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Abstract—In this paper, we present a deep learning-based
technique for channel estimation. By treating the time-frequency
grid of the channel response as a low-resolution 2D-image, we
propose a 5G-New Radio Convolutional Neural Network, called
NR-ChannelNet, which can be properly trained to predict the
channel coefficients. Our study employs a 3GPP-compliant 5G-
New Radio simulator that can reproduce a realistic scenario by
including multiple transmitting/receiving antenna schemes and
clustered delay line channel model. Simulation results show that
our deep learning approach can achieve competitive performance
with respect to traditional techniques such as 2D-MMSE: indeed,
under certain conditions, our new NR-ChannelNet approach
achieves remarkable gains in terms of throughput.

Index Terms—5G, New Radio, Channel Estimation, Deep
Learning, Convolutional Neural Network.

I. INTRODUCTION

Future wireless networks will be expected to support very
high data rates and new applications that will pave the way for
a new radio technology paradigm [1]. This innovative paradigm
can be identified with a machine learning-based approach,
aiming at satisfying all the different requirements of Next-
Generation wireless networks by means of an intelligent adap-
tive learning process. The purpose of these new technologies is
to learn the colorful characteristics of the system under service
and autonomously determine the optimal configurations.

Even though many studies have started to explore all the
possible Machine Learning (ML) applications for the upper
layers of wireless communication systems, in recent years
much research has been devoted to introduce innovative Deep
Learning-based architectures into several processing blocks [2]:
the idea is to outperform conventional communication algo-
rithms in the emerging complex scenarios [2]–[4], characterized
by lack of information about the channel model, high data rates
and accurate processing requirements.

Channel estimation is a challenging problem in wireless
systems: the transmitted information is subject to highly ran-
dom distorting effects, such as reflection, scattering, diffraction,
which considerably limit the performance of the system; more-
over, the mobility of transmitters and receivers causes rapid
changes in the channel response over time. All these factors
make the channel estimator a very sensitive block of every
wireless communication system.

DeModulation-Reference Signals (DM-RS) [5] have been
introduced in 5G New Radio (5G-NR) to estimate the radio
channel at the receiver side for the associated physical channel
demodulation. Given these reference signals, there exist several

conventional pilot-based estimation techniques that exploit the
known-values in the time-frequency grid, corresponding to the
pilots, to derive all the unknown values of the channel response.

To enhance these traditional approaches this paper pro-
poses the introduction of a deep learning (DL)-based solution
in the channel estimation process. We start from the work
presented in [6] and we extend it to a practical scenario
with: i) 5G-New Radio (NR) fully compliant simulator; ii)
clustered delay line channel model; iii) MIMO support, with
multi-transmitting/receiving antenna schemes. We compare our
approach against a simplified version of a traditional 2D-
Minimum Mean Square Error (2D-MMSE) channel estimation
algorithm developed in TIM laboratories.

All the experiments described in this paper have been con-
ducted through a MATLAB-based New Radio Link Simulator
software [7], developed in TIM laboratories. The purpose is to
model a radio interface fully compliant with 3GPP specifica-
tions [5], [8]–[10] and to evaluate the link level performance
of 5G-based point-to-point communications.It is in particular a
link level simulator and it targets scenarios with a single next-
generation base station or gNodeB and a single UE, which can
be equipped with multiple antennas

We adopt the clustered delay line (CDL) channel model,
proposed by the the 3GPP WG RAN group for NR-compliant
link simulators [11], [12]. The model is based on the description
of the main departure and arrival directions of the signal in the
space and the number of clusters corresponds to the number of
channel reflections. In particular, we select the CDL-B profile.
This CDL profile is specific for Non-line-of-sight (NLOS)
transmissions and it can be used for sub 6 GHz frequency,
where Line-of-sight (LOS) is not mandatory.

