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Abstract. In this paper, we explore how MDP can be used as the framework to
design and develop an Intelligent Decision Support System/Recommender Sys-
tem, in order to extend human perception and overcome human senses limitations
(because covered by the ADS), by augmenting human cognition, emphasizing
human judgement and intuition, as well as supporting him/her to take the proper
decision in the right terms and time.

Moreover, we develop Human-Machine Interaction (HMI) strategies able
to make “transparent” the decision-making/recommendation process. This is
strongly needed, since the adoption of partial automated systems is not only con-
nected to the effectiveness of the decision and control processes, but also relies
on how these processes are communicated and “explained” to the human driver,
in order to achieve his/her trust.

Keywords: Intelligent decision support system · Recommender system ·
Autonomous driving · Markovian decision process

1 Introduction

Autonomous Vehicles (AVs) arise as a technological solution to mitigate the shortcom-
ings of manual driving: reduction of human-caused accidents and the realization of
a more efficient driving task in terms of energy consumption, traffic flow and driver’s
workload. Under this perspective, AVs are expected to fundamentally change road trans-
port and improve life quality. In fact, the automation of vehicles has been identified as
one major enabler to master the Grand Societal Challenges “Individual Mobility” and
“Energy Efficiency” and highly automated driving functions (ADF) are one major step
to be taken.

However, this technology is not mature enough yet for massive implementation and,
in addition, it can bring to specific side-effects. In particular, the automation of the
dynamic driving task removes humans from the control loop, leaving to the driver the
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monitoring loop. If we consider the Skills, Rules, Knowledge framework of Rasmussen
inmanual operation of a vehicle [1],we can say thatmoving from the skill-based behavior
to the rule-based behavior up to the knowledge-based behavior makes the workload and
the probability of errors more likely to increase (Fig. 1).

Fig. 1. SRK framework, including the use of ADFs in the driving task.

This is exactly the risk of Automated Driving Systems (ADSs), where the first two
lower levels are performed by the system, leaving the upper level (namely, knowledge-
based behavior) to humans, indeed characterized by high workload and high probability
of error. Under this perspective, there is also the risk that humans lose some skills, thus
fundamental changes can occur to what humans are expected to learn.

Especially as machines acquire capabilities to learn deeply and actively from data
[2], adaptation and personalization to human needs shall be considered. In this context,
intelligent agents should be able to think and behave in ways that support humans,
by providing personalized, adaptive, responsive and proactive services in a variety of
settings and scenarios.

The European ECSEL research project PRYSTINE realizes Fail-operational Urban
Surround perceptION (FUSION)1 based on robust Radar and LiDAR sensor fusion and
control functions, in order to enable safe automated driving in urban and rural environ-
ments. With reference to the latest innovations of the PRYSTINE project, in this paper,
we explore how an Intelligent Decision Support System (IDSS) can be designed and
developed, in order to extend human perception and overcome human senses limitations
(because covered by the ADS), by augmenting human cognition, emphasizing human
judgement and intuition, as well as supporting him/her to take the proper decision in
the right terms and time. A critical aspect needed to design adaptive systems is the
decision-making task, which has to weight several possibly conflicting data sources in

1 For more information, see the website: https://prystine.eu/.

https://prystine.eu/
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order to decide a safe driving plan. The theory of Markov Decision Processes (MDPs)
[3] provides the standard semantic foundation for a wide range of problems involving
decision-making tasks. Indeed, MDP formalism allows a modeler to specify a stochastic
decision process bymeans of a set of states S, in which a decisionmaker has to choose an
action from a set of available actions Act. Then, the process randomly evolves according
to a specified transition probability associated with the selected action, and it returns
to the decision maker a reward depending on the chosen action and by the source and
destination states.

Under this perspective, the supervisor agent based on MDP is a kind of recommen-
dation system (RS), which aims at predicting if an item would be useful to a user based
on given information (following the definition of [7] and [8]). In this sense, it can solve
the information overload problem, by suggesting the proper action and personalizing
the user experience, delivering accurate, personalized recommendations to users (i.e.,
drivers in our case), according to some criteria, such as safety and preferences. In fact,
it can be challenging for a user to filter through all the available information and take
away essential aspects information overload or, for a system, to decide about the optimal
action to take, satisfying different and, sometime, contradictory criteria [9].

