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Use of Lagrage polinomials to build refined theories for
laminated beams, plates and shells

A. Pagani 1*, E. Carrera 1�, R. Augello 1�, D. Scano 1§

Mul 2 Group
1Department of Mechanical and Aerospace Engineering, Politecnico di Torino

Abstract:This paper proposes an equivalent single-layer approach for modeling laminated
structures, where the number layers to be considered as a single one is chosen a priori by
the user. Lagrange points are set to locate and, eventually, join equivalent single-layer and
layer-wise tenchiques by imposing displacement continuity in the thickness direction. The
Finite Element (FE) method is applied to provide numerical solutions whereas the Carrera
Unified Formulation (CUF) is used to generate the related stiffness matrices in a compact
and straightforward way. The approach is employed using one-dimensional beam and two-
dimensional plate and shell models and several case studies, taken from well-known examples
in the literature, are analyzed. Results clearly show the advantages and superiority of the
present approach to completely capture the displacements and the distribution of the axial
stress components, whereas local values of the shear stresses can be obtained by opportunely
chosing the Lagrange points pattern opportunely.

Keywords: Composite structures; Equivalent Single Layer; Unified beam, plate and shell
models.

1 Introduction

The constant development of sophisticated materials and components leads to increasingly
complicated structural designs that require accurate and time-consuming analyses, in partic-
ular in the case of laminated composites. The difficulty of these analyses is mainly caused
by the complex anisotropy of such structures, which may result into intricate mechanical
phenomena. They are, for instance, the interlaminar continuity for the shear stresses and
the zig-zag behaviour of the displacements (the C0

z requirements [1]), as well as the coupling
between the in-plane and the out-of-plane strains. Nowadays, several theories and methods
for the detailed analysis of laminated structures are available. An overview on the com-
putational techniques for the analysis of one-dimensional (1D) laminated beams [2, 3] and
two-dimensional (2D) plates, can be found in major review articles, see [2, 3] and [4, 5, 6],
respectively. However, a brief discussion about some noteworthy contributions in the field is
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given hereafter for the sake of completeness.
Classical theories such as the Euler-Bernoulli beam [7] is widely applied in numerical sim-
ulations, although it lacks the ability to accurately predict the transverse shear over the
cross-section. To overcome this problem, many other models were developed to carry out re-
liable results, especially in the case of composite structures, see the Timoshenko beam theory
[8], which considers a constant distribution of the shear stress along the cross-section.
Even though classical theories ensure reliable accuracy for a wide range of problems, they have
some limitations. In fact, when dealing with thin-walled structures, whose cross-sectional de-
formation is relevant, an accurate evaluation of the stress distribution is necessary, to describe
the higher-order phenomena. For this reason, advanced structural theories must be consid-
ered, because classical approaches might be inappropriate and lead to wrong conclusions. For
instance, Stephen and Levinson [9] developed a higher-order theory starting from the Timo-
shenko beam equation and taking into account the shear curvature, through the introduction
of new coefficients. As further examples of higher-order beam models proposed in the past,
Vlasov [10] introduced warping functions to capture the deformations of beam cross-sections.
This approach found a great success between scientists, see the works by Ambrosini et al.
[11], Mechab et al. [12] and Friberg [13], who made use of warping functions for thin-walled
structures. A combination of the refined Vlasov model and the classical Euler-Bernoulli model
was adopted by Kim and Lee [14] to analyze thin-walled beams made of functionally graded
materials. The so-called Generalized Beam Theory (GBT) was suggested by Schardt [15].
This theory allows the displacement field to be expressed as a linear combination of cross-
sectional deformation modes. GBT found many applications in the literature, for example by
Peres et al. [16] for the analysis of curved thin-walled beams, and by Silvestre [17] for buckling
problems. GBT was also adopted for the analysis of laminated materials, as presented by
Silvestre and Camotim [18, 19].
As far as the 2D plate and shell problerms are concerned, the former and probably the most
famous 2D model is the classical Kirchhoff–Love theory [20, 21], whose extension to laminates
is known as the Classical Lamination Theory (CLT) [22]. However, CLT neglects the effect
of out-of-plane strains, and since one of the main issues related to the proper modelling of a
composite structure is due to its low transverse shear moduli compared to the axial tensile
moduli, CLT is therefore inadequate for most of the practical studies. On the other hand, the
First Shear Deformation Theory (FSDT), which is based on the works by Reissner [23] and
Mindlin [24], accounts for the shear deformation effects by linear variation of in-plane dis-
placements. FSDT was widely developed in the framework of Finite Element Method (FEM)
by Pryor and Barker [25], Noor [26], Hughes and Tezduyar [27] and many others and it still
plays a fundamental role in commercial codes.
In order to overcome the limitations of classical theories, several refined plate Finite Elements
(FEs) were developed over the last years. For instance, see the higher-order theories devel-
oped by Reddy [28], the so-called zig-zag theories [1], the theories based on the Reissner’s
Mixed Variational Theorem (RMVT) [6], and Layer-Wise (LW) models [29]. These higher-
order theories assume refined expansion of the shear strains within the layers and were widely
discussed by Kant et al. [30] and Kant and Kommineni [31]. Reddy [32] and Palazotto and
Dennis [33] implemented higher-order theories fir plate and shell structures. Zig-zag theories,
conversely, make use of piecewise zig-zag functions in the plate kinematics in order to fulfil the
mechanical requirements demanded by composite laminates. Dozens of FEs were proposed
based on zig-zag theories, see for example [34, 35, 36].
Most of the works discussed so far are based on an Equivalent Single Layer (ESL) approx-
imation of the laminate. In ESL models, the variables are independent of the number of
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layers. On the other hand, detailed analysis may require the adoption for Layer-Wise (LW)
models, in which different sets of variables are considered per each layer. FE implementations
of LW theories were proposed by many authors, such as for example Rammerstorfer et al.
[37], Reddy [38], Mawenya and Davies [39], and Noor and Burton [40]. However, it has to be
pointed out that the enhanced accuracy of LW models demands high computational costs.
Thus, in the last years, several efforts were addressed by researchers to make the composite
plate and shell models as accurate as efficient. A possible solution for tackling this problem
is to combine multiple kinematics within the same mathematical model, in a global/local
sense. In this manner, the computational costs can be reduced opportunely and the analysis
enhanced only in those regions of the problem domain where higher accuracy is necessary.
One of the simplest type of multiple-model method, for composite laminates analysis, is the
concept of selective ply grouping or sublaminates [41, 42, 43]. This approach consists in cre-
ating some local regions along the plate/shell thickness, identified by specific ply or plies,
within which accurate stresses are desired. On the other hand, in the global region, which
is the domain portion where accurate analysis is not needed, lower-order and eventually ESL
models can be adopted. Both ESL and LW models may eventually be implemented by using
a combination of Lagrange and Legendre polynomials for formulating the theory kinematics
along the thickness. In this manner, the primary variables between local and global regions
can be immediately satisfied. In the work by Botshekanan Dehkordi et al. [44], a variable-
kinematic description in the thickness direction for the static analysis of sandwich plates was
performed. That model was derived in the framework of the Carrera Unified Formulation
(CUF) and Reissner-Mixed-Variational-Theorem (RMVT) was adopted to describe a-priori
the transverse shear and normal stresses. Thus, the transverse stresses were approximated
through a mixed LW/ESL approach. The same mixed LW/ESL approach with RMVT was
then used in Ref. [45] for nonlinear dynamic analysis of sandwich plates with flexible core
and composite faces embedded with shape memory alloy wires. The global/local sublaminates
approach was already exploited in the context of CUF for plates and shells (see [46, 47, 48]).
In this work, it is applied on beam, plate and shell models, using Lagrange polynomials.
These models makes use of the variable-kinematic modelling features of CUF, which was
developed by Carrera more than one decade ago [49, 50] and allows for the automatic and
eventually hierarchical formulation of the theory of structures by using an extensive index no-
tation and low- to higher-order generalized expansions of the primary mechanical variables.
Thanks to CUF, both ESL and LW theories can be formulated with ease and eventually
combined as in the case of the present variable kinematics beam, plate and shell elements.
The paper is organized as follows: Sections 2 and 3 describes beam, plate and shell theories
and their FE models; Section 4 accurately describe the ESL model used in this paper; Section
5 reports the main numerical obtained results and, finally, the main conclusions are drawn.

