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Abstract: Protein dynamics has been investigated since almost half a century, as it is believed to 11 

constitute the fundamental connection between structure and function. Elastic Network Models 12 

(ENMs) have been widely used to predict protein dynamics, flexibility and biological mechanism, 13 

from which remarkable results have been found regarding the prediction of protein conformational 14 

changes. Starting from the knowledge of the reference structure only, these conformational changes 15 

have been usually predicted either by looking at the individual mode shapes of vibrations, i.e. by 16 

considering the free vibrations of the ENM, or by applying static perturbations to the protein 17 

network, i.e. by considering a linear response theory. In this paper, we put together the two previous 18 

approaches and evaluate the complete protein response under the application of dynamic 19 

perturbations. Harmonic forces with random directions are applied to the protein ENM, which are 20 

meant to simulate the single frequency-dependent components of the collisions of the surrounding 21 

particles, and the protein response is computed by solving the dynamic equations in the 22 

underdamped regime, where mass, viscous damping and elastic stiffness contributions are 23 

explicitly taken into account. The obtained motion is investigated both in the coordinate space and 24 

in the sub-space of Principal Components (PCs). The results show that the application of 25 

perturbations in the low-frequency range is able to drive the protein conformational change, leading 26 

to remarkably high values of direction similarity. Eventually, this suggests that protein 27 

conformational change might be triggered by external collisions and favored by the inherent low- 28 

frequency dynamics of the protein structure. 29 

Keywords: protein dynamics; low-frequency vibrations; modal analysis; elastic network model; 30 

harmonic perturbation; conformational change; principal component analysis. 31 

 32 

1. Introduction 33 

Proteins affect virtually every biological process occurring in the human body [1]. 34 

Their correct functioning is pivotal for a variety of tasks, such as delivery of nutrients 35 

throughout and across cells, recognition and neutralization of pathogenic bacteria and 36 

viruses, providing of suitable strength and rigidity to tissues, activation of signaling 37 

pathways and catalytic reactions, etc. [2]. All these activities are performed within the 38 

physiological environment and in a highly dynamic fashion. This explains why so much 39 

research has been carried out in the last decades regarding protein dynamics and its 40 

relationship with the biological functionality. One of the main computational approaches 41 

used to investigate protein dynamics is Molecular Dynamics (MD) [3,4]. MD is based on 42 

the numerical integration of Newton’s laws of motion of the molecular system under 43 

scrutiny, subjected to the forces arising from the gradients of the interatomic potentials 44 

[5]. Despite the high potential of MD simulations, its applicability to large peptide chains 45 
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and protein complexes, especially for the investigation of the large-scale slow dynamics, 46 

remains quite elusive and requires cautious analysis of the results. 47 

While trying to overcome the limitations of MD simulations and come up with more 48 

simplified approaches which could be of value for a general understanding of protein 49 

functionality, it was found that elastic models based on single-parameter Hookean 50 

potentials are still able to describe the slow protein dynamics in good detail [6]. These 51 

models treat the protein as a network of elastic springs, connecting the atoms whose 52 

positions in the reference structure are assumed to be at the equilibrium, around which 53 

the thermal fluctuations take place [7–9]. Despite the simplicity of this model, the 54 

predicted fluctuations as well as the obtained vibrational frequencies were found in good 55 

agreement with those obtained by considering more complex semi-empirical potentials 56 

[6]. This discovery paved the way for the development of the coarse-grained elastic 57 

network models (ENMs), such as the Gaussian Network Model (GNM) [10–16] and the 58 

Anisotropic Network Model (ANM) [17]. The GNM assumes that the protein structure 59 

undergoes isotropic fluctuations around the equilibrium position, therefore it predicts the 60 

amplitude of these fluctuations and hence it can be identified as a unidimensional model. 61 

Conversely, the ANM takes also into consideration the directionality of the expected 62 

motion, the protein structure being modelled as an actual three-dimensional network. 63 

The ANM was extensively used for the investigation of protein dynamics for three 64 

main reasons. Firstly, the computed fluctuations are found to exhibit a good agreement 65 

with the B-factors obtained from crystallographic experiments, therefore providing good 66 

estimates of the protein flexibility [17–23]. Secondly, the ANM low-frequency motions are 67 

found to describe fairly accurately the directionality of the protein conformational change 68 

[20,24–34]. These conformational changes usually occur when the protein switches its 69 

three-dimensional shape while performing its biological activity, e.g. during ligand- 70 

binding or phosphorylation phenomena, and therefore they are informative of the protein 71 

biological mechanism [1]. Thirdly, this model allows to obtain useful insights on the low- 72 

frequency dynamics with small computational burden, especially if compared with the 73 

more time-consuming MD simulations. 74 

From a Structural Mechanics viewpoint, we have recently shown that the ANM can 75 

be seen as a spatial truss elastic model, where the atoms of the protein network can be 76 

replaced by frictionless spherical hinges and the Hookean connections by linear elastic 77 

bars [35,36]. In the traditional formulation of the ANM, the Hessian matrix of the network 78 

is computed and diagonalized to obtain the eigenvalues and eigenvectors. The former are 79 

associated with the vibrational frequencies, while the latter identify the mode shapes of 80 

vibration [17]. However, since the mass of the protein is not explicitly taken into account 81 

in the classical ANM, the eigenvalues are only qualitatively related to the vibrational 82 

frequencies. In our previous works, we have also added the explicit mass information, 83 

therefore obtaining more quantitative information about the frequencies of vibration via 84 

a classical free-vibration modal analysis [35,36]. In particular, in the case of lysozyme we 85 

observed that the lowest-frequency modes lie in the sub-THz frequency range, with 86 

frequency values of the order of few tens of GHz, in agreement with previous studies 87 

[6,37–40]. 88 

Another powerful application of the ANM, which has been developed since the last 89 

decade, is based on application of perturbations on the protein elastic network, both to 90 

probe protein flexibility and conformational changes. Eyal and Bahar [41] developed a 91 

methodology that made use of the ANM normal modes to assess the anisotropic 92 

mechanical resistance of proteins under external pulling forces. This analysis was able to 93 

explain the anisotropy of the mechanical resistance observed from single-molecule 94 

manipulation techniques, such as Atomic Force Microscopy (AFM). More recently, we 95 

made use of two structural metrics, which are well-known in the field of Structural 96 

Mechanics, i.e. compliance and stiffness, to study the flexibility of protein structures under 97 

pairwise force application [42]. These metrics enabled to predict the distribution of protein 98 

flexibility and rigidity throughout the protein chain and were verified against the 99 
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experimental B-factors. Referring to protein conformational changes, Ikeguchi et al. [43] 100 

observed that protein transitions can be numerically simulated by evaluating the linear 101 

response of the protein reference structure subjected to external forces applied at specific 102 

locations. Based on this finding, the Atilgan’s group developed the perturbation-response 103 

scanning (PRS) technique, where directed forces are applied to the protein structure at 104 

single residues and the protein response is calculated and compared with the 105 

conformational change observed experimentally [44]. The method was shown to work 106 

well for the prediction of a variety of protein conformational changes [45], as well as for 107 

the detection of allosteric sites [46]. More recently, the PRS method was used by Liu et al. 108 

[47], coupled with an energy-based Metropolis Monte Carlo (MMC) algorithm, in order 109 

to simulate the complete closed-to-open transition of the GroEL subunit, induced by 110 

directional forces applied at the ATP-binding site. 111 

From what we have reported above, it is evident that, when starting from the 112 

knowledge of the reference structure only, protein conformational changes have been 113 

analyzed with the ANM by following two separate approaches: (1) evaluating the normal 114 

modes of vibration of the reference elastic model, with subsequent comparison between 115 

each individual mode shape and the conformational change; (2) applying forces to the 116 

protein reference structure and evaluating the response of the network in terms of 117 

displacements, with subsequent comparison with the observed conformational change. 118 