The paper is organized as follows. In Sec. II we describe
the system model and one of the traditional channel estimation
algorithms for wireless OFDM systems. In Sec. III we present
the Deep Learning model used to study the channel estimation
problem in 5G-NR. In Sec. IV we discuss the simulation
results and we show that the DL approach can outperform the
traditional ones. Sec. V concludes the article.

II. SYSTEM MODEL

In an OFDM MIMO system, we denote with C the number of
subcarriers used for data transmission, S the number of OFDM
symbols transmitted in a time slot, while N and M represent
the number of transmitting and receiving antennas respectively.
The described model represents a single layer MIMO commu-



nication system, where spatial diversity is adopted both at the
transmitting and receiving sides. By taking a snapshot of an
s-th OFDM symbol and a c-th subcarrier, we can express the
estimated symbol ŷ as:

ŷ = uHHvx + uHz (1)

where:
• H is the complex MIMO channel matrix, of size M ×N ,

corresponding to the s-th OFDM transmitted symbol on
the c-th subcarrier;

• v, of size N × 1, is the complex precoding vector;
• x is the complex s-th data symbol transmitted on the c-th

subcarrier;
• z denotes the M × 1 additive noise vector affecting the

M receiving antennas.
• u is an M × 1 combiner.

A. A simplified 2D-MMSE channel estimation algorithm

Traditional pilot-based channel estimation techniques are
based on the multiplexing of pilots symbols (i.e., known sym-
bols) into the transmitted data: these symbols are scattered on
the time-frequency grid and the channel coefficients in neigh-
boring positions can be recovered through a two-dimensional
interpolation [13].

In OFDM systems, the optimal linear channel estimator is
the 2D-MMSE Wiener filter, which is able to minimize the
error between the estimated channel frequency response (CFR)
and the original one [13]–[15]. This estimator combines the set
of K surrounding pilots to estimate the channel coefficients in
a specific position on the time-frequency grid, which basically
consists of a two-dimensional convolution operation.

As H refers to the typical MIMO channel matrix for a
specific OFDM symbol s and subcarrier c, we consider now a
single transmitting/receiving antenna pair (n,m) and we refer
to the relative time-frequency channel grid matrix as H, of
size S × C. At the receiver side, the CFR is only known in
correspondence of the pilots: since for coherent demodulation
the whole channel coefficients must be computed, the remaining
H(s, c) entries have to be estimated by interpolating the known
H(sp, cp) coefficients:

H(s, c) =
∑

(sp,cp)∈P

ws,c
sp,cpH(sp, cp) (2)

where P is the set of the positions that accommodate the nearest
pilots with respect to the position (s, c). The filter coefficients
ws,c

sp,cp are computed by taking into account the autocorrelation
function RHH(∆s,∆c) = E{H(s, c)H∗(s−∆s, c−∆c)}: the
idea is that the more a pilot is far from the position to estimate,
the less it contributes to the estimation, since the correlation
between the pilot symbol and the estimated symbol decreases.

The solution of (2) can be expressed as

h = RhpR
−1
pp p (3)

where p is a vector of size K×1 containing the K pilot symbols
which are taken into account, K is generally smaller than the
total number of transmitted pilots to reduce the complexity
of the estimation; h is a vector of size Q × 1 where Q
represents the number of coefficients that have to be estimated;

Rhp = E
[
hpH

]
is the cross-covariance matrix between the

CFR estimated in positions (s, c), without pilot, and the CFR
estimated in pilot positions (sp, cp), Rpp = E

[
ppH

]
is the

auto-covariance matrix of p.
The general version of the 2D-MMSE estimator is typically

too complex to be actually implemented. The complexity of the
original algorithm can be reduced by implementing a low-rank
2D-MMSE filter, which decreases the rank of the 2D filter by
decreasing the set of pilots P . Given a channel coefficient, the
contribution of each pilot for its estimation diminishes as the
pilot distances in frequency. So, the inclusion of very distant
pilots in the time-frequency grid does not significantly improve
the estimator performance. Therefore only the neighboring
pilots can be used to estimate a certain value of the channel
coefficient. The NR link level simulation platform developed
in TIM laboratories attains this simplification by implementing
a sliding window that includes only the surrounding pilot
symbols in the grid. The window size determines the accuracy
of the estimation: experiments have shown that a window size
between 3 and 7 Resource Blocks is enough to guarantee
a comparable performance to the full 2D-MMSE estimator,
especially in case of fast channel variations.

