
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Supervisor gent-Based on the Markovian Decision Process Framework to Optimize the Behavior of a Highly
Automated System / Castellano, A.; Karimshoushtari, M.; Novara, C.; Tango, F.. - ELETTRONICO. - 12776:(2021), pp.
351-368. (Intervento presentato al  convegno 15th International Conference on Augmented Cognition, AC 2021, held as
part of the 23rd International Conference, HCI International 2021 nel 2021) [10.1007/978-3-030-78114-9_24].

Original

A Supervisor gent-Based on the Markovian Decision Process Framework to Optimize the Behavior of a
Highly Automated System

Springer postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1007/978-3-030-78114-9_24

Terms of use:

Publisher copyright

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to
Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements,
or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/978-3-030-78114-9_24

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2929672 since: 2021-10-11T17:51:11Z

Springer Science and Business Media Deutschland GmbH



A Supervisor Αgent-based on the Markovian Decision 

Process Framework to Optimize the Behavior of a Highly 

Automated System 

A. Castellano1, M. Karimshoushtari2, C. Novara2, F. Tango3 

1 RE:Lab, 42122 Reggio Emilia, Italy 
2 Politecnico di Torino, 10129 Torino, Italy 

3 Centro Ricerche Fiat, 10043 Orbassano, Italy 

andrea.castellano@re-lab.it, milad.karimshoushtari@polito.it 

carlo.novara@polito.it, fabio.tango@crf.it 

Abstract. In this paper, we explore how MDP can be used as the framework to 

design and develop an Intelligent Decision Support System / Recommender Sys-

tem, in order to extend human perception and overcome human senses limitations 

(because covered by the ADS), by augmenting human cognition, emphasizing 

human judgement and intuition, as well as supporting him/her to take the proper 

decision in the right terms and time. 

Moreover, we develop Human-Machine Interaction (HMI) strategies able to 

make “transparent” the decision-making / recommendation process. This is 

strongly needed, since the adoption of partial automated systems is not only con-

nected to the effectiveness of the decision and control processes, but also relies 

on how these processes are communicated and “explained” to the human driver, 

in order to achieve his/her trust. 

Keywords: Intelligent Decision Support System, Recommender System, Au-

tonomous Driving, Markovian Decision Process. 

1 Introduction 

Autonomous Vehicles (AVs) arise as a technological solution to mitigate the shortcom-

ings of manual driving: reduction of human-caused accidents and the realization of a 

more efficient driving task in terms of energy consumption, traffic flow and driver’s 

workload. Under this perspective, AVs are expected to fundamentally change road 

transport and improve life quality. In fact, the automation of vehicles has been identi-

fied as one major enabler to master the Grand Societal Challenges “Individual Mobil-

ity” and “Energy Efficiency” and highly automated driving functions (ADF) are one 

major step to be taken.  

However, this technology is not mature enough yet for massive implementation and, 

in addition, it can bring to specific side-effects. In particular, the automation of the 

dynamic driving task removes humans from the control loop, leaving to the driver the 

monitoring loop. If we consider the Skills, Rules, Knowledge framework of Rasmussen 
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in manual operation of a vehicle [1], we can say that moving from the skill-based be-

havior to the rule-based behavior up to the knowledge-based behavior makes the work-

load and the probability of errors more likely to increase. 

 

Fig. 1. SRK Framework, including the use of ADFs in the driving task. 

This is exactly the risk of Automated Driving Systems (ADSs), where the first two 

lower levels are performed by the system, leaving the upper level (namely, knowledge-

based behavior) to humans, indeed characterized by high workload and high probability 

of error. Under this perspective, there is also the risk that humans lose some skills, thus 

fundamental changes can occur to what humans are expected to learn. 

Especially as machines acquire capabilities to learn deeply and actively from data 

[2], adaptation and personalization to human needs shall be considered. In this context, 

intelligent agents should be able to think and behave in ways that support humans, by 

providing personalized, adaptive, responsive and proactive services in a variety of set-

tings and scenarios. 

