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Abstract: The use of recycled materials in roadway construction and rehabilitation can achieve
significant benefits in saving natural resources, reducing energy, greenhouse gas emissions and
costs. Construction and demolition waste (CDW) recycled aggregate as an alternative to natural
one can enhance sustainability benefits in roadway infrastructure. The objective of this study
was to quantitatively assess the life cycle economic and environmental benefits when alternative
stabilized-CDW aggregates are used in pavement construction. Comparative analysis was conducted
on a pavement project representative of typical construction practices in northern Italy so as to
quantify such benefits. The proposed alternative sustainable construction strategies considered CDW
aggregates stabilized with both cement and cement kiln dust (CKD) for the base layer of the roadway.
The life cycle assessment results indicate that using CDW aggregate stabilized with CKD results
in considerable cost savings and environmental benefits due to (i) lower energy consumption and
emissions generation during material processing and (ii) reduction in landfill disposal. The benefits
illustrated in this analysis should encourage the wider adoption of stabilized CDW aggregate in
roadway construction and rehabilitation. In terms of transferability, the analysis approach suggested
in this study can be used to assess the economic and environmental benefits of these and other
recycled materials in roadway infrastructure elsewhere.

Keywords: construction and demolition waste; CDW aggregate; stabilization; life cycle assessment;
roadway sustainability

1. Introduction

The construction and rehabilitation of road pavements involve large amounts of natural
resources such as raw materials, and energy [1–3]. However, when recycled materials are used
in roadway construction potential environmental and economic benefits can be achieved [4–13].
A remarkable variety of studies have investigated several recycled materials to be used in
road pavements: recycled aggregates (from different sources), clayey materials, industrial
by-products (slags, pulverized fuel ash, etc.), plastic and rubber wastes [14–24]. Among
these materials, aggregates recycled from the debris of construction and demolition waste
(CDW) play a key role in the sustainability of road infrastructure [25–27]. CDW aggregate
has been recognized as a valid alternative to natural aggregate (NA) for road pavement
applications [28,29]. A great number of studies and practical applications recognize that
recycled CDW materials can be employed in embankments and trenches of roadways as well
as in the construction of subgrade layers [30–35]. However, when employed in base and
subbase layers, CDW aggregates are usually stabilized to meet mechanical and durability
requirements [36,37]. Several studies on engineering properties of CDW aggregates and their
potential use in base and subbase have shown that they can be utilized in pavements structures
of low to intermediate traffic volumes [36,38–40].
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To reduce the ecological footprint deriving from the use of ordinary Portland ce-
ment (OPC), some studies recommended stabilizing CDW materials with alternative
binders [41,42]. Alternative binders for stabilization purposes include blended cement
with supplementary cementitious materials, industrial by-products, and clinker-free ce-
mentitious binders representing those deriving from the alkali activation of by-products
and/or waste [43–47]. In this context, Bassani et al. concluded that CDW aggregate can
be stabilized with cement kiln dust (CKD) as an alternative to OPC, reaching comparable
results of unconfined compressive strength (UCS) and resilient modulus (RM) [38].

In addition to the proven feasibility of using CDW aggregate in substituting NA for
road pavements, its implementation needs to recognize potential environmental bene-
fits [43]. Some studies have demonstrated that recycling of CDW may: (i) reduce emissions
of environmentally harmful substances, (ii) reduce the use of natural resources, and (iii) de-
crease the consumption of energy in comparison with the production of virgin NA [48–51].
Potential advantages from landfilling avoidance have been reported [32,52–54]. Economic
savings deriving from the adequate management of CDW, more in general in the civil
sector, were estimated as well [6,55–57].

