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Abstract: Built cultural heritage is under constant threat due to environmental pressures, anthropo-
genic damages, and interventions. Understanding the preservation state of monuments and histor-
ical structures, and the factors that alter their architectural and structural characteristics through 
time, is crucial for ensuring their protection. Therefore, inspection and monitoring techniques are 
essential for heritage preservation, as they enable knowledge about the altering factors that put built 
cultural heritage at risk, by recording their immediate effects on monuments and historic structures. 
Nondestructive evaluations with close-range sensing techniques play a crucial role in monitoring. 
However, data recorded by different sensors are frequently processed separately, which hinders 
integrated use, visualization, and interpretation. This article’s aim is twofold: i) to present an over-
view of close-range sensing techniques frequently applied to evaluate built heritage conditions, and 
ii) to review the progress made regarding the fusion of multi-sensor data recorded by them. Partic-
ular emphasis is given to the integration of data from metric surveying and from recording tech-
niques that are traditionally non-metric. The article attempts to shed light on the problems of the 
individual and integrated use of image-based modeling, laser scanning, thermography, multispec-
tral imaging, ground penetrating radar, and ultrasonic testing, giving heritage practitioners a point 
of reference for the successful implementation of multidisciplinary approaches for built cultural 
heritage scientific investigations. 

Keywords: nondestructive evaluation; metric survey; sensors; close-range sensing; data fusion; 
building inspection; cultural heritage 
 

1. Introduction 
The maintenance and conservation of historic structures are elaborate tasks filled 

with challenges. Geometrical complexity, multiplicity, and degradation of materials, var-
ying historical construction techniques, and a plethora of other intrinsic and extrinsic fac-
tors—including environmental pressures and past anthropogenic interventions—induce 
problems (regarding protecting the built environment). Therefore, extensive knowledge 
of these parameters is required to ensure the effectiveness of implemented interventions. 
Thus, comprehensive condition inspections of built cultural heritage are necessary to ho-
listically address the state of preservation (facilitating the diagnostic process) and under-
stand the prevailing problems of historical structures that place them at risk. Furthermore, 
monitoring the state of preservation through time is fundamental towards effectively in-
terpreting the occurring degradation phenomena and, therefore, a powerful tool for the 
decision-making process regarding built heritage protection. 

Systematic nondestructive acquisition and integrated handling of multisource scien-
tific data play essential roles in documenting the state of preservation of historic struc-
tures [1]. The need for multidisciplinary inspection methodologies is frequently noted in 
the literature, mainly in application cases of built cultural heritage of outstanding value, 
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present extensive deterioration or increased risks [2–4]. Likewise, the non-destructiveness 
of monitoring methods has been highlighted as an important factor for safeguarding the 
conditions of significantly deteriorated, or already at risk, historic structures [5,6]. Hence, 
active and passive nondestructive sensing techniques and appropriate signal processing 
methods are regularly used as nondestructive sources of multidisciplinary data useful for 
inspection and monitoring applications. 

Close-range sensing-based methods (including techniques for geometric recording) 
employed for built heritage surveys are often considered as separate practices. However, 
their integration enhances the interpretation of the state of preservation, as many evalua-
tion methods can act complementarily [7–12]. We should also note that imparting spatial 
properties to nondestructive evaluation methods allows for better interpretation and vis-
ualization of the state of preservation, while facilitating the spatial fusion of multi-sensor 
data [13–15]. At the same time, monitoring benefits from geometric recording methods 
(i.e., by acquiring spatial data and utilizing valuable sensing metadata derived from em-
ployed measurement instrumentation). 

Recognizing the importance of the historical built environment’s sustainability, and 
the contribution of implementing multi-sensor approaches for non-destructive surveys of 
historic structures as part of the protection process, this paper presents a review of close-
range sensing methods for inspecting and monitoring their state of preservation. There-
fore, this review focuses on state-of-the-art non-destructive techniques for active and pas-
sive recording, as well as, the fusion of multi-wavelength data acquired from their imple-
mentation. Following a comprehensive mention of the contemporary proximal sensing 
techniques employed for reality capture and nondestructive evaluation for built heritage 
structures—including their basic operating principles and application scenarios—the pro-
cesses and levels of data fusion methodologies encountered in recent literature are out-
lined. Furthermore, the advantages and limitations of individual close-range sensing tech-
niques and multi-sensor data fusion strategies are highlighted (and some direct perspec-
tives are attempted). 

2. Close-Range Sensing Technologies 
Rapid advances in sensor and information processing technologies have, in recent 

years, provided powerful geometric documentation tools that facilitate surveying, mod-
eling, and monitoring of architectural heritage [16,17]. These technological solutions in-
clude equipment for metric data acquisition, such as total stations, laser scanners, Global 
Navigation Satellite System (GNSS) receivers, imaging sensors, software for processing, 
managing, visualizing, and disseminating the recorded data and their derivative prod-
ucts, and computer hardware for running the software [18,19]. The technical develop-
ments in photogrammetry-based and scanning-based reality capturing have allowed for 
easy-to-use instrumentation, automatized three-dimensional (3D) shape reconstruction, 
and color texturing methodologies for documenting the conditions of historic structures, 
which enables monitoring and on-site inspections [20,21]. An equally important ad-
vantage of these advancements is that, through the generation of high-fidelity 3D models 
and point clouds, they have allowed for virtual fruition—remote inspection, maintenance 
management, and valorization via mobile and web-based platforms that utilize smart al-
gorithms, augmented reality, and spatially aware content [22–29]. 