III. DEEP LEARNING-BASED CHANNEL ESTIMATION

To enhance the traditional estimators described in the pre-
vious section, many studies have proposed the introduction
of deep learning-based algorithms in the channel estimation
process. The idea is to treat the time-frequency grid of the
channel response as a low-resolution 2D-image, whose pixels
are known only at the pilot positions. Our DL-based approach is
based on two different Convolutional Neural Networks (CNN)
[6] and consists of two different phases:
• an image Super Resolution CNN (SRCNN) [16], which

enhances the resolution of the low-resolution input image
and transforms it into an high-resolution image, by esti-
mating the channel response values at all positions without
pilots;

• a denoising CNN (DnCNN) [17], which implements an
Image Restoration (IR) algorithm to remove or reduce the
noise affecting an image.

A. Image Super-Resolution Convolutional Neural Network

A deep CNN [16] takes a low-resolution image as input
and outputs the high-resolution version. Similarly to a Sparse-
Coding-based method, the SRCNN embeds two different steps:
• patch extraction and representation, formulated as con-

volutional layer: several patches are extracted from the
low-resolution image and mapped onto high-dimensional
vectors, whose number of dimensions corresponds to the
number of collected feature maps;

• dictionary-based non-linear mapping: the high-
dimensional vectors output by the previous step are
mapped onto other high-dimensional vectors through
a non-linear operation. The resulting vectors are
representations of high-resolution patches and store
another set of feature maps. Note that dictionaries are
not explicitly learned, since they are implicitly achieved
through hidden layers;



• reconstruction: in this last phase, the final high-resolution
image is generated by aggregating the high-resolution
patch-wise representations.

The only foreseen pre-processing operation is an interpola-
tion of the input low-resolution image, in order to upscale it to
the desired size.

B. Image Denoising Convolutional Neural Network

The DnCNN proposed in [17] is able to handle Gaussian
denoising with unknown noise level; it isolates the noise in the
noisy input image by means of a feed-forward convolutional
network. It is designed to predict not the denoised image x̂
but the residual image v̂, defined as the difference between the
noisy observation and the latent clean image: in other words,
in the hidden layers of the network the latent clean image
is implicitly removed, so that the inputs at each layer are
characterized by a Gaussian distribution, a lower correlation
and a negligible relationship with the image content [17].
Also batch normalization is introduced to enhance the training
performance: it is an efficient solution to the internal covariate
shift, i.e., the changes in the distributions of internal non-
linearity inputs during training [17], such solution is achieved
through the mini-batch gradient descent algorithm. Since resid-
ual learning and batch normalization can benefit from each
other, the proposed DL-based solution shows a consequent
speeding up in training and an improvement of denoising
performance [17].

A DnCNN with depth D is characterized by three different
types of layers:
• the first layer consists of a convolutional layer followed

by a Rectified Linear Unit (ReLU): this layer generates 64
feature maps from 64 filters of size 3× 3× c, where c is
the number of image channels; the ReLU is then employed
for nonlinearity;

• layers from 2 to D − 1 consist of a convolutional layer
followed by a batch normalization layer and a ReLU: these
layers adopt 64 filters of size 3× 3× 64 ;

• the last layer simply consists of a convolutional layer with
c filters of size 3× 3× 64.