LCA studies on CDW materials are mostly focused on the evaluation of environmental
impacts of different recycling strategies in comparison to landfilling [58,59]. These studies are
limited to the analysis of recycling processes from the demolition stage to the production of the
recycled (end-of-waste) product (e.g., cradle-to-gate LCA approach). More work is effectively
needed to extend the environmental impact assessment to real applications in which CDW ma-
terial is included in substituting NA. Some LCA analyses have investigated the environmental
benefits of using recycled CDW aggregate in concrete production [60–63]. Almost all the road
pavement LCA-related studies consider the inclusion of recycled and/or alternative materials
in substitution of traditional ones for asphalt and concrete layers of flexible and rigid pave-
ments respectively [7,64–68]. Only a limited number of studies focused on the environmental
assessment deriving from the use of CDW aggregate as granular material in base/subbase
layers [53,69,70]. Thus, there is a need to extend the LCA analyses to alternative granular
materials including stabilized-CDW aggregates with traditional and alternative binders. The
previous studies on the LCA analysis using CDW materials focused on the economics and/or
environmental impacts during the material production process [43,48,61–63,70,71]. Thus, there
is a need to consider all stages in the roadway life-cycle performance phases (i.e., construction,
maintenance, rehabilitation) in order to address all potential impacts and benefits of using
CDW aggregates in the LCA analysis of roadway projects. This study addresses this need
with the proposed novel methodology that quantifies the LCA environmental benefits and
economic savings throughout the entire performance period of alternative sustainable strate-
gies considering both construction and rehabilitation stages. This study addresses this need
through the analysis of a pavement project representative of typical construction practices
for average traffic volumes in Northern Italy. The life cycle economic and environmental
benefits of using both natural-and CDW-stabilized aggregates as road base layer material were
assessed. CDW aggregates stabilized with different binder types (i.e., cement and CKD) and
contents were considered in the comparative analysis of alternative sustainable strategies. For
each strategy, the pavement structure was designed to meet the structural requirements in
the function of the materials used. The LCA analysis quantitatively assessed the economic
and environmental impacts during the materials production, transportation, construction and
rehabilitation phases.

2. Methodology and Evaluation Procedures

The proposed methodology for generating and assessing alternative sustainable strate-
gies for roadway construction using recycled materials includes the steps of Figure 1. The
methodology describes the general framework for generating and analyzing sustainable
pavement and rehabilitation, which can be applied to any recycled materials or industry by-
products. The proposed methodology considers LCCA and LCEA for all life cycle phases
(e.g., materials processing, transportation, construction, maintenance and end life phases)
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throughout the performance period. The methodology also suggests that the strength
parameters of each recycled material should be employed in determining rehabilitation
strategies and predicting the service life of sustainable alternative designs so as to reduce
the uncertainty associated with the long-term performance of these recycled materials.
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Note: LCCA = life cycle cost analysis, LCEA = life cycle environmental analysis.

The first step is pertinent to a survey of the existing conditions. If the project is related
to a new pavement construction, then the survey will require information on current
subgrade materials, traffic and environmental inputs, construction materials and design
practices. For a rehabilitation project, condition assessment of the existing pavement is
needed (e.g., layers, materials and thicknesses). This phase provides information for select-
ing the best materials and construction techniques and/or identifying what level of existing
materials can be recycled along with the recycling method (e.g., cold in-place recycling,
CIR, hot in-place recycling, HIR, full-depth reclamation, use of ex-situ recycling) [70].

The following step is related to the structural design of pavement considering both
reference and alternative strategies. A reference design can be considered where 100% vir-
gin materials are used. This will be used for comparative analysis in assessing the potential
of more sustainable strategies in terms of cost and environmental impact. The pavement
structural design of the potentially sustainable alternatives needs to be developed next
considering the recycled materials of interest. To design such alternatives, the properties
of materials for each case need to be assessed either in the lab and/or the field. Since
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recycled materials and industrial by-products have different engineering properties versus
conventional raw materials, the equivalent layer thicknesses for the alternative strategies
need to be determined. Furthermore, in order to identify appropriate rehabilitation strate-
gies, the service life needs to be estimated depending on the initial design quality and the
minimum acceptable condition, considering (i) material properties, (ii) layer characteristics,
(iii) traffic load, and (iv) climatic conditions. In this study, the simplified approach of
the 1993 AASHTO pavement design guide was employed for the structural design of the
pavements with different materials, considering a minimum present serviceability index
(PSI) of 2.5 as the lower acceptable condition [72]. Alternatively, the mechanical-empirical
pavement design guide (MEPDG) can be used as well [73]. The use of alternative pavement
design guides may result in slightly different equivalent thicknesses and service life for the
alternative designs.