The integration of geometric recording methods is often considered in order to over-
come the limitations imposed by individual techniques [30–35]. Selecting the appropriate 
methodologies for reality-based documentation (sensors, hardware, software) and data 
processing procedures, designing production workflows that involve heterogeneous rec-
orded data, and assuring that the final result is in accordance with all of the given technical 
specifications poses significant challenges [36]. The application of different geomatics 
techniques interrelates with the complexity and size of the heritage structure, but is actu-
ally determined by numerous factors, such as portability of available instrumentation, 
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personnel experience, budget, accuracy specifications, and the integrability of recording 
methods [37–40]. 

Alongside the advancements in reality capturing, significant technological develop-
ments have taken place in the field of (historic) material nondestructive testing (NDT) and 
evaluation. Non-destructive inspection techniques operating at the visible, infrared, mi-
crowave, and radio-wave frequencies, have become more versatile and cost-effective and, 
therefore, have been increasingly used in many fields, with innovation and development 
primarily being driven by industry. NDT sensors have different advantages and limita-
tions depending on their operating principles and spectral ranges, but, nevertheless, the 
continuous innovation and development of portable and compact devices will have a ma-
jor role for future NDT instruments as these can facilitate the decision-making processes 
through agile on-site inspections [41,42]. 

2.1. Laser Scanning 
Laser scanning methods are based on active recording techniques; they emit radia-

tion through their own sources and record the backscatter, instead of sensing the reflected 
radiation originating from other sources. Terrestrial laser scanning (TLS) instruments uti-
lize light detection and ranging (LiDAR) for range measurements and an optical beam 
deflection mechanism to record angle measurements. Depending on their operating prin-
ciples, which vary significantly, the use of TLS techniques for build heritage recording 
poses different advantages and limitations [43,44]. Laser scanning mechanisms generally 
enable dense measurements, capturing in accurate and fast manners, and are (relatively) 
easily operated. In a conventional laser-scanning instrument, the scanner measures, step-
wise, the surrounding scene with a fast vertical mirror rotation, and a slower horizontal 
instrument rotation. More specifics on the scanning mechanisms and measuring tech-
niques of TLS can be found in Beraldin et al. [45], and Petrie and Toth [46]. 

TLS describes a variety of measuring instrumentation, sometimes integrated with a 
digital camera that provides color information to the measured point cloud. TLS has ex-
perienced a rapid decrease in the size, weight, and price of sensors, and a constant increase 
in measurement speed and spatial resolution. These rapid improvements allow measur-
ing up to 1 million points per second at the range of 100–300 m with ranging precision at 
the millimeter level, at a relatively low price. However, TLS sensors are line-of-sight and, 
therefore, multiple scans are required to scan an entire structure’s surface (Figure 1). The 
implementation of TLS means that, in ideal conditions of calibration, the captured point 
clouds do not need to be scaled, such as photogrammetric models. There are two typolo-
gies of TLS instrumentation widely used for cultural heritage documentation, operating 
on different recording principles: 
• Time-of-Flight (ToF) scanners measure distances, by measuring the time difference 

between the emitted laser pulse and the received backscatter. These devices are char-
acterized by lower acquisition speeds and accuracies (5–6 mm), but are mainly suited 
for long-range acquisition. 

• Phase Shift (PS) scanners record the difference of phase between the emitted and 
backscattered signal (sinusoidal wave patterns) of continuous laser pulses. These de-
vices are characterized by shorter ranges (up to 300 m) and provide better accuracy 
compared to ToF scanners (2–3 mm); thus, they are suited for documentation at large 
scales. 

Table 1 presents a brief comparison between TLS devices. 
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Table 1. Terrestrial laser scanning instruments. 

 

  

 
RIEGL 

VZ-400i 
TOPCON 

GLS-2000M 
Leica 

ScanStation P30 
FARO 

FocusS 150 
Z+F 

IMAGER 5016 

Type ToF ToF ToF PS PS 

Range 1.5–800 m 1–350 0.4–270 m 0.6–150 m 0.3–365 m 

Accuracy 5 mm 
3.5 mm Distance, 

6” Angle 
6 mm 3.5 mm 2 mm 

Precision 3 mm  2 mm 1 mm 1 mm 

Weight 9.7 kg 11 kg 12.25* kg 4.2 kg 7.8 kg 

Note: *w/o batteries; ToF: Time-of-Flight; PS: phase shift 
Recording with TLS presupposes planning the data acquisition campaign to identify 

the elements or surfaces to be covered, determine the optimal number and location for 
scanning positions and targets, and the management process of the point clouds 
[38,43,47,48]. Optimally placed scanning positions are selected to maximize cover and in-
cidence angles, achieving the required resolution specifications, while decreasing occlu-
sions and, if possible, the number of scans/scanning time [49]. Targets are positioned in 
overlapping areas to facilitate registration between scans. Maintaining a substantial spa-
tial distribution of scan targets on the x–y plane and at the z-direction is essential to avoid 
multiplicity of solutions when solving the orientation between scans. Depending on the 
registration method between point clouds from different scanning positions, at least four 
correctly distributed targets at xyz should be positioned [50]. Registration between meas-
ured point clouds is usually performed through a coarse transformation based on com-
mon, often artificial, targets followed by a fine registration method—which mainly refers 
to the iterative closest point (ICP) algorithm [51−53]. Other fine registration methods for 
TLS point clouds include random sample consensus (RANSAC), normal distribution 
transform, and methods using auxiliary data, such as target imagery and measurement-
device location GNSS coordinates [54,55]. 

