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Abstract 

In this paper, we consider the computational model of a dynamic aerospace system and address the 

issues posed by the NASA Langley Uncertainty Quantification Challenge on Optimization Under Uncertainty, 

which comprises six tasks. Subproblem A deals with the model calibration and (aleatory and epistemic) 

uncertainty quantification of a subsystem by means of a limited number of observations. A simple, two-step 

approach based on Maximum Likelihood Estimation (MLE) is proposed to address this task. Subproblem B 

requires the identification and ranking of those (epistemic) parameters that are more effective in improving 

the predictive ability of the computational model of the subsystem. Two approaches are compared: the first 

is based on a sensitivity analysis within a factor prioritization setting, whereas the second employs the 

Energy Score (ES) as a multivariate generalization of the Continuous Rank Predictive Score (CRPS). Since the 

output of the subsystem is a function of time, both subproblems are addressed in the space defined by the 

orthonormal bases resulting from a Singular Value Decomposition (SVD) of the subsystem observations. 

Subproblem C requires identifying the (epistemic) reliability (resp., failure probability) bounds of a given 

system design. The issue is addressed by an efficient combination of: (i) Monte Carlo Simulation (MCS) to 

propagate the aleatory uncertainty described by probability distributions; (ii) Genetic Algorithms (GAs) to 

solve the optimization problems related to the propagation of epistemic uncertainty by interval analysis; 

and (iii) fast-running Artificial Neural Networks (ANNs) to reduce the computational time related to the 

repeated model evaluations. In Subproblem D, system reliability is improved by identifying a new design 

point within an iterative robust optimization framework. In Subproblem E both the uncertainty model and 

the design obtained are tuned using additional data. Finally, a risk-based design is carried out in Subproblem 

F by neglecting “outliers” (i.e., less likely values of some epistemic parameters) in the design optimization. 

 

Keywords: Singular Value Decomposition, Model Calibration, Uncertainty Propagation, Sensitivity Analysis, 

Energy Score, Design Optimization. 

 

 Introduction 

The quantitative analyses of the phenomena occurring in safety-critical (e.g., civil, nuclear, aerospace 

and chemical) engineering systems are based on mathematical models [1]. In practice, not all the 

characteristics of the system under analysis can be captured in the model: thus, uncertainty is present in 

the values of the input parameters and in the model hypotheses and structure. This is due to: (i) the 

intrinsically random nature of several of the phenomena occurring during system operation (aleatory 

uncertainty); (ii) the incomplete knowledge about some phenomena and operating conditions, often due 
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to the scarcity of quantitative data available, which may be either very sparse or prohibitively expensive to 

collect (epistemic uncertainty). Such uncertainty propagates within the model and causes uncertainty in its 

outputs [2]. The characterization and quantification of this output uncertainty is of paramount importance 

for: (i) making robust decisions in safety-critical systems applications; (ii) optimally designing and operating 

such systems; and (iii) driving resource allocation for uncertainty reduction by the identification of the 

model parameters and hypotheses that contribute the most to the output uncertainty [3]. 

Within this framework, we tackle the issues raised by the NASA Langley Uncertainty Quantification (UQ) 

Challenge on Optimization Under Uncertainty [4]. In Task (A), the mathematical (black-box) model of a 

(sub)system is considered, which includes nine inputs and one time-dependent output. The inputs are 

uncertain and divided into five purely aleatory variables (described by a possibly joint probability 

distribution) and four purely epistemic parameters (described by intervals). The Challengers provide a 

limited number (i.e., 100) of observations of the physical (sub)system (notice such observations are given 

in the form of discrete time histories). On this basis, an Uncertainty Model (UM) for the (nine) input 

variables/parameters to the subsystem model should be created. A straightforward, two-step (parametric) 

approach based on Maximum Likelihood Estimation (MLE) is here employed to address this task. In the first 

step, a multivariate Gaussian Mixture (GM) [5] is chosen as the functional form of the joint probability 

distribution of the aleatory variables and the corresponding parameters are calibrated by MLE. In the 

second step, the UM for the pure epistemic parameters is defined as the smallest hyper-rectangular set 

enveloping their joint four-dimensional α·100% Confidence Interval (CI) (in this paper, α = 0.99). Since the 

output of the subsystem is a function of time, the approach is applied in the space defined by the 

orthonormal bases resulting from a Singular Value Decomposition (SVD) of the subsystem observations: in 

other words, a multivariate dynamic problem in the real domain is translated into a multivariate static 

problem in the SVD space. In addition, the likelihood of the data is evaluated by Kernel Density Estimation 

(KDE) techniques in the SVD space [6-8]. 

The Task of uncertainty reduction (B) is tackled in two ways. In the first (namely, sensitivity analysis within 

a ‘factor prioritization’ setting), we rank the epistemic input parameters according to degree of reduction 

in the output epistemic uncertainty, which one could hope to obtain by refining their (epistemic) 

uncertainty models, i.e., by reducing the epistemic uncertainty range. A sensitivity index is adopted in 

analogy with variance-based Sobol indices [9, 10]: in this view, the most important epistemic parameters in 

the ranking are those that give rise to the highest expected reduction in the amount of epistemic uncertainty 

contained in the model output, when the corresponding parameter values are considered constant (i.e., 

when the amount of their epistemic uncertainty is reduced to zero). Notice that the ‘amount’ of epistemic 

uncertainty is here defined as the volume of the convex hull enveloping the realizations of the model output 

in the orthonormal SVD space [11]. In the second approach, the use of the Energy Score (ES) (computed in 

the orthonormal space) is proposed as a multivariate generalization of the Continuous Rank Predictive Score 

(CRPS) to assess the probabilistic predictive capability of the subsystem model [12]. The idea is to rank the 

epistemic parameters according to their capability to improve the predictive ability of the model, i.e., to 

decrease the ES, when their epistemic uncertainty is reduced. 

The Task (C) of reliability analysis is tackled by solving the (optimization) problem of identifying the 

epistemic reliability (resp., failure probability) bounds for a given system design point. The solution of the 

corresponding nonlinear, constrained optimization problems is efficiently tackled by resorting to heuristic 

approaches (i.e., Evolutionary Algorithms-EAs): such methods deeply explore the search space by evaluating 

a large number (i.e., a population) of candidate solutions in order to find a near-optimal solution [13]. Notice 

that the population-based nature of such evolutionary algorithms allows an efficient exploration and 

characterization of abrupt and disconnected search spaces, which is the case of the present challenge. 

During the optimization search, the aleatory uncertainty described by probability distributions is 

propagated by Monte Carlo Simulation (MCS). Also, the original (black-box) mathematical model of the 
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system is replaced by a fast-running, surrogate regression model based on Artificial Neural Networks 

(ANNs), in order to reduce the computational cost associated to the analysis [14]. 

In Task (D) the system’s reliability has to be improved by identifying a new design point. The problem is 

here addressed within a robust design framework, where the objective is to minimize the (epistemic) upper 

bound of the system failure probability. An iterative optimization algorithm (combining MCS, EAs and ANNs) 

is implemented to efficiently deal with the unbounded nature of the design variables (which can range over 

the entire real axis) [15]. 

In Subproblem (E), the UM calibrated in Task (A) and the design point found in Task (D) have to be 

updated and tuned by means of (100) additional data/observations coming from the integrated system 

under analysis. The model of the integrated system includes nine inputs and two time-dependent outputs. 

The two-step parametric MLE-based approach of Task A and the iterative algorithm of Task D are employed. 

Finally, in Subproblem F the design of the system has to be improved by accepting a small risk (namely, 

risk-based design). The task is here addressed by neglecting some “outliers” in the design optimization 

process [16]: in particular, portions of the epistemic parameter space with comparatively small likelihood 

are ignored so as to maximize a properly defined gain in the system performance. In this paper, we seek to 

maximize the relative decrease in the (epistemic) upper bound of the system failure probability. 

The remainder of the paper is organized as follows. In Section 2, the main characteristics of the 

mathematical system models under analysis are outlined; in Section 3, the NASA Challenge is addressed: 

the approaches adopted to tackle the problems are described in detail and the results obtained are 

reported; finally, conclusions are drawn in the last Section. 

 The System 

The system of interest is modelled as a set of interconnected subsystems. The uncertain parameter δ is 

concentrated onto a single subsystem. This subsystem is modelled by the function y(a, e, t), where a is a na-

dimensional vector of aleatory variables (na = 4), e is a ne-dimensional vector of epistemic parameters (ne = 

4) and t is time. The Uncertainty Model (UM) for a is denoted as fa, where fa is a joint density supported in 

the set A0 = [0, 2]na. In contrast, the UM for e is denoted as E, where E is a hyper-rectangular set included in 

E0 = [0, 2]ne. Hence, the UM of is fully prescribed by the pair 〈��, �〉. The integrated system is instead 

modeled by z(a, e, �, t) = {z1(a, e, �, t), z2(a, e, �, t)}, where � is an nθ-dimensional vector of design variables 

(nθ = 9). Hence, the output of the subsystem is a function of time, whereas the output of the integrated 

system are two functions of time. Each of these functions will be given as a discrete time history, e.g., y(t) = 

[y(0), y(dt), …, y(NT·dt)], with NT = 5000 and NT·dt = T = 5 s. 

The (possibly competing) reliability requirements for the system are defined by ng = 3 performance 

functions g(a, e, �) = {g1(a, e, �), g2(a, e, �), g3(a, e, �)}. In particular, g1(a, e, �) < 0 is needed for system 

stability, g2(a, e, �) < 0 with 

�	
�, �, ��  max�∈��/	,��|��
�, �, �, ��| � 0.02        (1) 

for the settling time of z1(a, e, �, t) to be sufficiently fast, and g3(a, e, �) < 0 with 

��
�, �, ��  max�∈� ,��|�	
�, �, �, ��| � 4         (2) 

for the energy consumption to be acceptable.  

For fixed values of � and e, the set of a points where g(a, e, �) < 0 is called the safe domain, whereas its 

complement set is called the failure domain. The worst-case performance function, defined as 

"
�, �, ��  max#$�,…,&'$�(�#
�, �, ��),         (3) 



4 

 

enables defining the safe and failure domains in terms of a single inequality, i.e., the safe domain is given 

by the a points where "
�, �, �� < 0. Further details can be found in Ref. [4]. 