The life cycle economic and environmental impact analysis for both conventional and
alternative sustainable designs is the next step (Figure 1). In this study, PaLATE was used
in this study since it (i) includes data for a variety of recycled materials and industrial
by-products, (ii) considers the environmental and economic impacts for the entire construc-
tion supply chain, and (iii) includes material production, construction and rehabilitation
phases [74]. Reference values on energy consumption and emissions pertinent to the
production of the recycled materials used in this study were obtained from the literature,
construction industry, EPA (U.S. environmental protection agency inventory data), and
values available within PaLATE [74]. Construction equipment air pollution emission fac-
tors are referenced within PaLATE to values obtained from the Organization for Economic
Cooperation and Development (OECD) database [75]. The total environmental effects are
computed as the product of emissions in the function of the quantity of material used
and pertinent construction activity (e.g., material production, construction and transport
distance) for the project. The environmental impact for transportation is computed as the
product of unit truck emissions and the transport distance. The transportation distances
identified in Table 1, represent actual typical distances for the region of this project. Thus,
the impact of transportation distances is integrated into the environmental analysis. More-
over, PaLATE can be easily modified to consider new recycled materials in the different
phases of the analysis.

Table 1. Design features of the paving construction project.

Design Considerations Value

Width (two travel lanes) 7.32 m
Road length 1.6 km

Wearing course depth 100 mm
Asphalt content 4.5%

Performance period of analysis 40 years
Rehabilitation (50 mm mill and overlay) every 10 years

Distance from plant to site 40 km
Distance from site to landfill 32 km

The last step of the analysis (Figure 1) is related to the comparative analysis of the sus-
tainable alternatives by using either an overall ranking and/or rating, or specific attributes
that represent the important target of sustainability objectives (e.g., target reductions in
energy, water demand, emissions, costs, etc.) and their relative importance to the specific
project location and region. In doing so, a sustainability rating system may be used. In
this study, BE2ST-in-HighwaysTM was used since this rating tool is flexible enough to
accommodate adjustments in targets of sustainability objectives (for example percent of the
reduction in energy and associated sustainability score), as well as modifying the relative
weights between sustainability objectives (i.e., the importance of reduction in energy versus
water consumption, and so on) [76]. Thus, the LCA analysis can be used for developing
such a rating for each sustainable alternative. This specific rating system provides the
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opportunity to present the sustainability scores in each category through an Amoeba graph,
identifying visually which aspects of sustainability achieved the maximum score and
which need to be further addressed. It is worth mentioning that such methodology could
be potentially adapted into pavement management systems (PMS) for generating and
assessing sustainable pavement designs.

3. Alternative Strategies

A pavement project representative of typical construction practices for average traffic
volumes in Northern Italy was considered as a case study for the LCCA and LCEA analyses
of this study. The project characteristics are presented in Table 1 and are for a two-lane
pavement with a width of 7.32 meters and a length of 1.6 kilometers (equivalent to one
mile). The analysis period considered was of 40 years with minor rehabilitation (i.e.,
overlay) every 10 years as estimated from the deterioration rate of the pavement structure.
Reclaimed asphalt pavement (RAP) material is considered for an onsite process and reuse.
Hot-mix asphalt (HMA), NA, CDW aggregate and cementitious materials were supposed
to be delivered from a plant 40 km away from the construction site. The distance between
the construction site and landfill was 32 km. These distances are representative of paving
projects in the region of the construction project.