C. A ChannelNet model for NR

A pipeline for DL-based channel estimation, called Chan-
nelNet, was proposed in [6] with the purpose of estimating the
time-frequency response matrix H that characterizes the link
between a single transmitter and a single receiver antenna, i.e.,
a SISO channel. Since the matrix H has complex values, it
is represented as two 2D-images, one for the real values and
one for the imaginary values. The values estimated at the pilot
locations ĥp are considered as the low-resolution and noisy
version of the channel image which must be mapped to its
high-resolution version:
• first, an SRCNN network (Fig. 1a) takes as input the low-

resolution interpolated images (real and imaginary part)
and estimates the unknown values of the channel response
matrix H;

• secondly, a DnCNN implementation (Fig. 1b), cascaded
with the SRCNN, removes the noise from the estimated
images.

We introduce a channel estimation solution inspired by the
ChannelNet model: specifically, our approach, named NR-
ChannelNet, substantially maintains the same structure of the
CNN illustrated in [6], as shown in Fig. 1, but it introduces
some modifications in the training procedure and it attempts at
generalizing the model to multiple use cases:
• first of all, we try to make the model applicable also to

MIMO scenarios, differently from the work proposed in
[6] which focuses only on the channel matrix along a
single transmitter/receiver antenna pair;

• furthermore, we try to enrich our training datasets by
performing link simulations at different levels of SNR:
instead of fixing two values of SNR for the training
process, we change it with a finer granularity, with the
purpose of obtaining models with better performance also
in scenarios where the quality of the channel significantly
fluctuates.

We build and train the neural network models in Python
with Keras, a TensorFlow’s open-source high-level API. Once
completed the training phase, we develop a deep learning-
based channel estimation block within the TIM software link
simulator [7]. This block basically substitutes the pre-existing
low-rank 2D-MMSE estimator: it imports a pre-trained neural
network model in MATLAB environment and predicts the chan-
nel estimate by exploiting the functionalities of the MATLAB
Deep Learning tool.

D. Training process

Tab. I reports the configuration of the simulator parameters
that are of particular interest in our experiments.

Table I: Simulation parameters for NR-ChannelNet training

Simulation parameters
Transmission direction Downlink

Carrier frequency 3.64 GHz

System bandwidth 1.4 MHz

Time slot 1 ms

(Modulation, Coding rate) (64-QAM, 0.694)

Transport Block Size (TBS) 4736 bit

OFDM symbols per time slot (S) 14

Transmission layers (L) 1

Codewords 1

Channel Model CDL-B

Please not that the choice of the system bandwidth (1.4
MHz), which is only provided by LTE standard, is imposed
by a reduced computational complexity and simulation time.

As far as the transmitter and receiver antenna systems are
concerned, we consider two different configurations, shown in
Tab. II. N and M represent the number of transmitting and
receiving antennas respectively, while N1 and N2 denote the
number of antenna elements on the azimuth and elevation plane;
Npol instead indicates the number of polarizations for each
antenna element.

It is worth noting that the channel matrix considered in our
DL-based solution is different from the channel time-frequency



(a) SRCNN (b) DnCNN

Figure 1: NR-ChannelNet implementation scheme

Table II: Antenna systems configurations

Configuration N M N1 N2 Npol

8× 1 8 1 2 2 2

32× 2 32 2 4 4 2

response image H introduced in [6]: the matrix H, in fact,
contains the channel coefficients for a SISO link and therefore
it has size C × S, where S is the number of OFDM symbols
transmitted in a single time slot; our matrix, referred to as
Hv

id, instead, represents the beamformed channel matrix, of
size M × L× C × S, where L is the number of transmission
layers; but if we consider a single transmission layer, the size
reduces to M × C × S. For each subcarrier c and OFDM
symbol s, Hv

id is computed as the multiplication of the CDL-
B channel matrix H̃, of size M × N , by the beamforming
vector v, of size N ×L. As a consequence, in our model also
a third dimension must be taken into account: in fact, while
in [6] only single receiver antenna scenarios are considered,
our model is aimed at working also with configurations where
M > 1. This is accomplished by considering channel images
associated to different receiving antennas as distinct data points
on the same input channel: with this approach only 2D images
are considered as input of the CNN.