 Approaches to the NASA Langley Uncertainty Quantification (UQ) Challenge on 

Optimization Under Uncertainty 

The approaches used to tackle the NASA Langley UQ Challenge on Optimization Under Uncertainty 

Problems are presented together with the corresponding results obtained: in particular, Sections 3.1-3.6 

deal with Subproblems A (namely, Model Calibration & UQ of the Subsystem), B (namely, Uncertainty 

Reduction), C (namely, Reliability Analysis of Baseline Design), D (namely, Reliability-Based Design), E 

(namely, Model Update and Design Tuning) and F (namely, Risk-Based Design), respectively. 

 Subproblems A: Model Calibration and Uncertainty Quantification (UQ) of the 

Subsystem 

Given the time-dependent (i.e., multivariate) nature of the function y(a, e, t), the calibration and 

uncertainty quantification of parameter δ (fully prescribed by the pair <fa, E>) are carried out in the space 

of the orthogonal basis vectors resulting from Singular Value Decomposition (SVD) of the data D1 = {y(i)(t)}, 

i = 1, 2, …, n1 = 100, t = 0, 1, …, NT [6, 7]. In particular, the following steps are performed to pre-process the 

data before the model calibration and uncertainty quantification tasks: 

1. Evaluate the (time-dependent) sample mean m(t) of the dataset D1 as m(t) = 1 +1⁄ ∙ ∑ /
#�
��.&�#$�  

2. Subtract the mean m(t) from the available time-series {y(i)(t)} to obtain the centered data D1* = 

{y*(i)(t)} = {y(i)(t)} ‒ m(t), i = 1, 2, …, n1 = 100, t = 0, dt, …, NT·dt. 

3. Perform an SVD of the centered data {y*(i)(t)}. If D1* is the (n1 x NT) centered matrix of the system 

realization, then it can be expressed as U*S*V’, where: U is the (n1 x n1) matrix of left singular 

vectors; S is the (n1 x NT) diagonal matrix of the nonnegative singular values si, i = 1, 2, …, n1, in 

decreasing order; and V is the (NT x NT) matrix of right singular vectors: in other words, the columns 

of V contains NT orthonormal NT-dimensional (eigen)vectors vk, k = 1, 2, …, NT, constituting an 

orthonormal basis ẞ for D1*. 

4. In order to reduce the dimensionality of the problem (while accounting for the overall variability of 

the model output of interest), select a proper number nB(y) < NT of basis vectors to be retained in 

the analysis. In this work, nB(y) is selected so that at least ε = 99% of the variance associated to the 

n1 = 100 observed time histories is explained. In details: 

∑ 012∑ 03245365
&7
8�#$� 9 :  0.99,        (4) 

noting that ∑ <=	&5=$�  equals the overall variance of the entire dataset. In this case, the value of nB(y) 

turns out to be 10. 

5. Project the centered dataset D1* onto the orthonormal basis defined by the nB(y) eigenvectors vk 

corresponding to the nB(y) largest singular values sk, k = 1, 2, …, nB(y), of matrix S. In particular, the 

(n1 x nB(y)) matrix C1 = {cik} containing the projections of the centered data D1* onto the orthonormal 

basis ẞ = {vk, k = 1, 2, …, nB(y)}, is obtained as: 

>?  @?∗ ∙ B�1: +D
/��   @?∗ ∙ FG�, G	, … , G&7
8�H .      (5) 

The coefficients/projections {c1,ik: i = 1, 2, …, n1, k = 1, 2, …, nB(y)} are equivalently expressed as: 

I�,#J  ∑ /∗
#�
K ∙ L�� ∙ MJ
K�NOP$�   .        (6) 
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The idea is to perform the calibration and uncertainty quantification tasks in the (static multivariate) 

projected space (i.e., in the space defined by the orthonormal basis ẞ) rather than in the (dynamic 

multivariate) time domain. 

The functional form of fa (representing the Uncertainty Model-UM of the aleatory variables a) is chosen 

as a multivariate Gaussian Mixture (GM). A GM model is a probabilistic model that assumes the data are 

drawn from a mixture of a nG (multivariate) Gaussian distributions with unknown hyper-parameters. Such 

hyper-parameters and their corresponding weights are prescribed by minimizing a measure of the offset 

between the data and the prediction. The Probability Density Function (PDF) of a GM model is given by: 

�QRS
�|T, U, V�  �QRS
�|W��  ∑ "P ∙ X
UP , VP�&YP$� ,      (7) 

where the l-th component of the mixture is characterized by a multivariate Normal distribution with 

weight wl ∈ [0, 1], means μl and covariance matrix VP (notice that in each multivariate Gaussian distribution X
UP , VP� of the mixture, the covariance matrix VP is able to capture and describe only linear dependences 

between the aleatory variables a). For the sake of compact notation, the ensemble of calibration hyper-

parameters of the joint aleatory PDF fa is indicated as φa = {wl, μl, VP: l = 1, 2, …, nG}. This functional form has 

been chosen because of its relatively high flexibility: by adjusting the corresponding hyper-parameters, a 

GM can be forced to assume different (unimodal and multi-modal) shapes and to describe a large variety of 

dependence structures among the aleatory variables [5]. 

The calibration approach adopted is based on the evaluation of the joint multivariate likelihood of the 

data in the projected space defined by the orthonormal basis ẞ, LGM(C1| Z) = LGM(C1|φa, e) = LGM(C1|wl, μl, VP: l = 1, 2, …, nG; e1, e2, e3, e4), where Z is a vector containing the ensemble of all the calibration parameters 

(i.e., the hyper-parameters of the GM model and the epistemic parameters e). The likelihood is here 

approximated by Monte Carlo Simulation (MCS) of the model y(a, e, t), SVD of the corresponding response 

and finally Kernel Density Estimation (KDE) in the projected space ẞ. The detailed algorithm is as follows: 

Inputs: Z = [φa, e], C1 

Output: LGM(C1| Z) 

1. Generate Nlike realizations of a (aq, q = 1, 2, …, Nlike) by random sampling from the corresponding 

PDF �QRS
�|W�� (7). In this work, Nlike = 100000. 

2. For each aq evaluate the model response y(aq, e, t), q = 1, 2, …, Nlike. Let YΦ be the (Nlike x NT) matrix 

containing such responses. 

3. Subtract the mean m(t) of the dataset D1 (1 +�⁄ ∙ ∑ /
#�
��&�#$� ) from the simulated time-series y(aq, 

e, t), q = 1, 2, …, Nlike, to obtain the model responses Y*Φ, “centered” with respect to the mean value 

of the real data (i.e., with respect to the mean value of the “true” system response). Then, project 

Y*Φ onto the basis ẞ = {vk, k = 1, 2, …, nB(y)} found above, in order to obtain the (Nlike x nB) matrix HY 

= {hY
qk} of the corresponding coefficients (projections) HY = Y*Φ·V[1: nB(y)] = Y*Φ·[v1, v2, …, vnB(y)].  

4. Based on the (projected) model responses HY = {hY
qk} and relying on KDE techniques, estimate the 

likelihood [\]RS
>?|Z� in the space defined by the orthonormal basis ẞ. In this paper, a multivariate 

product Gaussian kernel is employed, so that [\]RS
>?|Z� becomes: 

[\]RS
>?|Z�  ∏ �
N_1`ab5b2…b47
c� ∑ ∏ d ef5,1`ghi`j

b` k&D
8�J$�NP#Jlm$�&5#$�  .    (8) 

In formula (8) bk, k = 1, 2, …, nB(y), are the one-dimensional bandwidths of the kernel-smoothing 

windows, calculated applying the Silverman’s rule to the Nlike simulated output projections HY = 

{hY
qk} (on the k-th basis): in particular, nJ  opJ ∙ q r
&7
8�s	�N_1`at� 
&7
8�sr�u

, where opJ is the sample 
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standard deviation of the simulated output projections {hY
qk}, q = 1, 2, …, Nlike; and K(·) is a one-

dimensional Gaussian kernel function. It is worth noting that even if [\]RS
>?|Z� (8) uses a product 

of one-dimensional kernels, this does not imply that the nB(y) variables are independent (this is 

obviously due to the fact that we employ a sum of Nlike products of nB(y) one-dimensional kernels). 

As a final remark, notice that the choice of the Silverman’s rule above minimizes the mean 

integrated square error in the non-parametric inference, but it should be used with care. Indeed, it 

may yield widely inaccurate (for instance, strongly over-smoothed) estimates if the data come from 

a strongly skewed or multimodal distribution [17]. 

 

Two considerations are in order. Centering the simulated time-series y(aq, e, t) with respect to the mean 

m(t) of the real data (step 3 above) should guarantee that the likelihood [\]RS
>?|Z� thereby generated 

drives the calibration process to match also the true mean of the system response (besides the 99% of the 

variance, as specified in (4)). Also, notice that the likelihood [\]RS
>?|Z� (8) is here computed by randomly 

sampling with replacement the dataset C1 (Nboot = 25) and averaging the results: this bootstrapping 

procedure should limit the problem of overfitting in the presence of scarce data. 

