
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Relative Impact of Singular Edge and Corner Basis Functions on the Capacitance of Parallel-plate Capacitors / Peterson,
Andrew; Graglia, Roberto. - ELETTRONICO. - (2021), pp. 414-415. (Intervento presentato al  convegno 2021
International Conference on Electromagnetics in Advanced Applications (ICEAA) tenutosi a Honolulu, USA nel 9-13
Agosto 2021) [10.1109/ICEAA52647.2021.9539526].

Original

Relative Impact of Singular Edge and Corner Basis Functions on the Capacitance of Parallel-plate
Capacitors

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ICEAA52647.2021.9539526

Terms of use:

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2929436 since: 2021-10-06T14:32:22Z

IEEE



XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Relative Impact of Singular Edge and Corner Basis 
Functions on the Capacitance of Parallel-plate 

Capacitors 
 

 
Andrew F. Peterson 

School of ECE 
Georgia Institute of Technology 

Atlanta, GA 30332  USA 
e-mail: afpeterson@gatech.edu 

Roberto D. Graglia 
Dipartimento di Elettronica e Telecommunicazioni  

Politecnico di Torino 
10129 Turin, Italy  

e-mail: roberto.graglia@polito.it

 

Abstract—Singular edge and corner basis functions are 
incorporated into an integral equation numerical formulation 
for the charge density on parallel-plate capacitors.  The 
underlying representation for charge density is either piecewise 
constant, linear, or quadratic and provided by conventional 
representation.  The singular edge basis functions are shown to 
play a significant role in accelerating the convergence of the 
numerical solutions.  When used in conjunction with linear or 
quadratic underlying representations, the singular corner basis 
functions have a relatively minor effect on the numerical 
results. 
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I. INTRODUCTION 
Basis functions incorporating singularities have been 

developed to improve numerical solutions in situations 
where fields or surface currents are expected to exhibit that 
behavior [1].  The authors proposed a family of hierarchical, 
singular basis functions for representing vector surface 
currents along the edges of plates [2].  Recently, a family of 
special vector basis functions was proposed for improving 
the representation at corners of conducting plates [3].  The 
basis functions in [2-3] are additive, in the sense that singular 
basis functions can be added to an expansion of polynomial 
functions without removing any of the existing functions.  
Preliminary results suggest that these functions improve the 
accuracy of numerical results for the surface current density 
on conducting plates [2-3].  Additional work is required to 
quantitatively assess the relative importance of the special 
singular functions compared to polynomial basis functions of 
varying order.  One issue to be addressed is whether the 
corner basis functions offer a more substantial benefit 
compared to the use of a higher degree polynomial base. 

To help explore this issue, in the present work we 
consider the combination of polynomial, edge-singular, and 
corner-singular basis functions for representing the surface 
charge density on parallel-plate capacitors.  These are scalar 
representations associated with the families of vector 
functions proposed in [2-3]. 

II. FORMULATION 
The capacitor plates are assumed to be infinitesimally 

thin and are discretized into rectangular cells. The standard 
scalar potential integral equation is employed, with a 
symmetric voltage excitation to ensure that there is no excess 

capacitance to infinity.  The surface charge density is the 
primary unknown quantity and can be represented by an 
expansion in basis functions.  Scalar polynomial basis 
functions are used across each plate of the capacitor as an 
underlying representation. These functions are either 
constant, linear, or quadratic.  The latter two expansions are 
provided by the usual “node based” Lagrange basis families. 
The electric charge density at the edges of an infinitesimally-
thin plate is infinite; the infinite behavior cannot be described 
by polynomial basis functions.  To include the edge 
singularity in the representation for charge, a basis function 
of the local form 

 BE (u,v) =
3

2
u −1/2 − 3  (1) 

may be included in rectangular cells along the plate edges, 
where the domain is (0≤u≤1, 0≤v≤1) and the edge is located 
at u = 0.  At the plate corners, a different singular behavior is 
encountered with the form [1] 

 BC (u,v) =
rν e

uv
 (2) 

where r = u 2 + v2  and where the plate corner is located at 
the origin in the (u,v) system. The exponent νe is 
approximately 0.29658 for a 90 degree plate corner [1].  In 
this study, the edge and corner bases are superimposed with 
the polynomial expansion functions. 