Regarding the documentation of historic structures, TLS devices have been success-
fully employed for high-fidelity reality-based modeling of numerous large and geometri-
cally complex monuments [56–59]. However, the use of ToF scanning devices has become 
less frequent, although it is preferred for long-range applications (e.g., monitoring the ero-
sion of historical mine remains [60]), and is used in applications that require acquisition 
from variable ranges, in combination with PS scanners [61–63]. Nevertheless, the possibil-
ity of directly geo-referencing point clouds through the integration of ToF scanners and 
GNNS measurement systems provides a powerful 3D recording solution [64]. 

Both ToF and PS scanners are extensively used for deformation monitoring of historic 
structures. The geometric deformations are estimated by comparing measured point 
clouds with an idealized shape [65–73] or by performing multitemporal measurements 
[74–77]. Furthermore, laser scanning appears to be particularly suitable for obtaining the 
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necessary geometric data to generate numerical models for structural health analysis, in 
terms of rapidity and spatial resolution [78–82]. 

TLS is, moreover, a source of important radiometric data, exploitable, to facilitate 
nondestructive condition documentations further. For example, reflectivity values rec-
orded by TLS, which express the intensity of the backscattered laser energy, have been 
recently explored for mapping the alterations of historical surfaces [83–86] as well as for 
surface moisture detection [87–89]. However, to assure the usefulness of intensity data 
collected by TLS, rigorous radiometric calibrations are required to eliminate the effects of 
data acquisition geometry, instrumental errors, environmental effects, and reflectivity 
characteristics of the target [90–92]. 

 
Figure 1. Point cloud of Castello del Valentino in Turin (Italy) obtained from a single scan. 

2.2. Photogrammetric Techniques 
Digital close-range photogrammetry involves techniques for retrieving 3D infor-

mation from two-dimensional digital images recorded under controlled illumination con-
ditions. The advancements in dense image matching [93] and the improvements in camera 
sensor manufacturing [94] have drastically improved image-based modeling (IBM), al-
lowing the generation of dense point clouds, textured models, and high-resolution ortho-
mosaics from large datasets. Up-to-date IBM approaches are based on photogrammetric 
computer vision algorithms. They are affordable, generally robust, and agile, considering 
implementation and flexibility of the ground-sampling distances (GSD) and other param-
eters that can be adjusted according to the specified requirements [95,96]. In addition, 
these approaches allow the use of non-metric and lower-end cameras, and have widened 
the application scope of photogrammetry for built cultural heritage (because of their in-
creased automatization and the level of detail they can record). 

Multi-view IBM refers to digitization approaches similar for the production of point 
clouds and 3D models from datasets of overlapping images, using automated algorithmic 
methods [97]. Standard multi-view 3D reconstruction pipelines start with detecting and 
describing salient features on every image of a dataset. The features are matched across 
different image pairs, and false matches are filtered out. Next, Structure-from-Motion 
(SfM) implementations are needed to estimate the interior and exterior orientations for 
the cameras, combining all relative orientations of the image pairs at a local coordinate 
system without an absolute scale. Then, each image’s relative position and orientation in 
every pair is calculated using triangulation, and the combined image block is optimized 
through bundle adjustment. The resulting sparse point cloud is further densified by em-
ploying dense image matching algorithms, and most points of the scene are reconstructed 
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in a procedure typically called multi-view stereo (MVS). The dense point cloud is meshed 
into a 3D model, usually utilizing Delaunay triangulation algorithms, and textured by 
interpolating color information from the image dataset. Multi-view image-based record-
ing approaches in principle do not require the implementation of control points with 
known coordinates to function. Nonetheless, the use of control points with known coor-
dinates during the orientation improves the accuracy of the results, and is mandatory for 
acquiring measurements or for geo-referencing the 3D models. 

The IBM pipelines can effectively involve oblique imagery and require low levels of 
supervision and user expertise, making them extremely popular for digitizing the historic 
built environment. Many studies report the application of IBM workflows for document-
ing monumental architecture [98–103] (Figure 2) and other historical constructions [104–
107], often supporting the implementation of failure analysis through numerical model-
ing. In any case, IBM is seldom considered as a stand-alone solution for nondestructive 
evaluation of historical structures [108–110], in all likelihood due to the higher cost-effec-
tiveness of TLS to produce large-volume models suitable for deformation monitoring. 
Nevertheless, IBM provides a rich in information background for the thematic mapping 
of historic structures’ deterioration [111,112], necessary for calculating damage/risk in-
dexes [113]. 

 
Figure 2. High-density point cloud with applied texture of the: (left) exterior and (right) interior of 
the church of Santa Maria Maggiore [101]. 