E. Input pre-processing: interpolation and scaling

Before going through the first layer of the NR-ChannelNet
model, all the matrices pDMRS contained in the dataset are
subject to a two-step preprocessing.

First, we place the values of pDMRS on a time-frequency
grid and we apply an interpolation algorithm on the real
and imaginary part separately, to pre-compute the channel
coefficients in positions where DM-RS pilots are not present;
in particular, we adopt the Radial Basis Function (RBF) inter-
polation implemented in Python SciPy library and we obtain a
complete interpolated input channel matrix. We can denote the
matrix resulting from this interpolation step as Hv

DMRS .

Once we obtain the matrix Hv
DMRS , we rescale the values

of both its real and its imaginary parts in the range [0, 1]. This
is a crucial step in the preprocessing pipeline, since without
data normalization, the objective function of the DL algorithm
does not properly work in most cases. Data normalization or
feature scaling is a technique that normalizes the range of
values characterizing independent variables or features [18].
As explained in [19], when features are measured on different
scales, the optimization algorithm will be governed by the
feature with the broadest range, since the weights will be mostly
optimized based on its errors. To counteract this issue, we
perform a min-max normalization, according to the following
expression:

xnorm =
x−min(x)

max(x)−min(x)
. (4)

The resulting matrix is denoted as ĤW
DMRS .

While the authors of [6] consider the real and the imaginary
parts of the input matrix Hv

DMRS and the desired output
matrix Hv

id as distinct entries of the training dataset, we follow
instead the approach of [20], i.e., we consider the real and the
imaginary parts as distinct colors of the same image, conveyed
through the network on two separate channels: this means that
both the third dimension of the input layer and the number of
feature maps at the output of the last convolutional layer must
be doubled.

F. Variability of channel quality

The HDMRS matrices are collected by simulating different
conditions of the channel: in particular, we modify the SNR
value in order to test the behavior of our DL-based model at
different levels of channel quality.

In [6], the SNR range is divided into two regions and the
ChannelNet is trained for two different SNR values: for low
SNR values, the network is trained at 12 dB of SNR; for higher
SNR values, the network is trained at 22 dB of SNR. Instead,
we decide to use two different approaches:



Table III: NR-ChannelNet simulation parameters

Parameter 8× 1 configuration 32× 2 configuration

Training set 1000 sim of 100 slots 1000 sim of 100 slots
Validation set 100 sim of 100 slots 100 sim of 100 slots

Testing set 100 sim of 100 slots 100 sim of 100 slots
Learning rate 0.001 0.001
Loss function MSE MSE

Optimizer Adam Adam
SRCNN epochs 300 400
DnCNN epochs 200 200

DnCNN depth (D) 4 4

• on one hand, we select a set of different SNR values,
{0, 10, 20, 50dB}, and we train a different NR-ChannelNet
model for each of these values;

• in parallel, we define two SNR regions, [0; 20] and [20; 50]
dB. For each region, we collect our training data varying
the SNR inside the corresponding range of values: for
the first SNR region, the SNR values considered for the
simulations are 0 dB, 10 dB and 20 dB; for the second
one instead, training data are collected at SNR 20 dB and
50 dB.

With this second approach, we attempt at improving the
performance of our NR-ChannelNet in scenarios where the
SNR oscillates significantly: by increasing the variability of
the training data, we try to obtain a more generalizable model,
less sensitive to possible channel variations.

IV. SIMULATION RESULTS

The performance of the NR-ChannelNet model, in all the
illustrated variants, are evaluated after simulation campaigns
conducted with the NR link level simulator presented in in
the previous sections. Tab. I reports the main parameters of
interest concerning the simulator settings, while Tab. III shows
the hyperparameters adopted for the training and testing process
of our models.