Figure 2 shows the different scenarios considered in this study. The reference strategy
includes a conventional road pavement entirely made with virgin materials (design A),
while the sustainable alternatives consider stabilized-CDW aggregates in lieu of NA for
base layer formation (designs B, C, D, and E). The conventional design consisted of 100 mm
hot mixed asphalt (HMA) over a 200 mm NA base treated with ordinary Portland cement
(3%). All of the alternative design strategies maintained the 100 mm of HMA composed
with new construction materials due to stringent requirements for the quality of the surface
layer, with the exception of design C where a 20% RAP was permitted for comparative
purposes with option B. The inclusion of such a low content of RAP did not produce
changes in the HMA properties. For the base layer, alternative formulations of CDW
aggregates were considered stabilized with different cementitious binders (e.g., CEM-II
and CKD). The properties of such stabilized CDW materials are reported in Table 2, together
with the different structural layer coefficients determined in relation to the properties of
the materials. The equivalent thickness for the base layer for each case was determined in
order to provide the same structural capacity (i.e., structural number SN, Equation (2)). The
7-day unconfined compressive strength was used for estimating the structural coefficient
(i.e., a1, a2, a3) of each material.

log(W18) = ZR · S0 + 0.36 · log(SN + 1)− 0.20
+

log[(∆PSI)/(4.2−1.5)]
0.4+1094/(SN+1)5.19 + 2.32 · log(MR)− 8.07 (1)

where,

W18 = accumulated 18-kip equivalent single axle load for the design period
ZR = reliability factor
S0 = standard deviation
∆PSI = initial PSI–terminal PSI
MR = subgrade resilient modulus
MR = structural number:

SN = a1D1 + a2D2m2 + a3D3m3, (2)

where,

a1, a2, a3 = structural layer coefficients for surface, base and subgrade layers
D1, D2, D3 = thicknesses for surface, base and subgrade layers
m2, m3 = drainage coefficients for base and subgrade layers.
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Note: RAP = reclaimed asphalt pavement.

Table 2. Alternative Materials and Properties.

Design Aggregate Binder

Binder
Content

Water
Content

Compacted
Density

7-Day
UCS *

(%) (%) (kg/m3) (MPa)

A NA CEM-I 3 6.5 2363 2.33
B and C CDW CKD 10 12.3 2138 2.32

D CDW CEM-II 4 11.7 2141 2.00
E CDW CEM-II 2 11.2 2152 1.59

DW = construction and demolition waste; CKD = cement kiln dust; CEM-I = ordinary Portland cement;
CEM-II = cement type II; NA = natural aggregate. Note: * represents for Unconfined compressive strength.

The equivalent thicknesses for the base layer of each alternative design are presented
in Figure 2. Comparatively, lower material strength corresponds to thicker base layer
thickness, and vice versa.

4. Life Cycle Assessment

The life cycle assessment for both environmental and economic impact considered
the entire supply chain (i.e., material production, construction, transportation, and main-
tenance activities) over the 40-year analysis period. Thus, material resources, energy use,
water consumption, emissions, costs, and other pertinent parameters were included in the
analysis. Costs of material, transportation and construction operations, labor, overhead,
and profit were included in the LCCA. Material costs were collected from local contractors
(Table 3), while typical construction, maintenance (i.e., mill and overlay) cost were used.
Similarly, labor costs and overhead rates were based on typical construction projects in the
region and reported in Appendix A (Table A1). Consumption and emission generation in
the production and transportation of materials during initial constructions and mainte-
nance were considered to estimate the environmental effects. The environmental impact
(energy consumption, water consumption, CO2, CO, PM10, NOx, SO2, and hazardous
waste) due to CDW aggregate and CKD production were previously modeled using the
software OpenLCA [77]. The total environmental impacts were calculated as the sum of
materials production, transportation and construction equipment. The LCA sustainability
analysis was conducted over an analysis period of 40 years with scheduled 50 mm overlay
every ten years for both conventional and alternative designs. The time intervals were de-
termined based on the estimated traffic level and deterioration rates using the rehabilitation
design principles of the 1993 AASHTO design guide [72]. The CDW used in the alternative
designs were tested for both short-and long-term performance assessment [38]. These
materials show equal, or better, performance than conventional and alternative recycled
materials. Thus, the long-term life of CDW materials is expected to match or exceed the
performance of alternate materials, providing thus comparable or conservative values of
performance life.
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Table 3. Materials costs.