Fundamentally, approach (1) considers the free-vibration dynamics of the protein, 119 

whereas approach (2) focuses on the static response of the protein structure under external 120 

forces. In this work, we put the two approaches together, therefore applying forces to the 121 

protein structure in a dynamic fashion. In this way, we exploit the main ideas behind both 122 

approaches: (1) conformational changes might be favored by the intrinsic protein 123 

dynamics along its low-frequency modes of vibration [24,29]; (2) conformational changes 124 

might be triggered by external perturbations [43,45]. 125 

In particular, we apply external harmonic perturbations, randomly distributed in the 126 

space-domain but with a well-defined frequency content in the time-domain, to the 127 

protein ANM. The equations of motions are numerically solved, by considering mass, 128 

viscous damping and elastic stiffness contributions, in order to assess the complete time- 129 

dependent dynamic response of the protein. The time-history of nodal displacements is 130 

then evaluated both in the coordinate space, as well as in the sub-space of principal 131 

components (PCs) via the application of Principal Component Analysis (PCA). The 132 

obtained time-dependent displacements are then compared to the observed 133 

conformational change, in order to find in which conditions these external perturbations 134 

are able to drive the conformational change. Results are shown here for lysine-arginine- 135 

ornithine(LAO)-binding protein, considering different perturbation patterns, damping 136 

coefficients and frequencies of excitation. The results of the analysis reveal that, when the 137 

external perturbation is applied in the low-frequency range, the protein structure 138 

undergoes a displacement field closely aligned with the observed conformational change, 139 

with a remarkably high overlap score (up to 0.95). 140 

2. Methodology 141 

In this section we describe the fundamentals of the ANM, starting from the 142 

calculation of the natural modes of vibration (Section 2.1), the evaluation of the protein 143 

response under external perturbations applied in a static fashion (Section 2.2), and finally 144 

how the two approaches can be put together in order to retrieve the complete protein 145 

response under time-dependent external perturbations (Section 2.3). 146 

2.1. ANM fundamentals and free-vibration analysis 147 

The Anisotropic Network Model (ANM) treats the protein structure as a network of 148 

atoms connected by Hookean connections, which are meant to simulate the interatomic 149 

interactions in a simplified manner. In its traditional coarse-grained representation, Cα 150 
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atoms are usually taken as the reference nodes for each amino acid [17]. The positions of 151 

these nodes can be taken from the coordinates of the crystal structure, which is available 152 

from the Protein Data Bank [48] and assumed to be the equilibrium state of the protein. 153 

Each pair of nodes i and j lying at a distance ri,j lower than a certain cutoff threshold rc are 154 

connected by a linear elastic spring, having a spring constant equal to γi,j. Commonly 155 

employed values of rc are around 12–15 Å [17]. For each connection among nodes i and j, 156 

the Hessian (stiffness) matrix [Hi,j] can be computed based on the values of the spring 157 

constant γi,j and coordinates of atoms i and j [17,35]: 158 

 [𝐻𝑖,𝑗] = −
𝛾𝑖,𝑗

𝑟𝑖,𝑗
2

[
 
 
 (𝑥𝑗 − 𝑥𝑖)

2
(𝑥𝑗 − 𝑥𝑖)(𝑦𝑗 − 𝑦𝑖) (𝑥𝑗 − 𝑥𝑖)(𝑧𝑗 − 𝑧𝑖)

(𝑥𝑗 − 𝑥𝑖)(𝑦𝑗 − 𝑦𝑖) (𝑦𝑗 − 𝑦𝑖)
2

(𝑦𝑗 − 𝑦𝑖)(𝑧𝑗 − 𝑧𝑖)

(𝑥𝑗 − 𝑥𝑖)(𝑧𝑗 − 𝑧𝑖) (𝑦𝑗 − 𝑦𝑖)(𝑧𝑗 − 𝑧𝑖) (𝑧𝑗 − 𝑧𝑖)
2

]
 
 
 

. (1) 

For a protein network made up of N nodes, the complete 3N × 3N Hessian matrix [H] 159 

can be computed as a Boolean combination of the sub-matrices [Hi,j], i.e.: 160 

 [𝐻] =

[
 
 
 
 
 
 
[𝐻1,1] [𝐻1,2] … [𝐻1,𝑖] … [𝐻1,𝑁]

[𝐻2,1] [𝐻2,2] … [𝐻2,𝑖] … [𝐻2,𝑁]
… … … … … …

[𝐻𝑖,1] [𝐻𝑖,2] … [𝐻𝑖,𝑖] … [𝐻𝑖,𝑁]
… … … … … …

[𝐻𝑁,1] [𝐻𝑁,2] … [𝐻𝑁,𝑖] … [𝐻𝑁,𝑁]]
 
 
 
 
 
 

, (2) 

where:  161 

 [𝐻𝑖,𝑖] = − ∑ [𝐻𝑖,𝑗]

𝑁

𝑗=1,𝑗≠𝑖

. (3) 

At this point, the ANM looks for the eigenvalues and eigenvectors of [H]. The former 162 

are qualitatively associated with the fundamental frequencies of vibration, while the latter 163 

reflect the natural mode shapes of the protein network [17]. Notice that, since the protein 164 

is not externally constrained, the first six mode shapes are associated with rigid-body 165 

motions (translations + rotations) of the entire molecule at zero-frequency. Thus, the mode 166 

shapes accounting for the internal deformability of the protein are related to the 167 

subsequent 3N–6 eigenvectors. These vibrational modes have been extensively used to 168 

analyze and predict protein conformational changes, and good agreement has often been 169 

found, especially for the most collective conformational transitions [24,27–30]. 170 

In order to have more quantitative information about the frequencies of vibration, 171 

the mass of the structure needs to be included into the calculations [35,36,49–51]. This can 172 

be easily done by considering the 3N × 3N mass matrix [M] of the network: 173 

 [𝑀] =

[
 
 
 
 
 
[𝑀1,1] [0] … [0] … [0]

[0] [𝑀2,2] … [0] … [0]
… … … … … …
[0] [0] … [𝑀𝑖,𝑖] … [0]
… … … … … …
[0] [0] … [0] … [𝑀𝑁,𝑁]]

 
 
 
 
 

, (4) 

where [Mi,i] = mi[I], mi being the mass of node i (e.g. equal to the actual mass of the ith amino 174 

acid for a Cα-only coarse-grained model), and [I] represents a 3 × 3 unitary matrix. The 175 

Hessian and mass matrices reported above can then be diagonalized together, following 176 

the well-known approach of modal analysis to retrieve the fundamental modes of 177 

vibration. This yields the fundamental eigenvalue-eigenvector equation [52]: 178 



Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 5 of 22 
 

 

 ([𝐻] − 𝜔𝑛
2[𝑀]){𝛿𝑛} = {0}, (5) 

where ωn is the angular frequency of vibration associated with mode n, and {δn} the 3N × 179 

1 vector containing the mass-weighted displacements associated to the nth mode shape. 180 

Notice that ωn is related to the vibrational frequency fn by fn = ωn /2π. As in the traditional 181 

ANM, the mode shapes evaluated from Eq. (5) can be used to characterize the low- 182 

frequency dynamics of the protein [35,36] and investigate its conformational changes. 183 