The European ECSEL research project PRYSTINE realizes Fail-operational Urban 

Surround perceptION (FUSION)1 based on robust Radar and LiDAR sensor fusion and 

control functions, in order to enable safe automated driving in urban and rural environ-

ments. With reference to the latest innovations of the PRYSTINE project, in this paper, 

we explore how an Intelligent Decision Support System (IDSS) can be designed and 

developed, in order to extend human perception and overcome human senses limita-

tions (because covered by the ADS), by augmenting human cognition, emphasizing 

human judgement and intuition, as well as supporting him/her to take the proper deci-

sion in the right terms and time. A critical aspect needed to design adaptive systems is 

the decision-making task, which has to weight several possibly conflicting data sources 

in order to decide a safe driving plan. The theory of Markov Decision Processes (MDPs) 

                                                           
1  For more information, see the website: https://prystine.eu/.  
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[3] provides the standard semantic foundation for a wide range of problems involving 

decision-making tasks. Indeed, MDP formalism allows a modeler to specify a stochas-

tic decision process by means of a set of states S, in which a decision maker has to 

choose an action from a set of available actions Act. Then, the process randomly 

evolves according to a specified transition probability associated with the selected ac-

tion, and it returns to the decision maker a reward depending on the chosen action and 

by the source and destination states. 

Under this perspective, the supervisor agent based on MDP is a kind of recommen-

dation system (RS), which aims at predicting if an item would be useful to a user based 

on given information (following the definition of [7] and [8]). In this sense, it can solve 

the information overload problem, by suggesting the proper action and personalizing 

the user experience, delivering accurate, personalized recommendations to users (i.e., 

drivers in our case), according to some criteria, such as safety and preferences. In fact, 

it can be challenging for a user to filter through all the available information and take 

away essential aspects information overload or, for a system, to decide about the opti-

mal action to take, satisfying different and, sometime, contradictory criteria [9].  

Moreover, we develop Human-Machine Interaction (HMI) strategies able to make 

“transparent” the aforementioned decision-making process. This is strongly needed, 

since the adoption of partial automated systems is not only connected to the effective-

ness of the decision and control processes, but also relies on how these processes are 

communicated, and “explained” to the human driver, in order to achieve his/her trust. 

This is a crucial topic, since it is common opinion that the HMI has a crucial role in the 

adoption of partially and highly automated vehicles [10]. The main challenge related to 

this topic relies on the responsibility of the HMI as “enabler of the cooperation”, i.e. on 

being the tool that allows the vehicle to explain its intentions and, at the same time, 

allows the driver to provide inputs and act as decision-maker in the driving process. 

Recent studies have shown the relevance of providing the correct type and amount of 

information and the impact of these design choices on the improvements of the deci-

sion-making capabilities [11]. At the same time, different experimental studies have 

demonstrated the relevance of the approach focus on increasing the transparency of the 

automation [12]. 

The HMI proposed in this paper will be a multimodal state-adaptive system, able to 

tailor the interaction modality according to the outcome of the intelligent decision 

maker and the cognitive (as well as behavioral) state of the driver. The proposed system 

will focus on the design and implementation of the perception-decision-action (plus 

interaction) cycle in common traffic situations that, even if representing most of the 

driving task, are currently less explored in industry and research. 

2 The Supervisor Agent as an Intelligent Decision Support 

System 

Consider now an ADS, which applies appropriate controls to the vehicle (both lateral 

and longitudinal) so that collisions may be avoided. When a collision is imminent, there 

is no doubt about what to do: the system has to react to an immediate danger (following 



the “sensori-motor” level of Piaget [4] or the “Control level” in the hierarchical struc-

ture of Janssen and Michon [5]) by braking as hard as possible to bring the host-vehicle 

in a safety zone. This is exactly what nowadays ADAS applications do. 

When there is a normal (i.e., safe) driving situation, it is less clear what the optimal 

actions are. For example, when approaching a slower car, should the host-vehicle fol-

low the one ahead, or change lane for an overtaking maneuver? From one side, a car-

following decision can be the “safest” solution, but on the other side it can make the 

trip longer and can waste time. Therefore, a decision system that supports the human 

driver and takes the optimal actions can really help. In particular, deciding the optimal 

action to perform, or what corrective controls to exercise in order to avoid a possible 

collision, is essentially a problem of “credit assignment”: supposing an outcome is a 

consequence of a sequence of decisions. In other words, the credit assignment problem 

calls for a system to associate decisions to their long-term outcomes. One of the most 

important theories for formulating and solving credit assignment in sequential decision-

making problems is the aforementioned MDP theory [6]. In modelling a problem as an 

MDP, we contemplate a decision-maker who is required to take decisions over a se-

quence of discrete time periods. 