 

The likelihood [\]RS
>?|Z� (8) is employed to carry out model calibration and uncertainty quantification 

by a two-step Maximum Likelihood Estimation (MLE)-based approach, which is aimed at finding: (i) the MLE 

point estimates ZMLE of the ensemble of the calibration parameters Z, and (ii) the hyper-rectangular set E 

representing the UM for the pure epistemic parameters e. The steps of the algorithm are the following: 

1. Perform a Maximum Likelihood Estimation of the ensemble of all the calibration parameters Z 

= [φa, e] = [wl, μl, VP: l = 1, 2, …, nG; e1, e2, e3, e4] as: 

ZSvw  xy� maxz qK{� |[\]RS
>?|Z�}t.      (9) 

2. Fixing the MLE estimates of φa at WQSvw quantify the epistemic uncertainty in e: 

a) Build a likelihood of the data only as a function of the pure epistemic parameters e, i.e., [\]RS
>?|�, W�   WQSvw� (notice that this function is four-dimensional). In practice, 

select (deterministically or stochastically) Ne possible values ek, k = 1, 2, …, Ne, of the 

epistemic parameters e (in this paper, Ne = 1000 samples are uniformly drawn within 

the respective ranges). Evaluate the likelihood of the data in correspondence of such 

realizations of the epistemic parameters to obtain [\]RS
>?|�J, W�   WQSvw�, k = 1, 2, 

…, Ne. Construct an approximation [~\]RS
>?|�, W�   WQSvw� to [\]RS
>?|�, W�  WQSvw�, e.g., by fitting a (quick-running) response surface to the discrete points [\]RS
>?|�J , W�   WQSvw�, k = 1, 2, …, Ne (in this paper, an Artificial Neural Network 

regression is employed to this purpose). 

b) Based on the approximation [~\]RS
>?|�, W�   WQSvw� to the real likelihood [\]RS
>?|�, W�   WQSvw� (which is a function only of the ne = 4 pure epistemic 

parameters), define the UM E as the smallest hyper-rectangle enveloping the joint four-

dimensional α·100% Confidence Interval (CI) of e (in this paper, α = 0.99). In practice, 

normalize [~\]RS
>?|�, W�   WQSvw� over the original domain of variation E0 of the 

epistemic parameters, in order to provide it with the properties of a Probability Density 

Function (PDF): � ∙ � [~\]RS
>?|�, W�   WQSvw�L�w�  1, where Q is the normalization 

constant. In this paper, likelihood normalization is carried out by discretization of the 

epistemic space and simple numerical integration, thanks to the comparatively low 
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dimensionality of the domain (in particular, equally spaced bins of 0.01 width are 

adopted for all the epistemic parameters ei, i = 1, 2, 3, ne = 4). Once the approximation � ∙ [~\]RS
>?|�, W�   WQSvw� to the normalized likelihood is available, the joint four-

dimensional α·100% CI of e can be computed numerically by applying the definition ��� ∈ 
� · 100% ���� 9 � to the previously discretized epistemic domain. Notice that 

also sampling-based procedures could be used to build an empirical CI for e. In fact, the 

likelihood [\]RS
>?|�, W�   WQSvw� can be readily sampled using, e.g., Markov Chain 

Monte Carlo (MCMC) methods, for which knowing Q is not required [18]. On the one 

hand, this approach is useful in the presence of high-dimensional spaces, because 

MCMC does not suffer the curse of dimensionality. On the other hand, it often requires 

significant computational efforts, since numerous (hundreds of thousands) model 

evaluations are needed to obtain reliable PDF estimations and robust CI evaluations. 

The two-step approach presented has the advantages of being simple and based on a well-established 

and sound technique for model calibration (i.e., MLE). However, notice that the separate calibration of the 

aleatory distribution parameters φa (step 1) and of the intervals E for the epistemic parameters (step 2) may 

lead to an issue. As indicated by the likelihood [\]RS
>?|�, W�   WQSvw�, the final shape and size of E is 

intrinsically conditional on the (sub-)optimal (in this case, parametric) aleatory model identified at step 1: 

thus, if the parametric probabilistic model fails to capture the true relationships between the aleatory 

variables (in particular, their complex dependences), the resulting box E may focus on wrong portions of 

the epistemic space and/or possibly underestimate the corresponding uncertainty. In this paper, we try to 

limit these drawbacks by adding conservatism in two ways: (i) during calibration, all the epistemic 

uncertainty is “loaded” on e (different from classical Bayesian approaches, no epistemic uncertainty is 

associated to the other calibration parameters φa in step 1); (ii) a relatively large confidence level α is chosen 

(i.e., 0.99), which may give us the possibility to rigorously envelop the observations, and produce a structure 

that can be generalized to a probability box containing the true distribution in the aleatory space. 

A GM model with nGM = 2 multivariate Gaussian distributions is chosen. Notice that also the option with 

nGM = 3 has been tested: however, in spite of the significant increase in the number of calibration hyper-

parameters (i.e., from 45 to 66, respectively), a negligible improvement in the (log-)likelihood 

K{� |[\]RS
>?|Z�} of the observations is registered (i.e., from 1137.2 to 1142.0, respectively). In addition, 

the reader should notice that further increasing the hyper-parameter (search) space would make the 

calibration process (i.e., the maximization task in (9)) hardly tractable even for global (meta-heuristic) 

optimization tools. In the light of these results and considerations, additional tests with larger values of nGM 

(i.e., nGM > 3) have not been performed. Parameters Z range in the following intervals (hyper-rectangles): 

the weights w in [0, 1], the Gaussian means μ in A0 = [0, 2]na, the Gaussian variances σ2 in [0.0025, 25]na and 

the Pearson correlation coefficients ρij, i = 1, 2, …, na-1, j = i+1, …, na (used to build the covariance matrices V), in [-1, 1]; the epistemic parameters e are defined in E0 = [0, 2]ne. The total number of decision variables 

is thus equal to 45. Due to the large-sized and multi-modal nature of the parameter space, the MLE 

optimization problem (9) is tackled by resorting to a population-based, heuristic optimization technique, 

i.e., a Genetic Algorithm (GA) [13]. Such method deeply explores the search space by evaluating many 

candidate solutions in order to find a near-optimal solution. Although GA is a global optimizer, in some 

problems (characterized by massive multimodality of the objective function to be optimized), it may 

converge to local optima. The performance of GA depends on its ability to thoroughly explore the search 

space (i.e., to maintain a sufficient “genetic diversity” in the population of candidate solutions), while 

attempting to drive the search efficiently and intelligently towards the “interesting region” of the search 

space, i.e., towards the global optimum. A thorough exploration of the search space (i.e., a sufficient 

“genetic diversity”) is guaranteed by the following strategies: (i) GA is repeated few times (say, five times) 
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with different random seeds (i.e., different random initial populations) and only the best result over all the 

simulation is retained; (ii) some of the GA parameters are properly set, mainly based on the experience of 

the author in the use of GAs: for example, a relatively high population size (i.e., Npop = 200), high mutation 

rates (i.e., pmut = 0.025) and a large number of generations (Ngen = 1000) are employed [19]. 

The pictorial result of Step 1 of the calibration process (i.e., the PDF �QRS
�|W�Svw�) is not reported here 

due to space limitations: only the final aleatory UM will be presented in Section 3.5. Instead, an overall 

quantitative evaluation of the degree of dependency between the parameters a is provided by means of a 

rank correlation matrix Ra,Spear (in particular, based on the Spearman measure). The choice of a rank 

correlation coefficient is justified by its nonparametric nature and its invariance with respect to the 

marginals of the dependent random variables analyzed. Notice that the Spearman correlation between two 

variables is equal to the Pearson correlation between the rank values of those two variables; while Pearson's 

correlation assesses linear relationships, Spearman's correlation assesses monotonic relationships (whether 

linear or not). Such dependency evaluation has been made by means of a sample of 100000 realizations of 

a, generated from the PDF �QRS
�|W�Svw�. The Spearman rank correlation matrix Ra,Spear is as follows: 

�Q,��lQ�= 

⎣⎢
⎢⎢
⎡ 1 0.394 0.110 �0.094 0.0680.394 1 �0.162 0.229 �0.1500.110 �0.162 1 0.035 0.851�0.094 0.229 0.035 1 �0.0810.068 �0.150 0.851 �0.081 1 ⎦⎥

⎥⎥
⎤
     (10) 

The sign of the Spearman correlation indicates the direction of association between variables ai and aj. 

If ai tends to increase when aj increases (resp., decreases), the Spearman correlation coefficient is positive 

(resp., negative). Also, the Spearman correlation increases in magnitude as ai and aj become closer to being 

perfectly monotonically related (see, e.g., a3 and a5, whose rank correlation coefficient is 0.851). It must be 

acknowledged that while Ra,Spear (10) represents a synthetic and easily interpretable measure of the strength 

of correlations, it may obviously fail to fully and accurately describe the possibly complex and nonlinear 

patterns of dependence between aleatory variables. 

The uncertainty model (hyper-rectangle) E = [��, ��] x [�	, �	] x [��, ��] x [�r, �r] for the epistemic 

parameters e chosen according to Step 2 of the calibration algorithm is as follows: [��, ��] = [0, 0.3719], 

[�	, �	] = [0.1910, 0.7273], [��, ��] = [0, 0.8543] and [�r, �r] = [0, 2]. The corresponding MLEs are 0.0704, 

0.5176, 0.0411 and 1.9059, respectively. Figure 1 shows the calibrated model output against the data 

provided. Let us denote this base-case, initial Uncertainty Model (UM) as “UM-0(y)”. In Figure 1 (left) we 

report the time series observations (red solid lines) along with the extreme upper and lower bounds (blue 

dashed lines) resulting from the propagation through the model function y(a, e, t) of 500000 configurations 

(ai, ei), i = 1, 2, …, 500000 (i.e., Na = 1000 aleatory samples for Ne = 500 epistemic vectors, including the 

vertices of the box E); also, the overall mean of the calibrated output (averaged over the aleatory PDF �QRS
�|W�Svw� and over epistemic space E) is shown as black crosses. The data is captured and enveloped 

quite tightly, at most of the time steps. Finally, in Figure 1 (right) the same calibration results are 

represented in the orthonormal SVD space projected on the basis pair (hY
1, h

Y
2): again, the calibrated model 

(blue points) envelops quite tightly the data provided (red crosses). Based on these results, we can argue 

that the produced UM structure is likely to represent a probability box possibly containing (with the 

prescribed confidence α) the true distribution in the aleatory space. Also, the level of conservatism injected 

in the calibration process (see above) presumably allows the UM to properly withstand (i.e., “envelop”) 

most aleatory and epistemic uncertainties, including unexpected and extreme events possibly occurring in 

the life of the system. 

A final remark is in order. The solution to (9) entails the repeated evaluation of the mathematical model 

y(a, e, t) (i.e., the likelihood estimation step based on Na samples) for every possible solution Z proposed 

by the heuristic optimization tool during the search. As a consequence, the total number of model 
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evaluations can easily reach tens/hundreds millions, which makes the proposed approach impractical also 

in the presence of mathematical models that take even only few seconds/minutes to run. In such cases, two 

main options can be considered within the parametric calibration framework proposed: i) employ 

approximate versions of the likelihood function, based on stochastic distance metrics computed only on 

few relevant statistics, e.g., means and/or quantiles [20, 21]; ii) replace the original (possibly long-running) 

system model y(a, e, t) by a surrogate (cheaper-to-evaluate) regression model, able to reproduce functional 

data (e.g., time series, like in the present case) [22, 23]. 

