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Damage Detection in Laminated Composites 
by Neural Networks and High Order
Finite Elements 

ALFONSO PAGANI, MARCO ENEA and ERASMO CARRERA 

 

ABSTRACT 

        In the aerospace industry, machine learning techniques are becoming more and 
more important for Structural Health Monitoring (SHM). In fact, they could be 
useful in giving a precise and complete mapping of damage distribution in a 
structure, including low-intensities or local defects, which cannot be detected via 
traditional tests. In this work, feedforward artificial neural networks (ANN) are 
employed for vibration-based damage detection in composite laminates. In the 
framework of Carrera Unified formulation (CUF), one-dimensional refined models 
in conjunction with layer-wise (LW) theory are adopted. CUF-based Monte Carlo 
simulations have been used for the creation of a dataset of damage scenarios for the 
training of the ANN. Therefore, the latter is fed with the vibrational characteristics 
of these structures. The trained ANN, given these dynamic parameters, is able to 
predict location and intensity of all damages in the laminated composite structures.  
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INTRODUCTION 

Structural health monitoring is assuming a crucial role in several branches of 
industry, such as civil or aircraft industries. The objective is to overcome the 
limitations of the Non-Destructive Tests (NDT), which are performed as aircraft 
maintenance program. The main limitation is the necessity of the operator to know 
a priori the location of the damage to be analyzed.  

Several methods of health monitoring have been developed, such as guided 
waves [1], Fiber Bragg grating (FBG) sensor [2], and intelligent coating monitoring 
[3]. In this work, variations in the vibrational characteristics of a structure are 
studied to predict location and intensity of damages. Thus, the objective of this 
work is the solution of the so-
parameters of the structure (i.e. natural frequencies or mode shapes), the proposed 
model will be able to detect the location and the severity of damages in the 
investigated structure. 

In this manuscript, Artificial Neural Networks (ANN) are used in combination 
with one-dimensional refined model, developed through the Carrera Unified 
Formulation (CUF) [4]. CUF has been recently employed for solvi

-based damage detection [5] : the effect of localized damages 
on the vibrational characteristics of the structure is studied. Following this research 
path, this work aims at solving the inverse problem, exploiting the combination of 
excellent accuracy and low computational cost of CUF formulation for composite 
materials. The proposed approach has been already employed for metallic structures 
in [6]. 

The manuscript is organized as follows: Section 0 describes the finite element 
models employed. Then, Section 3 presents the layer-wise damage modelling;
Section 4 illustrates the ANNs training process. Afterward, the results are shown in 
Section 5. Finally, conclusions are drawn in Section 6. 

UNIFIED FINITE ELEMENTS

In the framework of CUF [4], the 3D field of displacements can be expressed as 
a summation, of  arbitrary expansion functions  and the vector of the 
generalized displacements . In the case of one-dimensional beam theories, as 
in the case of this work, the displacements field is expressed as: 

(1)

where  is the number of expansion terms. Different expansion functions can be 
utilized as . In this work, Lagrange expansion (LE) are used in order to 
adopt a layer-wise (LW) approach for the analysis of laminated parts.  

The Finite element method (FEM) is used to study the structures involved in 
this paper. Therefore, the generalized displacements can be expressed as: 

(2)
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        in which  is the total number nodes per element,   are the one-
dimensional shape functions and are the nodal unknowns. 
      In this work, the undamped dynamic problem is analyzed. Both stiffness and 
mass matrices are obtained via the application of the virtual displacement principle. 
After some manipulations, the virtual variation of the internal work reads: 

(3)

       where  denotes the stiffness matrix in the form of fundamental nucleus, 
and the  operator represents the integral over the volume of the element. The 
virtual variation of the work of inertial loadings is: 

(4)

       where is the fundamental nucleus of the mass matrix and the
acceleration vector. It should be underlined that no assumption about the 
approximation order are made for the formulation of both matrices. Thus, any 
refined beam model can be obtained with this procedure. The assembled global 
stiffness matrix is obtained by looping through the indices .

For the sake of brevity, the governing equations of the undamped dynamic 
problem are not reported here, but can be found in [4]. 