2 Unified formulation of composite structures

Consider the composite laminates in Fig. 1. Albeit plate and shell structures are considered,
both 1D and 2D mathematical models can be employed in principle.
For the 1D model, the cross-section Ω lays on the x, z-plane of a Cartesian reference system
(x, y, z). As a consequence, the beam axis is placed along the y direction. The 2D plate and
shell models uses the z coordinate for the thickness direction, and the latter uses a curvilinear
reference frame (α, β, z) to account for the curvature, where α and β are the two in-plane
directions. In this paper, single curvature shell structures are considered. The transposed
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Figure 1: The modeling of generic composite structures using both 1D and 2D plate and shell
models. For 1D model, y is the direction of the beam axis, whereas for the 2D models, z is
the shell thickness coordinate. A Cartesian reference system is employed for the 1D beam
and 2D plate model (x, y, z), whereas a curvilinear system (α, β, z) is used for the 2D shell
model.

displacement vector for 1D beam and 2D plate models is introduced in the following:

u(x, y, z) =
{
ux uy uz

}T
(1)

The stress, σ, and strain, ε, components are expressed in vectorial form with no loss of
generality,

σ =
{
σxx σyy σzz σxz σyz σxy

}T
, ε =

{
εxx εyy εzz εxz εyz εxy

}T
(2)

As far as the 2D shell model is concerned, the three-dimensional (3D) displacement transposed
vector u of a given point in the continuum shell is:

u(α, β, z) =
{
uα uβ uz

}T
, (3)

The transposed strain (ε) and stress (σ) vectors defined in the curvilinear reference system
are:

σ =
{
σαα σββ σzz σαz σβz σαβ

}T
, ε =

{
εαα εββ εzz εαz εβz εαβ

}T
, (4)

Regarding geometrical relations, they are expressed as

ε = bu (5)
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where b is the matrix of differential operators. It is different according to the employed
mathematical model, and it reads:

b1D and 2D plate =



∂x 0 0

0 ∂y 0

0 0 ∂z

∂z 0 ∂x

0 ∂z ∂y

∂y ∂x 0


, b2D shell =



∂α
Hα

0 1
HαRα

0
∂β
Hβ

1
HβRβ

0 0 ∂z

∂z − 1
HαRα

0 ∂α
Hα

0 ∂z − 1
HβRβ

∂β
Hβ

∂β
Hβ

∂α
Hα

0



, (6)

where ∂x =
∂(·)
∂x

, ∂y =
∂(·)
∂y

, ∂z =
∂(·)
∂z

, ∂α =
∂(·)
∂α

, ∂β =
∂(·)
∂β

, Hα = (1 +
z

Rα

), and

Hβ = (1 +
z

Rβ

).