 

 
Figure 1. Left: Bounds on the calibrated model output y(a, e, t) (blue dashed lines) against experimental data (red 

solid lines). Right: calibration result in the SVD space projected on the basis pair (hY
1, hY

2) 

 Subproblem B: Uncertainty Reduction 

The epistemic parameters should be ranked according to their ability to improve the predictive capability 

of the computational model of the subsystem. In other words, as specified by the challengers, the epistemic 

parameters leading to the largest reduction in the output’s spread should be identified. Two approaches 

have been developed to address this task: the first is based on sensitivity analysis within a ‘factor 

prioritization’ setting in analogy with variance-based Sobol’ indices (Section 3.2.1); the second relies on the 

evaluation of the energy score, i.e., a multivariate generalization of the Continuous Rank Predictive Score 

(CRPS), to measure the predictive capability of a stochastic computational model (Section 3.2.2). 

3.2.1 Sensitivity Analysis in a ‘Factor Prioritization’ Setting 

This approach is aimed at assessing how much less epistemic uncertainty the model output of interest 

(resp., higher predictive capability) would have if extra knowledge about an input were available. This can 

be done by comparing the epistemic uncertainty before and after ‘pinching’ an input, i.e., replacing it with 

a value without (or with less) epistemic uncertainty. Quantifying this effect assesses the contribution by the 

input epistemic uncertainty to the overall epistemic uncertainty in the output of interest [24, 25]. 

Let Ue be an indicator of the ‘amount’ of epistemic uncertainty contained in the output of the 

computational model y(a, e, t). The subscript ‘e’ suggests that indicator Ue is computed over all the 

(epistemic) input parameters e (and over the corresponding space of variation E). The indicator Ue could be 

obviously measured in different ways (e.g., straightforwardly by the overall variance of y). In this paper, 

coherently with the approach presented in Section 3.1, the uncertainty in the subsystem model output y is 

measured by the overall spread of y in the projected space defined by the orthonormal bases ẞ = {vk, k = 1, 

2, …, nB(y)}. Such spread is here quantified by the volume � of the convex hull able to envelop the projections 

of y(a, e, t) onto ẞ (i.e., ��  ��). Obviously, the larger the volume of the convex hull, the larger the spread 
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of the output y, i.e., the larger the (epistemic) uncertainty in y [11]. Notice that the computational burden 

related to the calculation of the convex hull volume in nB = 10 dimensions may be prohibitive. Thus, the 

strategy proposed in Ref. [11] is adopted: an approximation � � to the volume � is obtained by projecting 

the full nB-dimensional convex hull onto subspaces of lower dimensionality +D�  (+D�  << +D): the smaller +D� , 

the smaller the computational effort. In particular, |&7&7� } = �� 	 � = 45 2-dimensional projections of the full 

10-dimensional convex hull are here employed, which reduces the computational time by more than two 

orders of magnitude [11]. For example, the 10-dimensional hull is projected on the basis pairs (hY
1, h

Y
2), (hY

2, 

hY
5) and so on. The corresponding 2-dimensional volumes � #�, i = 1, 2, …, 45, are computed and the overall 

volume � is roughly approximated by ∑ � #�r�#$� . Further details can be found in Ref. [11]. 

We want to assess - by means of a sensitivity index Si(Ue) - the effect that a refinement of the uncertainty 

model of the generic epistemic input ei (i.e., a reduction in its epistemic uncertainty) has on the amount of 

epistemic uncertainty Ue of the model output. In order to address this issue, a sensitivity index is used in 

analogy with variance-based Sobol’ indices [10]. Imagine that we fix ei at a particular value ei* in [�# , �#]. Let 

Ue(ei = ei*) be the resulting amount of epistemic uncertainty in y(a, e-i, t), taken over all parameters a and e-

i and keeping parameter ei fixed at ei* (instead, all the other epistemic parameters e-i are allowed to range 

in their corresponding space of variation E-i). We would imagine that having frozen one potential source of 

epistemic uncertainty (ei), the resulting indicator Ue(ei = ei*) will be lower than the corresponding total (or 

unconditional) one Ue. One could therefore conceive of using Ue(ei = ei*) as a measure of the relative 

importance of ei, reasoning that the smaller Ue(ei = ei*), the greater the influence of ei. However, notice that 

this approach makes the sensitivity measure dependent on the position of the point ei* for each input 

factor. Thus, we take the average of the measure Ue(ei = ei*) over all the possible points ei* in [�#, �#], which 

removes the dependence on ei*. The resulting indicator is then written synthetically as Eei[Ue(ei)] and 

represents the expected amount of epistemic uncertainty contained in the output y when ei is fixed to a 

constant value (i.e., when the amount of its epistemic uncertainty is reduced to zero). Obviously, the lower 

Eei[Ue(ei)], the more important ei: in other words, the most important parameter is the one which on 

average, once fixed, causes the greatest reduction in the epistemic uncertainty of y. Finally, the sensitivity 

Si(Ue) of the output y to the epistemic uncertainty of ei can be synthesized with an expression like 

�#
�l�  1 � wa1��a
l1��
�a .          (11) 

Index (11) is an estimate of the value of additional empirical information about the input ei in terms of 

the fractional reduction in epistemic uncertainty that might be achieved in y when the input parameter is 

replaced by a better estimate obtained from future empirical study. This ‘pinching’ procedure can be 

applied to each input quantity in turn and the results used to rank the inputs in terms of their sensitivities 

(i.e., in terms of their capability of reducing the output spread). 

In this paper, the sensitivity index Si(Ue) (11) related to the generic parameter ei is straightforwardly 

estimated as follows [10]: 

1. letting e range within the entire space of variation E, propagate the mixed aleatory and epistemic 

uncertainty from the inputs a ~ fa and e, respectively, to the output of interest y(a, e, t) and evaluate 

the resulting (total, unconditional) amount of epistemic uncertainty Ue. 

2. select (deterministically or stochastically) Ne values ei
k, k = 1, 2, …, Ne, of the epistemically uncertain 

parameter ei under analysis within its interval of variation [�#, �#]. These Ne realizations of epistemic 

uncertainty ei
k, k = 1, 2, …, Ne, should be chosen in such a way to evenly cover the corresponding 

interval [�# , �#]: in this paper, a sequence of 20 equally spaced points is adopted to this aim. 

3. fixing the value of ei to ei
k, k = 1, 2, …, Ne, and letting all the other epistemically uncertain parameters 

e-i vary within E-i, propagate the mixed aleatory and epistemic uncertainty from the inputs a ~ fa 

and e-i to the output of interest y(a, e, t) and evaluate the resulting (conditional) amount of 



11 

 

epistemic uncertainty Ue(ei = ei
k) = ����#  �#J� in y. The propagation of the mixed aleatory and 

epistemic uncertainty is carried out with Na = 10000 samples. 

4. estimate the index (11) as �#
�l�  1 � 1 ¡l ∙ ∑ �a�l1$l1̀ �
��

NaJ$�u . 

The total number of model evaluations required by the method is thus Na·Ne·ne (= 800000 in this case). 

The approach provides a satisfactory global indication of the overall capability of the epistemic parameters 

to reduce the output spread. However, it has two drawbacks: (i) being moment-dependent (i.e., variance-

based), it does not guarantee that after pinching one parameter, the predictive capability of the model 

remains acceptable (e.g., that the mean is still matched or that the corresponding p-box still envelops the 

observations); (ii) it provides no direct indication on which side of the interval to refine. The values obtained 

for Si(Ue) are shown in Table 1, together with the corresponding parameter ranking. The author’s choice is 

to refine parameters e2 and e3: the importance of e2 is more than ten times larger than the other 

parameters; also, the importance of e3 is twice larger than that of e1. The side of the interval to refine is 

determined as the one leading to the largest contraction of the interval, while still including the MLEs: in 

this case, the lower bound of e2 should be increased, whereas the upper bound of e3 should be reduced. 

 Variance-based Sensitivity Analysis – Factor Prioritization 

 Base Uncertainty Model UM-0(y) (after Subproblem A) 

Parameter (MLEs) Si(Ue) Ranking 

e1 (0.0704) 0.0125 3 

e2 (0.5176) 0.1048 1 

e3 (0.0411) 0.0235 2 

e4 (1.9059) 7.65·10-6 4 

Table 1. Ranking of the capability of the ei’s to reduce the output spread obtained using UM-0(y) 

3.2.2 The Energy Score (ES) as a multivariate generalization of the Continuous Rank Predictive 

Score (CRPS) 

The Continuous Rank Predictive Score (CRPS) is arguably the most versatile scoring rule for probabilistic 

forecasts of a univariate scalar variable. It measures the distance between the CDF of the provided data 

(i.e., realizations/measurements of the real system of interest) and the CDF of the forecast data, i.e., data 

generated based on the predictive model. To assess probabilistic forecasts of a multivariate quantity (like 

the one of interest in the present Challenge), the use of the Energy Score (ES) (computed in the orthonormal 

space ẞ) is proposed [12]. The idea is to rank the epistemic parameters according to their capability to 

improve the predictive ability of the model (i.e., to decrease the ES), when their uncertainty is reduced. 