Moreover, we develop Human-Machine Interaction (HMI) strategies able to make
“transparent” the aforementioned decision-making process. This is strongly needed,
since the adoption of partial automated systems is not only connected to the effective-
ness of the decision and control processes, but also relies on how these processes are
communicated, and “explained” to the human driver, in order to achieve his/her trust.
This is a crucial topic, since it is common opinion that the HMI has a crucial role in the
adoption of partially and highly automated vehicles [10]. The main challenge related to
this topic relies on the responsibility of the HMI as “enabler of the cooperation”, i.e. on
being the tool that allows the vehicle to explain its intentions and, at the same time, allows
the driver to provide inputs and act as decision-maker in the driving process. Recent stud-
ies have shown the relevance of providing the correct type and amount of information
and the impact of these design choices on the improvements of the decision-making
capabilities [11]. At the same time, different experimental studies have demonstrated
the relevance of the approach focus on increasing the transparency of the automation
[12].

The HMI proposed in this paper will be a multimodal state-adaptive system, able
to tailor the interaction modality according to the outcome of the intelligent decision
maker and the cognitive (as well as behavioral) state of the driver. The proposed system
will focus on the design and implementation of the perception-decision-action (plus
interaction) cycle in common traffic situations that, even if representing most of the
driving task, are currently less explored in industry and research.

2 The Supervisor Agent as an Intelligent Decision Support System

Consider now an ADS, which applies appropriate controls to the vehicle (both lateral
and longitudinal) so that collisions may be avoided. When a collision is imminent, there
is no doubt about what to do: the system has to react to an immediate danger (following
the “sensori-motor” level of Piaget [4] or the “Control level” in the hierarchical structure
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of Janssen and Michon [5]) by braking as hard as possible to bring the host-vehicle in a
safety zone. This is exactly what nowadays ADAS applications do.

When there is a normal (i.e., safe) driving situation, it is less clear what the optimal
actions are. For example, when approaching a slower car, should the host-vehicle follow
the one ahead, or change lane for an overtakingmaneuver? Fromone side, a car-following
decision can be the “safest” solution, but on the other side it can make the trip longer
and can waste time. Therefore, a decision system that supports the human driver and
takes the optimal actions can really help. In particular, deciding the optimal action to
perform, or what corrective controls to exercise in order to avoid a possible collision, is
essentially a problem of “credit assignment”: supposing an outcome is a consequence
of a sequence of decisions. In other words, the credit assignment problem calls for a
system to associate decisions to their long-term outcomes. One of the most important
theories for formulating and solving credit assignment in sequential decision-making
problems is the aforementioned MDP theory [6]. In modelling a problem as an MDP,
we contemplate a decision-maker who is required to take decisions over a sequence of
discrete time periods.

2.1 Use-Cases and Scenarios of Interest

In the PRYSTINE project, all the SW and HW components are implemented and inte-
grated in some demonstrators. In particular, the IDSS described in this paper is included
in one project application for the passenger car, employing PRYSTINE’s fail-operational
autonomous driving functions (ADFs) and the related sensor data fusion (SDF) from
a wide range of sensors (Radar, LiDAR, camera, V2X communication and feedback
devices).

Fig. 2. Maserati prototype vehicle used by the PRYSTINE Project. The car is equipped with a
range of cameras, radars, communication sensors and feedback devices, serving as a testbed for
both level 2 and level 3 ADFs.

Current ADSs rely on SDF to identify the driving scenario in the vehicle proximity
(i.e., in the field of view/range of sensors), possibly extended by information through
V2X communication. Data from heterogeneous sources/sensors are fused to provide an
overview of traffic in the surroundings of the vehicle. This information can be used to let
the ADS anticipating the evolution of traffic, providing a more comfortable and efficient
driving performance, especially in urban scenarios.
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In the project, three use-cases (UCs) are developed: the “Traffic Light Time-To-
Green”, “Trajectory Recognition and VRU” and the “Emergency Lateral Lane Stop”.
For the application of our IDSS, based on MDP framework, we started from the third
one, which is sketched in the following figure:

Fig. 3. Sketch of the UC3, named emergency lateral lane stop, specific for different types of
scenarios.