For the constitutive relation, linear elastic metallic structures are considered in this work.
Consequently, the constitutive relation reads as:

σ = Cε, (7)

where and C is the material elastic matrix, whose explicit form can be found in many reference
texts, see [51, 52].
The 3D displacement field u(x, y, z) of the 1D beam and 2D plate and shell models, within
the framework of the Carrera Unified Formulation (CUF), can be expressed as a general
expansion of the primary unknowns as follows:

u1D beam(x, y, z) = Fτ (x, z)uτ (y)
δu1D beam(x, y, z) = Fs(x, z)δus(y)

u2D plate(x, y, z) = Fτ (z)uτ (x, y), τ = 1, 2, ....,M
δu2D plate(x, y, z) = Fs(z)δus(x, y), s = 1, 2, ....,M

u2D shell(α, β, z) = Fτ (z)uτ (α, β)
δu2D shell(α, β, z) = Fs(z)δus(α, β)

(8)

where Fτ and Fs are the expansion functions of the generalized displacements uτ and gen-
eralized virtual variations us, the summing convention with the repeated indeces τ and s is
assumed and M denotes the order of expansion. The choice of the expansion functions is a
crucial topic for the present work, and are descibed hereafter.

2.1 Taylor-like expansions

It is clear that classical as well as higher-order theories can be easily obtained from Eq. (8)
by using polynomials of different order as Fτ and Fs. This class of models was addressed as
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to Taylor expansion models in the CUF literature [53] and they have proven good efficacy in
the analysis of thin and homogeneous structures. For 1D case, the kinematics of the generic
Taylor expansion model of order two is given in the following for the sake of completeness:

ux(x, y, z) = ux1(y) + ux2 x+ ux3 z + ux4 x
2 + ux5 xz + ux6 z

2

uy(x, y, z) = uy1(y) + uy2 x+ uy3 z + uy4 x
2 + uy5 xz + uy6 z

2

uz(x, y, z) = uz1(y) + uz2 x+ uz3 z + uz4 x
2 + uz5 xz + uz6 z

2

(9)

For 2D cases, it reads:

ux(x, y, z) = ux1(y) + ux2 z + ux3 z
2

ux(x, y, z) = uy1(y) + uy2 z + uy3 z
2

ux(x, y, z) = uz1(y) + uz2 z + uz3 z
2

(10)

2.2 Lagrange expansions

The cross-section is approximated with a pattern of Lagrange Points (LPs), which are divided
into opportune Lagrange polynomials. The 3D displacement field is, then, a result of an
interpolation of the displacements calculated at the LPs. The degree of the interpolation
is defined by the number of the employed LPs. The number of DOFs equals the sum of
the displacements for each LP. For instance, if a quadratic interpolation is empolyed, the
interpolation functions for the 1D beam models are:

Fτ =
1

4
(r2 + rrτ )(s

2 + ssτ ) τ = 1, 3, 5, 7

Fτ =
1

2
s2τ (s

2 − ssτ )(1− r2) +
1

2
r2τ (r

2 − rrτ )(1− s2) τ = 2, 4, 6, 8

Fτ = (1− r2)(1− s2) τ = 9

(11)

where r and s are the natural coordinates from −1 to +1 of a generic point on the cross-
section, and rτ and sτ are the natural coordinates of the nine LPs, as shown in Fig. 2(a).
Readers are referred to [53] for the mathematical steps to transform the natural coordinates
Eq. (11) into physical ones Eq. (8).

1 2 3

4

567

8

9

r

s

(a)

1

2

3

s

(b)

Figure 2: Example of a Lagrange element with 9 Lagrange points for beams (a) and a Lagrange
element with 3 Lagrange points for plates and shells (b).

For the 2D plates and shells, the Lagrange polynomials for the quadratic interpolation are:

Fτ =
1

2
(s2 + ssτ ) τ = 1, 3

Fτ = −s2 + 1 τ = 2

(12)
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where s vary from −1 to +1, whereas sτ correspond to the position of the LPs in the natural
coordinate, as shown in Fig. 2(b) see [53] for more details.
It is clear that the expansion function describe a 2D cross-sectional domain for 1D beam
models (see Fig. 3(a,b)), whereas a 1D thickness one for 2D plate and shell models (Fig.
3(c,d)).