2.3. Infrared Thermography 
Infrared thermography (IRT) is a close-range sensing technique well established for 

inspection and monitoring of structures. IRT is a noncontact and noninvasive technique 
that allows repeatability, prolonged use, and comparison between areas of the target and 
multitemporal application; thus, presenting many advantages over other nondestructive 
evaluation technologies [114,115]. Through thermal detectors, it measures levels of emit-
ted infrared radiation at the long-wavelength infrared (LWIR) portion (7–14 μm) of the 
electromagnetic spectrum [116]. Infrared radiation is emitted from all materials, at tem-
peratures above absolute zero (i.e., T >−273.15 °C), due to their molecules’ mobility. This 
infrared motion increases at higher material temperatures and reduces at lower tempera-
tures. Therefore, the intensity, frequency, and wavelength of infrared radiation depend 
on the temperature and magnitude of the source and the material’s emissivity [117]. 

A thermal camera is a device employing a thermal-infrared detector that records the 
radiant energy—at the LWIR range—that falls onto the camera lens and converts it to a 
measurable form (Figure 3). Using a radiation detector, the thermal camera displays a 
target’s temperature, creating a visual representation, a two-dimensional thermal image 
from the detected average of incoming radiative energy intensities [118]. 
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Figure 3. Detailed representation of the thermal infrared spectrum [119]. 

A few fundamental parameters affect the performance of the thermal camera’s sensor 
and, subsequently, the image quality. They are sensor spectral range, or spectral response; 
spatial resolution, or pixel pitch; thermal sensitivity, or equivalent random noise level; 
intensity resolution, or the number of intensity levels; scan speed, or update rate of the 
scanning mechanism [119]. The spectral range refers to the portion of the infrared spec-
trum in which the camera will be operationally active. Sensitivity is measured in Celsius 
degrees and reflects the minimum detectable temperature difference. Inspection-pur-
posed temperature sensors with good sensitivity recognize temperature differences of 
even 0.040 °C (uncooled cameras). The intensity resolution is proportional to the number 
of hues or shades on the thermal camera screen. The higher the resolution, the more 
smoothly temperature changes will occur. If a target has sudden temperature changes, it 
will be due to the target itself and not the camera. The spatial resolution of thermography 
cameras is significantly lower than optical cameras [120]. 

Recently, affordable thermal camera models have come into the market, including 
smartphone-adjustable low-resolution instruments [121,122]. However, these inexpensive 
cameras provide lower accuracy, which makes them unusable for some applications. Ta-
ble 2 presents some standard thermal cameras purposed for infrastructure inspection 
available in the market. 

Table 2. Thermal cameras for building inspections. 

  
 

 Avio InfReC 
R450 

FLIR T840 FLIR T540 Fluke TiX580 Seek ShotPRO 

Resolution 480 × 360 640 × 480 464 × 348 640 × 480 320 × 240 

FOV1 14°/24°/48° 14°/24°/42° 14°/24°/42° 12°/34°/48° 52 ° 

NETD2 < 25 mK < 30 mK < 50 mK < 50 mK < 70 mK 
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Accuracy 2% 2% 2% 2% 2% 

Range 8–14 μm 7.5–14 μm 7.5–14 μm 7.5–14 μm 7.5–14 μm 

Note: 1 field-of-view, 2 noise equivalent temperature difference—thermal sensitivity. 
The typical way of displaying thermal images through a device or computer is gen-

erally either a black-and-white image or a colored image, where each color correlates with 
a temperature range (Figure 4). Thermal images are essentially a mapping of the distribu-
tion of infrared radiation, which originates from the different parts of the object. It is also 
possible to depict isothermal curves, which are lines at the boundary between two colors 
that reflect points with the same temperature. The thermal image processing software can 
provide heat profiles, temperature frequency histograms in each area, temperature differ-
ences from different images, points with maximum and minimum temperatures, magni-
fications, and filtering. Nevertheless, thermal infrared images can be difficult to interpret. 

 
Figure 4. Color image and corresponding thermographic image (grey and iron color pallet) cap-
tured at Turin’s Castello del Valentino (Italy) riverside façade. 

To obtain high quality and useful thermographic data, it is usually necessary to take 
into account the prevailing conditions (ambient temperature, relative humidity, recording 
distance, materials emissivity factor) to adjust the camera, eliminating the noise errors 
they cause in measuring the temperature changes of a target’s surface [123,124]. For this 
reason, IRT should be used in controlled environments. Furthermore, the thermal infrared 
images are, generally, noisy and suffer from a low signal-to-noise ratio. Consequently, 
several digital image processing (DIP) procedures are employed to enhance acquired ther-
mal images (Figure 5). For image enhancement reasons, a variety of point operation algo-
rithms, such as contrast stretching and histogram equalization, can be applied [125]. The 
objective of these algorithms is to widen the histogram of an image, which increases the 
dynamical range, thereby enhancing contrast. Using advanced signal analysis techniques 
like thermographic signal reconstruction (TSR) and principal component analysis (PCA), 
defects of greater depths can be detected with higher thermal contrast. Furthermore, fea-
ture extraction from thermal images, based on the temperature values, has been observed 
to be advantageous in moisture, decay, and thermal leaks classification. For the detection 
of hot spots, image classification and thresholding are performed. Overall, several image 
segmentation techniques are used on thermal images, and the selection between them de-
pends on the application and the nature of the thermographic acquisition [126]. 
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Figure 5. Thermographic image elaboration for Turin’s Castello del Valentino (Italy): (left) original 
thermogram; (center) thermal contours (every 0.5 °C); (right) thresholded thermogram (at 17.7 
°C). 