Let D1 be the available dataset in the original measurement space and C1 = {c1,i: i = 1, 2, …, n1 = 100} = 

{c1,ik: i = 1, 2, …, n1 = 100, k = 1, 2, …, nB} the matrix containing the corresponding projections onto the 

orthonormal space ẞ. Let y(q)(a, e, t), a ~ fa, e ∈ E, q = 1, 2, …, Ns, be a collection of Ns randomly generated 

realizations of the subsystem model, whose uncertainty is prescribed by the results of Subproblem A, and 

HY = {hY
q: q = 1, 2, …, Ns} = {hY

qt: q = 1, 2, …, Ns, k = 1, 2, …, nB(y)) the matrix containing corresponding 

projections onto the orthonormal space ẞ. The evaluation of the predictive capability of model y(a, e, t) 

(characterized by the UM a ~ fa, e ∈ E) with respect to the generic projected datum c1,i, i = 1, 2, …, n1 = 100, 

is: 

���〈��, �〉, ¢�,#�  �
N£ ∑ ¤¥¦] � ¢�,#¤ � �

	N£2 ∑ ∑ ¤¥¦] � ¥§]¤N£=$�N£m$�N£m$� .     (12) 

where ||·|| is the Euclidean norm. It can be demonstrated that if the number nB of dimensions equals 1, 

then Eq. (12) reduces to the well-known CRPS [26]. Also, it is straightforward to notice that the smaller (12), 

the smaller the average distance between the (projected) model predictions hY
q and the (projected) datum 

c1,i, i.e., the better the predictive capability of the model. 
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To have a global measure of the overall predictive capability of the model, an average of (12) over the 

entire dataset C1 is carried out: 

��
〈��, �〉�  �
&5 ∑ ���〈��, �〉, ¢�,#�&5#$� .         (13) 

To assess the capability of the epistemic parameters e to improve the predictive ability of the model (i.e., 

to decrease the ES, when their epistemic uncertainty is reduced), a procedure similar to that outlined in the 

previous Section 3.2.1 is adopted. Each ei is fixed at different values ei
k, k = 1, 2, …, Ne = 20, within its range 

of variation [�#, �#]. In correspondence of each ei
k a (conditional) value of the ES is computed as ���〈��, �g#|�#  �#J  〉� according to (12) (for the sake of compact notation, let the conditional Energy Score ���〈��, �g#|�#  �#J  〉� be indicated as ����#  �#J�   ��
�#�. In this paper, the evaluation of (13) is 

obtained by resorting to Ns = 10000 randomly generated realizations of the subsystem model (for each 

epistemic value ei
k). Then, the parameter characterized by the highest ability to improve the predictive 

capability of the computational model is the one with the minimum value of ��
�#�  ����#  �#J� 

computed over its range [�# , �#]. In this view, the corresponding sensitivity indicator Si(ES) is computed as 

the ratio between the minimum ES obtained for the “reduced” epistemic model, i.e., minl# (��
�#�), and the 

ES associated to the full epistemic model ��
〈��, �〉�: 
�#
���  ª«¬a1 (w�
l1�)

w�
〈�,w〉�           (14) 

Obviously, the smaller (14), the higher the capability of ei of improving the predictive capability of the 

model. The total number of model evaluations required by the method is Ns·Ne·ne (= 800000 in this paper). 

The evolution of quantity ��
�#�  ����#  �#J�, i = 1, 2, 3, 4, obtained using UM-0(y) (i.e., after 

Subproblem A) is shown in Figure 2 for different (fixed) values of the epistemic parameters (normalized 

between 0 and 1 for the sake of illustration). As for the previous approach, the author’s choice is to refine 

parameters e2 and e3. The side of the epistemic interval to refine is determined as the one leading to the 

largest contraction of the interval, while including the point value leading to the minimum ES: coherently 

with the sensitivity-based approach, the lower bound of e2 should be increased, whereas the upper bound 

of e3 should be reduced. The refined epistemic intervals provided by the Challengers are e2 = [0.4064, 

0.7664] and e3 = [0.0330, 0.3330] and the corresponding resulting uncertainty model is denoted as E1. The 

updated epistemic box E ⊆ E1 is then selected as E = [��, ��] x [�	, �	] x [��, ��] x [�r, �r] = [0, 0.3719] x 

[0.4064, 0.7664] x [0.0330, 0.3330] x [0, 2]. Let us denote this first refined uncertainty model as UM-1(y).  

In passing, notice that the value ES(UM-1(y)) of the energy score for the full uncertainty model UM-1(y) 

is 21.28, whereas the ES of UM-0(y) (i.e., the initial not refined model) turns out to be 22.49, meaning that 

the refinement has led to an improvement in the predictive capability of the 5.38%. 

 
Figure 2. Conditional Energy Score ¯°
�±�  ¯°��±  �±²� obtained using UM-0(y)  
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 Subproblem C: Reliability Analysis of the Baseline Design 

The objective is the evaluation of the (epistemic) range Ri(�) of the failure probability P[gi(a, e, �) ≥ 0] 

(15) for each individual stability requirement gi, i = 1, …, ng = 3, given the baseline system design � = �base. 

Also, it is requested to calculate the range R(�) of the failure probability P[w(a, e, �) ≥ 0] (16) for all 

requirements: 

³#
��  ´minl∈w ���#
�, �, �� 9 0� , maxl∈w ���#
�, �, �� 9 0�µ, i = 1, …, ng = 3   (15) 

³
��  ´minl∈w ��"
�, �, �� 9 0� , maxl∈w ��"
�, �, �� 9 0�µ,     (16) 

where � = �base. These problems are addressed by an efficient combination of: (i) GAs to deeply search 

the epistemic space E and solve the optimization problems related to the propagation of epistemic 

uncertainty by interval analysis; (ii) MCS to propagate aleatory uncertainty and estimate the failure 

probabilities; and (iii) fast-running regression models to reduce the computational time related to the 

repeated model evaluations required by uncertainty propagation [10].  

GAs are run for Ngen = 200 generations with a population of Npop = 100 individuals; also, Na = 100000 

random samples are used to estimate the failure probabilities by MCS. The regression model is constructed 

on the basis of a finite set Dtr of Ntr data representing examples of the input/output nonlinear relationships 

underlying the original system model. The generation of this data set Dtr entails running the original system 

mathematical model �#
�, �, �� a predetermined number of times Ntr for specified values {(at, et) t = 1, 2, 

…, Ntr} of the input variables (a, e) and collecting the corresponding values {gt: t = 1, 2, …, Ntr} of the outputs 

g = {gi: o = 1, …, ng = 3} of interest. Then, statistical techniques (for example, regression error minimization 

procedures) are employed for calibrating/adapting the internal parameters/coefficients of the regression 

model to fit the input/output data Dtr = {(at, et, gt): t = 1, 2, …, Ntr} generated in the previous step and to 

capture the underlying (possibly nonlinear and non-monotonic) relationship. Once built, the meta-model 

can be used for performing, in an acceptable computational time, the numerous repeated evaluations 

needed for an accurate estimation of the probability ranges above. 

In this work, a four-layered feed-forward Artificial Neural Network (ANN) regression model is considered 

[27]. From a mathematical viewpoint, ANNs consist of a set of nonlinear (e.g., sigmoidal) basis functions 

with adaptable parameters that are adjusted by a process of training (on many different input/output data 

examples), i.e., an iterative process of regression error minimization. ANNs have been demonstrated to be 

universal approximants of continuous nonlinear functions (under mild mathematical conditions) [28], i.e., 

in principle, an ANN model with a properly selected architecture can be a consistent estimator of any 

continuous nonlinear function. Further details about ANN regression models are not reported here for 

brevity; the interested reader may refer to the cited references and the copious literature in the field. Notice 

that the recommendation of using ANN regression models is mainly based on (i) theoretical considerations 

about the (mathematically) demonstrated capability of ANN regression models of being universal 

approximants of continuous nonlinear functions [28] and (ii) the experience of the authors’ in the use of 

ANN regression models for propagating the uncertainties through model codes of safety systems [14]. 

We train four ANN regression models (one for each stability requirement and one for the worst-case 

performance metric) using a set of input/output data examples of size Ntrain = 150000. A Latin Hypercube 

Sample (LHS) of the inputs is drawn to give the vectors (a, e)t, t = 1, 2, …., Ntr. Then, the original model �#
�, �, �� is evaluated on the inputs (a, e)t, t = 1, 2, …., Ntr, to obtain the corresponding outputs gt = ¶
�, �, ��, t = 1, 2, …, Ntr, and build the data sets Dtr,g = {(at, et, gt): t = 1, 2, …, Ntr} and Dtr,w = {(at, et, wt): t = 

1, 2, …, Ntr}. Finally, the adjustable internal parameters of the ANN regression model are calibrated to fit the 

generated data: in particular, the common error back-propagation algorithm is implemented to train the 
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ANN. In the present case study, the number of inputs to each ANN regression model is equal to ninp = na + 

ne = 5 + 4 = 9 (i.e., the number of aleatory and epistemic variables), whereas the number of outputs is equal 

to nout = 1 (i.e., one ANN is built for each requirement). The number of nodes nh in the two hidden layers 

has been set equal to 50 by trial and error. Validation data sets Dval,g = {(at, et, gt): t = 1, 2, …, Nval = 40000} 

and Dval,w = {(at, et, wt): t = 1, 2, …, Nval = 40000} (different from the training sets Dtrain) are used to monitor 

the accuracy of the ANN model during the training procedure and to stop it in case of overfitting. The time 

needed to train the ANN is approximately 5 hours on an Intel(R) Xeon(R) E5-2637 v3 CPU@3.50GHz. For a 

realistic measure of the ANN model accuracy, the widely adopted coefficient of determination R2 and the 

RMSE are computed for each output {gi: i = 1, 2, …, ng = 3} on new data sets Dtest,g = {(at, et, gt): t = 1, 2, …, 

Ntest} and Dtest,w = {(at, et, wt): t = 1, 2, …, Ntest} of size Ntest = 20000, not used during training. The values of R2 

associated to the final estimates of each output {gl: l = 1, 2, …, ng = 3} and of the worst-case requirement 

metric w of interest, computed on the test set Dtest are: 0.9976, 0.9968, 0.9972 and 0.9901; the RMSEs are 

0.0013, 0.0051, 0.0013 and 0.0122, respectively. The large values of R2 (i.e., larger than 0.99), and the small 

values of the RMSEs lead us to assert that the accuracy of the ANN model can be considered satisfactory 

for the needs of capturing the global behavior of the highly nonlinear and non-monotonic functions �#
�, �, �� and "
�, �, �� and, thus, of estimating the corresponding failure probabilities. Notice that the 

use of a dedicated ANN for "
�, �, �� is not strictly necessary: the maximum of the outputs of the ANNs 

built for the three gi’s could be actually used. However, our choice was motivated by the advantage of 

directly training an ANN using real model outputs, instead of possibly cumulating regression errors coming 

from three different (approximate) surrogate models. 