In order to obtain fully quantitative information about the natural vibrational 184 

frequencies fn, we do not only need to include mass into the model but also to fix properly 185 

the values of the spring constants γi,j. Multiple choices can be made in this regard: the 186 

traditional ANM sets γi,j as a constant value for all connections, i.e. γi,j = γ [17], while other 187 

ANM-based approaches make these values dependent on the distance between the nodes, 188 

i.e. γi,j ∝ ri,j -p (p = 1 in [35,36], 2 in [20], in the range 0–2.8 in [18]). In this work, we use the 189 

traditional ANM convention, i.e. all springs have a unique spring constant equal to γ. This 190 

value can be quantified by comparing the computed fluctuations arising from the normal 191 

modes to the experimental ones, which are known as the B-factors [17,35]. B-factors 192 

constitute a fingerprint of protein flexibility and can be experimentally retrieved from 193 

crystallographic experiments. These experimental values can be compared to the ones 194 

obtained from the normal mode calculations, based on the following expression [35,53]: 195 

 𝐵𝑖 =
8

3
𝜋2𝑘𝐵𝑇 ∑

𝛿𝑛,𝑖
2

𝜔𝑛
2

3𝑁

𝑛=7

, (6) 

where Bi represents the B-factor calculated for node i of the network, kB is the Boltzmann’s 196 

constant (1.38 × 10-23 J/K), T is the absolute temperature, δn,i is the mass-weighted 197 

displacement of node i associated with mode n, and ωn is the angular frequency of mode 198 

n. By posing that the mean value of the calculated B-factors matches the mean value of the 199 

experimental B-factors, one is able to obtain the value of the spring constant γ, finally 200 

being able to obtain quantitative information about the vibrational frequencies [35,36]. 201 

2.2. Time-independent response under external perturbations 202 

As mentioned in the Introduction, the ANM has also been used to predict protein 203 

flexibility and conformational changes upon the application of external perturbations to 204 

the protein network [41,42,44,45,47]. This is usually done in a static fashion, meaning that 205 

dynamic effects are neglected. In this case, the protein response is obtained by solving the 206 

following matrix equation: 207 

 {𝐹} = [𝐻]{𝑢}, (7) 

where [H] is the ANM Hessian matrix evaluated from Eq. (2), {F} is a 3N × 1 vector of 208 

external forces and {u} is the 3N × 1 vector of nodal displacements accounting for the 209 

protein response. The choice of the force vector {F} depends on the specific application. 210 

For example, in [42] pairwise pulling forces are applied for each couple of residues i and 211 

j, whereas in the PRS technique a point force is usually applied at a single node [44,45] or 212 

in a localized region [46,47] with a random direction. In any case, the protein response {u} 213 

is computed by inverting Eq. (7) as follows: 214 
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 {𝑢} = [𝐻−1]{𝐹}, (8) 

where [H-1] is the pseudo-inverse Hessian matrix, which can be computed from the 3N–6 215 

eigenvalues λn and eigenvectors {δn} of the Hessian matrix, as follows: 216 

 [𝐻−1] = ∑
1

𝜆𝑛

{𝛿𝑛}{𝛿𝑛}T
3𝑁

𝑛=7

. (9) 

The protein response {u} computed through Eqs. (7-9) has been often compared to the 217 

observed conformational change, and good agreement has been found in certain cases 218 

[44,45,47]. 219 

2.3. Time-dependent response under external harmonic perturbations 220 

The method developed in the present work can be seen as the generalization of the 221 

techniques reported in the previous subsections, in the sense that we consider the 222 

dynamics of the system while applying external perturbations, i.e. we apply forces to the 223 

protein ANM in a dynamic fashion. In this case, we can write the full equilibrium 224 

equations as follows [52]: 225 

 [𝑀]
d2

d𝑡2
{𝑢(𝑡)} + [𝐶]

d

d𝑡
{𝑢(𝑡)} + [𝐻]{𝑢(𝑡)} = {𝐹(𝑡)}, (10) 

where [M], [C] and [H] are the 3N × 3N mass, damping and Hessian matrix of the system, 226 

respectively, {u(t)} is 3N × 1 displacement vector representing the time-dependent protein 227 

response, and {F(t)} is the 3N × 1 vector of external time-dependent perturbations. Notice 228 

that when no forces act on the system and damping effects are neglected, i.e. {F(t)} = {0} 229 

and [C] = [0], the problem reduces to the free-vibration analysis reported in Section 2.1. 230 

Conversely, if inertia and damping forces are neglected and the external perturbations are 231 

time-independent, i.e. [M] = [0], [C] = [0] and {F(t)} = {F}, the problem reduces to the 232 

calculation of the protein response under external static perturbation described in Section 233 

2.2. If all the terms are taken into account, i.e. [M] ≠ [0], [C] ≠ [0] and d{F(t)}/dt ≠ {0}, Eq. 234 

(10) allows to obtain the complete time-dependent protein response under external 235 

dynamic perturbations. 236 

In this work, we apply an external pattern of forces which is random in the space- 237 

domain, but it has a harmonic content in the time-domain. Therefore, the time-dependent 238 

force vector can be written as {F(t)} = {F}sin(ωFt), where {F} is a 3N × 1 vector of force 239 

components randomly extracted from the uniform distribution U ~ (-1,1) × 10-10 N, and ωF 240 

is the angular frequency associated to the harmonic excitation, with frequency fF = ωF/2π. 241 

The protein response {u(t)} can be decoupled in the space- and time-domain through the 242 

well-known relation {u(t)} = [Δ]{p(t)}, where [Δ] is the 3N × 3N matrix containing the 243 

eigenvectors {δn} obtained via modal analysis from Eq. (5), and {p(t)} is the 3N × 1 vector 244 

of principal coordinates associated with each normal mode {δn}. In this way, Eq. (10) can 245 

be rewritten as [52]: 246 

 [𝑀][𝛥]
d2

d𝑡2
{𝑝(𝑡)} + [𝐶][𝛥]

d

d𝑡
{𝑝(𝑡)} + [𝐻][𝛥]{𝑝(𝑡)} = {𝐹} sin(𝜔𝐹𝑡). (11) 

Pre-multiplying both sides of Eq. (11) by [Δ]T, we observe that [Δ]T[M][Δ] = [I] and 247 

[Δ]T[H][Δ] = [Ω], where [I] is the 3N × 3N identity matrix and [Ω] is the 3N × 3N diagonal 248 

matrix containing the 3N natural angular frequencies ωn2. At this point, by assuming that 249 
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the matrix product involving the damping matrix, [Δ]T[C][Δ], yields a diagonal matrix 250 

itself, the 3N-degree-of-freedom problem reported in Eq. (11) can be fully decoupled in a 251 

set of 3N single-degree-of-freedom equations, as follows [52]:  252 

 
d2

d𝑡2
𝑝𝑛(𝑡) + 2𝜉𝑛𝜔𝑛

d

d𝑡
𝑝𝑛(𝑡) + 𝜔𝑛

2𝑝𝑛(𝑡) = {𝛿𝑛}T{𝐹} sin(𝜔𝐹𝑡) , 𝑛 = 1,… ,3𝑁, (12) 

where ξn is the dimensionless damping coefficient associated with the nth mode of 253 

vibration {δn}. Since we are only interested in the internal deformation of the protein, we 254 

can focus on the 3N–6 set of equations related to the non-rigid motions, i.e. n = 7, …, 3N. 255 

Considering underdamped conditions, i.e. ξn < 1, the general solution of Eq. (12) is: 256 