IRT records the thermal radiation emitted from surfaces, enabling the analysis of sur-
face temperature patterns, to reveal existing anomalies. In other terms, thermography 
aims to identify surface areas of interest by observing local temperature differences using 
thermal sensors [127]. In IRT, two different approaches are employed: active and passive 
[128]. In active IRT, the target is subjected to thermal stimulation by an external radiation 
source. The heat propagation depends on the materials’ thermal properties and subsur-
face irregularities resulting in temperature differences on the target’s surface. In this sce-
nario, measured thermal radiation comes from the thermal response of the target to the 
external excitation. This technique is applied in cases where the target is in thermal equi-
librium and does not show surface temperature differences or if they are so small that 
they cannot be detected with passive testing [129]. Given the ability to control the intensity 
of the external energy source, the artificial thermal excitation can reach deeper into the 
object, and hence information can be obtained from more internal layers. 

Successful application of active thermography requires that the targeted surface is 
more or less homogeneous (has a defined high emissivity and, thus, low reflectivity), and 
that a good knowledge exists about the radiation coming from additional sources—direct 
or indirect (reflected)—and other environmental factors that may affect the measurements 
[130]. This suggests inherent difficulties in applying active IRT for historical structures, 
especially for cases of highly deteriorated architectural elements and, thus, less frequent 
use. 

Passive IRT measures the thermal radiation emitted from the target’s surface without 
external heat stimulation. Passive thermography is a technique often employed for build-
ing inspections when measuring temperature differences is a factor for evaluating an ex-
isting structure’s preservation state (or energy performance) [131]. The documentation of 
irregular temperature distributions on a building’s façade or structural elements may as-
sist in detecting potential problems or damages by estimating surface temperature 
changes compared with assigned reference values [132–134]. New critical developments 
in thermal measuring device technology, combined with other advantages stemming 
from its nondestructive nature, have led to widespread application on structural surveys 
of monumental and historic architecture [135–139]. Moreover, the applications of passive 
IRT concerning the investigation of historic buildings include the localization of original 
and replacement materials [140–142], evaluation of the plaster conditions [143–146], as-
sessment of cracks [137,147,148], characterization of material loss-induced features, and 
other alterations on architectural surfaces [139,149–151], detection of moisture [152–156], 
localization of concealed defects and subsurface construction [157–159], in addition to 
evaluation of restoration and consolidation interventions [2,160]. Increased demand is 
also reported regarding the inspection of masonry arc bridges since their periodical in-
spection can be difficult due to access restrictions, which necessitates the application of 
remote sensing techniques [161–163]. 

  



Remote Sens. 2021, 13, 3936 10 of 33 
 

 

2.4. Multispectral Imaging 
Multispectral image acquisition is primarily associated with capturing data with a 

single imaging sensor capable of recording at multiple electromagnetic spectrum bands. 
Materials have specific spectral signatures at different regions of the electromagnetic spec-
trum, which can be obtained under controlled conditions [164]. Surface defects caused by 
weathering, concentration of moisture, and other alterations change their normal and ho-
mogeneous spectral behavior. Therefore, capturing spectral anomalies with imaging sen-
sors facilitates identifying these characteristics. However, acquiring useful data of dam-
ages of historical structure surfaces poses considerable challenges, such as selecting the 
proper sensors, radiometrically and geometrically calibrating them, and identifying the 
environmental factors that may affect the captured reflectance data, which makes the use 
of these technologies not frequent [165]. Notably, Del Pozo et al. [166] reports using a 
Tetracam Mini-MCA6 for obtaining multispectral ortho-mosaics to map altered and unal-
tered materials and moisture of a historical church. Table 3 presents the characteristics of 
some miniaturized multispectral camera options, which have been implemented for ter-
restrial applications. 

Table 3. Multispectral cameras. 

Make and Model Configuration Spectral Bands Resolution (pixels) 
Buzzard Six Band 

6-camera 
B, G, R, NIR1, NIR2, 

NIR3 
1280 × 1024 

MicaSense RedEdge 5-camera B, G, R, RE, NIR 1280 × 960 
Sal MAIA 

9-camera 
VIS, V, B, G, R, RE, 

NIR1, NIR 2 
1280 × 960 

Tetracam ADC-Micro single 3-band camera G, R, NIR 2048 × 1536 
Tetracam μ-MCA 4, 6 or 12-camera user-selectable 1280 × 1024 

The reciprocity of visible-spectrum and infrared imaging is often considered essen-
tial for identifying damage on historic structures. Particularly, very near-infrared reflec-
tance imaging is an effective tool for identifying biological colonization and the develop-
ment of crusts on stone and concrete [167–172]. However, the cost and usability of hyper-
spectral/multispectral camera systems are often considered prohibitive factors for their 
implementation in the heritage sector, and thus the collection of multispectral data is per-
formed via modified commercial cameras, and frequently with multi-sensor approaches. 
By removing the internal near-infrared cut-off filter, a charge-coupled device (CCD) or a 
complementary metal-oxide-semiconductor (CMOS)-based camera can be used as an af-
fordable and agile alternative for multispectral acquisition. Narrow or wideband external 
filters allow capturing reflectance data at the very near-infrared range, while the camera 
retains user-friendly features and interfaces to a wide variety of photographic accessories 
and software [173–175]. Adamopoulos and Rinaudo [167], Lerma et al. [168], Meroño et 
al. [169], and Sánchez and Quirós [176] have used this method to obtain visible and very 
near-infrared images aiming to identify weathering on historical stone buildings or ma-
sonry. Thermographic reflectance imaging can be performed with an additional sensor 
(Figure 6). 
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Figure 6. Spectral images captured at Turin’s Castello del Valentino (Italy) main façade, right col-
umn: (left) color; (center) very near-infrared reflectance; (right) thermal. 