In this scenario, the AV is travelling at a given speed, when it approaches a slower
vehicle. In this case, the decision-maker has to define the next optimal action: is it better
to follow the car ahead, or to overtake it? It is worth to noting here that the developed
IDSS can either inform the driver about the best maneuver to do or intervene on the
vehicle actuators to perform the same maneuver. Of course, the final decision depends
on some factors, such as the safety of the action (e.g., if another vehicle is already
overtaking the AV from the left adjacent lane, the overtaking is not considered or at least
delayed), the optimization of the travelling time (i.e., maybe the car-following decision
can minimize fuel consumption but make the travel too much longer) and even from the
cognitive status of the driver (e.g., s/he is distracted or attentive).

The inputs of the system are related to the perception of the external environment,
constituted by the Radar (front/blind spot), front camera, ultrasonic sensors and LiDAR.
In addition, the system considers the use of a Driver Monitoring System (DMS), which
detects the driver status to understand if s/he is still capable to control the vehicle, or
alternatively, if s/he is able to get back into the control-loop in case of a “take over
request” (TOR) from the system. If a critical case is detected, a safe-stop maneuver
is necessary (e.g., the driver is impaired for drowsiness). In details, the DMS includes
biometric devices and dynamic vehicle algorithm, to detect drowsiness, cognitive load
and visual distraction.

The output is represented by the longitudinal/lateral controls of the vehicle, to avoid
potential collision, to act an overtaking and, if necessary, to perform a safe stopmaneuver
(emergency lights activation and stop in the emergency lane, if possible).

As it is now, in the current ADAS/ADS applications (even at prototypical level),
the choice between an overtaking and a car-following action can be conflictual and not
smooth (if the “adaptive cruise control” and the “support to overtaking” functions do not
communicate each other); moreover, if the driver is not responding (as aforementioned,
due to drowsiness, for example) to a TOR after some time (because the system reached
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the limits of its Operational Design Domain, or ODD in short), the AV “simply” stops in
the current driving lane. Thanks to the super-visor agent, which “knows” the situation,
the most appropriated action is taken: with reference to the previous example, the system
can decide to minimize the travelling time and, given that such a decision is safe and the
driver is attentive, an overtaking maneuver is initiated. On the other way, if the driver
is impaired, after checking that the emergency lane is present, a safe lane change is
performed.

2.2 The System Architecture and Its Main Components

Following the “Perception Cognition Action” (PCA) framework, the following figure
shows the overall system architecture and related components (Fig. 4):

Fig. 4. Sketch of the logical architectural scheme in the PRYSTINE system.

The first layer, Perceive, includes both the sensing and the perception parts, where
the raw information coming from the sensors are elaborated and processed, in order to
derive a detailed picture of the external scene. Of course, in case a driving simulator is
used, this is done automatically in the simulation.

Then, such an information is assessed in the second layer, Think/Decide, which
includes a module (named situation awareness) for the prediction of the dynamic evo-
lution of the external scene and the monitoring of the internal scene (namely, the status
of the driver, what s/he is doing, and so on). The Decision-maker module that we have
developed, is part of this layer; considering the three parts in which it is divided, we
focused on the behavioral planning: our system can manage the events and the related
maneuver, identifying the optimal actions to do.
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This output, third layer (Act), can be provided directly to the user (in case of a
Recommender system in ADAS applications) or to the vehicle actuators (in case of AD
applications). In both situation a dedicated HMI is necessary: to support the driver and
help to select the best solution in the first option; to inform the driver about what the
systems is doing and what is expected from him/her in the second option.

3 Implementation of the IDSS

In this section, we first recall the general definition of MDP. Then, we propose an MDP
for the considered use case (overtaking maneuver). The subsequent parts of the section
are dedicated to present the proposed HMI concept and implementation.

3.1 MDP Definition

AMDP is a control or decision-making process, finalized at obtaining a desired behavior
of a system of interest. The system of interest is often called the process to control or
also the plant.

Mathematically, a MDP is defined as a 4-tuple (S,A,P,R), where:
S is the set of all plant states of interest. S is called the state space.
A is the set of actions that can be performed at a given time instant.
P is the state probability transition. In particular, given two states S1,S2 ∈ S and an

action a ∈ A, P(a,S1,S2) is the probability that the action a yields a transition from state
S1 to state S2.

R is the immediate reward. It is possible to assign a reward to promote desire state
transitions (positive reward) and penalize other transitions (negative reward).