2.1 Use-cases and scenarios of interest 

In the PRYSTINE project, all the SW and HW components are implemented and inte-

grated in some demonstrators. In particular, the IDSS described in this paper is included 

in one project application for the passenger car, employing PRYSTINE’s fail-opera-

tional autonomous driving functions (ADFs) and the related sensor data fusion (SDF) 

from a wide range of sensors (Radar, LiDAR, camera, V2X communication and feed-

back devices). 

 

 

Fig. 2. Maserati prototype vehicle used by the PRYSTINE Project. The car is equipped with a 

range of cameras, radars, communication sensors and feedback devices, serving as a testbed for 

both level 2 and level 3 ADFs. 

Current ADSs rely on SDF to identify the driving scenario in the vehicle proximity 

(i.e., in the field of view/range of sensors), possibly extended by information through 

V2X communication. Data from heterogeneous sources/sensors are fused to provide an 

overview of traffic in the surroundings of the vehicle. This information can be used to 

let the ADS anticipating the evolution of traffic, providing a more comfortable and ef-

ficient driving performance, especially in urban scenarios.  



In the project, three use-cases (UCs) are developed: the “Traffic Light Time-To-

Green”, “Trajectory Recognition and VRU” and the “Emergency Lateral Lane Stop”. 

For the application of our IDSS, based on MDP framework, we started from the third 

one, which is sketched in the following figure: 

 

Fig. 3. Sketch of the UC3, named Emergency Lateral Lane Stop, specific for different types of 

scenarios. 

In this scenario, the AV is travelling at a given speed, when it approaches a slower 

vehicle. In this case, the decision-maker has to define the next optimal action: is it better 

to follow the car ahead, or to overtake it? It is worth to noting here that the developed 

IDSS can either inform the driver about the best maneuver to do or intervene on the 

vehicle actuators to perform the same maneuver. Of course, the final decision depends 

on some factors, such as the safety of the action (e.g., if another vehicle is already over-

taking the AV from the left adjacent lane, the overtaking is not considered or at least 

delayed), the optimization of the travelling time (i.e., maybe the car-following decision 

can minimize fuel consumption but make the travel too much longer) and even from 

the cognitive status of the driver (e.g., s/he is distracted or attentive). 

The inputs of the system are related to the perception of the external environment, 

constituted by the Radar (front/blind spot), front camera, ultrasonic sensors and LiDAR. 

In addition, the system considers the use of a Driver Monitoring System (DMS), which 

detects the driver status to understand if s/he is still capable to control the vehicle, or 

alternatively, if s/he is able to get back into the control-loop in case of a “take over 

request” (TOR) from the system. If a critical case is detected, a safe-stop maneuver is 

necessary (e.g., the driver is impaired for drowsiness). In details, the DMS includes 

biometric devices and dynamic vehicle algorithm, to detect drowsiness, cognitive load 

and visual distraction.  

The output is represented by the longitudinal/lateral controls of the vehicle, to avoid 

potential collision, to act an overtaking and, if necessary, to perform a safe stop maneu-

ver (emergency lights activation and stop in the emergency lane, if possible). 

As it is now, in the current ADAS / ADS applications (even at prototypical level), 

the choice between an overtaking and a car-following action can be conflictual and not 

smooth (if the “adaptive cruise control” and the “support to overtaking” functions do 

not communicate each other); moreover, if the driver is not responding (as aforemen-

tioned, due to drowsiness, for example) to a TOR after some time (because the system 



reached the limits of its Operational Design Domain, or ODD in short), the AV 

“simply” stops in the current driving lane. Thanks to the super-visor agent, which 

“knows” the situation, the most appropriated action is taken: with reference to the pre-

vious example, the system can decide to minimize the travelling time and, given that 

such a decision is safe and the driver is attentive, an overtaking maneuver is initiated. 

On the other way, if the driver is impaired, after checking that the emergency lane is 

present, a safe lane change is performed.  

2.2 The system architecture and its main components  

Following the “Perception Cognition Action” (PCA) framework, the following figure 

shows the overall system architecture and related components: 

 

Fig. 4. Sketch of the logical architectural scheme in the PRYSTINE system. 