2.5. Ground-Penetrating Radar 
Ground-penetrating radar (GPR) is a geophysical prospection technique widely used 

for NDT applications. GPR is a noninvasive measurement method that utilizes high fre-
quency (10–10,000 MHz) low-power electromagnetic pulse sequences to locate subsurface 
targets and interfaces between materials with different electrical and magnetic properties. 
The possibility of distinguishing between materials and mapping interfaces within visu-
ally opaque substances or earth material depends mainly on the propagation speed of 
electromagnetic waves and the difference in electrical conductivity and permeability be-
tween different materials [177,178]. GPR’s operating principle is based on the generation 
of short-duration radio wave pulses by a transmitter, transmitted as wide beams at a 
speed that depends on the electromagnetic properties of the medium. The electromagnetic 
signal propagates in a medium (such as a structural element or subsoil). When it encoun-
ters an interface between materials with different electrical properties, then some of its 
energy is reflected or diffused back to the surface, some is refracted, and the residual en-
ergy of the pulse passes through the interface to deeper horizons, where this process can 
be repeated. The part of the wave reflected from an interface returns to the surface, where 
it is detected and recorded by the receiver [179]. The selection of the appropriate operating 
frequencies of the antenna depends on the purpose of the investigation and the require-
ments of the respective application of geo-radar inspection. 

One primary challenge of GPR is the interpretation of the collected data, which 
highly depends on the quality of performed measurements, knowledge of the prospected 
medium dielectric properties, layering of the materials, and suitability of signal pro-
cessing techniques [180,181]. An equally important issue for retrieving useful information 
from GPR measurements is the dimensionality of presenting the results, with 2D and 3D 
representations being the most frequent visualization scenarios for the historical struc-
tures’ state of preservation assessment. 

By performing a horizontal GPR scan along a linear profile, a 2D recording is ob-
tained, which results from the successive individual one-dimensional traces retrieved 
along the path of the antenna. The retrieved data can be displayed as an image using a 
predefined color scale or palette (usually grayscale), matching the strength (range) of the 
recorded signal with a specific hue (brightness) of the selected palette (Figure 7). This im-
age, also referred to as a 2D scan profile or radargram, represents a vertical section in the 
structure where the horizontal axis corresponds to the position of the antenna along with 
the scan, and the vertical axis to the time of the electromagnetic wave's dual-path, which 
corresponds to depth. Retrieving this type of result requires mechanical equipment with 



Remote Sens. 2021, 13, 3936 12 of 33 
 

 

a built-in position encoder, which records the distance the antenna traverses along the 
scan line and the retrieval location of each individual trace [182]. 

 
Figure 7. GPR profile above the deck of a historical masonry arch bridge [161]. 

Reflections from small or point scatterers below the ground, building element, or 
other medium's surface appear on the radargram as diffraction hyperbolas. This is be-
cause the electromagnetic waves are transmitted by the monostatic antenna in the form of 
a wide conical beam so that the receiver records the reflected signals from an undersurface 
target, not only when it passes just above the position where the target is located, but also 
in multiple scans before and after this position. The shape of the retrieved hyperbola de-
pends on the antenna layout, the depth at which the point scatterer is located, the speed 
at which the electromagnetic waves propagate, and the scan spacing selected by the op-
erator. At greater depths, the hyperbolae are larger because they consist of more scans. In 
addition, higher electromagnetic wave velocities (lower relative dielectric constant) pro-
duce wider hyperbolae and vice versa. Finally, the shorter the selected interval between 
scans (equivalent to a larger number of scans per unit of horizontal distance), the wider 
the hyperbolae recorded by point scatterers. The reflection always comes from the top of 
the point target, and the maximum (peak) of the recorded hyperbola curve corresponds 
precisely to the position where the target is. Usually, the larger the size (diameter) of a 
point scatterer, the stronger (wider) the hyperbolic reflection produced. The brightness or 
power of a hyperbolic reflection depends on the difference in electrical conductivity (and 
therefore relative dielectric constant) between the medium and the target. As a general 
rule, the brightness of a reflection produced by an interface between two materials with 
different dielectric properties is proportional to the dielectric contrast between the two 
materials, which means that the higher the contrast, the stronger is the reflection produced 
[183,184]. 