In order to validate a posteriori the results obtained using the ANN meta-model in the optimization 

search relying on the first refined uncertainty model UM-1(y), the optimal (epistemic) vectors e thereby 

found are sent in input to the real system models and the corresponding intervals Ri(�) and R(�) are 

calculated using Na = 500000 aleatory samples drawn from the calibrated fa = �QRS
�|W�Svw�. Finally, in 

order to take into account the statistical variability in the failure probability estimates (obtained by plain 

random sampling), the upper and lower bounds of the corresponding intervals are ‘extended’ above and 

below, respectively, of an amount equal to two standard deviations: the final ‘conservative’ estimates are 

reported in Table 2. For the baseline design (� = �base) the requirement violated with the highest probability 

is g2, i.e., the one related to the settling time (its upper bound is 0.2980). The same way of proceeding and 

the same approaches are adopted for the estimation of the severity si(�) of each individual requirement 

violation (defined as the expected value of each requirement gi conditional to failure): 

<#
��  maxl∈w ·��#
�, �, ��|�#
�, �, �� 9 0� ∙ ���#
�, �, �� 9 0�, i = 1, …, ng = 3   (17) 

The corresponding values are also reported in Table 2: for the baseline design (� = �base) the requirement 

presenting the most severe violation is g3, i.e., the one related to energy consumption (s3(�base) = 0.0823).  

 

The epistemic parameters e are then ranked according to the reduction in the length L[R(�)] of R(�) that 

might result from their refinement. As before, each ei is fixed at different values ei
k, k = 1, 2, …, Ne = 20, 

within its range of variation [�# , �#]. In correspondence of each ei
k the length L[R(�|ei = ei

k)] of the worst-

case failure probability range is computed (for the sake of compact notation, let L[R(�|ei = ei
k)] be indicated 

as L[R(θ|ei)]). The corresponding sensitivity indicator Si(L) for parameter ei is then computed as: 

�#
[�  1 � wa1´vF¸��¹�#�Hµ
v�¸
��� ,         (18) 

quantifying the expected fractional contraction in R(�) that would result from a refinement in ei. The 

values obtained for Si(L) are shown in Table 3, together with the corresponding epistemic parameter 

ranking. 
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 First Refined Uncertainty Model (UM-1(y), after Subproblem B) 

Design R1(�) R2(�) R3(�) R(�) s1(�) s2(�) s3(�) �base [0.0577, 0.1459] [0.0680, 0.2980] [0.0548, 0.0827] [0.1377, 0.3318] 0.02103 0.00247 0.0823 �new [0, 3.0404·10-5] [0.0134, 0.0617] [0.0018, 0.0267] [0.0155, 0.0629] 3.6636·10-7 1.9851·10-4 0.0058 

 Final Refined Uncertainty Model (UM-final(yz), after Subproblem E) 

Design R1(�) R2(�) R3(�) R(�) s1(�) s2(�) s3(�) �base [0.1429, 0.1954] [0.1441, 0.1771] [0.1224, 0.1393] [0.2578, 0.2950] 0.0335 0.0026 0.1458 �new [2.522·10-6, 1.559·10-4] [0.0479, 0.0820] [0.0029, 0.0220] [0.0487, 0.0821] 4.4809·10-6 3.6637·10-4 0.0023 �final [1.6010·10-4, 0.0039] [0.0246, 0.0527] [0.0091, 0.0168] [0.0280, 0.0540] 7.3870·10-5 1.2187·10-4 0.0028 

Table 2. Reliability metrics Ri(�), R(�) and si(�), i = 1, 2, ng = 3, for different designs � and UMs 

 

 Epistemic parameters importance: Si(L) (Ranking) 

 Uncertainty Models-UMs 

Parameter First Refined UM (UM-1(y)), �base First Refined UM (UM-1(y)), �new Final Refined UM (UM-final(yz)), �final 

e1 0.4726 (2) 0.3465 (2) 0.1506 (3) 

e2 0.6084 (1) 0.3558 (1) 0.0502 (4) 

e3 0.2725 (3) 0.3209 (3) 0.4477 (1) 

e4 0.0809 (4) 0.1326 (4) 0.3724 (2) 

Table 3. Ranking of the epistemic parameters according to their ability in reducing the length of R(�), 

for different design configurations � and uncertainty models 

 Subproblem D: Reliability-Based Design 

The objective is to identify a new design point �new to improve the system’s reliability. The optimality 

criterion here chosen is that of a robust design, i.e., we seek to minimize the (epistemic) upper bound of the 

failure probability for the worst-case performance function w(a, e, �): 

�&lº  xy�min� qmaxl∈w ��"
�, �, �� 9 0�t.       (19) 

This choice is motivated by the fact that the resulting design should be able to properly withstand all the 

aleatory and epistemic uncertainties, including unexpected events possibly occurring in the life of the 

system. The main drawback is that such design may be penalized by extreme (typically very unlikely) events 

(worst-case scenarios) and by outliers, which may lead to an over-conservatism (and, in practice, to 

excessive costs). 

Since the design variables can range over the entire real axis, the following iterative optimization 

algorithm is implemented to find �new [15]: 

1. Set the current value of the system design as �&lºf»��  �bQ0l. 

2. Define a (local) optimization search space F�, �H  as a hypercube centered around �&lºf»�� whose 

sides has a length which is a fraction of the absolute value of the current design: in details, F�, �H  �&lºf»�� ¼ ½ ∙ |�&lºf»��|, with k typically equal to 0.2-0.5. The value of k is progressively 

reduced as the iterations proceed and the convergence to the optimum is attained. 

3. To reduce the computational cost due to the numerous model evaluations required by the (two-

level) optimization problem (19), a surrogate regression model is used. In this case, an ANN is 

trained on the (local) optimization search space F�, �H  to reproduce the relationship between 

the (eighteen-dimensional) input space, made of the aleatory (a ∈ ℜ�), epistemic (e ∈ ℜr) and 

design (� ∈ ℜ¿) variables, and the one-dimensional worst-case performance function "
�, �, ��. The behavior of "
�, �, �� in the space of the design variables � is stepwise, abrupt, 

highly nonlinear, and strongly non-monotonic, which makes ANN training difficult. Very large-
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sized training, validation and test sets Dtr = {(at, et, �t, wt): t = 1, 2, …, Ntr = 600000}, Dval = {(at, et, �t, wt): t = 1, 2, …, Nval = 200000} and Dtest = {(at, et, �t, wt): t = 1, 2, …, Ntest = 100000}, respectively, 

are employed to build a four-layered ANN with 18 inputs, one output and 54 neurons for each 

of the two hidden layers. In this configuration the training of an ANN may last up to 10 hours on 

an Intel(R) Xeon(R) E5-2637 v3 CPU@3.50GHz. An additional consideration is in order. The 

estimation of the worst-case failure probability requires the ANN to be able to accurately 

discriminate between safe and failed system configurations. Such failure probability becomes 

smaller and smaller as the iterations of the algorithm proceed: thus, the relative impact of ANN 

regression errors may become more and more important, making the design optimization 

search less effective. This issue is addressed at each iteration by generating training, validation 

and test sets that lie preferably across the system failure threshold (i.e., where "
�, �, �� = 0): 

by so doing, the ANN becomes more and more specialized in mimicking these system 

configurations, thus providing very accurate predictions around the failure limit, at the expense 

of less satisfactory estimations in less interesting (i.e., safe) regions of the design space. The 

principle is inspired by Ref. [29], but it is practically implemented according to a different (less 

rigorous) empirical procedure: i) around 33% of the total (Ntr + Nval + Ntest) = 900000 training, 

validation and test patterns are obtained by uniformly sampling A0, E and F�, �H; ii) the 

generated patterns are sorted according to the corresponding values of the worst-case 

performance function; iii) the failure points (and, in general, those system configurations 

characterized by comparatively high values of "
�, �, �� close to the failure threshold) are 

selected as “seeds” to start a sort of Markov chain and produce the remaining (64%) patterns; 

iv) a local search is performed to produce chains of system configurations 
�, �, �� by sampling 

uniform (proposal) distributions iteratively centered on the elements of the chains, and with 

interval length equal to twice the sample standard deviation of the seeds identified above. 

4. Use GAs and the trained ANN to find an (approximate) updated optimal design point, i.e., 

�&lº»�ÀQ�lÀ  arg min�∈F�,�H qmax�∈w Ã�"
�, �, �� 9 0�t. As before, the adoption of global, gradient-

free heuristic optimization tools is motivated by the abrupt and high-dimensional nature of the 

(design and epistemic) search spaces. The number Na of aleatory samples drawn for probability 

estimation is 100000; the size Npop of the GA populations used to explore the design and 

epistemic spaces is 100 and 20, respectively; finally, the number of GA generations Ngen is set to 

150 and 25 for the design and epistemic searches, respectively. 

5. The solution �&lº»�ÀQ�lÀ
 thereby identified is checked: if at least one of the design variables lies at 

the boundary of the (local) search space F�, �H (i.e., if Ä#,&lº»�ÀQ�lÀ  Ä# or Ä#,&lº»�ÀQ�lÀ  Ä# , for at 

least one i = 1, 2, …, 9), then the iterative algorithm continues: set �&lºf»��  �&lº»�ÀQ�lÀ
 and go to 

step 2. Otherwise, the algorithm is stopped: go to step 6. 

6. Set the final new design �&lº  �&lº»�ÀQ�lÀ
. 

 

The new design vector resulting from the optimization after 8 iterations is �&lº. The corresponding 

reliability metrics Ri(�), R(�) and si(�), i = 1, 2, ng = 3 obtained with �&lº and UM-1(y) are reported in Table 

2. It can be observed a considerable reduction in the upper bound of the system failure probabilities and a 

substantial improvement in the requirement violation severity. R1 is reduced by four orders of magnitude, 

while R2, R3 and R are reduced by factors 3.1-5.3. Notice that the most important contributor to system 

failure is still g2. The severity of the violations has been reduced by 4 orders of magnitude for g1 and by 

about 1 order of magnitude for g2 and g3. Again, the highest violation severity is for requirement g3. The 
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epistemic parameter ranking (Table 3) is the same as that of �bQ0l. However, the indicators Si(L) for e1, e2 

and e3 have now a comparable magnitude. 