3 Finite Element Approximation

The Finite Element Method (FEM) is adopted to discretize the generalized displacements uτ
and the generalized variations us. Thus, they are approximated as follows:

uτ (y) = Ni(y)qτi
δus(y) = Nj(y)δqsj

uτ (x, y) = Ni(x, y)qτi, i = 1, 2, ...., Nn

δus(x, y) = Nj(x, y)δqsj, j = 1, 2, ...., Nn

uτ (α, β) = Ni(α, β)qτi
δus(α, β) = Nj(α, β)δqsj

(13)

where Ni and Nj stands for the shape functions, the repeated subscripts i and j indicate
summation, Nn is the number of the FE nodes per element and qτi and qsj are the following
vectors of the FE nodal parameters:

qτi 1D and 2D plate
= {qxτi qyτi qzτi}

T

qsj 1D and 2D plate
=

{
qxsj qysj qzsj

}T
qτi 2D shell

= {qατi qβτi qzτi}
T

qsj 2D shell
=

{
qαsj qβsj qzsj

}T
(14)

τ 

x

z

y

Ni(y)

F(x, z)

(a)

τ 

Ni(x, y)

x

z

y
F (z)

(b)

τ

z

β

Ni( , β)

F (z)

(c)

Figure 3: Mathematical models of the 1D beam (a, b), 2D plate (c) and shell (d) models of
generic composite structures.

3.1 Governing equations

The principle of virtual displacements for a multi-layered plate structure reads:∫
V

(δεTσ)dV = δLe (15)
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where V is the volume of the body. The left-hand side of the equation represents the variation
of the internal work, while the right-hand side is the virtual variation of the external work.
Substituting the geometrical relations (Eq. (5)), the constitutive equation (Eq. (7)) and
applying CUF (Eq. (8)) and FEM (Eq. (13)), one obtains the following governing equations:

δqTsj Kijτs qτi = Psj (16)

where Kijτs is a 3 × 3 matrix, called fundamental nucleus of the mechanical stiffness matrix.
The nucleus is the basic element from which the stiffness matrix of the whole structure is
computed. The fundamental nucleus is expanded on the indexes τ and s to obtain the stiffness
matrix of each layer k. Then, the matrixes of each layer are assembled at the multi-layer level
depending on the approach considered (see “Modelling approaches” section). Psj is a 3 × 1
matrix, called fundamental nucleus of the external load. It explicit expression is not given
here for the sake of brevity, but it can be found in [54] in the case of a point load.

4 Modelling approaches

Two different types of modelling approaches are usually adopted in the literature for the de-
velopment of composite structure theories; i.e., ESL and LW. In this paper, CUF is employed
for the formulation of a new approach for multilayered structure. This approach exploits the
variable kinematics characteristics of CUF for the implementation of a structural element
with mixed ESL/LW capabilities. Nevertheless, it is important to mention that the choice of
the modelling approach (i.e., ESL, LW or variable kinematics) is independent of the type of
the polynomials employed in the theory expansion within CUF.

4.1 ESL models

In an ESL model, the stiffness matrices of each layer are homogenized by simply summing the
various contributions trough the thickness. This approach leads to a model that has a set of
variables that is assumed for the whole multilayer, and thus is independent of the number of
layers. In this work, ESL models that make use of both Taylor and Lagrange-like polynomials
are used. For illustrative purposes, the general behaviour of the primary mechanical variables
along the thickness of the structure in the case of ESL is depicted in Fig. 4(a).

4.2 LW models

In the case of LW, different sets of variables are assumed per each layer and the continuity of
the displacements is imposed at the layer interface. The LW capability of describing correctly
the discontinuous behaviour of the derivatives of the primary unknowns is graphically shown
in Fig. 4(b). In this work, LW models are implemented by using Lagrange-like polynomial
sets. In particular, the kinematic expansion is made by using Lagrange polynomials, see Eqs.
(11) and (12). The compatibility condition is automatically ensured at each single LP.

4.3 Variable-kinematics

In this paper, a novel modelling approach for the analysis of multilayered structures is intro-
duced. This method takes advantage of the variable kinematics feature of CUF formulation.
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Thanks to CUF, in fact, different sets of Fτ and Fs functions can be employed to formulate
advanced structural theories and opportunely tuned to obtain combined ESL/LW models for
global/local analysis. In particular, in this work, ESL and LW approaches are combined by
using structural theories based on Lagrange-like polynomials. In this variable-kinematics ap-
proach, multilayered structures can be modeled so as to have group of layers with homogenized
properties as in a ESL assembling scheme, whereas for some other layers the homogenization
is conducted just at the interface level to enforce LW capabilities in localized zones of the
thickness domain.
The variable-kinematic assembling, developed in the framework of CUF, is very simple to
be implemented with a few code statements. The coding lines of the terms of the nuclei,
in fact, are the same for both ESL, LW and variable kinematic assembling. For the sake of
completeness, the variable kinematic capability of the proposed methodology able to take into
account non-local LW approach is shown in Fig. 4(c). Finally, an overview of the assembling
procedures for ESL, LW and variable kinematics approaches is summarized in Fig. 5.

z

N=1 N=2

(a)

N=1 N=2

z

(b)

N=1 N=2

z

(c)

Figure 4: Equivalent-Single-Layer (a), Layer-Wise (b) and Variable-kinematics (c) behavior
of the primary variables along the thickness.

s

 

s

 

s

 

(a)

s

 

s

 

s

 

(b)

Figure 5: Assembling schemes of the 1D beam, 2D plate and shell models of generic composite
structures.