When scanning with GPR over a continuous boundary layer, the antenna receives 
consecutive reflections from the parts of said boundary, which in the retrieved 2D radar-
gram appear in the form of a continuous reflecting layer that resembles the boundary 
layer. When the antenna crosses over an undersurface linear target of tubular shape trans-
versely, i.e., perpendicular to the longitudinal axis of the target, then the recorded reflec-
tion will be hyperbolic, similar to the case of diffraction by point scatterers described 
above. If the antenna moves in parallel, i.e., along the target, then the reflection will appear 
as a continuous straight line, as long as the distance of the antenna from the subsurface 
target remains constant. Various subsurface inhomogeneities such as gaps (with air or 
water) produce strong reflections without a specific shape. Reflection polarity can also 
provide important information when interpreting GPR results. The presence of various 
subsurface discontinuities, such as large air-filled voids or cracks, is detected in the form 
of strong inverted phase reflections with a black-and-white sequence of colors and an in-
determinate shape. In the case of disintegrated areas with high levels of moisture or water-
filled voids, then the generated reflections will be strong but will show the normal polarity 
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sequence (white-black-white), which is very important for the identification and differen-
tiation between specific types of deterioration when interpreting radargrams. In addition, 
these reflections are usually stronger and more visible than those mentioned above. This 
phenomenon occurs because, for example, if we consider a stone or concrete structure, the 
dielectric contrast between the diffuser and water is much higher than the dielectric con-
trast between concrete and air [185,186]. 

By collecting multiple parallel 2D sections (time-slice method) or, in other words, by 
performing multiple horizontal scans on an x–y axial plane of grid coordinates, a 3D data 
set can be recorded that can be used to construct subsurface models, thus improving the 
efficiency and quality of the signal interpretation [187]. Three-dimensional data retrieval 
requires the use of a properly designed measurement grid; the dimensions and distance 
between successive scan lines on each axis are user-defined. The way scans are performed 
on the grid is usually towards one direction starting from the same straight line ("normal" 
way of scanning), although there may be the possibility of zigzag measurements, in which 
the direction of the scans profiles changes alternately. Essentially, with this type of GPR 
scanning, the mapping of a subsurface area of interest is achieved, providing information 
about the location, depth, and orientation of the internal reflectors. Today, most of the 
processing software with which the geo-radar systems are equipped to provide the possi-
bility of displaying the 3D data in various ways—such as in the form of horizontal sections 
at defined time ranges that correspond to depths parallel to the recording level, or isosur-
faces—these are interpolated surfaces that represent subsurface points with a constant re-
flection coefficient or amplitude [188–191].  

Since the (crucial for maintenance and damage repairing) inspection of historic build-
ings must, in many cases, be minimally invasive, making some common and valuable 
techniques' application not favorable, GPR has acquired great importance as a technique 
for revealing both historical and structural information [4,192–204]. Particularly, some is-
sues of structural interest are the probable presence of fractures [205–207], voids [208], 
infiltrations of humidity [209,210], or metallic bars [211] due to previous restoration 
works, often not sufficiently documented. GPR evaluation is well advised, especially if 
new restoration interventions are planned [212,213]. Furthermore, nondestructive surveys 
by GPR can provide evidence for addressing the restorations appropriately and enable 
one to verify the success of the restoration works through post-intervention monitoring. 
Some topics of historical interest, which can be addressed through GPR surveys, are the 
presence of hidden rooms, floors, mosaics, and frescoes [214]. The changes that a structure 
has undergone through the centuries are often not adequately documented, or in other 
cases, the documents have been lost. Nevertheless, the significance of a retrieved buried 
target can be of both historical and structural value, as, for example, in the case of a hidden 
crypt under a church.  

Ground-penetrating radar is likewise an integral part of historical masonry arc 
bridge inspection. GPR acts as an effective nondestructive method for revealing essential 
historical, architectural, and structural characteristics, such as the presence of hidden 
arches, former shapes, moisture content, internal voids, and past restoration interventions 
[161,215–225]. However, their complex structural characteristics, including the heteroge-
neous filling and geometrical shape, often make the field acquisition, processing, and in-
terpretation of data quite challenging. 

2.6. Active Elastic Wave Techniques 
Sensing methods focused on the propagation of elastic waves have been increasingly 

employed for the non-destructive inspection of historic structures and materials. The ap-
plication of these techniques is based on the principle that wave propagation velocity 
(WPV) is associated with measurable parameters of the material through which it travels 
(density, elastic modulus, Poisson’s ratio) [226]. The presence of damage (voids, cracks, 
defects) changes the material’s physical properties, affecting propagation and, therefore, 
WPV measurements can be used for defect detection and quality control of materials [227]. 



Remote Sens. 2021, 13, 3936 14 of 33 
 

 

The WPV is estimated by measuring the time that an elastic wave needs to transit from an 
emission point to another point located at the boundary surface of the material under ex-
amination. A receiver probe records the arrival of a pulse wave originating from the exci-
tation source at the emission point. The precise and accurate measurement of the propa-
gation time is a key factor when implementing active elastic wave techniques. Depending 
on the frequency content of the excitation pulse, WPV can be determined in the sonic or 
ultrasonic range [228]. Sonic and ultrasonic sensing techniques have many advantages 
compared with traditional invasive methods; however, there is a great number of param-
eters influencing the correct calculation of WPV. Roughness and defects of the historical 
surface under examination, and subsurface small cavities affect the results because the 
short wavelength of the pulse prevents it from passing even though very small voids be-
tween the surface and the receiver probe. Lack of knowledge about the distribution and 
heterogeneous physical properties of materials, especially for structures such as historic 
masonry, complicates the interpretation of results further, as well as water content 
[180,229,230]. Other limitations include operational costs due to high number of required 
measurements, calibration needs for different materials, and complexity of data elabora-
tion caused by structural inhomogeneities [231,232]. 