 𝑝𝑛(𝑡) = e−𝜉𝑛𝜔𝑛𝑡[𝐴𝑛 cos(𝜔𝑑,𝑛𝑡) + 𝐵𝑛 sin(𝜔𝑑,𝑛𝑡)] + 𝐶𝑛 sin(𝜔𝐹𝑡 + 𝜙𝑛), (13) 

where the first term in the right-hand side represents the solution of the general integral, 257 

which is associated with the decaying damped response, while the latter represents the 258 

solution of the particular integral, which is related to the steady-state response due to the 259 

external harmonic excitation at frequency ωF [52], and ωd,n is the reduced frequency of 260 

mode n, i.e. ωd,n2 = ωn2(1–ξn2). The amplitude Cn and phase ϕn of the steady-state response 261 

can be written as [52]: 262 

 
𝐶𝑛 =

{𝛿𝑛}T{𝐹}

𝜔𝑛
2√(1 − 𝛽𝑛

2)
2
+ (2𝜉𝑛𝛽𝑛)2

, 𝜙𝑛 = − arctan(
2𝜉𝑛𝛽𝑛

1 − 𝛽𝑛
2), 

(14) 

where βn is the ratio between the frequency of applied excitation ωF and the one of the nth 263 

normal mode ωn, i.e. βn = ωF/ωn. The integration constants An and Bn depend on the initial 264 

conditions of the system. Assuming an initial resting condition, i.e. p(t=0) = 0 and 265 

dp/dt(t=0) = 0, one obtains: 266 

 𝐴𝑛 = −𝐶𝑛 sin𝜙𝑛 , 𝐵𝑛 =
𝜉𝑛𝜔𝑛𝐴𝑛 − 𝐶𝑛𝜔𝑛 cos𝜙𝑛

𝜔𝑑,𝑛

. (15) 

The numerical computation of Eqs. (13-15) allows to obtain the complete temporal 267 

evolution of the vector of principal coordinates {p(t)}, and therefore the vector of time- 268 

dependent displacements of the protein nodes {u(t)} = [Δ]{p(t)}. 269 

2.4. Model parameters, comparison between the protein response and the observed conformational 270 

change and Principal Component Analysis (PCA) 271 

Besides the mass, damping and stiffness features of the protein network, the time- 272 

dependent response {u(t)} depends on the applied force vector {F} and frequency of 273 

excitation ωF. As mentioned above, the force vector has been chosen as a random vector, 274 

whose components are picked up from a uniform distribution in the range (-1,1) × 10-10 N. 275 

The simulation has been run for 100 different random force patterns, in order to assess the 276 

influence of the specific force pattern on the protein response. As for the value of the 277 

frequency fF, 500 different values have been used in the range 0.001 THz – 0.5 THz, in 278 

order to investigate the influence of the excitation frequency on the response of the elastic 279 

network. The mass values have been set based on the actual amino acid atomic weights. 280 

The elastic network has been built from the protein crystal coordinates obtained from the 281 

PDB, and by adopting a cutoff value rc of 15 Å. All springs have been set the same stiffness 282 

value γ, which has been defined based on the quantitative comparison between the 283 

experimental and numerical B-factors, as explained in Section 2.1. Finally, since the 284 
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damping characteristics of the system are not easy to understand, as a preliminary testing 285 

condition we worked in the underdamped limit, by carrying out the analysis with three 286 

different values of the dimensionless damping coefficients ξn, i.e. ξn = 0.001, 0.01 and 0.1. 287 

This value has also been kept equal for all modes. Discussions about the effect of damping 288 

and the reasonableness of these choices are addressed below. In conclusion, for a certain 289 

protein structure, 150,000 different simulations have been run, by considering 100 random 290 

force patterns, 500 different excitation frequencies and 3 different damping coefficients. 291 

After the evaluation of the induced time-dependent displacement field {u(t)}, this has 292 

been compared with the experimentally-observed conformational change. The 293 

conformational change can be characterized by a 3N × 1 vector of nodal displacements 294 

{CC}, which is evaluated from the two crystal protein conformations available on the PDB 295 

(usually referred to as the “open” and “closed” form of the protein) after superposition 296 

[24]. The comparison can be quantitatively assessed by calculating the overlap between 297 

the two vectors {u(t)} and {CC}, which is defined as [24]: 298 

 𝑂(𝑡) =
|{𝑢(𝑡)}T{𝐶𝐶}|

√{𝑢(𝑡)}T{𝑢(𝑡)} ∙ √{𝐶𝐶}T{𝐶𝐶}
. (16) 

The overlap defined in Eq. (16) provides a numerical estimate of the alignment between 299 

the calculated displacements {u(t)} and the conformational change {CC}. If the two vectors 300 

are perfectly aligned, the overlap reaches the maximum value of 1, whereas it provides a 301 

value of 0 if the two vectors are orthogonal. In the previous literature, the overlap has 302 

been extensively used to assess the directionality correlation between the conformational 303 

change and the individual normal modes of vibrations [24,28,29]. In that case, since each 304 

normal mode of vibration has a fixed direction over time, the overlap is time-independent. 305 

Conversely, in this case, we are comparing the observed conformational change to the 306 

time-dependent response of the protein network {u(t)}, therefore the overlap changes over 307 

time as the displacement field evolves in the time-domain. From the analysis of the 308 

obtained overlap values, we can infer whether the induced time-dependent protein 309 

response is in agreement with the experimentally-observed conformational change. 310 

 Principal Component Analysis (PCA) is also used here to investigate the generated 311 

ensemble of protein conformations. PCA is a numerical technique widely adopted for 312 

dimensionality reduction [54], and it has also been used to evaluate the apparent motions 313 

of proteins from a set of experimental crystal structures [33,55]. The input of PCA is a 314 

matrix of coordinates [X], with dimension s × 3N, being s the number of available 315 

structures and N the number of protein residues. In our case, s is equal to the number of 316 

generated protein conformations upon harmonic perturbations. From [X], the covariance 317 

matrix [Σ] can be calculated as [33]: 318 

 𝛴𝑖,𝑗 = 〈(𝑟𝑖 − 〈𝑟𝑖〉)(𝑟𝑗 − 〈𝑟𝑗〉)〉, (17) 

where ri and rj represent the X-, Y- and Z-coordinates associated with conformation i and 319 

j, respectively, and < > stands for the average over all the conformations. The covariance 320 

matrix [Σ] is then decomposed as: 321 

 [𝛴] = [𝑃][𝛬][𝑃]T, (18) 

where [Λ] is the 3N × 3N diagonal matrix of eigenvalues and [P] is the 3N × 3N matrix of 322 

eigenvectors. Each column of [P] represents a Principal Component (PC), ordered for 323 

descending order of its total variance, which is directly proportional to the corresponding 324 



Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 9 of 22 
 

 

eigenvalue included in [Λ]. PCA is applied here to reduce the problem dimensionality and 325 

study the protein trajectory in the PC sub-space. 326 

3. Results and Discussion 327 

In this section, the results are reported for the case of LAO-binding protein, a widely 328 

studied protein, known to exhibit two different conformations, i.e. an open form (PDB 329 

code: 2lao) and a closed form upon ligand-binding (PDB code: 1lst) [24]. In the 330 