3.2 The Super-Visor Agent Implementation

As discussed in Sect. 2.1, three UCs are developed in the PRYSTINE project. For the
application of our IDSS-MDP framework, we consider the third one, sketched in Fig. 2.
In this scenario, the AV is traveling at a given speed, when it approaches a slower vehicle
in the same lane, and the decision-maker has to define the next action. In the following,
we formally introduce all the quantities that define the proposed MDP, that is the core
of our IDSS.

Road scenario
Road, 3 lanes, from right to left:

• Lane 0: emergency lane.
• Lane 1: normal traveling lane.
• Lane 2: overtake lane.

Vehicles:

• AV: autonomous vehicle, initially in lane 1.
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• PV: vehicle preceding AV, always in lane 1.
• OVs: other vehicles but AV and PV, possibly traveling in lane 1 and/or lane 2.

Main variables:

• vx: longitudinal speed of AV.
• vm: maximum longitudinal speed allowed on lanes 1 and 2.
• vr ≤ vm: AV desired speed.
• vp < vr ≤ vm: longitudinal speed of PV.

MDP states
We consider a road scenario in a suitable neighborhood of AV.

AV states:

• L0: AV stopped in lane 0, vx = 0.
• L1: AV lane 1 keeping, vx = vp (before overtaking), vx = vr (after overtaking).
• L2: AV lane 2 keeping, vx = vm.

Lane 1 states:

• F1: no PV, no OVs in lane 1.
• P1: PV in lane 1, no OVs in lane 1.
• O1: PV and OVs ahead of PV in lane 1.

Lane 2 states:

• F2: no OVs in lane 2.
• O2: OVs in lane 2.

Driver States:

• DA: healthy driver.
• DD: impaired driver.

The full scenario state is S = (SE, SL1, SL2, SD) ∈ S, where SE ∈ {L0,L1,L2},
SL1 ∈ {F1,P1,O1}, SL2 ∈ {F2,O2}, SD ∈ {DA,DD}. The state space S is defined as
S .= {L0,L1,L2}×{F1,P1,O1}×{F2,O2}×{DA,DD}. The total number of possible
states is card(S) = 3 × 3 × 2 × 2 = 36. For the sake of simplicity, we define a smaller
number of aggregate states, allowing us to capture the relevant situations that may occur.
In the following, the logic symbols ∀ (for all, for any), ∨ (or), ∧ (and) will be used.

Aggregate States:

• S0
.= (L0,∀,∀,∀): AV stopped in lane 0, end state (12 non-aggregate states).
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• S11
.= {(L1,F1,∀,∀), (L1,P1,F2,DD), (L1,P1,O2,∀), (L1,O1,∀,∀)}: AV trav-

eling in lane 1, overtaking not possible/not useful (11 non-aggregate states).
• S12

.= (L1,P1,F2,DA): AV traveling in lane 1, overtaking possible (1 non-aggregate
state).

• S21
.= {(L2,P1,∀,∀), (L2,O1,∀,∀)}: AV traveling in lane 2, re-entry in lane 1 not

possible (8 non-aggregate states).
• S22

.= (L2,F1,∀,∀): AV traveling in lane 2, re-entry in lane 1 possible (4 non-
aggregate states).

The corresponding state space is SA
.= {S0, S11, S12, S21, S22}.

MDP Actions
We distinguish between two kinds of actions: inputs, i.e., actions decided by the MDP
system (or by the driver), and events, i.e., actions coming from the external world,
independent of the MDP.

Inputs:

• llc: left lane change.
• rlc: right lane change.

Events:

• vea: one or more OVs arrive in lane 1 ahead of PV and/or in lane 2, impeding to
change lane.

• vem: all OVs in lane 1 and/or in lane 2 which impede to change lane get sufficiently
far from AV.

• dba: driver becomes healthy.
• dbd : driver becomes impaired.

Aggregate Events:

• ovn = vea ∨ dbd : overtaking becomes impossible.
• ovy = (vem ∧ (dba ∨ DA) ∨ (P1 ∧ F2 ∧ dba): overtaking becomes possible.
• rey = vem: re-entry becomes possible.

The set of input is U
.= {llc, rlc}, the set of aggregate events is E .= {ovn, ovy, rey}

and the overall set of actions is A
.= U ∪ E.