Material Cost (USD/ton)

HMA 80.0
RAP 15.0

CDW aggregate (0–40 mm) 2.4
CDW aggregate (0–8 mm) 3.6

NA (for base) 12.0
CEM-I 92.4

CEM-II B-P 96.0
CKD 1.2

5. LCCA Results

The life cycle cost associated with each alternative is calculated and reported in terms
of net present value (NPV) based on a discount rate of 4%. Figure 3 provides a comparison
of the economic savings between the reference and the alternative strategies. Cost savings
vary in relation to the type and percent of stabilizer used. Despite the relatively high
percentage of CKD for stabilization of CDW aggregates in scenarios B and C, a higher level
of cost saving is observed. Compared to the conventional case (scenario A), the use of CDW
stabilized with 10% CKD (design B) in the base layer provides a cost reduction of up to 17%.
This is related to the significantly lower price of CDW aggregates and CKD as compared to
that of NA and ordinary cement respectively (Table 3). The use of RAP in the surface HMA
(scenario C) led to additional savings with respect to references that are associated with
the reduction in transportation and landfilling. Alternatives B and C have the same base
layers (i.e., CDW aggregate with 10% CKD), however, alternative C presents a 5% lower
cost, in relation to B, since 20% RAP is used in the surface HMA layer. The asphalt binder
used in asphalt mixtures is the most expensive material in roadway projects. By using 20%
RAP in HMA the new binder needed for HMA is reduced. For alternatives D and E, even
though a higher amount of CDW aggregate and cement is needed to meet the structural
requirements (i.e., thicker base layer according to the structural design) the associated costs
were reduced by 11% and 13% respectively in relation to the reference strategy. Overall, the
quantified cost savings for these strategies are attributed to the reduction of material costs.
For alternative C additional cost savings are associated with the reduction in transportation
and landfilling since 20% RAP was used in HMA.
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6. Life Cycle Environmental Impact Results