The first layer, Perceive, includes both the sensing and the perception parts, where 

the raw information coming from the sensors are elaborated and processed, in order to 

derive a detailed picture of the external scene. Of course, in case a driving simulator is 

used, this is done automatically in the simulation. 

Then, such an information is assessed in the second layer, Think/Decide, which in-

cludes a module (named situation awareness) for the prediction of the dynamic evolu-

tion of the external scene and the monitoring of the internal scene (namely, the status 

of the driver, what s/he is doing, and so on). The Decision-maker module that we have 

developed, is part of this layer; considering the three parts in which it is divided, we 

focused on the behavioral planning: our system can manage the events and the related 

maneuver, identifying the optimal actions to do.  



This output, third layer (Act), can be provided directly to the user (in case of a Rec-

ommender system in ADAS applications) or to the vehicle actuators (in case of AD 

applications). In both situation a dedicated HMI is necessary: to support the driver and 

help to select the best solution in the first option; to inform the driver about what the 

systems is doing and what is expected from him/her in the second option.   

3 Implementation of the IDSS 

In this section, we first recall the general definition of MDP. Then, we propose an MDP 

for the considered use case (overtaking maneuver). The subsequent parts of the section 

are dedicated to present the proposed HMI concept and implementation. 

3.1 MDP Definition 

A MDP is a control or decision-making process, finalized at obtaining a desired behav-

ior of a system of interest. The system of interest is often called the process to control 

or also the plant. 

Mathematically, a MDP is defined as a 4-tuple (S,A,P,R), where: 

 S is the set of all plant states of interest. S is called the state space. 

 A is the set of actions that can be performed at a given time instant. 

 P is the state probability transition. In particular, given two states S1,S2∈S and an 

action a∈A, P(a,S1,S2) is the probability that the action a yields a transition from state 

S1 to state S2. 

R is the immediate reward. It is possible to assign a reward to promote desire state 

transitions (positive reward) and penalize other transitions (negative reward). 

3.2 The super-visor agent implementation 

As discussed in Section 2.1, three UCs are developed in the PRYSTINE project. For 

the application of our IDSS-MDP framework, we consider the third one, sketched in 

Figure 2. In this scenario, the AV is traveling at a given speed, when it approaches a 

slower vehicle in the same lane, and the decision-maker has to define the next action. 

In the following, we formally introduce all the quantities that define the proposed MDP, 

that is the core of our IDSS. 

Road scenario 

Road, 3 lanes, from right to left: 

• Lane 0: emergency lane. 

• Lane 1: normal traveling lane. 

• Lane 2: overtake lane. 

Vehicles: 

• AV: autonomous vehicle, initially in lane 1. 



• PV: vehicle preceding AV, always in lane 1. 

• OVs: other vehicles but AV and PV, possibly traveling in lane 1 and/or lane 2. 

Main variables: 

• 𝑣𝑥: longitudinal speed of AV. 

• 𝑣𝑚: maximum longitudinal speed allowed on lanes 1 and 2. 

• 𝑣𝑟 ≤ 𝑣𝑚: AV desired speed. 

• 𝑣𝑝 < 𝑣𝑟 ≤ 𝑣𝑚: longitudinal speed of PV. 

MDP states 

We consider a road scenario in a suitable neighborhood of AV. 

AV states: 

• 𝐿0: AV stopped in lane 0, 𝑣𝑥 = 0. 

• 𝐿1: AV lane 1 keeping, 𝑣𝑥 = 𝑣𝑝 (before overtaking), 𝑣𝑥 = 𝑣𝑟  (after overtaking). 

• 𝐿2: AV lane 2 keeping, 𝑣𝑥 = 𝑣𝑚. 

Lane 1 states: 

• 𝐹1: no PV, no OVs in lane 1. 

• 𝑃1: PV in lane 1, no OVs in lane 1. 

• 𝑂1: PV and OVs ahead of PV in lane 1. 

Lane 2 states: 

• 𝐹2: no OVs in lane 2. 

• 𝑂2: OVs in lane 2. 

Driver states: 

• 𝐷𝐴: healthy driver. 

• 𝐷𝐷: impaired driver. 