MDP Probability Functions
The state transition probability functions for the two input actions llc and rlc are as
follows:

P(llc, Sa, Sb) =
⎧
⎨

⎩

po, Sa = S12, Sb = S21
1 − po, Sa = S12, Sb = S12
0, otherwise
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P(rlc, Sa, Sb) =
⎧
⎨

⎩

0.5, Sa = S22, Sb = S11
0.5, Sa = S22, Sb = S12
0, otherwise.

MDP Graph
The MDP graph is shown in the figure below. It can be noted that, for each state, at most
one action is defined. The MDP thus corresponds to a Markov Chain and no rewards
need to be defined. In more complicated scenarios, rewards can be used to provide the
MDP with more flexibility and capability to deal with different situations (Fig. 5).

Fig. 5. MDP graph. Where not indicated, the transition probability associated with an edge is 1.

3.3 The Human-Machine Interface (HMI) Implementation

In the context mentioned in Chapter 1, the main goal of a Human-Machine Interaction
system is to maximize the effectiveness of the cooperation between the human and the
automated agent. In order to do that, this system shall be able to be easily understood
by the driver, to increase his/her awareness about the situation, and (most important) to
be trusted.

The HMI described in this paper is designed to exploit the potential of the Supervisor
Agent, i.e., to easily represent its mental model in order to:



A Supervisor Agent-Based on the Markovian Decision Process Framework 361

• Provide effective information/explanation when decisions are taken by the system.
• Encourage the cooperation when decisions and actions are shared between the human
and the automated agents.

• Avoid unnecessary informationwhen decisions and actions are delegated to the human
driver, in order to avoid an overload in terms of cognitive and physical resources.

The HMI is deployed in a multimodal full-digital instrument cluster. It includes all
relevant information related to the driving task (e.g., current speed, gear, automation
mode etc.) as well as evidence about the driver’s state (e.g. if he/she is distracted) and
the action required to achieve an optimal driving (i.e. the suggested behavior). The HMI
has been designed following the theories related to the negotiation-based interaction
approach [13]. This means that the main goal of the HMI is to “explain rather than
warn”, in order to cooperate with the driver in achieving a pleasant, comfortable and
safe drive.

According to the decision made by the supervisor agent, the HMI will inform the
driver about what the vehicle expects from him/her, and provides messages related to
the reasons that lead to the request of interaction. This is provided through:

• Graphical explanations provided through interactive 3D representation at the center
of the HMI, where the road environment as well as the surrounding road actors are
reconstructed (e.g., from digital maps plus vehicle’s sensors) and displayed through
a stylized representation

• Messages provided through audio signals and text.

The following figure, for example, shows a situation where the driver and the
automation are sharing the vehicle control, and the car informs the driver that they
are approaching a vehicle, that will be followed (Fig. 6).

Fig. 6. Sketch of HMI for a control sharing between human driver and automated system.

The following figure shows a situation where the automation is engaged and, due
to a combination of sensory limitation – i.e., lack of visibility - and the implementation
of a cautious behavior, it actually informs that driver that the “car following” (CF) will
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results, unless the driver would intentionally override the system to perform a manual
overtake. In this case, the 3D representation is highly focused on explaining the reasons
behind the behavior (i.e., the visibility constraint) rather than the actual action requested
to the driver, that is relegated to a small message on the upper right part of the screen.
This design choice relies on the implicit interactions [14], since it is aimed at fostering
a behavior rather than explicitly force a reaction (Fig. 7).

Fig. 7. Sketch of HMI informing driver about the action selected by the system (CF maneuver in
this case).

Finally, the figure below shows the case where an automatic emergency maneuver
is actuated by the vehicle; in this case, the explanation is provided before the actual stop
of the vehicle, to allow the human driver to take back the control before the stop of the
car. The cooperation here is provided showing the upcoming decision/behavior of the
automation, i.e., to stop in the emergency lane (Fig. 8).