The environmental impacts were examined in relation to the resources and equip-
ment used during all processing phases (i.e., production of materials, transportation and
construction processes). Three major environmental impact components were reported
including greenhouse gas emissions (CO2), water consumption and energy consumption.
Five pollutants that have a direct impact on human health, as identified by the Environ-
mental Protection Agency, EPA, [78] were also considered and include (i) hazardous waste
generation, (ii) SO2, (iii) CO, (iv) PM10, and (v) NOx. As shown in Figure 4, the life cycle
CO2 emissions for both conventional and alternative designs are dominated by materials
production. The emission factors related to each material production are shown in Ap-
pendix A (Table A3). The processes (i.e., equipment for construction and maintenance) and
transportation generated a similar amount of greenhouse gas emission for all strategies.
This is because a similar level of activities and equipment are used during these construc-
tion operations. In terms of materials production, overall, the greenhouse gas emissions are
reduced significantly by substituting NA with CDW aggregate in base layers formation. By
comparing strategy D to the conventional option, the replacement of virgin aggregates with
CDW aggregate decreases approximately 20% the CO2 emission despite the 1% increase
in cement. The main sources of CO2 emissions during material production include heavy
equipment operations and transportation. However, substantial environmental benefits
are achieved by using CDW aggregate due to the reduction of virgin materials needed
and landfill disposal. In the case of option E, an additional 15% reduction in CO2 was
observed by limiting the amount of cement from 4% (option D) to 2% (option E) despite the
higher amount of CDW aggregates needed to address the increased base layer thickness.
This reflects the high amount of CO2 associated with cement production as compared to
CDW aggregate production. In case of design B and C which employ 10% CKD to replace
Portland cement, CO2 emissions were reduced by 56% and 63%, respectively. Since CKD is
a by-product of the cement manufacturing process, a significant reduction in CO2 emissions
is observed. In strategy C, CO2 emissions from material production and transportation
were further reduced due to the use of RAP (20%) in HMA.
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Figure 5 presents the energy consumption results. The energy savings are analo-
gous to the reductions in CO2 emissions associated with material production. It can be
observed that construction processes consumed the least amount of energy comparing
to material production and transportation. A maximum energy saving (equivalent to
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44%) was achieved by using 20% RAP in HMA and considering a base layer with CDW
with 10% CKD (scenario C). The substantial energy savings from options B and C reflect
the fact that cement production is an extremely high energy and emission intensive pro-
cess. By comparing alternative D to the reference design, the energy consumption was
reduced by 21% by substituting virgin aggregates with CDW ones. This indicates that the
manufacturing of CDW aggregates is more energy efficient than that of NA.
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The life cycle water consumption is shown in Figure 6. Material production, especially
cement, requires a large amount of water. Since cementitious materials were used in the
mixture, water needs to be added to develop the hydration process. The optimum water
content for each mixture is shown in Table 2. The water consumption is mainly from
material production and processes. As higher water contents are needed for stabilized
CDW, the water consumption increases for the alternative strategies. However, the total
water consumption was reduced by about 15% for strategy C since a lower amount of water
is needed as compared to the reference case for material production of virgin aggregate and
cement. In the case of option E, the total water consumption increased dramatically since a
high water content is needed combined with the increased amount of material needed for
the thicker base layer.

Table 4 summarizes the quantities for each environmental parameter considered in
this study, while Figure 7 presents the comparison between the reference and the alternative
sustainable strategies (the latter expressed as relative results with respect to the reference).
Hazardous waste generation primarily comes from producing materials such as asphalt
emulsion, bitumen and concrete additives, and disposal of these materials to landfill.
Aggregate and cement production generates very little hazardous waste compared to these
materials. This reflects that only around 6% hazardous waste reduction was observed in
options B, D, and E. On the contrary, hazardous waste was further reduced by 17% when
20% RAP was used in HMA (strategy C). SO2 emissions are analogous to hazardous waste
generation associated with materials production. Additional pollutants (i.e., CO, PM10,
and NOx) were also quantified (Table 4). According to the results of Table 4, considerable
environmental savings for all alternative strategies can be deduced. Design C outperformed
other alternatives in terms of all environmental impacts, particularly in energy and water
consumption, and CO2 emissions.
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Table 4. Environmental impacts for alternative strategies.

Designs
Energy

Consumption
(MJ)

Water
Consumption

(kg)

Hazardous
Waste (kg) CO2 (Mg) CO (kg) PM10 (kg) NOx (kg) SO2 (kg)

Reference A 5,018,259 818,330 35,514 388 804 1954 3040 52,288

Alternatives

B 3,207,405 725,435 33,287 170 466 1605 2483 49,012
C 2,816,530 694,111 26,885 145 379 1416 2238 48,701
D 3,956,628 767,996 33,664 311 575 1707 2761 49,109
E 3,663,825 1,009,706 33,710 250 525 1773 2711 50,017
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7. Sustainability Criteria and Rating

