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Abstract: The automation of human gestures is gaining increasing importance in manufacturing. Indeed, robots support 
operators by simplifying their tasks in a shared workspace. However, human-robot collaboration can be 
improved by identifying human actions and then developing adaptive control algorithms for the robot. 
Accordingly, the aim of this study was to classify industrial tasks based on accelerations signals of human 
upper limbs. Two magnetic inertial measurement units (MIMUs) on the upper limb of ten healthy young 
subjects acquired pick and place gestures at three different heights. Peaks were detected from MIMUs 
accelerations and were adopted to classify gestures through a Linear Discriminant Analysis. The method was 
applied firstly including two MIMUs and then one at a time. Results demonstrated that the placement of at 
least one MIMU on the upper arm or forearm is suitable to achieve good recognition performances. Overall, 
features extracted from MIMUs signals can be used to define and train a prediction algorithm reliable for the 
context of collaborative robotics. 

1 INTRODUCTION 

Technological developments of Industry 4.0 are 
increasingly oriented to the automation of human 
gestures, supporting operators with robotic systems 
that can perform or simplify their task in the 
production process. In this innovative industrial 
context, collaborative robotics can be considered safe 
if the human and the robot can coexist in the same 
workspace. Indeed, the ability of the robot to detect 
obstacles, even dynamic ones offered by human 
movements, is crucial. Hence, the machine has to 
integrate with sensors recording human motion and 
systems processing these data, to avoid collisions and 
accidents (Safeea and Neto, 2019).  

Once the safety is guaranteed, the collaboration 
between human and robot could be further improved 
by identifying human actions, timings and paths and 
consequently developing adaptive control algorithms 
for the robot (Lasota, Fong and Shah, 2017; Ajoudani 
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et al., 2018). In this perspective, the prediction of 
human activities plays a fundamental role in human-
machine interaction. Indeed, some literature works 
have already adopted human motion prediction to 
improve the performance of robotic systems, by 
reducing times of tasks execution while maintaining 
standards of safety (Pellegrinelli et al., 2016; 
Weitschat et al., 2018). 

The operation of human motion prediction 
requires a reliable tracking of the human trajectory 
and movement in real-time. The capture of human 
movement could be carefully performed by using 
vision devices such as stereophotogrammetric 
systems and RGB-D cameras (Mainprice and 
Berenson, 2013; Perez-D’Arpino and Shah, 2015; 
Pereira and Althoff, 2016; Wang et al., 2017; Scimmi 
et al., 2019; Melchiorre et al., 2020). However, 
despite their precision, vision systems have some 
disadvantages such as encumbrance, high costs, 
problems of occlusion, and long set-up and 
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calibration times. All these aspects make vision 
technologies not suitable for an industrial context to 
assess human-robot interaction. 

The recent development of a new generation of 
magnetic inertial measurement units (MIMUs) based 
on micro-electro-mechanical systems technology has 
given a new impetus to motion tracking research 
(Lopez-Nava and Angelica, 2016; Filippeschi et al., 
2017). Indeed, wearable inertial sensors have become 
a cornerstone in real-time capturing human motion in 
different contexts such as the rehabilitation field 
(Balbinot, de Freitas and Côrrea, 2015), sports 
activities (Hsu et al., 2018) and industrial 
environment (Safeea and Neto, 2019). Even if they 
are not excellent in terms of accuracy and precision, 
MIMUs are cheap, portable, easy to wear, and non-
invasive. Moreover, they overcome the typical 
limitations of optical systems because they do not 
suffer from occlusion problems, they have a 
theoretically unlimited working range, and they 
reduce calibration and computational times. For these 
reasons, the adoption of wearable MIMUs in an 
industrial context of human-robot interaction could 
be deeper investigated. 