Supplementary Material, the results for other three proteins are reported, i.e. 331 

maltodextrin-binding protein (PDB codes: 1omp, 1anf), lactoferrin (PDB codes: 1lfh, 1lfg) 332 

and triglyceride lipase (PDB codes: 3tgl, 4tgl). The coordinates of the open form are used 333 

to build the elastic network model, with a cutoff of 15 Å (Figure 1a). Free-vibration modal 334 

analysis is run first, in order to obtain the theoretical B-factors from Eq. (6) and the value 335 

of the spring constant γ, which is found to be equal to 0.10 N/m (~ 0.15 kcal/molÅ2). As a 336 

result, the frequency spectrum of the 3N–6 (N = 238) non-rigid modes related to the coarse- 337 

grained elastic network is found to lie in the range 0.05 THz – 0.8 THz (Figure 1b), the 338 

lowest frequency being equal to 50.9 GHz. 339 

Figure 1c shows the displacement field involved in the open-to-closed 340 

conformational change (continuous line). By carrying out the traditional overlap 341 

comparison between the displacement field {CC} and each individual normal mode {δn}, 342 

it is found that the first non-rigid normal mode, i.e. {δ7}, is the one exhibiting the highest 343 

overlap value (0.76), as shown in Figures 1c and 1d. The second low-frequency mode {δ8} 344 

agrees with the conformational change with an overlap of 0.55, while all the higher- 345 

frequency modes have lower overlap scores (Figure 1d). From these results, it is clear that 346 

the low-frequency modes are strictly related to the observed conformational change, as 347 

already reported in the previous literature [24,29]. 348 

 349 

Figure 1. LAO-binding protein normal modes: (a) elastic network model of the open conformation 350 
(PDB code: 2lao), obtained with rc = 15 Å; (b) distribution of vibrational frequencies obtained from 351 
free-vibration modal analysis; (c) normalized values of the displacements of the open-to-closed 352 
conformational change (continuous line) and displacements associated with the first non-rigid 353 
normal mode (dashed line); (d) overlap values obtained from the comparison of the open-to-closed 354 
conformational change to each normal mode of vibration (maximum overlap 0.76). 355 
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The results reported above are based on the traditional analysis aimed at evaluating 356 

the similarity between the individual mode shapes of the protein structure and its 357 

conformational change [24]. What happens if we look at the complete time-dependent 358 

protein response upon harmonic random perturbations, as described in Section 2.3? 359 

Figure 2 shows the time-dependent response of LAO-binding protein, subjected to the 360 

random force pattern reported in Figure 2a, with an exciting frequency of 0.05 THz and a 361 

damping coefficient ξ of 0.01. The response is reported in Figure 2b in terms of the global 362 

root-mean-squared-deviation (RMSD). The RMSD is a measure of the average 363 

displacements of the atoms from the initial position. It can be simply computed as: 364 

 𝑅𝑀𝑆𝐷(𝑡) = √
1

𝑁
∑𝑢𝑖(𝑡)2

𝑁

𝑖=1

, (19) 

being ui(t) the absolute displacement of the ith node at instant t. As can be noticed from 365 

Figure 2b, the response of the protein network exhibits a transitory response at the 366 

beginning, and then enters a steady-state oscillation approximately from 400 ps onwards. 367 

Note that, being the frequency of the external oscillation of 0.05 THz, its period is equal to 368 

20 ps. Moreover, since this frequency value is very close to the natural frequency of the 369 

first mode (f7 = 0.051 THz), high amplifications in the response occur, leading to RMSD 370 

values of about 20 Å (Figure 2b). On the other hand, if we apply the same force pattern in 371 

a static way, i.e. by following the approach reported in Section 2.2, we would obtain a total 372 

RMSD of about 2.3 Å. This leads to a dynamic amplification value, evaluated as the ratio 373 

between the dynamic RMSD and static RMSD, of about 8.4. Such dynamic amplification 374 

factors might also explain why protein vibrations and responses under external forces, 375 

which are supposed to be theoretically valid only in the small-amplitude regime, might 376 

actually trigger large-scale conformational changes. 377 

 378 

Figure 2. Dynamic force application on LAO-binding protein: (a) elastic network model of the open 379 
conformation, with applied external forces with random directions (shown as blue arrows). Exciting 380 
frequency of the external perturbation equal to 0.05 THz and damping coefficient ξ equal to 0.01; 381 
(b) evolution of RMSD in the time-domain; (c) overlap values between the conformational change 382 
{CC} and the time-dependent displacement vector {u(t)} at each instant t (maximum overlap 0.94). 383 
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Figure 2c shows the time-dependent overlap, obtained by comparing the calculated 384 

displacement field {u(t)} with the conformational change {CC}, as described in Section 2.4. 385 

The results are astonishing, since values as high as 0.94 are frequently met. This 386 

unequivocally suggests that, even if the applied force pattern is completely random in the 387 

space-domain (Figure 2a), its dynamic application is able to drive the protein structure 388 

towards the known closed conformation, with remarkably high levels of agreement. 389 

Also, it is interesting to observe how the overlap score is not maintained to these 390 

high values constantly, but it keeps oscillating between low and high values. This suggests 391 

that the direction of the protein motion {u(t)} from the open towards the closed 392 

conformation is not linear – see Eq. (16). As a matter of fact, if this motion were linear, we 393 

would find a roughly constant value of the overlap throughout the entire simulation. The 394 

fact that this does not happen suggests that, while jiggling around its equilibrium position, 395 

the protein is sampling a variety of different conformations, among which lies the known 396 

closed form. These dynamic jumps between conformations happen in a continuous 397 

fashion and involve curvilinear pathways, as suggested here from our overlap 398 

calculations and already reported by previous authors [28,56–60]. 399 

The complete trajectory of LAO-binding protein upon the force pattern shown in 400 

Figure 2a is represented in the Supplementary Movie 1, which is available in the 401 

Supplementary Material. In the movie the blue structure refers to the protein 402 

conformation generated at each instant t starting from the open form. Conversely, the red 403 

structure refers to the known closed form of the protein and it is kept fixed in all frames 404 

to help the visualization of the conformational change. As can be seen, after the motion 405 

enters in the steady-state regime, the perturbed protein structure keeps oscillating 406 

between open and closed conformations. Note that several times the known closed 407 

conformation (in red) is reached with high accuracy during the motion. The instants at 408 

which this occurs are the ones where high levels of overlap values have been obtained 409 

and reported in Figure 2c. As an example, Figure 3a shows the snapshot of the dynamic 410 

displacements evaluated at t = 513.5 ps, compared with the displacements of the known 411 

open-to-closed conformational change. The overlap value and correlation coefficient 412 

between the two displacement fields are 0.935 and 0.904, respectively, showing high level 413 

of agreement. Higher than that found by following only the first normal mode of vibration 414 

(compare Figure 3a with Figure 1c). 415 

In order to describe more quantitatively the ensemble of generated conformations, 416 

PCA has been applied to the set of structures obtained during the trajectory according to 417 

Eqs. (17-18). Figure 3b reports the PC score plot of all conformations in the PC1-PC2 sub- 418 

space. Note that PC1 and PC2 account for 93.2% and 6.7% of the total variance, therefore 419 

they account for 99.9% of the total variance. The black point refers to the open form (pdb: 420 

2lao), the red point to the closed form (pdb: 1lst), while all the points associated with the 421 

generated conformations are in blue. A dynamical representation of Figure 3b can be 422 

observed in the Supplementary Movie 2, where the time-dependent evolution of the 423 

conformations in the PC1-PC2 plot is reported. From the movie and Figure 3b we see that, 424 

after a transitory, the steady-state trajectory implies a harmonic motion of the protein 425 

around the open form, mostly along the first PC (green arrows in Figure 3b). The 426 

information contained in Supplementary Movies 1 and 2 also suggest that the direction of 427 