A. MISO scenario: 8 X 1 antenna configuration

The plots displayed in Fig. 2 are useful to summarize and
compare the obtained results, showing the curves of throughput
for all the different trained models. In particular, Fig. 2a shows
the performance of the models trained with data collected at
constant SNR levels; the curves shown in Fig. 2b, instead,
are relative to NR-ChannelNet variants trained at mixed SNR
levels.

Each plot also reports a horizontal straight line, repre-
senting the maximum throughput level that can be achieved
given the selected Transport Block Size (TBS). As it can be
observed, the throughput curves never reach the maximum
possible value, even at very high SNR levels. The reason lies
in the TBS computation: the NR link simulator adopted for
our experiments calculates the TBS value only once, at the
beginning of the simulation, without taking into account that,
at each Channel State Information (CSI) reporting period, some
resource elements in the time-frequency grids must be reserved
for CSI-RS pilots and some redundant bits are sacrificed, with
a consequent increase of the code rate and a decrease in the
degree of protection.

It is evident that the SNR level at which the considered model
as been trained has negligible impact on the performance; the
only exception seems to be the NR-ChannelNet trained at 0
dB of SNR, which turns out to be the worst performing. This
proves that it is sufficient to train a single NR-ChannelNet
model provided that the training data are collected at suffi-
ciently high SNR values. As a consequence, the idea of mixing
data collected at different SNR levels, with the purpose of
training models that are more insensitive to the channel quality
oscillation, does not seem to be particularly useful. This is the
reason why this training approach is not taken into account for
the 32 × 2 configuration pattern. To conclude, it is possible
to state that the NR-ChannelNet approach turns out to be
absolutely competitive with the low-rank 2D-MMSE algorithm,
even achieving visibly better performance within certain SNR
ranges.

B. MIMO scenario: 32 X 2 antenna configuration

This subsection refers to simulation experiments performed
with a 32× 2 antenna configuration. With this second config-
uration, characterized by an increased number of antennas, we
certainly expect better results: a larger number of transmitter
and/or receiver antennas can provide additional diversity against
fading on the radio channel [21], [22], [23]; not only this, but
a greater availability of antenna elements results in a grater
beamforming gain, due to an improved ability to orient the
beam in the direction of the receiver. It is possible to find an
effective match long at Fig 3.

As for the 8 × 1 configuration, the NR-ChannelNet model
trained at 0 dB of SNR shows very poor performance. Our
guess is that when the input channel images are particularly
noisy the training set collected and fed to the convolutional
network essentially contains only noise; as a consequence,
larger datasets are needed to finalize the learning process and
avoid overfitting phoenomena.

If we compare the results obtained with the two considered
antenna configurations, it is quite evident that NR-ChannelNet
models bring more significant improvements for the 8 × 1
scenario. In Fig. 3, relative to the 32×2 antenna configuration,
it is possible to observe a slight throughput enhancement only
at very low SNR values. This sounds reasonable since, when
a single receiver antenna is available, the system performance
is more sensitive to the channel estimation accuracy and thus
there is more room for improvement.

V. CONCLUSIONS

In this paper, we have investigated the potential use of neural
networks as an alternative to the traditional channel estimation
block implemented within a 3GPP-compliant New Radio link
simulator. Starting from the DL-based solution presented in [6],
we have proposed a NR-ChannelNet model that is able to deal
with channel estimation task in MIMO communication systems.
Several experiments have been carried out by generating several
CDL channel scenarios through a 5G physical layer software
simulator. Results have shown that our deep learning approach
for channel estimation can achieve absolutely competitive per-
formance w.r.t. a traditional 2D-MMSE technique and visibly
outperforms it in some cases.



(a) Discrete SNR values (b) Mixed SNR values

Figure 2: NR-ChannelNet - Throughput - 8x1 configuration

Figure 3: NR-ChannelNet - Throughput - 32x2 configuration
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