Two previous studies have been conducted with 
the intent of improving the human-robot 
collaboration by collecting and analyzing typical 
industrial gestures of pick and place at different 
heights. The upper limbs motion of ten healthy young 
subjects has been acquired with both a 
stereophotogrammetric and an inertial system. The 
first work has promoted the creation of a database 
collecting spatial and inertial variables derived from 
a sensor fusion procedure (Digo, Antonelli, Pastorelli, 
et al., 2020). Since results have highlighted that the 
obtained database was congruent, complementary, 
and suitable for features identifications, the study has 
been amplified. Indeed, the second work has 
developed a recognition algorithm enabling the 
selection of the most representative features of upper 
limbs movement during pick and place gestures. 
Results have revealed that the recognition algorithm 
provided a good balance between precision and recall 
and that all tested features can be selected for the pick 
and place detection (Digo, Antonelli, Cornagliotto, et 
al., 2020). 

However, these two studies have involved the use 
of an optical marker-based system, which is 
unsuitable for an industrial context of human-robot 
interaction. Accordingly, the present work has 
concentrated only on features collected tracking the 
human upper limbs movement with MIMUs. Ten 
healthy young subjects have executed pick and place 
gestures at three different heights. Two inertial 

sensors on the upper arm and forearm of participants 
have been considered for data analysis.  In detail, the 
aim was to adopt MIMUs to guarantee the same 
classification performances obtained with markers 
trajectories optimizing the experimental set-up and 
reducing the computational times. 

2 MATERIALS & METHODS 

2.1 Participants 

Ten healthy young subjects (6 males, 4 females) with 
no musculoskeletal or neurological diseases were 
recruited for the experiment. All involved participants 
were right-handed. Mean and standard deviation 
values of subjects’ anthropometric data were 
estimated (Table 1). The study was approved by the 
Local Institutional Review Board. All procedures 
were conformed to the Helsinki Declaration. 
Participants gave their written informed consent 
before the experiment. 

Table 1: Anthropometric data of participants. 

 Mean (St. Dev) 
Age (years) 24.7 (2.1) 
BMI (kg/m2) 22.3 (3.0) 

Upper arm length (cm) 27.8 (3.2) 
Forearm length (cm) 27.9 (1.5) 
Trunk length (cm) 49.1 (5.2) 

Acromions distance (cm) 35.9 (3.6) 

2.2 Instruments 

The instrumentation adopted for the present study 
was composed of an inertial measurement system. In 
detail, four MTx MIMUs (Xsens, The Netherlands) 
were used for the test. Each of them contained a tri-
axial accelerometer (range ± 5 G), a tri-axial 
gyroscope (range ± 1200 dps) and a tri-axial 
magnetometer (range ± 75 μ T). Three sensors 
(Figure 1A) were positioned on the participants’ 
upper body: right forearm (RFA), right upper arm 
(RUA) and thorax (THX). All MIMUs on participants 
were fixed by aligning their local reference systems 
with the relative anatomical reference systems of the 
segments on which they were fixed. Another MIMU 
(TAB) was fixed on a table with the horizontal x-axis 
pointing towards the participants, the horizontal y-
axis directed towards the right side of subjects, and 
the vertical z-axis pointing upward (Figure 1B). The 
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four sensors were mutually linked into a chain 
through cables and the TAB-MIMU was also 
connected to the control unit called Xbus Master. The 
communication between MIMUs and a PC was 
guaranteed via Bluetooth. Data were acquired 
through the Xsens proprietary software MT Manager 
with a sampling frequency of 50 Hz. 

2.3 Protocol 

The test was conducted in a laboratory. The setting 
was composed of a table on which the silhouettes of 
right and left human hands were drawn, with thumbs 
32 cm apart. In addition, a cross was marked between 
the hands’ silhouettes.  Subsequently, three coloured 
boxes of the same size were placed on the right side 
of the table at different heights: a white box on the 
table, a black one at a height of 18 cm from the table, 
and a red one at a height of 28 cm from the table 
(Figure 1B). 