5 Numerical results

Several analyses were conducted to prove the capability of the proposed ESL model to deal
with beam, plate and shell structures. Whenever possible, 1D and 2D plate/shell models are
used on the same study case. The LW models are recalled as “LN1D” for 1D structures and
“LN2D” for 2D ones, respectively, where N stands for the order of the employed LPs (for
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instance, “L91D” means that nine LPs are adopted for each layer of the beam structure and
“L42D” means that four LPs are introduced for each layer of the plate/shell structure). On
the other hand, ESL models are denoted with the letter “E” before the acronym, so that
“EL91D” means that nine LPs are adopted using the ESL approach for a beam structure, and
“EL42D” means that four LPs are used in an ESL framework for the plate/shell structure.
Finally, “TBM” stands for Timoshenko Beam Theory, whereas “TEn1D” and “TEn2D” stand
for the Taylor expansion of order n for 1D and 2D structures, respectively.

5.1 Eight-layer laminated structure

The first study deals with an eight-layer laminated structure. The analyzed case was taken
from Ref. [55], along with the geometric and material properties. The structure was analyzed
using 1D and 2D plate models. As far as the 1D models are concerned, the laminated structure
was analyzed using both LW and ESL approaches. Three ESL approximations were adopted,
using one (case A), two (case B) and four (case C) equispaced elements over the cross-sectional
domain. Preliminary convergence analyses were conducted, and the results are shown in Fig.
6. Both LW (Fig. 6(a)) and ESL (Fig. 6(b)) techniques were investigated. The case with
one element over the cross-section is employed for the ESL convergence study. The results
show a faster convergence using B4 FEs. Thus, 10 B4 FEs are adopted for every following
analysis. Static analyses are performed, with the structure being loaded with a transverse

 0.98

 0.985

 0.99

 0.995

 1

 4  5  6  7  8  9  10

u
z

*

N of elements

B2

B3

B4

(a)

 0.98

 0.985

 0.99

 0.995

 1

 4  5  6  7  8  9  10

u
z

*

N of elements

B2

B3

B4

(b)

Figure 6: Convergence analyses of the eigth-layers laminated structure using LP with 1D LW
(a) and ESL (b) approaches.

force equal to 0.05 N. Numerical results from several theories are reported in Table 1. Clearly,
higher-oder models are close to the reference results, both in terms of displacement and axial
stress. The distribution of the through-the-thickness axial and shear stress components are
reported in Fig. 7. σyy distribution is accurately described by every theory, whereas the ESL
models fail on adequately describe the local interlaminar σyz value.
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Model −uz × 102mm σyy × 103MPa DOF
[0, L, h/2] [t/2, L/2, h/2]

Ref. 3.031 730 —
TBM 2.988 730 155
TE91D 3.054 730 5115
L161D 3.050 730 9300
Case A
EL161D 3.056 730 1488
Case B
EL161D 3.056 730 2604
Case C
EL161D 3.054 730 4836

Table 1: Transverse displacement and axial stress of the eigth-layers laminated structure using
different 1D mathematical models. Ref. comes from [55]. One cross-sectional element for the
“Case A”, two and four equispaced elements for the “Case B” and “Case C”, respectively.
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 0

 200

 400

 600

 800
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σyy

z

TBM
Ref.

L161D
EL161D−Case A
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(a)

−30

−25

−20

−15

−10

−5

 0

 5

−4 −2  0  2  4

σyz

z

TBM
Ref.

L161D
EL161D−Case A
EL161D−Case B
EL161D−Case C

(b)

Figure 7: Axial (a) and shear (b) stress distributions using different 1D mathematical models
for the eigth-layers laminated structure. Ref. comes from [55]. One cross-sectional element for
the “Case A”, two and four equispaced elements for the “Case B” and “Case C”, respectively.

Regarding the 2D analyses, three ESL approximations were adopted, using one, two and
four equispaced elements over the thickness direction. Preliminary convergence analyses were
carried out. The results are shown in Fig. 8 for both LW and ESL approaches, and, for
the ESL approach, the one element case was considered. 10 Q9 elements resulted to be
a reliable approximation and was adopted for every subsequent analyses. Then, the static
analysis was performed using the converged FE approximation and different theories for the
thickness expansion functions, and the numerical results are reported in Table 2. As in the
1D case, higher-order theories are needed to accurately evaluate the transverse displacement.
Moreover, the axial and shear distrubutions are reported in Fig 9. The drawn conclusions
are the same as in the previous 1D study, so that ESL models are able to accurately describe
the σyy distribution, while failing for the σyz, in particular for the interlaminar description.
If one puts LPs at the interlaminar level, the results are closer to the LW description of the
problem. For instance, Fig. 9(c) reports the evaluation fo the first and second layer, and
results perfectly match with the LW approach with the LPs at the interlaminar level, as also
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Figure 8: Convergence analyses of the eigth-layers laminated structure using LP with 2D LW
(a) and ESL (b) approaches.

Model −uz × 102mm σyy × 103MPa DOF
[0, L, h/2] [b/2, L/2, h/2]

Ref. 3.031 730 —
Reissner-Mindlin 2.988 732 495
TE92D 3.049 729 2970
L42D 3.050 729 7425
Case A
EL42D 3.054 729 1188
Case B
EL42D 3.054 729 2079
Case C
EL42D 3.053 729 3861

Table 2: Transverse displacement and axial stress of the eigth-layers laminated structure using
different 2D mathematical models. Ref. comes from [55]. One over-the-thickness element for
the “Case A”, two and four equispaced elements for the “Case B” and “Case C”, respectively.

reported in Table 3.