The full scenario state is 𝑆 = (𝑆𝐸 , 𝑆𝐿1, 𝑆𝐿2, 𝑆𝐷) ∈ 𝒮, where 𝑆𝐸 ∈ {𝐿0, 𝐿1, 𝐿2}, 𝑆𝐿1 ∈
{𝐹1, 𝑃1, 𝑂1}, 𝑆𝐿2 ∈ {𝐹2, 𝑂2}, 𝑆𝐷 ∈ {𝐷𝐴, 𝐷𝐷}. The state space 𝒮 is defined as 𝒮 ≐
{𝐿0, 𝐿1, 𝐿2} × {𝐹1, 𝑃1, 𝑂1} × {𝐹2, 𝑂2} × {𝐷𝐴, 𝐷𝐷}. The total number of possible 

states is card(𝒮) = 3 × 3 × 2 × 2 = 36. For the sake of simplicity, we define a smaller 

number of aggregate states, allowing us to capture the relevant situations that may oc-

cur. In the following, the logic symbols ∀ (for all, for any), ∨ (or), ∧ (and) will be used. 

Aggregate states: 

• 𝑆0 ≐ (𝐿0, ∀, ∀, ∀): AV stopped in lane 0, end state (12 non-aggregate states). 

• 𝑆11 ≐ {(𝐿1, 𝐹1, ∀, ∀), (𝐿1, 𝑃1, 𝐹2, 𝐷𝐷), (𝐿1, 𝑃1, 𝑂2, ∀), (𝐿1, 𝑂1, ∀, ∀)}: AV 

traveling in lane 1, overtaking not possible/not useful (11 non-aggregate states). 



• 𝑆12 ≐ (𝐿1, 𝑃1, 𝐹2, 𝐷𝐴): AV traveling in lane 1, overtaking possible (1 non-ag-

gregate state). 

• 𝑆21 ≐ {(𝐿2, 𝑃1, ∀, ∀), (𝐿2, 𝑂1, ∀, ∀)}: AV traveling in lane 2, re-entry in lane 1 

not possible (8 non-aggregate states). 

• 𝑆22 ≐ (𝐿2, 𝐹1, ∀, ∀): AV traveling in lane 2, re-entry in lane 1 possible (4 non-

aggregate states). 

The corresponding state space is 𝒮𝐴 ≐ {𝑆0, 𝑆11, 𝑆12, 𝑆21, 𝑆22}. 

MDP actions 

We distinguish between two kinds of actions: inputs, i.e., actions decided by the MDP 

system (or by the driver), and events, i.e., actions coming from the external world, in-

dependent of the MDP. 

Inputs: 

• 𝑙𝑙𝑐: left lane change. 

• 𝑟𝑙𝑐: right lane change. 

Events: 

• 𝑣𝑒𝑎: one or more OVs arrive in lane 1 ahead of PV and/or in lane 2, impeding to 

change lane. 

• 𝑣𝑒𝑚: all OVs in lane 1 and/or in lane 2 which impede to change lane get suffi-

ciently far from AV. 

• 𝑑𝑏𝑎: driver becomes healthy. 

• 𝑑𝑏𝑑: driver becomes impaired. 

Aggregate events: 

• 𝑜𝑣𝑛 = 𝑣𝑒𝑎 ∨ 𝑑𝑏𝑑: overtaking becomes impossible. 

• 𝑜𝑣𝑦 = (𝑣𝑒𝑚 ∧ (𝑑𝑏𝑎 ∨ 𝐷𝐴) ∨ (𝑃1 ∧ 𝐹2 ∧ 𝑑𝑏𝑎): overtaking becomes possible. 

• 𝑟𝑒𝑦 = 𝑣𝑒𝑚: re-entry becomes possible. 

The set of input is 𝑈 ≐ {𝑙𝑙𝑐, 𝑟𝑙𝑐}, the set of aggregate events is 𝐸 ≐ {𝑜𝑣𝑛, 𝑜𝑣𝑦, 𝑟𝑒𝑦} 

and the overall set of actions is 𝐴 ≐ 𝑈 ∪ 𝐸. 