Subjects were first asked to sit at the table. Then, 
a calibration procedure was performed asking 
participants to stand still for 10 s in a seated neutral 
position with hands on silhouettes. Finally, subjects 
performed pick and place tasks composed of 7 
operations: 1) start with hands in neutral position; 2) 
pick the box according to the colour specified by the 
experimenter; 3) place the box correspondingly to the 
cross marked on the table; 4) return with hands in 
neutral position; 5) pick the same box; 6) replace the 
box in its initial position; 7) return with hands in 
neutral position. During these operations, subjects 
were asked not to move the trunk as much as possible, 
in order to focus the analysis only on the right upper 
limb.  

A metronome set to 45 bpm was adopted to ensure 
that each of the seven operations was executed by all 
subjects at the same pace. Each participant performed 
15 consecutive gestures of pick and place, 5 for every 
box. The sequence of boxes to be picked and placed 
was randomized and voice-scanned by the 
experimenters during the test. 

2.4 Signal Processing and Data 
Analysis 

Signal processing and data analysis were conducted 
with Matlab® (MathWorks, USA) and SPSS® (IBM, 
USA). 

The robotic multibody approach was applied, by 
modelling the upper body of participants in rigid links 
connected by joints (Gastaldi, Lisco and Pastorelli, 
2015). In detail, three body segments were identified: 
right forearm, right upper arm and trunk. All signals 

obtained from MIMUs during the registered 
movements were filtered with a second-order 
Butterworth low-pass filter with a cut-off frequency 
of 2 Hz. Subsequently, accelerations of the MIMU on 
the thorax were used to verify that the movement 
principally involved only the right upper limb and not 
the trunk.  

 
Figure 1: A) Positioning of three MIMUs on participants’ 
upper body and their local reference systems; B) 
Experimental setting with table, boxes, hands silhouettes, 
cross and TAB-MIMU. 
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As a result, only accelerations along all axes of 
MIMUs on the forearm (x-RFA, y-RFA, z-RFA) and 
upper arm (x-RUA, y-RUA, z-RUA) were considered 
for all subjects. 

A method to identify all pick and place gestures 
from MIMUs accelerations was implemented. In each 
of the six signals of each participant, a pick and place 
gesture of a box was recognized as a double peak. 
Accordingly, for each participant, 15 pairs of peaks 
were identified as corresponding to 15 performed 
gestures. In Figure 2, as an example, the acceleration 
signal along the x-axis for the RUA MIMU is 
reported.  The amplitude of each pair of consecutive 
peaks was averaged calculating pi, with i = 1 ÷ 15 
(Figure 2). Values of pi estimated for all signals and 
all participants were collected in a single matrix of 
150 rows (corresponding to 15 pick and place 
gestures performed by 10 subjects) and 6 columns 
(corresponding to MIMUs accelerations).  

Starting from this matrix containing peaks values, 
a Linear Discriminant Analysis (LDA) was 
implemented and repeated considering (a) the whole 
matrix, (b) only RFA-MIMU accelerations and (c) 
only RUA-MIMU accelerations. Observations were 
divided into two groups, one for the training (TR) and 
one for the test (TT) of the algorithm. Three splits 
were considered: (i) 100% TR – 100% TT, (ii) 66% 
TR – 33% TT, (iii) 33% TR – 66% TT. In all cases, 
the two groups were defined randomly picking the 
same balanced number of observations from the three 
gestures categories. Results of LDA were processed 
into scatterplots, confusion matrices and F1-scores to 
evaluate the classification performances. Since the 
three splits produced similar outcomes, only the 
results of the latter case (iii) are presented.  

 
Figure 2: Identification of pick and place gestures from 
MIMUs signals. Example of subject n°6: x-RUA 
acceleration (orange) and averaged peaks values (blue dot). 