III. RESULTS 
For illustration, the following results for capacitance 

normalized to permittivity ε are presented for a hypothetical 
capacitor with plates of dimension 1m by 1m and plate 
separation of 0.2m. These dimensions produce large fringing 
fields and a strong tendency for charge to accumulate along 
the plate edges. Tables I and II show results for constant 
basis functions alone, and constant basis functions 
augmented with singular edge functions (1) in every cell 
along the plate boundaries. Tables III, IV, and V show results 
for linear basis functions alone, linear basis functions with 
singular edge basis functions, and linear basis functions with 
singular edge and corner basis functions.  The edge functions 
are superimposed with the linear basis functions in every 



boundary cell, while the corner functions in (2) are 
superimposed with linear and edge functions in the corner 
cells. 

TABLE I.  CONSTANT BASIS, NO EDGE OR CORNER FUNCTIONS 

plate mesh unknowns Capacitance/ε 
5 by 5 50 7.3851 

10 by 10 200 7.5281 
20 by 20 800 7.6312 
30 by 30 1800 7.6717 
40 by 40 3200 7.6933 

 

TABLE II.  CONSTANT BASIS WITH EDGE FUNCTIONS 

plate mesh unknowns Capacitance/ε 
5 by 5 90 7.7327 

10 by 10 280 7.7548 
20 by 20 960 7.7611 
30 by 30 2040 7.7624 
40 by 40 3520 7.7629 

 

TABLE III.  LINEAR BASIS, NO EDGE OR CORNER FUNCTIONS 

plate mesh unknowns Capacitance/ε 
5 by 5 72 7.5488 

10 by 10 242 7.6460 
20 by 20 882 7.7023 
30 by 30 1922 7.7222 
40 by 40 3362 7.7323 

 

TABLE IV.  LINEAR BASIS WITH EDGE FUNCTIONS 

plate mesh unknowns Capacitance/ε 
5 by 5 112 7.7296 

10 by 10 322 7.7484 
20 by 20 1042 7.7564 
30 by 30 2162 7.7589 
40 by 40 3682 7.7601 

 

TABLE V.  LINEAR BASIS WITH EDGE AND CORNER FUNCTIONS 

plate mesh unknowns Capacitance/ε 
5 by 5 120 7.7361 

10 by 10 330 7.7500 
20 by 20 1050 7.7568 
30 by 30 2170 7.7591 
40 by 40 3690 7.7601 

 
Similarly, Tables VI, VII, and VIII show results for 

quadratic basis functions alone, quadratic basis functions 
with singular edge basis functions, and quadratic basis 
functions with singular edge and corner basis functions, 
respectively.  

An investigation of the results of these tables suggests 
that the convergence of the piecewise constant representation 
is substantially improved by the addition of the edge-singular 
bases. Similarly, the performance of the linear representation 

is improved by the addition of the edge bases.  For the linear 
representation, the corner bases provide a slight change in 
the capacitance associated with the coarser plate meshes, but 
the difference decreases as the meshes are refined.  For the 
quadratic underlying representation, the edge functions 
provide a substantial change, while the corner functions 
provide a minor change.  As best as can be determined, the 
numerical results from all three approaches are converging to 
similar values for capacitance, in the range 7.76 < C/ε < 7.77. 

TABLE VI.  QUADRATIC BASIS, NO EDGE OR CORNER FUNCTIONS 

plate mesh unknowns Capacitance/ε 
5 by 5 242 7.6433 

10 by 10 882 7.7014 
20 by 20 3362 7.7320 
30 by 30 7442 7.7425 

 

TABLE VII.  QUADRATIC BASIS WITH EDGE FUNCTIONS 

plate mesh unknowns Capacitance/ε 
5 by 5 282 7.8037 

10 by 10 962 7.7860 
20 by 20 3522 7.7754 
30 by 30 7682 7.7717 

 

TABLE VIII.  QUADRATIC BASIS WITH EDGE AND CORNER FUNCTIONS 

plate mesh unknowns Capacitance/ε 
5 by 5 290 7.7793 

10 by 10 970 7.7787 
20 by 20 3530 7.7732 
30 by 30 7690 7.7706 

 

IV. CONCLUSIONS 
The example used for illustration has a strong fringing 

field and relatively strong edge singularity. For this example, 
the addition of edge-singular bases has a substantial effect, 
and accelerates the convergence of the numerical results for 
capacitance. The corner-singular bases do not have a strong 
effect on the results. This observation suggests that corner 
bases be reserved for use in situations where high accuracy is 
important in the numerical results.  In those situations, an 
underlying representation of higher order than quadratic may 
also be indicated. 
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