Finally, to highlight the relevance of the use of ANNs, the design optimization process (19) is repeated 

using only the original system model. Notice however that the use of the real model with the same 

parameter settings as those specified at step 4. above would obviously lead to an impracticable effort. To 

carry out a relatively fair comparison, at each iteration of the algorithm the total number of system model 

evaluations and the overall computational time are kept larger than or equal to those resulting from the 

ANN-based procedure (i.e., Ntr + Nval + Ntest = 900000 and 10 hours on average for ANN training, 

respectively). To this aim, the algorithm parameters are adjusted as follows: i) the total number of iterations 

is fixed to 8 (i.e., the value resulting from the iterative procedure described); ii) Na = 250 aleatory samples 

a are drawn for each vector e of the epistemic parameters; iii) the epistemic space E is explored by Ne = 100 

vectors e (including the vertices of the box E) for each design solution � proposed by the GA; finally, iv) the 

GA searches the design space evolving Npop = 20 individuals for a maximum number of generations equal to 

Ngen = 20. Notice that the maximum number of model evaluations with such settings is 107 (larger than 

900000); also, the average computational time per iteration results to be 13.1 hours (i.e., larger than the 10 

hours approximately needed for ANN training). The optimized upper bound of R(�&lº) turns out to be 

0.1145: in spite of the larger number of model evaluations (by a factor 11) and of the higher computational 

cost (by a factor 1.3), the design performance is worse almost by a factor 2 (i.e., 0.1145 versus 0.0629). This 

confirms the advantage of using ANNs for reliability-based design optimization in the presence of both 

aleatory and epistemic uncertainties (and of computationally intensive models). 

 Subproblem E: Model Update and Design Tuning 

Upon finding a new design point �new, Subproblem E requires performing a final improvement to the UM 

and design. After providing �new to the Challenge hosts, n2 = 100 realizations of the responses z1(t) and z2(t) 

from the integrated system has been provided for calibration (dataset D2 = {��
#�
��, �	
#�
��}, i = 1, 2, …, n2 = 

100). Using the same procedure based on SVD of Section 3.1, the dataset D2 is projected onto an 

orthonormal basis to obtain the coefficients/projections C2. The : = 99% of the total variance of the dataset 

is retained in the SVD process, which results in nB(z1) = 14 bases for z1(t) and nB(z2) = 4 bases for z2(t). Kernel 

Density Estimation (KDE) is then employed to fit the likelihood [\ÆRS
>Ç|Z� of the data in an SVD space of 

nB(z1) + nB(z2) = 17 dimensions. Since datasets D1 and D2 (resp., C1 and C2 in the SVD space) are generated 

independently, the overall likelihood [\]ÆRS 
>?, >Ç|Z� of the entire set of n1 + n2 = 200 realizations is 

obtained as [\]RS
>?|Z�· [\ÆRS
>Ç|Z� and employed in the two-step MLE-base algorithm of Section 3.1 to 

update the UM (step (E.2) of the Challenge). Notice that in this update the epistemic space E remains fixed 

to E = [��, ��] x [�	, �	] x [��, ��] x [�r, �r] = [0, 0.3719] x [0.4064, 0.7664] x [0.0330, 0.3330] x [0, 2]. The 

resulting change in the (aleatory) UM fa
GM is also minor and is not pictorially shown due to space limitations. 

Let us denote this uncertainty model as UM-1(yz). It is worth noting that the predictive capability (Energy 

Score-ES) of the resulting UM-1(yz) is 21.48 with respect to dataset D1 (i.e., almost the same as UM-1(y)); 

also, the ES of UM-1(yz) with respect to dataset D2 is 30.47 (notice that the ES of the previous UM-1(y) 

tested on dataset D2 is 31.89). 

The sensitivity analysis methods proposed in Section 3.2 are applied to request two additional parameter 

refinements for E. Based on the results reported in Table 4 (variance-base sensitivity analysis) and Figure 3 

(conditional Energy Score), a reduction in the upper bound of e1 and e2 is requested. The refined epistemic 

intervals provided by the Challengers are e1 = [0.5240, 0.9240] and e2 = [0.4873, 0.5449]: the corresponding 

epistemic space is denoted as E2.  

 Variance-based Sensitivity Analysis – Factor Prioritization 
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 Second Refined Uncertainty Model (UM-1(yz), after Subproblem Task E.2) 

Parameter (MLEs) Si(Ue) Ranking 

e1 (0.1233) 2.38·10-3 2 

e2 (0.5035) 4.58·10-3 1 

e3 (0.3204) 8.60·10-4 3 

e4 (1.6287) 1.12·10-5 4 

Table 4. Ranking of the capability of the ei’s to reduce the output spread, obtained using UM-1(yz) 

 

Figure 3. Conditional Energy Score ¯°
�±�  ¯°��±  �±²�, obtained using UM-1(yz) 

It is evident that the range of e1 does not even overlap with the one resulting from the calibration of 

Subproblem A and from the corresponding update of step (E.2). The two-step calibration process of Section 

3.1 is repeated in the light of this new information to obtain the final UM, denoted as UM-final(yz). Figure 

4 shows the result of Step 1 of the calibration process: the marginal PDFs (histograms) of ai, i = 1, 2, …, 5, 

are plotted together with the two-dimensional projections of the joint (five-dimensional) PDF �Q,#&QPRS ��|W�,È±É�ÊSvw � for pairs (ai, aj). The final uncertainty model (hyper-rectangle) Efinal = [��, ��] x [�	, �	] x 

[��, ��] x [�r, �r] for the epistemic parameters e chosen according to Step 2 of the calibration algorithm is 

modified as follows: [��, ��] = [0.5240, 0.7202], [�	, �	] = [0.4873, 0.5449], [��, ��] = [0.0330, 0.3330] and 

[�r, �r] = [0, 2] (i.e., the width of the interval of e1 has been further reduced).  

 

Figure 4. Final Calibrated aleatory model �Q,#&QPRS ��|W�,È±É�ÊSvw � 
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Figure 5 shows the calibrated model output z(a, e, �new, t) against the data provided D2 = {��
#�
��, �	
#�
��}, 

i = 1, 2, …, n2 = 100). We report the time series observations (red solid lines) along with the upper and lower 

bounds (blue dashed lines) resulting from the propagation through the model functions z1(a, e, �new, t) (left) 

and z2(a, e, �new, t) (right) of 500000 configurations (ai, ei), i = 1, 2, …, 500000 (i.e., Na = 2000 aleatory 

samples for Ne = 250 epistemic vectors, including the vertices of the box E). Also, the overall mean of the 

calibrated output (averaged over the final aleatory PDF �Q,#&QPRS ��|W�,È±É�ÊSvw � and over the final epistemic 

space E) is shown as black crosses. It can be seen that the calibrated model envelops the data provided at 

most time instants; however, it is also evident the over-conservatism in the assessment of the epistemic 

uncertainty. 

 

Figure 5. Bounds on the calibrated model output z1(a, e, �new, t) (left) and z2(a, e, �new, t) (right) (blue 

dashed lines) against experimental data (red solid lines) 

 

It very important to notice that the resulting final model UM-final(yz) shows a comparatively satisfactory 

predictive capability with respect to dataset D2: the ES is equal to 28.01, which means an improvement of 

8.07% with respect to UM-1(yz). However, it presents a poor performance with respect to dataset D1: the 

corresponding ES is 24.27, which is far larger than that of UM-1(yz) (in particular, the corresponding 

predictive capability decreases of about 13%). This may be due to the combination of two factors: (i) the 

proposed parametric aleatory model based on Gaussian Mixtures largely fails to capture the relationships 

and complex dependences between variables a; (ii) non-negligible discrepancies (i.e., differences between 

model outputs and observation data) may affect the computational models of the subsystem and of the 

integrated system provided by the Challengers. The issue of discrepancy is not addressed in this work. 

For the sake of comparison, the energy scores quantifying the predictive capability of all the different 

generated UMs on the two datasets D1 and D2 are summarized in Table 5 (notice that obviously these figures 

are not suitable to quantify the absolute performance of the models). It can be seen a progressive 

improvement of the UMs with respect to the data coming from the integrated system, while a worsening is 

registered with respect to the observations from the subsystem. 

 Energy Scores (ES) – Predictive capability 

Uncertainty models Dataset D1 Dataset D2 

UM-0(y) (initial) 22.49 / 

UM-1(y) (after Subproblem B) 21.28 31.89 

UM-1(yz) (after Subtask E.2) 21.48 30.47 

UM-final(yz) (final, after subtask E.4) 24.27 28.01 
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Table 5. Energy Scores (predictive capabilities) of the different UMs 

In the light of these results, the following strategy is implemented. Since the performance of UM-final(yz) 

with respect to D2 (integrated system) is comparatively acceptable, the remaining tasks of the Challenge are 

addressed with the identified final UM. Actually, since all the performance metrics (i.e., failure probabilities 

and violation severities) are based on the model of the integrated system z(a, e, �, t), the results obtained 

in the following tasks may be meaningful (even in the presence of a globally unsatisfactory UM). 

The UM-final(yz) 〈�Q,#&QPRS ��|W�,È±É�ÊSvw �, �#&QP〉 is used within the robust design optimization approach of 

Section 3.4 to obtain the final design �final. The corresponding reliability metrics are reported in Table 2. 

There is a strong reduction in the upper bound of R1(�) (by 2-3 orders of magnitude) with respect to the 

baseline design �base. Also, the upper bounds of R2(�), R3(�) and R(�) are reduced by factors 3.4-8.3, while 

the violation severities si(�) are reduced by factors 450 (g1), 21 (g2) and 52 (g3) with respect to �base. Finally, 

from the ranking of Table 3 there is radical change in the importance of the parameters, mainly due to the 

final refinement in the UM: in particular, e3 and e4 are now the most effective in reducing the epistemic 

uncertainty of the worst-case failure probability R(�). 

 Subproblem F: Risk-Based Design 

In this subproblem we seek a design point that accounts for most of the final epistemic space Efinal. A 

portion corresponding to the r% of the volume of Efinal has to be neglected, where r ranges in [0, 100) and 

is called risk. In practice, by reducing the epistemic space (i.e., by neglecting a portion of it) we are accepting 

that some (future) system’s configurations (i.e., scenarios) may fall outside such a set, i.e., we are increasing 

the risk that the system is not able to withstand such “outliers”. However, if this risk is relatively small and 

the epistemic volume to be neglected is optimally chosen, this practice might be advantageous. For 

example, a design based upon an epistemic box enclosing 95% of the scenarios may show better overall 

performance (e.g., smaller failure probability) than one enclosing 100% [16]. 