Model σyz × 103MPa DOF
[b/2, L/2, 3h/8]

TE92D -16.41 2970
L42D -17.93 7425
EL42D-one layer -17.93 2970
EL42D-two layers -15.52 2970

Table 3: Interlaminar shear stress distributions using different 1D mathematical models for
the eigth-layers laminated structure. “EL42D-one layer” consists in a LW description only for
the first layer and the “EL42D-two layers” for the first two layers.

5.2 Simply supported plate with transverse force

The second analysis case regards a simply supported plate subjected to a transverse force,
as shown in Fig. 10. The surface of the plate is a square and the thickness-to-side ratio
a/h equals 100. The plate is made of 3 layers with [0◦/90◦/0◦] stacking sequence with the
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Figure 9: Cross-sectional discretization and LP pattern for different 2D ESL approaches. Ref.
comes from [55]. One over-the-thickness element for the “Case A”, two and four equispaced
elements for the “Case B” and “Case C”, respectively. “EL42D-one layer” consists in a LW
description only for the first layer and the “EL42D-two layers” for the first two layers.

following material properties, EL/ET = 25, EL=Ez, νLT = νTa = νLa = 0.25 GLT = GTa =
GLa = ET . The study case is taken from [56]. The adopted discretization approximations

P

h

a

a

(a) (b)

Figure 10: Geometric properties and loading case of the simply supported plate with trans-
verse force (a). Discretizations and LP patterns for different 1D and 2D ESL approaches (b).
1 element (a) and 2 elements (b).

for both 1D and 2D ESL models are described in Fig. 10(b) and they involve 1 and 2
elements over the thickness. The LW discretization is used as well. Preliminary convergence
analysis were conducted using 1D models. The results are reported in Fig. 11 and 6 B4
FEs are employed for all subsequent analyses. Then, static analyses were carried out using
the converged FE model and adopting several theories. The results show a great difference
between the obtained solutions and the reference results. The accuracy is improved if proper
ESL model is employed, see the Fig. 10(b-a) kinematic model. The distributions are shown
in Fig. 12, whereas correspondent values are reported in Table 4. Clearly, not even a refined
1D LW model can accurately describe the static behavior of the structure. This is due to
the geometry of the structure, and a more refined model should be mandatory for the correct
evaluation of the shear stress. The same analysis was conducted using 2D models. The
convergence analyses are reported in Fig. 13, and 150 Q9 elements are adopted for the
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Figure 11: Convergence analyses of the simply supported plate using LP with 1D LW (a) and

ESL (b) approaches. u∗z =
uz × 100E2h
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Figure 12: In-plane (a) and shear (b) stress distributions using different 1D mathematical
models for the simply supported plate. Ref. comes from [56].

Model Uz σxx σxz DOF
in [a/2, b/2, 0] in [a/2, b/2, h/2] in [0, b/2, 0]

Ref. 2.168 7.096 0.0131 —
L161D 2.189 6.264 0.0111 24375
L91D 2.185 5.663 0.0145 11475
EL91D-10(b-a) 2.185 5.633 0.0176 9375
EL161D-10(b-a) 2.189 6.262 0.0108 13125
EL161D-10(b-b) 2.221 6.371 0.0176 13125

Table 4: Transverse displacement, in-plane and shear stress of the simply supported plate
using different 1D mathematical models. Ref. comes from [56]. Ref. comes from [56].

U z =
U z × 100E2h

3

Pa3
, σxx =

σxx
P

and σxz =
σxz
P

.

subsequent analyses. The converged model is adopted for the static analysis. The in-plane
and shear stress distributions are reported in Fig. 14. On the contrary of what arised from
1D modeling, a refined LW model leads to accurate results compared to the reference ones,
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Figure 13: Convergence analyses of the simply supported plate using LP with 2D LW (a) and
ESL (b) approaches.

both in terms of axial and shear stress. Correspondent value are reported in Table. 5.
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Figure 14: In-plane (a) and shear (b) stress distributions using different 1D mathematical
models for the simply supported plate. Ref. comes from [56].

Model Uz σxx σxz DOF
in [a/2, b/2, 0] in [a/2, b/2, h/2] in [0, b/2, 0]

Ref. 2.168 7.096 0.0131 —
L42D 2.175 5.976 0.0137 32799
TE92D 2.175 5.975 0.0137 25320
EL42D-10(b-a) 2.175 5.971 0.0131 17661
EL42D-10(b-b) 2.202 6.077 0.0144 17661

Table 5: Transverse displacement, in-plane and shear stress of the simply supported plate
using different 2D mathematical models. Ref. comes from [56]. Ref. comes from [56].

U z =
U z × 100E2h

3

Pa3
, σxx =

σxx
P

and σxz =
σxz
P

.

Finally, a comparison from the most accurate 1D and 2D results are shown in the same figure
for comparison purposes, and the stress distribution and values are reported in Fig. 15 and
Table 6.
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Figure 15: In-plane (a) and shear (b) stress distributions using different 1D and 2D mathe-
matical models for the simply supported plate.