3 RESULTS 

In each of the three analyses (all accelerations, only 
RFA-MIMU, only RUA-MIMU), LDA identified 
two linear functions of data for the classification of 
gestures. Considering eigenvalues of both functions, 
the first one expressed alone at least 98% of data 
variability in all cases (99.5% for all accelerations, 
98.6% for RFA, 99.5% for RUA). Thereby, the 
second function covered the remaining data 
variability (0.5% for all accelerations, 1.4% for RFA, 
0.5% for RUA). Accordingly, coefficients (Table 2) 
and values of correlations (Table 3) of the first linear 
function were reported and discussed for all three 
cases. 

Scatterplots represented in Figure 3 define linear 
boundaries among classes regions for the three 
analyses. Figure 4 depicts confusion matrices 
obtained in all three cases from the classification of 
pick and place gestures belonging to the test group. 
Accordingly, Table 4 shows F1-scores (%) estimated 
from the confusion matrices combining the precision 
and the recall. 

Table 2: Coefficients of the linear function 1 identified from 
data in all three analyses (all accelerations, only RFA-
MIMU, only RUA-MIMU). 

 Coefficients 
All 

accelerations 
RFA 

MIMU 
RUA 

MIMU 
x-RFA 1.802 -2.117 - 
y-RFA -0.442 0.546 - 
z-RFA -1.993 2.936 - 
x-RUA 1.734 - 2.173 
y-RUA 0.249 - 0.687 
z-RUA -0.447 - -0.781 
const 8.290 -3.409 7.159 

Table 3: Values of correlations for each variable with 
function 1 in all three analyses (all accelerations, only RFA-
MIMU, only RUA-MIMU). 

 
Correlations 

All 
accelerations 

RFA 
MIMU 

RUA 
MIMU 

x-RFA 0.546 -0.871 - 
y-RFA -0.009 0.025 - 
z-RFA -0.292 0.326 - 
x-RUA 0.522 - 0.848 
y-RUA -0.129 - -0.182 
z-RUA -0.163 - -0.254 
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Figure 3: Scatterplots obtained from discriminant scores of 
functions 1 and 2 for the three cases. Pick and place gestures 
performed by all subjects are classified as low (grey), 
medium (black) or high (red) ones. 

 
Figure 4: Confusion matrices obtained from the 
classification procedure in all three analyses. 

Table 4: F1-scores (%) estimated for the three gestures 
(low, medium, and high) of all analyses. 

Analyses F1-scores (%) 
Low Medium High

All accelerations 100 98.5 98.6 
RFA-MIMU 100 83.3 80.6 
RUA-MIMU 100 82.4 81.8 

All
accelerations

Predicted
Sum

Low Med High

A
ct

ua
l

Lo
w 33 0 0 33

M
ed 0 32 1 33

H
ig

h

0 0 34 34

Su
m 33 32 35 100

RFA
IMU

Predicted
Sum

Low Med High

A
ct

ua
l

Lo
w 33 0 0 33

M
ed 0 30 3 33

H
ig

h
0 9 25 34

Su
m 33 39 28 100

RUA
IMU

Predicted
Sum

Low Med High

A
ct

ua
l

Lo
w 33 0 0 33

M
ed 0 28 5 33

H
ig

h

0 7 27 34

Su
m 33 35 32 100
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4 DISCUSSIONS 

The aim of the present work was to classify industrial 
tasks based on MIMUs signals of human upper limbs, 
to improve the human-robot interaction in a 
cooperative environment. In detail, pick and place 
gestures at three different heights were executed by 
ten healthy young subjects and were recorded through 
two inertial sensors on the upper arm and forearm. 
Accelerations peaks were detected for both RFA and 
RUA MIMUs and were adopted to classify pick and 
place gestures by means of LDA. Hence, the 
classification method was applied three times: (i) on 
all six accelerations, (ii) only on RFA-MIMU 
accelerations, (iii) only on RUA-MIMU 
accelerations. 