PC1 involves mostly an opening-closing mechanism of the protein. During this harmonic 428 

oscillation, the closed conformation (red point in the PC score plot) is closely approached 429 

several times throughout the motion. 430 

It is also interesting to observe that, even though we are applying forces at a 431 

frequency very close to the first natural mode (fF = 0.05 THz and f7 = 0.051 THz), the time- 432 

dependent displacement field contains the information about the complete dynamics of 433 

the system, and not only that of the first natural mode. This can be immediately 434 

understood if one looks at the overlap values. By considering the trajectory which would 435 

be induced by the first natural mode alone, we would get a 0.74 overlap with the 436 

conformational change for the entire trajectory (Figure 1d). On the other hand, applying 437 



Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 12 of 22 
 

 

forces dynamically excites all modes and eventually leads to a much higher agreement 438 

with the conformational change, with Omax = 0.94 (Figure 2c and Figure 3a). 439 
Here, it is also important to notice that the methodology developed in this work does not 440 

require any a priori knowledge of the target conformation. The closed conformation is only used to 441 
assess whether the conformations generated by perturbing dynamically the reference structure 442 
overlap properly with the target. Other methods have been developed in the existing literature 443 
based on the ANM, in order to find intermediate conformations given the two end structures 444 
[47,56,57,59,61,62]. Conversely, the methodology presented here relies only on the knowledge of the 445 
reference structure and aims at evaluating its dynamic response upon external harmonic 446 
perturbations. As a result, the generated conformations do not depend on the target form, but only 447 
on the intrinsic dynamics of the reference structure and how it responses to external perturbations. 448 
Nevertheless, the conformations generated by following this approach are able to reach the other 449 
form of the protein known experimentally with high levels of agreement (see Figure 3a). 450 

 451 

Figure 3. Trajectory of LAO-binding protein upon harmonic perturbations to the open form, with fF 452 
= 0.05 THz, ξ = 0.01 and force pattern depicted in Figure 2a: (a) comparison between the 453 
displacements of the experimental conformational change (blue line) and dynamic displacements 454 
evaluated at t = 513.5 ps (orange line); (b) PC score plot of all conformations. The blue points 455 
represent the ensemble of generated conformations, whereas the black and red point represent the 456 
open (pdb: 2lao) and closed (pdb: 1lst) conformation, respectively. The green arrows are associated 457 
with the trajectory in the steady-state regime. A scale factor of 0.35 has been applied to the force 458 
pattern in order to have comparable values of absolute displacements. See Supplementary Movies 459 
1 and 2 for more details about the protein trajectory in the coordinate and PC space, respectively. 460 

We have briefly mentioned above that the oscillating trend of the overlap values is a 461 

fingerprint of the non-linearity of the protein motion. This can also be assessed by a 462 

geometrical evaluation, as reported in Figure 4a. For each residue i, the coordinate 463 

difference between two subsequent conformations at time t and t + Δt provides the 464 

direction of the instantaneous motion at each time frame {Δui(t)} [59]. By calculating the 465 

normalized cosine between vector {Δui(t)} and the direction of motion at time t = 0 ps, i.e. 466 

{Δui(0)}, as: 467 

 cos⁡[𝜃𝑖(𝑡)] =
{∆𝑢𝑖(𝑡)}

T{∆𝑢𝑖(0)}

√{∆𝑢𝑖(𝑡)}T{∆𝑢𝑖(𝑡)} ∙ √{∆𝑢𝑖(0)}T{∆𝑢𝑖(0)}
, (20) 

we can geometrically evaluate the non-linearity of the trajectory. If the motion were 468 

completely linear throughout the entire simulation, the cosine would only assume values 469 

+1 and -1, the former when the protein moves in the positive direction and the latter when 470 

it comes back (Figure 4a). Conversely, non-linear motions imply cosine values different 471 

from unity, which are also supposed to change during the simulation (Figure 4a). The 472 

more frequent the change, the stronger the non-linearity of the motion. Figure 4b shows 473 

the values of the normalized cosine for all 238 residues of LAO-binding protein for the 474 

entire simulation. As can be seen, the cosine values assume all possible values in the range 475 
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between -1 (dark blue) and +1 (bright yellow), suggesting that the motion is non-linear. 476 

Moreover, this variation appears to be cyclical, confirming what already observed visually 477 

from the Supplementary Movie 1, namely that the motion presents a strong harmonic 478 

nature. Figure 4c reports an enlargement of Figure 4b for residues 17-27 (the highly 479 

flexible flap of LAO-binding protein in the first domain) in the time range between 480 480 

and 540 ps. This figure shows more clearly that each residue experiences a wide range of 481 

cosine values between -1 and +1, therefore the motion is non-linear. 482 

 483 

 484 

Figure 4. Evaluation of the motion non-linearity: (a) sketch of the vectors for the numerical 485 
evaluation of motion non-linearity; (b) values of the normalized cosine reported in Eq. (20) for the 486 
238 residues of LAO-binding protein for the entire simulation; (c) enlarged portion of Figure 4b for 487 
the segment 17-27 and in the time frame between 480 and 540 ps. The value of the normalized 488 
cosines is reported in color scale, from dark blue (cosine equal to -1) to bright yellow (cosine equal 489 
to +1). 490 

In the analysis reported above, the protein was perturbed with a specific random 491 

force pattern (Figure 2), pulsing at a selected frequency (fF = 0.05 THz) and with a defined 492 

damping coefficient (ξ = 0.01). What happens if these three variables are modified? Figure 493 

5 shows the obtained RMSD dynamic amplification, computed as the ratio between the 494 

maximum dynamic RMSD and the RMSD obtained under the application of the 495 
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perturbation in a static fashion, for the whole investigated frequency range (0.001 THz – 496 

0.5 THz) and for the three selected damping coefficients ξ (0.001, 0.01 and 0.1). The 497 

different colored curves are associated with each of the 100 different random force 498 

patterns applied to the protein structure. 499 

Clear peaks are recognizable in the low-frequency range, around 0.05 – 0.15 THz, 500 

where the low-frequency protein modes are found to occur (Figure 1b). The intensity of 501 

the peaks is highly dependent on the adopted value of the damping coefficient. Very low 502 

values of ξ, such as 0.001 and 0.01, lead to amplifications of the order of 20–30. Conversely, 503 

amplification coefficients lower than 5 are found for higher damping coefficients. It is also 504 

evident that the most intense peaks are associated with the first low-frequency modes, in 505 

the region 0.05 THz – 0.06 THz. Other pronounced peaks are also found for higher modes, 506 

especially in the region between 0.08 THz and 0.15 THz. In the higher region of the 507 

spectrum, the dynamic amplification gets lower, eventually leading to de-amplified 508 

responses, i.e. with an RMSD amplification factor lower than 1, especially in presence of 509 

higher damping coefficients (ξ = 0.1). Moreover, it can be seen that the specific force 510 

pattern has an influence on the overall system amplification. Nevertheless, highly 511 

amplified responses are always found in the low-frequency range (Figure 5). As briefly 512 

mentioned above, this dynamic amplification might be one underlying reason which 513 

enables the protein to achieve the large-scale conformational changes when it gets 514 

triggered in the low-frequency range, despite the theory behind all these calculations is 515 

strictly valid in the small-amplitude regime. 516 

 517 

Figure 5. RMSD dynamic amplification for the LAO-binding protein response, as a function of 518 
damping (ξ = 0.001, 0.01, 0.1) and different random force patterns. Each colored curve represents 519 
one of the 100 different random force patterns. 520 