LAYER-WISE DAMAGE MODELLING

Layer-wise approach [7] allows an independent formulation for each layer of a 
laminated composite, while guaranteeing the interlaminar continuity. The derivation 
of CUF in the LW framework has been introduced for the first time by Carrera in 
[8] through the adoption of Lagrange expansion (LE).  The characteristics of CUF 
allowed a significant reduction of the computational demand for the LW approach. 
In the present work, the features of LW formulation have been exploited for 
damage detection purpose. In fact, each layer can be independently modelled, 
allowing to introduce a different damage in each layer, or in a reduced portion of 
one or more layers. This will result in a more localized damage distribution within 
the laminate and, consequently, to a better localization of the damages via the ANN 
training. At this stage, an isotropic damage is considered. It is modelled through 
reduction of the stiffness of the layer involved, with no consequences on its mass. 
The material properties are modified as follows: 

(5)

       where E is the Young modulus and d is the damage coefficient. If it is equal to 
1, the structure has no damage, while if it is lower than 1, the structure will have a 
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damage with intensity of (1-d).  In Fig. 1, an example of damage scenario in a four-
layer plate is shown. 

Figure 1. Example of damage introduction in a four-layer plate. 

In [5], authors employed natural frequencies and Modal Assurance Criterion 
(MAC) as parameters for the study of the vibration-based direct problem. MAC is a 
parameter which quantifies mode-to-mode correlation between, in this case, 
damaged and undamaged structures. The scalars are computed as follows:

(6)

where  and  are the damaged and undamaged modal vector for ith and 
jth modes, respectively. Thus, the final aim of this research is to build a model 
which, given natural frequencies and MAC matrix, is able to detect location and 
intensity of damages in each single layer of the laminate. For this purpose, an ANN 
has been trained after creation of a database of damage scenarios. This process will 
be further discussed in the following section. 

ANN TRAINING FOR DAMAGE DETECTION 

An ANN is a group of interconnected neurons. It is formed by an input layer, 
one or more hidden layers and an output layer. An example of ANN architecture is 
shown in Fig. 2. Inputs are the natural frequencies and the MAC matrix, while the 
outputs of the network will be location and severity of the damage.  
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Figure 1. Architecture of an Artificial Neural Network. 

The ANN reduces the error in the prediction of the outputs through the training 
process. A large training database is needed for the quantification and localization 
of damage. In this work, the database has been created through CUF-based Monte 
Carlo simulations. Damage intensity was assigned randomly to each component, 
following a Gaussian distribution, with mean equal to 0 and standard deviation 
equal to 0.1. The adoption of LW formulation in CUF framework allowed the 
creation of a database of N structures, providing very accurate analysis with a 
reduction of the computational cost. Additionally, it allowed a localized damage 
distribution. An example of database is shown in Tab. I. 

Table I. Example of database of N samples for a 4-layers structure. The damage introduced for 
each component is indicated in terms of stiffness reduction (1-d).

Layer 1 Layer 2 Layer 3 Layer 4

Sample 1 0.10 0.14 0.01 0.13
Sample 2 0.21 0.04 0.07 0.16
Sample 3 0.17 0.01 0.02 0.17
Sample 4 0.13 0.00 0.04 0.08

Sample N 0.03 0.10 0.13 0.09

Once the ANN is well trained, it can be used for investigation of new structures, 
which are unknown for the network. Hence, the ANN is fed with natural 

location and severity as output. In Fig. 3, a flowchart describing the entire process, 
from modelling of the structure to the test of the ANN, is shown. 
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Figure 3. Flowchart representing the entire process for damage detection, from the modelling of 

the structure to the trained ANN.

NUMERICAL RESULTS 

To validate the proposed methodology, a six-layer plate with symmetric 
stacking sequence [02-90]s has been studied. This problem has already been treated 
in [9]. A representative scheme of the plate is shown in Fig. 4.  

Figure 4. Representative schema of a six-layer plate. 
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The plies are of equal thickness and they are made of orthotropic material with 
Young modulus along the fibre direction equal to EL = 98 GPa, Young modulus 
along a transverse direction ET = 7.90 GPa, shear modulus GLT = 5.60 GPa, Poisson 
ratio  = 0.28 and density = 1520 Kg/m3. The length l, the width w and the total 
thickness t of the structure are equal to 305, 76.2 and 0.804 mm, respectively. Ten 
4-node elements (B4) are adopted for the discretization along the beam axis, while 
quadratic Lagrange polynomials (L9) are employed in the cross-section. The 
structure is clamped at one end. 