All three analyses provided a linear function 
expressing almost all the data variability. Considering 
its coefficients (Table 2), the highest absolute values 
are referred to x and z accelerations for all cases. This 
aspect could be caused by the boxes positioning 
during the experiment. Starting from these 
coefficients, the correlation values between the 
accelerations and the first discriminant function were 
considered for each analysis (Table 3). In all cases, 
the most relevant variables in the classification 
process are peaks of x-RFA and x-RUA signals, 
testifying that the movement was principally 
developed along their x-axis.  

Considering only the RFA-MIMU, peaks of y-
acceleration could be excluded from the classification 
process, due to its lowest correlation. In this way, the 
computational time could be reduced in the 
perspective of an almost real-time application. 

According to classification results for the three 
cases, observations were distributed in the plane 
obtained from discriminant scores of functions 
(Figure 3). The three classes occupy spatially well-
defined regions. Moreover, it is easy to notice that the 
‘low’ region is better separated from the other two 
due to the greater distance of the low box placement 
from the medium and the high ones. This aspect leads 
to a few misclassifications between medium and high 
gestures of pick and place. Indeed, observing the first 
column of all confusion matrices (Figure 4), the 
classification of low gestures is always correct. On 
the contrary, the second and third columns highlight 
some wrong identifications of medium and high 
gestures.  

Considering the confusion matrix including all 
accelerations (Figure 4), the precision is equal to 
99%. Taking into account only one sensor, the 
precision of the classification drops to 88%, both for 
RFA-MIMU and RUA-MIMU. F1-scores calculated 

for each case starting from the relative confusion 
matrix (Table 4) are greater than 80%. It means that 
the algorithm based on these signals provided a very 
good balance between precision and recall for all 
three movements. Since the F1-scores concerning all 
accelerations are so high, the usage of signals 
recorded by MIMUs placed on the upper arm and 
forearm is suitable to identify industrial gestures of 
pick and place. The F1-scores obtained using signals 
provided by only one MIMU can be considered good 
for both adopted sensors. For this reason, the usage of 
only one of the two mentioned MIMUs guarantees a 
high classification accuracy, but also it allows to 
lighten the set-up. This choice can lead to various 
advantages: the reduction of the encumbrance, the 
rise of subject comfort in movements, the decrease of 
subject preparation time, the reduction of the number 
of data to elaborate and the increase in the algorithm 
computational speed. These results could be exploited 
in human-robot collaborative tasks, in which robots 
cooperate with operators by recognizing their 
gestures. 

5 CONCLUSIONS 

In the field of collaborative robotics, detection and 
identification of gestures play a fundamental role in 
an environment where humans and robots coexist and 
perform tasks together. Over the year different 
instrumentations have been chosen to track human 
movements and to develop prediction operations 
reliable in human-robot interaction. 

This study aimed to overcome the shortcoming 
encountered with the use of motion capture tools 
unsuited to the industrial world. Starting from signals 
acquired by wearable devices easy to adopt in the 
industrial field, the work was intended to assess the 
performance of LDA classification of typical 
industrial pick and please gestures. 

The conducted evaluation showed excellent 
results in terms of classification precision. Indeed, a 
few gestures misclassifications were committed 
likely because of the proximity of boxes involved in 
the movements. Thus, the use of only MIMUs for 
tracking human movement can be considered suitable 
for collaborative prediction procedures. In detail, the 
placement of at least one inertial unit on the upper arm 
or forearm is adequate to achieve good recognition 
results.  

Future plans are first to validate the obtained 
results by applying LDA to data captured with a 
stereophotogrammetric system. Moreover, other 
classification methods such as Convolutional Neural 
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Networks could be implemented to verify the 
reproducibility of the results. Other acceleration 
features in addition to peaks, such as punctual values 
of the jerk, means or periodicities, could be explored. 
Then, also angular velocities and orientations could 
be taken into account for the procedure of gesture 
recognition. Starting from the features extracted from 
MIMUs signals, a prediction algorithm of human 
motion can be defined and trained for an industrial 
context of human-robot collaboration. The prediction 
operation can contribute to defining a work 
environment with the robot adapting to the human. 
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