Model Uz σxx σxz DOF
in [a/2, b/2, 0] in [a/2, b/2, h/2] in [0, b/2, 0]

L161D 2.189 6.264 0.0111 24375
L42D 2.175 5.976 0.0137 32799
EL161D-10(b-a) 2.189 6.262 0.0108 13125
EL42D-10(b-a) 2.175 5.971 0.0131 17661
EL161D-10(b-b) 2.221 6.371 0.0176 13125
EL42D-10(b-b) 2.202 6.077 0.0144 17661

Table 6: Transverse displacement and axial stress of the simply supported plate using different

1D and 2D mathematical models. U z =
U z × 100E2h

3

Pa3
, σxx =

σxx
P

and σxz =
σxz
P

.

5.3 Nine-layers plate

The capabilities of the present model to deal with composite structures is further proved with
a nine-layers plate. The geometric and loading conditions are described in Fig. 16, where
the surface of the plate is a square with side a, and a/h = 10. The stacking sequence is
[90◦/0◦/90◦/0◦/90◦/0◦/90◦/0◦/90◦], and the plate is simply supported. The material proper-
ties are EL = 172 GPa, Ez = ET = 6.9 GPa, νLT = νzL = νTz = 0.25, GLT = 3.4 GPa, GzL =
GTz = 1.4 GPa, where L stands for the longitudinal direction, and T for the transverse one.

Finally, the plate is loaded with a tranverse bi-sinusoidal pressure p = Pz sin(
π x

a
)sin(

π y

a
),

with Pz = 1. This study case is taken from [57]. For this analysis, a 2D plate model is em-
ployed and preliminary convergence analyses are conducted. The results are reported in Figs.
17, for displacement and shear stress σxz. Both LW and ESL approaches are employed, using
L42D polynomials. Clearly, Q9 show a faster convergence than Q4, for both displacement and
stress cases. Moreover, 100 Q9 FEs represents a reliable approximation, and, then, is used as
converged mathematical model for the subsequent analyses. On the converged FE approxima-
tion, several through-the-thickness ESL discretizations are employed and they are reported in
Fig. 16(b). They differ from the number of LPs and, consequently, elements adopted, so that
Fig. 16(b-a) describes LPS on the thickness edges and this is the same approximation used
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Figure 16: Geometric properties and loading case of the nine-layers plate with bi-sinusoidal
pressure (a). Discretizations and LP patterns for different 2D ESL approaches (b). 1 element
(b-a), 2 elements (b-b, b-d) and 3 elements (b-c, b-e).
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Figure 17: Displacement (a) and stress (b) convergence analyses and of the nine-layers plate

using LP with 2D LW (a) and ESL (b) approaches. u∗z =
uz − uz140Q9

uz140Q9

, σ∗
xz =

σxz − σxz140Q9

σxz140Q9

.

for the convergence analysis. Figures 16(b-b) and 16(b-c) makes use of 2 and 3 elements along
the thickness, whereas Figs. 16(b-d) and 16(b-e) focusses on the kinematic description of the
first layer, using 2 and 3 elements, respectively. The described ESl mathematical models,
along with LW and TE one, are adopted for the evaluation of axial and shear stress. Figure
18 reports the σxx distribution. Figure 18(a) reports the results of LW and TE models com-
pared to the reference one ([57]). The results prove a great accuracy between the models, and
the same agreement is highlighted in Fig. 18(b) using the ESL mathematical models of Fig.

17



16(b). Figure 19 reports the distribution of σxz. A sligth difference between the ESL solutions
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Figure 18: In-plane stress distributions using different 2D mathematical models for the nine-

layers plate. Ref. comes from [57]. σxx =
σxxh

2

Pza2
.

and the reference one is shown. Numerical values of w, σxz, σxx and σyz are evaluated, where

wz =
π4UQh4

12Pa4
, σxx =

σxxh
2

Pa2
, σxz =

σxzh

Pa
, σyz =

σyzh

Pa
, and Q = 4G12 +

[E1 + E2(1 + 2ν12)]

1− ν12ν31
.

However, if one is interested on a specific value of the shear stress, an opportune pattern
of LPs can be included in the model. For instance, Table 7 reports the numerical values of
σxz using the ESL mathematical models reported in Figs. 16(b-d) and 16(b-e). Clearly, The
EL4-16(b-e) can accurately evaluate the stress value, compared to the L42D model, with the
35% of the DOFs. Finally, the distribution of the first two layers is reported in 19(c) and
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Figure 19: Shear stress distributions using different 2D mathematical models for the nine-

layers plate. Ref. comes from [57]. σxz =
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.
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Model w σxz σxx σyz DOF
(a/2, a/2, 0) (0, a/2, 0) (a/2, a/2, h/2) (a/2, 0, 0)

Ref. 1.512 0.247 0.551 0.226 —
L42D 1.5356 0.2536 0.5792 0.2304 37044
TE82D 1.5335 0.2617 0.5779 0.2217 11907
Fig.16(b-a)
EL42D 1.5234 0.2593 0.5755 0.2299 5292
Fig.16(b-b)
EL42D 1.5315 0.2467 0.5768 0.2312 9261
Fig.16(b-c)
EL42D 1.5315 0.2518 0.5770 0.2330 13230
Fig.16(b-d)
EL42D 1.5284 0.2542 0.5751 0.2331 13230
Fig.16(b-e)
EL42D 1.5278 0.2592 0.5753 0.2296 13230

Table 7: Transverse displacement, in-plane and shear stress of the nine-layers plate using

different 2D mathematical models. Ref. comes from [56]. wz =
π4UQh4

12Pa4
, σii =

σiih
2

Pa2
,

σij =
σijh

Pa
, where Q = 4G12 +

[E1 + E2(1 + 2ν12)]

1− ν12ν31
. Ref. comes from [57].