MDP probability functions 

The state transition probability functions for the two input actions 𝑙𝑙𝑐 and 𝑟𝑙𝑐 are as 

follows: 

𝑃(𝑙𝑙𝑐, 𝑆𝑎 , 𝑆𝑏) = {
𝑝𝑜, 𝑆𝑎 = 𝑆12,  𝑆𝑏 = 𝑆21

1 − 𝑝𝑜 , 𝑆𝑎 = 𝑆12,  𝑆𝑏 = 𝑆12
0, 𝗈𝗍𝗁𝖾𝗋𝗐𝗂𝗌𝖾

 



𝑃(𝑟𝑙𝑐, 𝑆𝑎 , 𝑆𝑏) = {
0.5, 𝑆𝑎 = 𝑆22,  𝑆𝑏 = 𝑆11
0.5, 𝑆𝑎 = 𝑆22,  𝑆𝑏 = 𝑆12
0, 𝗈𝗍𝗁𝖾𝗋𝗐𝗂𝗌𝖾.

 

MDP graph 

The MDP graph is shown in the figure below. It can be noted that, for each state, at 

most one action is defined. The MDP thus corresponds to a Markov Chain and no re-

wards need to be defined. In more complicated scenarios, rewards can be used to pro-

vide the MDP with more flexibility and capability to deal with different situations. 

 

 

Fig. 5. MDP graph. Where not indicated, the transition probability associated with an 

edge is 1. 

3.3 The Human-Machine Interface (HMI) Implementation 

In the context mentioned in Chapter 1, the main goal of a Human-Machine Interaction 

system is to maximize the effectiveness of the cooperation between the human and the 

automated agent. In order to do that, this system shall be able to be easily understood 

by the driver, to increase his/her awareness about the situation, and (most important) to 

be trusted.  

The HMI described in this paper is designed to exploit the potential of the Supervisor 

Agent, i.e., to easily represent its mental model in order to: 

 Provide effective information / explanation when decisions are taken by 

the system. 

 Encourage the cooperation when decisions and actions are shared between 

the human and the automated agents. 



 Avoid unnecessary information when decisions and actions are delegated 

to the human driver, in order to avoid an overload in terms of cognitive 

and physical resources. 

 The HMI is deployed in a multimodal full-digital instrument cluster. It includes all 

relevant information related to the driving task (e.g., current speed, gear, automation 

mode etc.) as well as evidence about the driver’s state (e.g. if he/she is distracted) and 

the action required to achieve an optimal driving (i.e. the suggested behavior). The HMI 

has been designed following the theories related to the negotiation-based interaction 

approach [13]. This means that the main goal of the HMI is to “explain rather than 

warn”, in order to cooperate with the driver in achieving a pleasant, comfortable and 

safe drive. 

According to the decision made by the supervisor agent, the HMI will inform the 

driver about what the vehicle expects from him/her, and provides messages related to 

the reasons that lead to the request of interaction. This is provided through: 

 Graphical explanations provided through interactive 3D representation at 

the center of the HMI, where the road environment as well as the surround-

ing road actors are reconstructed (e.g., from digital maps plus vehicle’s sen-

sors) and displayed through a stylized representation 

 Messages provided through audio signals and text. 

The following figure, for example, shows a situation where the driver and the auto-

mation are sharing the vehicle control, and the car informs the driver that they are ap-

proaching a vehicle, that will be followed. 

 

 

Fig. 6. Sketch of HMI for a control sharing between human driver and automated system. 

The following figure shows a situation where the automation is engaged and, due to 

a combination of sensory limitation – i.e., lack of visibility - and the implementation of 

a cautious behavior, it actually informs that driver that the “car following” (CF) will 

results, unless the driver would intentionally override the system to perform a manual 

overtake. In this case, the 3D representation is highly focused on explaining the reasons 

behind the behavior (i.e., the visibility constraint) rather than the actual action requested 

to the driver, that is relegated to a small message on the upper right part of the screen. 



This design choice relies on the implicit interactions [14], since it is aimed at fostering 

a behavior rather than explicitly force a reaction. 

 

 

Fig. 7. Sketch of HMI informing driver about the action selected by the system (CF maneuver in 

this case). 

Finally, the figure below shows the case where an automatic emergency maneuver 

is actuated by the vehicle; in this case, the explanation is provided before the actual 

stop of the vehicle, to allow the human driver to take back the control before the stop 

of the car. The cooperation here is provided showing the upcoming decision / behavior 

of the automation, i.e., to stop in the emergency lane. 

 

 

Fig. 8. Sketch of the HMI that informs the driver about the reason of the actuation for an emer-

gency maneuver. 