Figure 6 shows the maximum overlap values obtained during ten cycles of dynamic 521 

perturbation by comparing the calculated displacement field {u(t)} with the observed 522 

conformational change {CC}, as a function of the exciting frequency, damping coefficient 523 

and specific force pattern. As can be seen, remarkably high values up to 0.95 are found in 524 

the low-frequency range, especially between 0.02 THz and 0.08 THz. It is interesting to 525 

observe how in this low-frequency range the maximum overlap score is always very high, 526 

despite the specific force pattern. The upper panel of Figure 7 shows the maximum 527 

overlap scores obtained for each of the 100 different force patterns, for each selected 528 

damping coefficient, while the lower panel reports the exciting frequency in 529 

correspondence of which the best overlap is met. As can be seen, despite the specific 530 

random force pattern, very high values of the overlap are always obtained (up to 0.95) 531 

with applied frequencies in the range 0.02 THz – 0.08 THz, which corresponds to the low- 532 

frequency end of the spectrum (Figure 1b). From Figure 5, it can also be seen that if the 533 

protein is excited at higher frequencies, say with frequencies higher than 0.1 THz, the 534 
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obtained overlap scores become lower, suggesting that the closed conformation cannot be 535 

sampled by applying harmonic excitations in this frequency range. Also, it can be noticed 536 

that the overlaps are higher when the damping coefficients are relatively low (ξ = 0.001 537 

and 0.01). 538 

 539 

Figure 6. Maximum obtained overlap score for the LAO-binding protein response with respect to 540 
the observed conformational change, as a function of damping (ξ = 0.001, 0.01, 0.1) and different 541 
random force patterns. Each colored curve represents one of the 100 different random force patterns. 542 

Putting together the results obtained above, we can conclude that by exciting the 543 

open structure with external dynamic perturbations in the low-frequency range we can 544 

sample the closed conformation with remarkably high values of directionality 545 

correlations. In case of low damping coefficients (ξ = 0.001 and 0.01), one also obtains high 546 

dynamic amplification factors in that frequency range, therefore potentially allowing to 547 

reach the closed conformation even with a small amount of force involved. Finally, it also 548 

seems that the specific force pattern, which is completely random in the space-domain 549 

(Figure 2a), has not a huge influence on the results, almost always leading to high overlap 550 

scores, as long as the forces are applied with an exciting frequency in the lower part of the 551 

mode spectrum (Figure 7). 552 

 553 

Figure 7. Maximum overlap score and corresponding applied frequency fF for the LAO-binding 554 
protein conformational change, as a function of damping (ξ = 0.001, 0.01, 0.1) and specific random 555 
force pattern. The maximum overlap values, shown in the upper panels, are defined as the 556 
maximum values obtained over all the applied frequencies in the range 0.001 – 0.5 THz, and the 557 
corresponding optimal frequencies are reported in the lower panels depending on each of the 100 558 
random force patterns. 559 
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The analysis reported above focused on LAO-binding protein. However, the same 560 

analysis was carried out with other proteins, i.e. maltodextrin-binding protein, lactoferrin 561 

and triglyceride lipase (see Supplementary Material). For maltodextrin-binding protein 562 

(PDB code of the open form: 1omp, PDB code of the closed form: 1anf, N = 370), one 563 

obtains a maximum overlap of 0.81 when comparing the second normal mode with the 564 

open-to-closed conformational change (Figure S1). However, overlap values as high as 565 

0.95 can be found again when applying dynamic perturbations in the low-frequency range 566 

(Figures S3 and S4). As in the case of LAO-binding protein, the overlaps are higher for 567 

lower damping coefficients (ξ = 0.001 and 0.01), which also lead to higher dynamic 568 

amplifications (Figure S2). In the case of lactoferrin (PDB code of the open form: 1lfh, PDB 569 

code of the closed form: 1lfg, N = 691), a maximum overlap of 0.46 is obtained between 570 

the third ANM mode and the conformational change (Figure S5). However, if the 571 

structure is perturbed dynamically in the low-frequency range, overlap values up to 0.88 572 

can be obtained (Figures S7 and S8). From the comparison between lactoferrin and the 573 

two previous proteins, we understand that, when the individual modes have a higher 574 

agreement with the conformational change, the full dynamic response can sample the 575 

closed conformation better. Nevertheless, even when individual modes have lower 576 

similarities (Omax = 0.46 for lactoferrin), the perturbation-based dynamic response allows 577 

to achieve a better agreement with the closed conformation (Omax = 0.88). Finally, in the 578 

case of triglyceride lipase (PDB code of the open form: 3tgl, PDB code of the open form: 579 

4tgl, N = 265), one obtains a really low value of the overlap when comparing individual 580 

ANM modes to the conformational change (Omax = 0.27 for the fourteenth mode, Figure 581 

S9). As a result, the maximum overlap found by applying dynamic perturbation to the 582 

protein ANM is only 0.44 (Figures S11 and S12), showing that in this case the closed 583 

conformation cannot be sampled with high accuracy by the proposed method. This shows 584 

that the method proposed here always leads to higher overlaps than those obtained 585 

through the classic individual mode comparison. However, the method works better 586 

when the low-frequency modes have already a relevant similarity with the 587 

conformational change. As Tama and Sanejouand showed in their seminal work [24], this 588 

is a direct consequence of the degree of collectivity of the conformational change. 589 

Collective transitions are usually better captured by the low-frequency modes, whereas 590 

localized conformational changes usually are not. For the four proteins investigated here, 591 

the collectivity degree of their conformational transitions are 0.68 (LAO-binding protein), 592 

0.67 (maltodextrin-binding protein), 0.48 (lactoferrin) and 0.07 (triglyceride lipase). As a 593 

result, LAO-binding protein and maltodextrin-binding protein reach very high values of 594 

the overlap from the full dynamic response (0.95), lactoferrin reaches a high value (0.88), 595 

while triglyceride lipase reaches a quite low value (0.44). This leads us to conclude that, 596 

with the proposed methodology, starting from the open conformation of the protein and 597 

without any a priori knowledge of the closed form, we are able to capture the closed 598 

conformations accurately as long as the conformational transition is quite collective in 599 

nature. 600 

In all previous examples, we have investigated the conformational change from the 601 

open to the closed conformation. Figures S13 and S14 show the results of the analysis for 602 

LAO-binding protein, this time considering the closed conformation (pdb: 1lst) as 603 

reference and the open conformation (pdb: 2lao) as target. In agreement with what said 604 

above for the open-to-closed conformational transitions, the time-dependent force 605 

application generally allows to reach higher overlap values than those obtained by 606 

comparison with individual modes. As a matter of fact, when only looking at individual 607 

modes, the third ANM mode is the one showing the highest overlap, with Omax = 0.56 608 

(Figure S13). Conversely, applying dynamic forces can enhance this maximum overlap, 609 

reaching values of Omax = 0.75 (Figure S14). Again, this suggests that the target 610 

conformation can generally be captured better by considering the full dynamic response 611 

of the protein, rather than looking at the trajectory generated with individual modes. 612 

However, despite the improvement, this value is lower than the one obtained when 613 
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looking at the open-to-closed conformational change (compare Figure S14 with Figure 6). 614 