Every layer has been divided into two sections: so, each layer will now be 
described by two L9 elements. In the following discussion, we will refer to each 

laminate into twelve components, as illustrated in Fig. 5. Layer-wise approach 
allows to introduce a different damage in each component. In this case, we choose 
to damage three components (1, 3 and 6), all in the clamped section. 

Figure 5. Representation of damage scenario for the laminated composite structure. Highlighted 
components are randomly damaged.

        Firstly, the direct problem is solved: known damages are introduced in the 
structure and their influence on natural frequencies and mode shapes are 
investigated. Tab. II shows the variation of natural frequencies when all three 
components (1,3 and 6 in Fig. 5)  are damaged with the same intensities (d=0.5 and 
d=0.9). Fig. 6 shows the MAC matrix, comparing the mode shapes of the 
undamaged structure with the two previous damage scenarios. 
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Table III. First 20 natural frequencies (Hz) of the six-layer plate for the undamaged case and 
two damage scenarios. 

Undamaged d=0.5 d=0.9
f1 11.23 9.05 6.72
f2 39.68 33.92 27.08
f3 70.34 61.26 48.89
f4 133.85 12.17 107.20
f5 196.91 177.01 153.53
f6 269.53 243.33 209.41
f7 384.66 341.31 283.89
f8 399.26 369.53 299.51
f9 461.05 411.29 350.85
f10 462.68 421.60 396.87
f11 589.38 532.86 464.95
f12 638.46 572.59 488.52
f13 713.40 640.71 544.88
f14 777.98 700.21 609.33
f15 882.91 774.53 670.20
f16 952.98 844.28 711.13
f17 1027.51 913.56 776.84
f18 1028.02 923.26 791.47
f19 1330.04 1191.11 1002.45
f20 1339.54 1199.33 1031.38

Figure 6. MAC mode-to-mode comparison between undamaged and damaged plate 
for two damage scenarios. 

In order to solve the inverse problem, a large database has to be built for the 
ANN training process. In this case, training database of 15000 samples has been 
considered, created as explained in the previous section. The ANN is trained 
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through the MATLAB toolbox [10]. The best ANN architecture in terms of 
accuracy and computational cost has been found through a trial-and-error approach, 
where the variables are the number of hidden layers and the number of neurons for 
each layer. For this problem, a network with a single layer and 16 neurons has been 
used for the training process. In Fig. 7, the performance of the network is shown. 
The regression coefficient R is an index of the network accuracy in the output 
prediction. It can vary from 0 to 1, where a value of 1 indicates that all predicted 
output match the targets. 

Figure 7. Performance of the ANN with a 16 neurons layer. 

Figure 8 shows the comparison between the ANN's guess (Blue Bars) and the 
solution introduced through CUF-based Monte Carlo simulations (Red Bars). In the 
horizontal axis, the component's numbering is indicated, according to the structure's 

repartition shown in Fig. 5. In the vertical axis the intensity of the damage is 
displayed. This figure shows the accuracy of the network in predicting location and 
intensity of all damages in the laminate. It should be underlined that these structure 

were not used for the training of the ANN, so they are unknown for the network. 
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Figure 8. Comparison between the exact CUF solution (Red bars) and the ANN output (Blue bars). 

Each graph represents a different structure which is unknown for the network. 

CONCLUSIONS

       In this manuscript, a vibration-based damage detection method is proposed. It 
 one-dimensional model. In this 

framework, the layer-wise formulation has been introduced for the analysis of 
laminated composite. It allows to carry out free-vibration analysis with high 
accuracy and low computational cost, characteristics which are essential for the 

The proposed model showed to be very 
accurate for a six-layer plate, whose layers were divided into two halves, for a total 
of twelve components. The network, after training with the database created via 
Monte Carlo simulations, was able to predict location and intensity of damages in 
unknown structures. 
        Future works will focus on the implementation of a new damage model, which 
will contemplate a differentiation between damage in the longitudinal and in 
transversal directions. Moreover, the possibility of detecting delamination between 
layers will be investigated. 
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