Table 8.

Model σxz DOF
[0, a/2, 2h/5]

TE82D 0.1464 11907
L42D 0.1651 37044
EL42D-Fig.16(b-d) 0.1410 13230
EL42D-Fig.16(b-e) 0.1639 13230

Table 8: Interlaminar shear stress distributions using particular 2D mathematical models for

the nine-layers plate. σxz =
σxzh

Pa
.

5.4 Cylindrical shell subjected to pressure

Finally, a study case of a cylindrical shell subjected to transverse pressure is reported here.
The analysis was originally proposed by Ren [58] and further investigated by Carrera [50]. The
geometric properties and loading conditions are reported in Fig. 20. A curvilinear reference
system is adopted, and the shell curvature is on the β axis. The material properties are
EL/ET = 25, GLT/ET = 0.5, GTT/ET = 0.2, νLT/νTT = 0.25, Rβ/b = π/3, Rβ/h = 4 and
a = 10. The longitudinal direction lays on the α axis and the stacking sequence is [90◦/0◦/90◦].
The shell is simply supported on its longitudinal edges. Preliminary convergence analyses were
carried out for the evaluation of the FE mesh. The results are reported in Fig. 21, and 24
Q9 FEs is demonstrated to be a reliable approzimation for both LW (Fig. 21(a, c)) and ESL
(Fig. 21(b, d)) cases. A static analysis is performed. The LW and ESL models are used, and
the results are compared to those available. The ESL discretizations are reported in Fig. 22
(a, b, c) and, in the same figure, the distrubutions of the through-the-thickness shear stress
is reported. A general good agreement of the LW approach is clear, whereas the ESL models
fails on describing the overall distribution. Nevertheless, if a single layer is interested, one
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Figure 20: Geometric properties and loading case of the shell subjected to pressure.
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Figure 21: Convergence analyses of the cylindrical shell subjected to pressure using LP with

2D LW (a) and ESL (b) approaches. u∗z =
u∗z × 10E2h
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can put LPs oppourtunely to descrive the behavior, as for the mathematical model described
in Fig. 22 (c). Finally, the numerical values are reportd in Table 9.

Figure 22: Shear stress distributions using different 2D mathematical models for the cylin-

drical shell subjected to pressure. σβz =
σβzh

PRβ

. Ref. comes from [50].
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Model Uz σβz DOF
in [b/2, a/2, 0] in [0, b/2, 0]

Ref.(1) 0.4570 0.476 —
Ref.(2) 0.4593 0.487 —
L42D 0.4596 0.485 14763

Fig.22(a)
EL32D 0.3281 0.572 3108

Fig.22(b)
EL42D 0.3834 0.405 5439

Fig.22(c)
EL42D 0.4501 0.501 2625

Table 9: Transverse displacement, in-plane and shear stress of the cylindrical shell subjected
to pressure using different 2D mathematical models. Ref.(1) comes from [58]. Ref.(2) comes
from [50].

6 Conclusions

The present research work was addressed to evaluate the performances and benefits of adopt-
ing an Equivalent Single-Layer (ESL) approach based on the Lagrange polynomials in the
static analysis of composite beams, plates and shells. Various geometries were analyzed and
one-dimensional (1D) beams and two-dimensional (2D) plate and shell models were compared
each other, whenever possible. Point loadings and sinusoidal pressures were considered. Each
case study was taken from well-known literature problems, so that numerical results are com-
pared with the analytical ones.
Results show the advantage of adopting ESL based on the Lagrange polynomials in the pro-
posed cases. The following main conclusions can be summarized:

� The proposed ESL approach is a powerful method to reduce computational cost in
static problems, and this is confirmed clearly by the various case studies reported in
this paper;

� Higher/lower order kinematics can be introduced easily in the regions of the structures
which show higher/lower local phenomena.;

� No drawbacks or numerical issues were found;

� The mixing of various through-the-thickness kinematics between two adjacent layers is
done simply by imposing continuity at Lagrange points, so that no mixing techniques
either Lagrange multipliers are required.

Of particular importance was the problem of the eight layer composite beam discussed in
Section 5.1. For this case, Fig. 31 shows that the error distribution is not monotonous. It
means that with a heavier model, one can obtain a higher error than with a lighter one.
In other words, the distribution and optimization of the Lagrange points patterm over the
thickness, is a key step in the modeling process.

For the case of the eigth-layer beam structure with, Fig. 23 shows the trends of accuracy
for both displacement and stresses, with respect to the analytical results. Clearly, the error
distribution is not monotonous. It means that with a heavier model, one can obtain a higher
error than with a lighter one. In other words, the distribution and optimization of the
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Lagrange points patterm over the thickness (namely, the ESL model), is a key step in the
modeling process.
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Figure 23: Transverse displacement and shear stress percentage accuracy with respect to the
reference analytical solution ([55]) of the eigth-layer beam case.
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