This suggests that, as already noticed by Tama and Sanejouand [24] and subsequent 615 

researchers, the closed-to-open transition is generally more difficult to generate than the 616 

open-to-closed one when working with ENMs. 617 

From the lower panels of Figures 7, S4, S8 and S12, one can also observe that there is 618 

not a unique value of the exciting frequency leading to the maximum overlap score. In 619 

fact, there exists a range of low-frequency values, where each specific force pattern is able 620 

to sample the target conformation with the highest directionality correlation. This 621 

suggests that, although we are often in the range of the first fundamental frequency, i.e. 622 

the frequency associated to the first non-rigid mode shape, the optimal excitation 623 

frequency might be slightly different than the fundamental frequency, mostly due to the 624 

not negligible involvement of higher-order modes in the definition of the complete protein 625 

dynamic response. Moreover, the exact values of these frequencies must be treated 626 

carefully, as they are strongly dependent on the model parameters, such as the cutoff and 627 

the definition of spring network [35,36]. The absolute values of these frequencies strongly 628 

depend on the value of the adopted spring constant γ, which in turn is defined upon 629 

comparison between the numerical and experimental B-factors (Section 2.1). In doing such 630 

direct comparison, we are implicitly assuming that the experimental B-factors are 631 

dominated by the protein fluctuations, i.e. they only depend on the internal protein 632 

dynamics. Unfortunately, this is not always the case, since studies have shown that B- 633 

factors might also include other contributions coming from rigid motions, crystal 634 

disorder, refinement effects, etc. [63–66]. Therefore, for all the above mentioned reasons, 635 

when using ENMs for the understating of protein motions and their corresponding 636 

frequencies of vibration, we can only have some insights on the expected frequency range, 637 

and not on the individual frequency values.    638 

Additional considerations need to be done regarding the damping coefficients 639 

adopted in the present analysis. In this work, values of ξ = 0.001, 0.01 and 0.1 have been 640 

used, meaning that the problem is treated in the underdamped regime (ξ < 1). Moreover, 641 

the value of ξ has been kept constant for all the vibrational modes, i.e. ξn = ξ. However, 642 

one should be careful about such choices. As a matter of fact, in the framework of NMA 643 

and ENMs, the dynamic response of proteins is studied with no damping at all, i.e. ξ = 0. 644 

Conversely, few studies using Langevin Network Models (LNMs) have shown that the 645 

dynamics of macromolecules and proteins might be strongly overdamped, i.e. ξ >> 1 at 646 

least for the lowest-frequency modes [67,68]. We might also reasonably expect that the 647 

damping characteristics change for the different modes of vibration, the lowest-frequency 648 

ones being the more damped, the highest-frequency ones the less damped [68]. By using 649 

the LNM, Miller et al. [68] showed that at normal water viscosities most of the protein 650 

modes should be overdamped. Nevertheless, recent studies based on optical Kerr-effect 651 

(OKE) spectroscopy revealed the existence of underdamped global protein vibrations in 652 

the THz frequency range [69]. So, it is evident that there is still little consensus nowadays 653 

about the damping nature of these functional protein vibrations. Previous numerical 654 

results showing that undamped vibrational modes correlate well with protein 655 

conformational changes [24,28,29], as well as the outcomes of our calculations based on 656 

the underdamped assumption, seem to suggest that these functional conformational 657 

transitions can indeed be retrieved by working in the underdamped limit. Yet, extensive 658 

research efforts still need to be carried out in the future to address this open issue. 659 

Remarks need to be given also regarding the physical meaning associated with the 660 

adopted perturbation scheme, i.e. harmonic excitations with a random direction in the 661 

space-domain but with a well-defined frequency content in the time-domain. In the 662 

previous literature, different force application patterns have been applied in a static 663 

fashion to probe protein flexibility [41,42] and protein conformational changes [44,45,47]. 664 

The approach proposed here, i.e. applying random forces to the protein ANM in a 665 

dynamic fashion, is supposed to simulate the external perturbations to the protein 666 

structure mainly due to Brownian motions of the surrounding particles [70]. These 667 
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collisions can be numerically simulated as random forces both in the space- and time- 668 

domain [68]. However, we know that every time-dependent variable can be decomposed 669 

according to their frequency component, e.g. via the Fourier Transform (FT) or other 670 

signal transformation techniques. In this way, a random excitation in the time-domain can 671 

always be represented as a sum of harmonic excitations at specific frequencies, weighted 672 

by their FT amplitude. Based on these considerations, the application of harmonic forces 673 

with random directions can be seen as the attempt to investigate the response of the 674 

protein structure under the different frequency-based components of the complex time- 675 

dependent excitations due to the particle collisions. From the results of the present 676 

analysis, we obtained that the low-frequency components of these excitations are able to 677 

drive the protein conformational change. Conversely, high-frequency components are not 678 

particularly relevant for the conformational transition (see Figure 6). 679 

4. Conclusions 680 

In this paper, the ANM has been used for the first time in order to investigate the 681 

complete dynamic response of protein structures under external dynamic perturbations. 682 

In particular, by considering the mass, viscous damping and elastic stiffness features of 683 

the protein ENM, the equations of motions have been numerically solved, in order to 684 

retrieve the protein response under the effect of harmonic forces applied to the protein 685 

structure. From the results, it has been observed that the application of dynamic forces to 686 

the open protein conformation in the low-frequency range is able to drive the protein 687 

towards the closed form with a high directionality alignment (overlap of 0.95). Such 688 

correlation is even higher than that usually obtained when comparing individual modes 689 

to the conformational change. This is mostly due to the fact that, when the external 690 

perturbations are applied harmonically at selected frequencies, the full dynamics of the 691 

system depends on the combination of the most involved modes, and not only on a single 692 

mode. 693 

By analyzing the time-dependent overlap values, it has been possible to recognize 694 

how the closed form of the protein is not reached through a straight line pathway, since 695 

the overlap score usually oscillates between low and high values. This suggests that the 696 

protein samples the target conformation among a variety of other conformations, and it 697 

does so by following curvilinear pathways, as already suggested in the existing literature 698 

[58–60]. This has also been confirmed by geometrical calculations shown in this paper, 699 

where we have looked at the evolution of displacement vectors throughout the motion. 700 

The trajectory of the protein upon harmonic perturbation has also been shown and PCA 701 

has been used to reduce the problem dimensionality and investigate the ensemble of 702 

generated conformations in the sub-space of the PCs. Furthermore, taking into account 703 

the dynamic response of the protein network under these external forces, high dynamic 704 

amplification values are often found, especially when the perturbation is applied in the 705 

low-frequency range and for low values of the damping ratio (resonance effect). These 706 

high dynamic amplifications might explain why a combination of the normal modes of 707 

vibration, which theoretically are only valid in the small-amplitude regime, allows to 708 

reach the target form of the protein even in the case of large-scale conformational 709 

transitions. Moreover, the dynamic nature (frequency) of the excitation seems to be the 710 

central parameter driving the conformational transition, the specific force pattern having 711 

a smaller influence on the capability of the protein to sample its target conformation. 712 

The well-known case of LAO-binding protein has been addressed in the main text of 713 

this paper. The results related to maltodextrin-binding protein, lactoferrin and 714 

triglyceride lipase have been briefly discussed and are available in the Supplementary 715 

Material. From all the cases, we have observed that external harmonic excitations in the 716 

low-frequency range always lead to higher overlaps with the observed conformational 717 

change rather than those obtained by comparing individual modes. These overlap values 718 

are generally higher, the more collective the conformational transition is. Moreover, as 719 

expected, we observed that the open-to-closed conformational change is easier to be 720 
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captured than the closed-to-open one. Future research efforts will be dedicated to 721 

investigate the effect of the ENM parameters, such as the cutoff, spring constant 722 

distribution, etc., the damping ratio, as well as the nature of protein conformational 723 

change on the obtained outcomes. Notwithstanding, the preliminary results shown here 724 

seem to suggest that the low-frequency components of the random external perturbations 725 

to the protein structure due to the surrounding environment might play a key role in 726 

driving the biologically-relevant conformational transition. 727 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figures 728 
S1-S14, Supplementary Movies 1-2. 729 
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