Let V(Efinal) be the volume of the final epistemic box; Efinal(r) the final epistemic space where the r% of its 

volume has been neglected; V(Efinal(r)) the volume of the reduced epistemic space. Coherently with the 

approach of Section 3.4, the metric proposed to quantify the gain l(r, �) resulting from taking the risk r (and 

pertaining to the improved performance of the retained (100 – r)% of the epistemic space) is based on the 

upper bound of the worst-case failure probability R(�). In particular, l(r, �) evaluates the relative decrease 

that we obtain in the epistemic upper bound of the overall system failure probability thanks to the reduction 

in the volume of the epistemic space: 

K
y, ��  ªËÌ�∈ÍÎ14Ï_ Ð�º
�,�,��Ñ �g ªËÌ�∈ÍÎ14Ï_
Ò� Ð�º
�,�,��Ñ �
ªËÌ�∈ÍÎ14Ï_ Ð�º
�,�,��Ñ �        (20) 

The portion of the epistemic space to be ignored is chosen according to the following criteria: 

a) The neglected portion should be characterized by comparatively small likelihood, i.e., the 

“scenarios” left out should have a low probability of occurring in the future; 

b) The neglected portion should be obtained by “manipulating” those epistemic parameters that 

have the strongest impact on the (epistemic uncertainty of) the performance of the system (i.e., 

in its reliability/failure probability): in that case, even small variations in the bounds of one 

epistemic parameter are expected to have an important effect on (i.e., improvement in) the 

overall performance of the system (i.e., on the performance gain (20)); 

c) To obtain the best possible reduction of the epistemic space, the variations in the epistemic 

parameter bounds should be themselves optimized during the gain optimization process. 
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The practical impact (and the corresponding implementation) of the criteria above is given in what 

follows. Figure 6 shows four one-dimensional projections of the overall likelihood [\]ÆRS �>?, >Ç|�, W W�,È±É�ÊSvw � = [\]RS�>?|�, W  W�,È±É�ÊSvw �· [\ÆRS�>Ç|�, W  W�,È±É�ÊSvw � (one for each epistemic parameter). It is 

evident that according to criterion a) above, we would like to reduce the volume of epistemic space by 

decreasing the upper bound of e1 and/or increasing the lower bounds of e2, e3 and e4 (i.e., by removing the 

portions characterized by the smaller “likelihood mass”). In addition, it is evident from the last column of 

Table 3 (reporting the epistemic ranking obtained in correspondence of �final with the final uncertainty 

model UM-final(yz)) that the parameters having the largest impact on the epistemic uncertainty of the 

system failure probability are e3 and e4. Finally, the sensitivity analysis reported in Figure 7 (showing the 

variation of the upper bound of R(�final) obtained by fixing the epistemic parameters at some values in their 

ranges) demonstrates that an increase in the lower bounds of e3 and e4 leads to a considerable reduction in 

the upper bound of the system failure probability, whereas the effect of e1 and e2 is less evident. Based on 

these considerations, we decide to reduce the volume of the epistemic space by optimally manipulating (in 

particular, increasing) only the position of the lower bounds of e3 and e4. In practice, the lower bounds �� 

and �r are optimized together with the design variables � in the gain K
y, �� maximization process: 

maxlÓ,lÔ,�(K
y, ��)  maxlÓ,lÔ,� Õ ªËÌ�∈ÍÎ14Ï_ Ð�º
�,�,��Ñ �g ªËÌ�∈ÍÎ14Ï_
Ò� Ð�º
�,�,��Ñ �
ªËÌ�∈ÍÎ14Ï_ Ð�º
�,�,��Ñ � Ö     (21) 

The optimization problem (21) is solved by means of GAs under the following (hard) inequality constraint 

that defines the risk-based design: V(Efinal(r)) ≥ V(Efinal)·[(100 – r)%] (i.e., the solutions which do not respect 

the risk-based requirement are discarded during the optimization search). 

 

 

Figure 6. One-dimensional projections of the overall likelihood [\]ÆRS �>?, >Ç|�, W  W�,È±É�ÊSvw � as a 

function of each epistemic parameter e1 (top, left), e2 (top, right), e3 (bottom, left) and e4 (bottom, right) 
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Figure 7. Variation of the upper bound of R(�final) obtained by fixing the epistemic parameters e1, e2, e3 

and e4 at some values in their range (normalized between 0 and 1 for the sake of illustration) 

 

For ŷ = 5%, the design point ��̂%¸#0J resulting from the optimization (21) is obtained. The corresponding 

performance metrics are compared to those of �#&QP in Table 6, for both the full and the reduced epistemic 

spaces Efinal and Efinal(ŷ). For the full epistemic space, the upper bound of R(�final) is 0.0540, whereas that of 

R(��̂%¸#0J) is 0.0520: thus, the gain in performance is 3.7%. For the optimally reduced epistemic space, the 

upper bound of R(�final) is 0.0533, whereas that of R(��̂%¸#0J) is 0.0505: in this case, the gain in performance 

is 5.25% (i.e., slightly larger than the fractional reduction in the volume). Overall, moving from the initial 

configuration (characterized by �final and Efinal) to the risk-based configuration (characterized by ��̂%¸#0J and 

Efinal(ŷ)), we reduce the upper bound of R(�) from 0.0540 to 0.0505, with a gain in performance of 6.48%. 

Finally, in Figure 8 we compare the gains K�y, �#&QP� (blue dashed line) and K
y, ��̂%¸#0J� (dotted red 

line) for different values of r = 0.05, 0.5, 1, …, 10. The black solid line indicates those points where the risk 

taken is equal to the gain. Notice that in determining the gain for each r, the reduced epistemic space Efinal(r) 

(i.e., the lower bounds of e3 and e4) is again optimized. The gain increases almost linearly with the risk (no 

optimal value is identified). However, we can consider advantageous to accept a risk-based design, when 

the percentage gain is larger than the corresponding risk. In this case, for �#&QP acceptable risk values range 

between 0.05% and 0.5%, whereas for ��̂%¸#0J they lie between 0.05% and 2-3%. 

 

 Risk-based Design 

 Final Refined Uncertainty Model (UM-final(yz), after Subproblem E) – Full Epistemic space Efinal 

Design R1(�) R2(�) R3(�) R(�) s1(�) s2(�) s3(�) �final [1.6010·10-4, 0.0039] [0.0246, 0.0527] [0.0091, 0.0168] [0.0280, 0.0540] 7.3870·10-5 1.2187·10-4 0.0028 �Øp%�±Ù² [1.9025·10-4, 0.0068] [0.0248, 0.0501] [0.0079, 0.0149] [0.0287, 0.0520] 8.5161·10-5 1.1091·10-4 0.0023 

 Final Refined Uncertainty Model (after Subproblem E) – Reduced Epistemic space Efinal(ŷ) 

Design R1(�) R2(�) R3(�) R(�) s1(�) s2(�) s3(�) �final [1.6010·10-4, 0.0039] [0.0246, 0.0517] [0.0091, 0.0167] [0.0280, 0.0533] 7.1389·10-5 1.1821·10-4 0.0028 �Øp%�±Ù² [1.9210·10-4, 0.0075] [0.0248, 0.0485] [0.0079, 0.0149] [0.0280, 0.0505] 8.3659·10-5 1.0613·10-4 0.0025 

Table 6. Performances of ��̂%¸#0J and �#&QP  for the full and reduced epistemic spaces Efinal and Efinal(ŷ) 
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Figure 8. Gain K�y, �#&QP� (blue dashed line) and K
y, ��̂%¸#0J� (dotted red line) for different values of r 

 Conclusions 

In this paper, we have addressed the NASA Langley Uncertainty Quantification Challenge on 

Optimization under Uncertainty. We have proposed an efficient combination of methods to tackle the 

diverse issues posed by the Challenge: 

 SVD to perform dimensionality reduction in the presence of high-dimensional (time series) data; 

 a two-step MLE-based method relying on GMs for the calibration of multivariate probability 

distributions and interval sets; 

 KDE for the construction of (very high-dimensional) non-parametric likelihood functions; 

 Variance-based sensitivity analysis and the ES for uncertainty reduction and model refinement; 

 Flexible sampling-based strategies (MCS) for the propagation of aleatory uncertainty; 

 GAs as heuristic tools for solving complex, nonlinear optimization problems in the presence of 

abrupt, disconnected, stepwise search spaces; 

 ANN metamodels for reducing the computational cost associated to uncertainty propagation 

and (iterative) robust design optimization. 

The following issues and findings have emerged with respect to the proposed methods: 

 Although flexible, sampling-based strategies are extremely computationally intensive, which can 

make optimization impracticable in the presence of both aleatory and epistemic uncertainties; 

 Metamodel errors should be carefully controlled, in particular when they are employed for 

estimating small failure probabilities and/or for mapping high-dimensional spaces; 

 Parametric probabilistic models likely fail to capture complex nonlinear dependences between 

aleatory variables; 

 Robust designs may perform satisfactorily even in the presence of poorly calibrated models. On 

the other hand, they may be overly conservative (i.e., driven only by “outliers” and worst-case 

scenarios characterized by severe consequences but negligible likelihood). 

Several issues and approaches are worth investigation in the future: 

 Non-sampling strategies (e.g., bounding methods) [30, 31] could be adopted to estimate small 

probabilities at a manageable computational cost in optimization problems; 

 More advanced methods should be investigated to model complex, nonlinear dependences: 

e.g., copulas [32, 33], fully non-parametric approaches based on KDE and Markov Chain Monte 

Carlo within a Bayesian framework [18] or Sliced Normal Distributions [16]; 
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 Discrepancies between model outputs and observations from the real system should be 

included in the calibration process [34, 35]: failing to do so could lead to overly optimistic results; 

 Rigorous methods (e.g., Scenario Theory) [36] should be embraced to design robust systems, 

while optimally controlling, selecting and possibly discarding outliers. 
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