).
Optimization and approximation in deterministic sequencing and
scheduling: a survey. In P. Hammer, E. Johnson, &B. Korte (Eds.),
Discrete optimization II, volume 5 of annals of discrete mathemat-
ics (pp. 287–326). Elsevier.

Jia, Z., Zhang, H., Long, W., Leung, J. Y., Li, K., & Li, W. (2018). A
meta-heuristic for minimizing total weighted flow time on parallel
batchmachines.Computers and Industrial Engineering, 125, 298–
308.

Jolai Ghazvini, F., & Dupont, L. (1998). Minimizing mean flow times
criteria on a single batch processing machine with non-identical
jobs sizes. International Journal of Production Economics, 55(3),
273–280.

Kellerer, H., Pferschy, U., & Pisinger, D. (2004). Knapsack problems.
Kosch, S., & Beck, J. C. (2014). A new mip model for parallel-batch

scheduling with non-identical job sizes. In H. Simonis (Ed.), Inte-
gration of AI and OR techniques in constraint programming (pp.
55–70). Springer International Publishing.

Li, S. (2017). Approximation algorithms for scheduling jobs with
release times and arbitrary sizes on batch machines with non-
identical capacities. European Journal of Operational Research,
263(3), 815–826.

Liu, J., Lin, Z., Chen, Q., & Mao, N. (2016). Controlling delivery and
energy performance of parallel batchprocessors in dynamic mould
manufacturing. Computers & Operations Research, 66, 116–129.

Malapert, A., Guéret, C., & Rousseau, L. (2012). A constraint program-
ming approach for a batch processing problem with non-identical
job sizes.European Journal ofOperationalResearch, 221(3), 533–
545.

Muter, I. (2020). Exact algorithms to minimize makespan on single and
parallel batch processing machines. European Journal of Opera-
tional Research, 285(2), 470–483.

Mönch, L., Fowler, J. W., & Mason, S. J. (2012). Production plan-
ning and control for semiconductor wafer fabrication facili-
ties: Modeling, analysis, and systems, volume 52 of operations
research/computer science interfaces series. Springer Science &
Business Media.

Ozturk, O. (2020). A truncated column generation algorithm for the
parallel batch scheduling problem to minimize total flow time.
European Journal of Operational Research, 286(2), 432–443.

Ozturk, O., Begen, M. A., & Zaric, G. S. (2017). A branch and
bound algorithm for scheduling unit size jobs on parallel batching
machines to minimize makespan. International Journal of Pro-
duction Research, 55(6), 1815–1831.

Ozturk, O., Espinouse, M.-L., Mascolo, M. D., & Gouin, A. (2012).
Makespan minimisation on parallel batch processing machines
with non-identical job sizes and release dates. International Jour-
nal of Production Research, 50(20), 6022–6035.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Journal of Scheduling

Rafiee Parsa, N., Karimi, B., & Husseinzadeh Kashan, A. (2010). A
branch and price algorithm to minimize makespan on a single
batch processing machine with non-identical job sizes.Computers
and Operations Research, 37(10), 1720–1730.

Rafiee Parsa, N., Karimi, B., & Moattar Husseini, S. M. (2016). Min-
imizing total flow time on a batch processing machine using a
hybrid max–min ant system. Computers and Industrial Engineer-
ing, 99, 372–381.

Rafiee Parsa, N., Keshavarz, T., Karimi, B., & Moattar Husseini, S. M.
(2019). A hybrid neural network approach to minimize total com-
pletion time on a single batch processing machine. International
Transactions of Operational Research (in press).

Uzsoy, R. (1994). Scheduling a single batch processing machine
with non-identical job sizes. International Journal of Production
Research, 32(7), 1615–1635.

Wang, H. (2011). Solving single batch-processing machine problems
using an iterated heuristic. International Journal of Production
Research, 49(14), 4245–4261.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Column generation for minimizing total completion time in a parallel-batching environment
	Abstract
	1 Introduction
	2 Single-machine models
	2.1 A new problem formulation
	2.2 Continuous relaxation for the new graph-based formulation: column generation
	2.3 Heuristic procedure: price and branch
	2.4 Exact approach: branch and price

	3 Parallel-machine models
	4 Computational results
	4.1 Evaluation of the heuristic algorithms
	Single machine
	Parallel machines

	4.2 Evaluation of the branch and price approach

	5 Final remarks
	Acknowledgements
	References