Fig. 8. Sketchof theHMI that informs thedriver about the reasonof the actuation for an emergency
maneuver.
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4 Data Analysis and Results

In the considered scenario, the autonomous vehicle (AV) is travelling at a speed of
70 km/h, when it approaches a preceding vehicle (PV), travelling at the lower speed of
45 km/h in the same lane, see Fig. 3 (AV = V1, PV = V2). The decision-maker has
to choose in real-time the action to perform. Note that the IDSS can either inform the
driver about the best maneuver to do or intervene on the vehicle actuators to perform the
same maneuver. In the present case study, we have adopted the second approach, where
the IDSS takes the action, based on what decided by the MDP. One important constraint
that we impose is that the IDSS-MDP module cannot work completely alone: it needs
in any case the driver to be healthy and aware. The following sub-scenarios have been
considered:

Sub-scenario 1. The driver is healthy and aware. The MDP decides to either overtake
or follow the preceding vehicle. Other two vehicles are traveling at a speed of 45 km/h
in the opposite direction on the lane to be used for overtaking.

Sub-scenario 2. At a certain time, the driver becomes impaired. According to the
imposed constraint, the IDSS-MDP module cannot work in a completely autonomous
mode. Hence, after checking that the emergency lane is present, theMDP imposes a safe
right lane change and a stop in the emergency lane.

For both sub-scenarios, two simulations were carried out: one corresponding to a
MDP sporty strategy (po = 1), the other one corresponding to a MDP cautious strategy
(po = 0.1). According to the probability functions defined, the sporty strategy per-
forms an overtaking every time that is possible, while the cautious strategy performs an
overtaking when it is possible but only with probability po.

Fig. 9. Autonomous driving simulator block diagram.
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The simulations were carried out by means of an autonomous driving simulator
developed in MATLAB/SIMULINK. The simulator block diagram is shown in Fig. 9
and is characterized by the following blocks:

ScenarioEvolution: This block generates the road scenario, (roads, vehicles, obstacles)
and computes its evolution over time. Mathematically speaking, it provides the IDSS-
MDP module with the coordinates of all elements that appear in the scenario.

Vehicle: Block describing the vehicle lateral and longitudinal dynamics. The block
is essentially the “Vehicle Body 3DOF Dual Track” model, taken from the MAT-
LAB Vehicle Dynamics Toolbox. The following parameter values were used: lf =
1.2m, lr = 1.6m (lengths of front and rear longitudinal semi-axes), m = 1575 kg
(mass), J = 4000 kgm2 (moment of inertia), cf = 27e3N/rad, cr = 20e3N/rad (front
and rear cornering stiffness coefficients). X is the vehicle state vector, containing the rel-
evant kinematic and dynamic variables (linear and angular positions, linear and angular
velocities), ax is the requested longitudinal acceleration and δ is the commanded steering
angle.

NMPC: Low-level controller, performing trajectory planning, and lateral and longitu-
dinal AV dynamics control. The controller is based on a Nonlinear Model Predictive
Control (NMPC) approach, see, e.g., [15, 16]. NMPC is a general and flexible approach
to nonlinear system control. It allows us to deal with input and trajectory constraints,
and to manage systematically the trade-off between performance and command effort.
The approach is based on two main operations (accomplished at each time step): (i) a
prediction over a given time horizon is performed, using some vehicle model; (ii) the
command input is chosen as the one yielding the “best” prediction (i.e., the prediction
closest to the desired behavior) by means of some on-line optimization algorithm. The
NMPC controller works with a sampling time Ts = 0.05 s.

IDSS-MDP: Intelligent Decision Support System, based on the MDP designed in
Sect. 3.2. This block collects the information coming from the road scenario and the
AV and indicates to the NMPC block the best action to perform at each time step, with a
sampling time Td = 0.5s. Note that the AV consists of the three blocks Vehicle, NMPC
and IDSS-MDP.

The simulation results can be summarized as follows (see also Fig. 10 to Fig. 12).

Simulation 1 (Sub-Scenario 1 and Sporty MDP Strategy). AV (traveling with speed
70 km/h) approaches PV (traveling with speed 45 km/h). Since another vehicle (OV1) is
traveling in the opposite direction, AV reduces its speed, in order to follow PV. As soon
as OV1 has gone, AV overtakes PV. After the overtake, a fourth vehicle (OV2) comes
from the opposite direction, but this does not affect the behavior of AV.