4 Data Analysis and Results 

In the considered scenario, the autonomous vehicle (AV) is travelling at a speed of 70 

km/h, when it approaches a preceding vehicle (PV), travelling at the lower speed of 45 

km/h in the same lane, see Fig. 3 (AV=V1, PV=V2). The decision-maker has to choose 



in real-time the action to perform. Note that the IDSS can either inform the driver about 

the best maneuver to do or intervene on the vehicle actuators to perform the same ma-

neuver. In the present case study, we have adopted the second approach, where the 

IDSS takes the action, based on what decided by the MDP. One important constraint 

that we impose is that the IDSS-MDP module cannot work completely alone: it needs 

in any case the driver to be healthy and aware. The following sub-scenarios have been 

considered: 

Sub-scenario 1. The driver is healthy and aware. The MDP decides to either overtake 

or follow the preceding vehicle. Other two vehicles are traveling at a speed of 45 km/h 

in the opposite direction on the lane to be used for overtaking. 

Sub-scenario 2. At a certain time, the driver becomes impaired. According to the im-

posed constraint, the IDSS-MDP module cannot work in a completely autonomous 

mode. Hence, after checking that the emergency lane is present, the MDP imposes a 

safe right lane change and a stop in the emergency lane.  

For both sub-scenarios, two simulations were carried out: one corresponding to a 

MDP sporty strategy (𝑝𝑜 = 1), the other one corresponding to a MDP cautious strategy 

(𝑝𝑜 = 0.1). According to the probability functions defined, the sporty strategy performs 

an overtaking every time that is possible, while the cautious strategy performs an over-

taking when it is possible but only with probability 𝑝𝑜. 

 

Fig. 9. Autonomous driving simulator block diagram. 

The simulations were carried out by means of an autonomous driving simulator de-

veloped in MATLAB/SIMULINK. The simulator block diagram is shown in Fig. 9 and 

is characterized by the following blocks: 

Scenario evolution: This block generates the road scenario, (roads, vehicles, obstacles) 

and computes its evolution over time. Mathematically speaking, it provides the IDSS-

MDP module with the coordinates of all elements that appear in the scenario. 

Vehicle: Block describing the vehicle lateral and longitudinal dynamics. The block is 

essentially the “Vehicle Body 3DOF Dual Track” model, taken from the MATLAB 

Vehicle Dynamics Toolbox. The following parameter values were used: 𝑙𝑓 =

1.2 m, 𝑙𝑟 = 1.6 m (lengths of front and rear longitudinal semi-axes), 𝑚 = 1575 kg 



(mass), 𝐽 = 4000 kg m2 (moment of inertia), 𝑐𝑓 = 27𝑒3 N/rad, 𝑐𝑟 = 20𝑒3 N/rad 

(front and rear cornering stiffness coefficients). 𝑋 is the vehicle state vector, containing 

the relevant kinematic and dynamic variables (linear and angular positions, linear and 

angular velocities), 𝑎𝑥 is the requested longitudinal acceleration and 𝛿 is the com-

manded steering angle. 

NMPC: Low-level controller, performing trajectory planning, and lateral and longitu-

dinal AV dynamics control. The controller is based on a Nonlinear Model Predictive 

Control (NMPC) approach, see, e.g., [15,16]. NMPC is a general and flexible approach 

to nonlinear system control. It allows us to deal with input and trajectory constraints, 

and to manage systematically the trade-off between performance and command effort. 

The approach is based on two main operations (accomplished at each time step): (i) a 

prediction over a given time horizon is performed, using some vehicle model; (ii) the 

command input is chosen as the one yielding the ``best'' prediction (i.e., the prediction 

closest to the desired behavior) by means of some on-line optimization algorithm. The 

NMPC controller works with a sampling time 𝑇𝑠 = 0.05 𝑠.  

IDSS-MDP: Intelligent Decision Support System, based on the MDP designed in Sec-

tion 3.2. This block collects the information coming from the road scenario and the AV 

and indicates to the NMPC block the best action to perform at each time step, with a 

sampling time 𝑇𝑑 = 0.5 𝑠. Note that the AV consists of the three blocks Vehicle, NMPC 

and IDSS-MDP. 

The simulation results can be summarized as follows (see also Fig. 10 to Fig. 12). 