An overall assessment of each alternative strategy in regard to sustainability was
conducted using BE2ST in-Highways [76]. This sustainability metrics tool evaluates each
alternative strategy using a comparative assessments method and rating based on the LCA
results. Eight criteria are used in this assessment and include (i) energy use, (ii) global
warming potential (GWP), (iii) recycling content, (iv) water consumption, (v) life cycle
carbon costs, (vi) social carbon costs (SCC), (vii) traffic noise, and (viii) hazardous waste.
Each alternative strategy is compared in relation to the reference one (strategy A). The SCC
represents the cost needed to eliminate or address issues caused by carbon emissions (i.e.,
USD/Mg of CO2 emissions) and is associated with the cost of reducing global warming
issues (e.g., GWP). Highway agencies often incorporate SCC for evaluating sustainable
pavement construction and rehabilitation. As mentioned, in this study the alternative
strategies were compared with the reference (i.e., conventional) option where new virgin
materials were used for all processes and pavement construction stages. As mentioned
earlier, weighting factors are assigned for each criterion to reflect their relative importance
based on local conditions and policies for the construction projects. For instance, in some
regions greenhouse emission or energy reduction may be more critical than cost savings,
and so on. Therefore, higher weights are assigned to such critical parameters. The sum
of weights should be equal to 100 (Figure 8). For this study, the sustainability criteria
and targets, and the relative weights assigned to these parameters are as follows: 15% for
energy consumption, global warming potential (i.e., CO2 emission), recycling content and
water consumption, 10% for hazardous waste and social carbon cost, and 5% for traffic
noise. These parameters were selected to reflect current construction practice and policies
with recycled materials for the specific region of the construction project. These parameters
can be modified to reflect construction practices and policies elsewhere. Table 5 shows the
sustainability target for each criterion. For instance, two points are rewarded if the energy
consumption is reduced by more than 20%. While both targets and relative weights were
selected for this region, such factors can be modified for roadway projects elsewhere.
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Table 5. Criteria and sustainability targets.

Criteria Unit Target

Energy consumption MJ ≥10% reduction
≥20% reduction

(1 pt)
(2 pt)GWP Mg

Life cycle cost USD

Recycled content % ≥10% recycling rate
≥20% recycling rate

(1 pt)
(2 pt)

Water consumption kg ≥5% reduction
≥10% reduction

(1 pt)
(2 pt)Hazardous waste

Social carbon cost USD ≥USD 12,344/km saving
≥USD 24,688/km saving

(1 pt)
(2 pt)

Traffic noise no unit HMA
SMA or OGFC

(1 pt)
(2 pt)

Note: SMA = stone mastic asphalt, OGFC = open graded friction course.

The sustainability assessments for each strategy, both in terms of reward points
pertinent to each criterion and total rating score, are summarized in Table 6. A weighted
point (i.e., production of obtained point and weighting factor) was computed for each
criterion. The total score was then calculated by dividing the total weighted point (i.e.,
sum of the weighted points for each criterion) into the target (i.e., 2). Strategy C represents
the most sustainable option among the four proposed alternatives, with a total score of
92%. The total score is achieved by a 21% reduction in life cycle cost, a 15% reduction in
water consumption, a 44% reduction in energy, and 63% reduction in CO2 emissions. The
Amoeba graphs for strategies C (best) and E (worst) are shown in Figure 9 as an example.
Alternative D achieved a total score of 67% which outperformed alternative E (i.e., total
score of 47%) in terms of sustainability even though E used a higher amount of cement
(i.e., 4%). This is because strategy E requires 20 mm more layer thickness than D due to
the low material strength, and thus more CDW aggregates, and water are needed. The
impact of each strategy on such criteria is evident and could be used in further improving
each strategy. As it can be observed significant differences are observed between the two
strategies in terms of water consumption, LCC, social carbon cost and hazardous waste.
The use of cement stabilization for CDW aggregate is attributed to good part to such effects.
Thus, the results could be eventually used to further modify such alternatives for better
sustainability scores.

Table 6. Points obtained for each parameter and total rating score.