Simulation 2 (Sub-Scenario 1 and Cautious MDP Strategy). AV (traveling with
speed 70 km/h) approaches PV (traveling with speed 45 km/h). Since another vehicle
(OV1) is traveling in the opposite direction, AV reduces its speed in order to follow PV.
Here, the cautious strategy prefers to wait to overtake. In the meanwhile, OV2 comes
from the opposite direction. AV waits also OV2 to move away and then it overtakes PV.
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Simulation 3 (Sub-Scenario 2 and SportyMDP Strategy). When the driver becomes
impaired, AV performs a right lane change and then stops in the emergency lane.

Simulation 4 (Sub-Scenario 2 and CautiousMDP Strategy). Results similar to those
of Simulation 3 (Fig. 11).

Fig. 10. Simulation 1. AV and PV travel upward. The other vehicles travel downward.

Fig. 11. Simulation 2. AV and PV travel upward. The other vehicles travel downward.

To evaluate the performance of the IDSS-DMP strategies in the two sub-scenarios,
the following KPIs have been used:

• KPI1 [s]: Time taken to cover a given distance (450 m).
• KPI2 [s]: Time taken to stop in the emergency lane.
• KPI3 [m/s2]: Root Mean Square (RMS) value of the lateral acceleration.
• KPI4 [m/s2]: RMS value of the longitudinal acceleration. This KPI is clearly related
to the fuel consumption.



366 A. Castellano et al.

Fig. 12. Simulation 3. AV and PV travel upward. The other vehicles travel downward.

The KPI values obtained in the various simulations are reported in Table 1. As
expected, the MDP sporty strategy allows quicker maneuvers but implies larger lateral
and longitudinal accelerations (and thus a higher fuel consumption) with respect to
the cautious strategy. In any case, according to the MDP designed in Sect. 3.2, both
strategies are allowed to overtake only if this maneuver is safe and both of them are able
to command an emergency stop in short times.

Table 1. KPI values obtained in the simulations.

Simulation KPI1 KPI2 KPI3 KPI4

1 20.15 – 1.37 1.69

2 24.6 – 1.23 1.54

3 – 18.8 1.52 2.35

4 – 19.3 1.52 2.35

5 Conclusions

The system we illustrated in this paper, based on MDP framework, can be regarded
as a decision-maker (when applied to ADFs) and even as a recommender tool (when
applied to ADAS). These types of systems are widely used in many fields, to provide
recommendations and suggestions based on some criteria, such as user’s preferences
and styles (see the “sporty strategies” and the “caution strategies” in our simulations),
safety (e.g., no other vehicles are already overtaking the AV in the adjacent lane) and
comfort (avoiding too strong lateral/longitudinal accelerations). With the ever-growing
volume of information online, these systems can be a useful tool to overcome informa-
tion overload, or to suggest a proper action to automation, with the related explanation
to the user about what is happening and why. In literature, there are many types of
recommendation/decision-making systems with different methodologies and concepts.
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Various applications include e-commerce, healthcare, transportation, agriculture, and
media. This paper provided our proposed solutions for an intelligent system supporting
the decision (IDSS) in the context of AD.We defined it as “intelligent”, because it is able
to adapt to the different states of the user (e.g., aggressive/cautious, distracted/attentive,
and so on) and to the external conditions (e.g., the lane for overtaking is free), as well as
because it provides the best actions, in the sense that it satisfies optimal criteria in terms
of travelled time, safety and comfort.

This work is preparatory for the final phase of the PRYSTINE project, in which the
MDP-based IDSS will be integrated and implemented in the project demonstrator, the
prototypeMaserati vehicle (presented in Fig. 2). In particular, we will apply our solution
to the use-case 3, for the emergency lane-change maneuver (described in Fig. 3).

Declarations
Funding. This work was supported by the Electronic Components and Systems for
European Leadership Joint Undertaking (ECSEL), which funded the PRYSTINE project
under Grant 783190.

Conflict of Interest. Authors declares that there are no conflicts of interests.