Simulation 1 (sub-scenario 1 and sporty MDP strategy). AV (traveling with speed 

70 km/h) approaches PV (traveling with speed 45 km/h). Since another vehicle (OV1) 

is traveling in the opposite direction, AV reduces its speed, in order to follow PV. As 

soon as OV1 has gone, AV overtakes PV. After the overtake, a fourth vehicle (OV2) 

comes from the opposite direction, but this does not affect the behavior of AV.  

Simulation 2 (sub-scenario 1 and cautious MDP strategy). AV (traveling with speed 

70 km/h) approaches PV (traveling with speed 45 km/h). Since another vehicle (OV1) 

is traveling in the opposite direction, AV reduces its speed in order to follow PV. Here, 

the cautious strategy prefers to wait to overtake. In the meanwhile, OV2 comes from 

the opposite direction. AV waits also OV2 to move away and then it overtakes PV. 

Simulation 3 (sub-scenario 2 and sporty MDP strategy). When the driver becomes 

impaired, AV performs a right lane change and then stops in the emergency lane. 

Simulation 4 (sub-scenario 2 and cautious MDP strategy). Results similar to those 

of Simulation 3. 



 

Fig. 10. Simulation 1. AV and PV travel upward. The other vehicles travel downward. 

 

  

Fig. 11. Simulation 2. AV and PV travel upward. The other vehicles travel downward. 

 

 

Fig. 12. Simulation 3. AV and PV travel upward. The other vehicles travel downward. 



To evaluate the performance of the IDSS-DMP strategies in the two sub-scenarios, the 

following KPIs have been used: 

 KPI1 [s]: Time taken to cover a given distance (450 m). 

 KPI2 [s]: Time taken to stop in the emergency lane. 

 KPI3 [m/s2]: Root Mean Square (RMS) value of the lateral acceleration. 

 KPI4 [m/s2]: RMS value of the longitudinal acceleration. This KPI is clearly 

related to the fuel consumption. 

The KPI values obtained in the various simulations are reported in Table 1. As ex-

pected, the MDP sporty strategy allows quicker maneuvers but implies larger lateral 

and longitudinal accelerations (and thus a higher fuel consumption) with respect to the 

cautious strategy. In any case, according to the MDP designed in Section 3.2, both 

strategies are allowed to overtake only if this maneuver is safe and both of them are 

able to command an emergency stop in short times. 

Table 1. KPI values obtained in the simulations. 

Simulation KPI1 KPI2 KPI3 KPI4 

1 20.15 - 1.37 1.69 

2 24.6 - 1.23 1.54 

3 - 18.8 1.52 2.35 

4 - 19.3 1.52 2.35 

5 Conclusions 

The system we illustrated in this paper, based on MDP framework, can be regarded as 

a decision-maker (when applied to ADFs) and even as a recommender tool (when ap-

plied to ADAS). These types of systems are widely used in many fields, to provide 

recommendations and suggestions based on some criteria, such as user’s preferences 

and styles (see the “sporty strategies” and the “caution strategies” in our simulations), 

safety (e.g., no other vehicles are already overtaking the AV in the adjacent lane) and 

comfort (avoiding too strong lateral/longitudinal accelerations). With the ever-growing 

volume of information online, these systems can be a useful tool to overcome infor-

mation overload, or to suggest a proper action to automation, with the related explana-

tion to the user about what is happening and why. In literature, there are many types of 

recommendation/decision-making systems with different methodologies and concepts.  

Various applications include e-commerce, healthcare, transportation, agriculture, 

and media. This paper provided our proposed solutions for an intelligent system sup-

porting the decision (IDSS) in the context of AD. We defined it as “intelligent”, because 

it is able to adapt to the different states of the user (e.g., aggressive / cautious, distracted 



/ attentive, and so on) and to the external conditions (e.g., the lane for overtaking is 

free), as well as because it provides the best actions, in the sense that it satisfies optimal 

criteria in terms of travelled time, safety and comfort.  

This work is preparatory for the final phase of the PRYSTINE project, in which the 

MDP-based IDSS will be integrated and implemented in the project demonstrator, the 

prototype Maserati vehicle (presented in figure 2). In particular, we will apply our so-

lution to the use-case 3, for the emergency lane-change maneuver (described in figure 

3). 
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