Strategy Energy
Consumption GWP Recycled

Content
Water

Consumption
Life Cycle

Cost

Social
Carbon

Cost

Traffic
Noise

Hazardous
Waste

Total
Weighted

Points
Total Score

B 2.00 2.00 2.00 2.00 1.79 1.00 1.00 0.63 1.66 83%
C 2.00 2.00 2.00 2.00 2.00 0.85 1.00 2.00 1.83 92%
D 2.00 1.98 2.00 0.62 1.53 0.27 1.00 0.51 1.34 67%
E 2.00 2.00 2.00 0.00 1.63 0.48 1.00 0.51 0.94 47%

Note: A represents the reference strategy.
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8. Conclusions

This study examined the life cycle cost savings and environmental benefits of using
stabilized CDW recycled aggregates for base layers of roadway pavements. The proposed
analysis approach for developing and accessing alternative sustainable strategies was
presented in this process. The economic and environmental implications were quantified
by comparing the results of the alternative recycled materials (i.e., CDW, CKD, and RAP)
strategies with those of the reference case where new construction materials are used. In the
analysis resources and equipment used during the production of materials, construction
processes (i.e., equipment used for construction and rehabilitation), and transportation
were considered. The alternative strategies were developed based on the laboratory-
obtained strength parameters of different stabilized CDW recycled aggregates. The analysis
indicated that the alternative strategy employing CDW aggregates stabilized with 10% CKD
in the base layer combined with a 20% RAP in the HMA surface layer provided the
best sustainable option. This resulted in significant reductions in life cycle cost, energy
consumption, water consumption and greenhouse gas emissions. The results also showed
that the replacement of Portland cement with CKD (i.e., alternatives B and D) stabilization
of CDW aggregates further enhanced the environmental benefits. The LCCA indicated that
cost savings were primarily attributed to the lower costs for CDW, and CKD compared to
conventional materials, while the LCEA results indicated that the production of CDW and
CKD requires less energy and generates lower emissions. The economic and environmental
benefits quantified in this study could encourage the wider adoption of stabilized CDW
aggregates in sustainable roadway construction. While the absolute values of the economic
and environmental LCA are related to the inputs considered for this project, the relative
benefits of using CDW in base and subbase layers are transferable, in scale, to any other
projects where similar uses of these recycled materials are intended. Thus, the suggested
approach for LCCA and LCEA can be adopted elsewhere for quantifying the sustainability
benefits CDW and other alternative recycled materials on roadways.

In conclusion, this study provided a tangible method for assessing the sustainability
and contribution of CDW materials on roadways that can be expanded to other recycled
materials. While the specific values of the economic and environmental LCA are related to
the inputs considered in this project, the relative benefits of using CDW are transferable to
other construction projects where similar uses and materials are used. Thus, the suggested
approach for LCCA and LCEA can be adopted elsewhere. Further research in this area
should consider the potential adoption and implementation of sustainability criteria, and
the proposed analysis in pavement management systems (PMS). This will permit the
generation of optimal sustainable alternative construction and rehabilitation strategies at
the project and network level.
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Appendix A

Table A1. Labor, processing cost and overhead rates (PaLATE).

Process Cost

Mill and Overlay USD 33/m2/50 mm

Labor USD 16,000/1.6 km

Equipment USD 12,000/1.6 km

Overhead & profit USD 11,000/1.6 km

Reference: PaLATE.
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Table A2. Transportation emission factors (AP-42 Section 3.3. U.S. EPA).

Emission Factor, Grams/Tonne-km

CO CO2 HC NOx SO2 PM10

0.25 140 0.32 3.00 0.18 0.17

Table A3. Environmental factors related to materials production (PaLATE and openLCA).

Materials Energy
MJ/ton

Water
g/ton

Hazardous
Waste
g/ton

CO2
g/ton

CO
g/ton

PM10
g/ton

SO2
g/ton

HMA 1968 96 3560 183,016 42.0 48.0 27.0

GAB 49 34,117 179 2718 6.6 2.0 9.2

Cement 4342 2,725,606 1636 879,729 661.9 189.4 783.9

CDW −123 31,677 0 −5864 −25.2 −7.6 −13.8

CKD 19 12,632 0 4631 3.1 0.8 3.7
Note: The negative environmental effects representing the avoidance of landfill.
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