References

1. Rasmussen, J.: Human errors. A taxonomy for describing human malfunction in industrial
installations. J. Occup. Accid. 4(2–4), 311–333 (1982)

2. Siau, K., Wang, W.: Building trust in artificial intelligence, machine learning, and robotics.
Cutter Bus. Technol. J. 31(2), 47–53 (2018)

3. Puterman, M.L.: Markov Decision Processes. Discrete Stochastic Dynamic Programming.
Wiley, Chichester (2005)

4. Jean Piaget’s Theory and Stages of Cognitive Development, by Saul McLeod, Simply
Psychology. Accessed 2018

5. Michon, J.A.: A critical view of driver behavior models: what do we know, what should we
do? In: Evans, L., Schwing, R.C. (eds.) Human Behavior and Traffic Safety, pp. 485–524.
Springer US, Boston, MA (1986). https://doi.org/10.1007/978-1-4613-2173-6_19

6. Tango, F., Aras, R., Pietquin, O.: Learning Optimal Control Strategies from Interactions with
a PADAS. In: Cacciabue, P.C., Hjälmdahl, Magnus, Luedtke, Andreas, Riccioli, Costanza
(eds.) Human Modelling in Assisted Transportation, pp. 119–127. Springer Milan, Milano
(2011). https://doi.org/10.1007/978-88-470-1821-1_12

7. Ricci, F., Rokach, L., Shapira, B.: Introduction to recommender systems handbook. In: Ricci,
F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 1–35.
Springer, Boston, MA (2011). https://doi.org/10.1007/978-0-387-85820-3_1

8. Fayyaz, Z., Ebrahimian, M., Nawara, D., Ibrahim, A., Kashef, R.: Recommendation systems:
algorithms, challenges, metrics, and business opportunities. Appl. Sci. 10(21), 7748 (2020).
https://doi.org/10.3390/app10217748

9. Beel, J., Langer, S., Genzmehr, M., Gipp, B., Breitinger, C., Nürnberger, A.: Research paper
recommender system evaluation: a quantitative literature survey. In: Proceedings of the Inter-
nationalWorkshop on Reproducibility and Replication in Recommender Systems Evaluation,
Hong Kong, China, 12 October (2013), pp. 15–22 (2013)

10. Carsten, O., Martens, M.H.: How can humans understand their automated cars? HMI prin-
ciples, problems and solutions. Cogn. Technol. Work 21(1), 3–20 (2018). https://doi.org/10.
1007/s10111-018-0484-0

https://doi.org/10.1007/978-1-4613-2173-6_19
https://doi.org/10.1007/978-88-470-1821-1_12
https://doi.org/10.1007/978-0-387-85820-3_1
https://doi.org/10.3390/app10217748
https://doi.org/10.1007/s10111-018-0484-0


368 A. Castellano et al.

11. Sharma, A., et al.: Is an informed driver a better decision maker? a grouped random parameter
with heterogeneity-in-means approach to investigate the impact of the connected environment
on driving behavior in safety-critical situations. Anal. Meth. Accid. Res. 27, 100127 (2020)

12. Castellano, A., et al.: Is your request just this? New automation paradigm to reduce the
requests of transition without increasing the effort of the driver. In: 25th ITSWorld Congress.
Copenhagen, Denmark, vol. 17 (2018)

13. Gowda, N., Ju, W., Kohler, K.: Dashboard design for an autonomous car. In: Adjunct Pro-
ceedings of the 6th International Conference on Automotive user Interfaces and Interactive
Vehicular Applications (2014)

14. Ju,W.: The design of implicit interactions. Synth. Lect. Hum.-Centered Inf. 8(2), 1–93 (2015)
15. Findeisen, R., Allgower, F., Biegel, L.: Assessment and future directions of nonlinear model

predictive control. In: Lecture Notes in Control and Information Sciences. Springer (2007).
https://doi.org/10.1007/978-3-540-72699-9

16. Grune, L., Pannek, J.: Nonlinear model predictive control - theory and algorithms. In: Com-
munications and control engineering. Springer (2011) https://doi.org/10.1007/s12555-011-
0300-6

https://doi.org/10.1007/978-3-540-72699-9
https://doi.org/10.1007/s12555-011-0300-6

	A Supervisor Αgent-Based on the Markovian Decision Process Framework to Optimize the Behavior of a Highly Automated System
	1 Introduction
	2 The Supervisor Agent as an Intelligent Decision Support System
	2.1 Use-Cases and Scenarios of Interest
	2.2 The System Architecture and Its Main Components

	3 Implementation of the IDSS
	3.1 MDP Definition
	3.2 The Super-Visor Agent Implementation
	3.3 The Human-Machine Interface (HMI) Implementation

	4 Data Analysis and Results
	5 Conclusions
	References