Sonic and ultrasonic techniques applied for inspection purposes consider three types 
of acquisition methodologies conducted with different arrangement between excitation 
source and detector: (1) direct, in which the emission source (often a hammer) and the 
receiver are placed in line on opposite sides of the surveyed element; (2) semi-direct, in 
which the emission source and the receiver are placed with an angle between them; and 
(3) indirect, in which the emission source and the receiver are both located on the same 
face of the element in a vertical or horizontal line [233]. Commonly, surveys of building 
and infrastructure elements are carried out with a 2D array, for example, along longitudi-
nal or transverse sections of columns and walls. Sometimes many 2D tomographic profiles 
are arranged to construct a 3D model. The full 3D sonic or ultrasonic tomographies are 
especially devoted to the internal study of pillars and columns [234]. Many examples of 
built heritage inspection through sonic and ultrasonic sensing can be found in recent bib-
liography [207,229,235–243]. 

3. Data Fusion 
As a general multidisciplinary approach, the term data fusion implies integration of 

data from different sources to enhance their potential value, interpretability, and allow 
the generation of high-quality visual representations. Sensor fusion, data integration, and 
information fusion are similar terms often referring to the same concept. However, in the 
framework of this review, as sensor fusion approaches are referred to only those employ-
ing simultaneous data acquisition with multi-sensor configurations, to distinguish them 
from data fusion approaches performed at a post-acquisition processing stage. 

Multisource data fusion techniques are beneficial for built heritage condition moni-
toring. They significantly improve holistic documentation, enhance the properties of rec-
orded data, enable integrated analysis, support long-term inspection, and minimize mis-
interpretations caused by cross-examining the multi-disciplinary information. Data fusion 
approaches are most often categorized depending on the stage of data processing at which 
fusion occurs [244]. Ramos and Remondino [245] proposed an expanded classification of 
data fusion procedures regarding different aspects. As concerns cultural heritage applica-
tions, generally there are not incremental approaches for fusing heterogeneous data for 
inspection and monitoring. However, the registration of metric data and other metric or 
qualitative information requires a common reference system with known parameters, 
where their spatial integration can take place. Additionally, the integration of data from 
different sources at the pixel level requires images (or orthoimage-mosaics) that represent 
the same plane and are of the scene sampling distance. 
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The task of integrating multi-sensor data depends on aspects such as the spatial and 
radiometric resolution, positional accuracy, and dimensionality of the fusion [246]. Inte-
grative 3D modeling approaches, especially those involving TLS and IBM, are a widely 
discussed topic of data fusion, and follow different pipelines [247]. However, the fusion 
between (geo)metric data and non-metric data is less often debated. Besides, close-range 
sensing data purposed for nondestructive monitoring are seldom recorded in a non-met-
ric manner. Their inherent heterogeneity, a result of sensing at multiple wavelengths with 
vastly different instrumentation, hinders the integration processes. 

Often, the near-infrared spectral images’ similarities with color images allow for the 
high-resolution texturing of historical structures' 3D representations or the direct imple-
mentation of IBM-driven processing, thus facilitating integration with other metric data 
sources. The problematics of integrating thermograms with metric data come from the 
vast dissimilarities comparing with visible-spectrum images and concern both their spa-
tial (low resolution) and radiometric (different observable features) characteristics. Meth-
odologies on the fusion of thermographic and geometric data depend on sensor registra-
tion (optical camera with thermal camera/ laser scanner with thermal camera), product 
registration (thermogram with point cloud/thermogram with 3D model), or hybrid pho-
togrammetric techniques. Implementing one of the above data fusion techniques largely 
depends on the scale of the survey and the available equipment and produces thermal-
textured 3D point clouds or models. Furthermore, data collected with subsurface inspec-
tion methods using radar, ultrasonic and sonic techniques can also be integrated, when 
the position of utilized antennae is estimated or tracked, thus allowing the referencing 
into a given coordinate system; however , this type of fusion refers mainly to information 
visualization and not integrated analysis. 

3.1. Integration between Photogrammetric and Ranging Techniques 
The primary goal of heritage geometric recording is the generation of complete, ac-

curate, and photorealistic 3D representations and 2D metric derivatives, such as or-
thoimage-mosaics and vector drawings. As discussed in Sections 2.2 and 2.3, there is a 
wide range of advanced active and passive sensors and sensing techniques for geometric 
recording, producing different data. Integrative IBM and TLS approaches are the standard 
approach for modeling ancient and historical structures and ensure that density, accuracy, 
and texture-resolution predefined specifications are met [56,248–250]. Fusion approaches 
introduced for multisource point cloud (3D-to-3D) registration (and successively coloring) 
are: manual annotation of common features [251], iterative closest point (ICP) [252,253], 
feature-based [254], and georeferencing-based [35]. The rapid increase in the implemen-
tation of unmanned aerial systems (UAS) for cultural heritage IBM has recently intro-
duced fascinating integrative approaches, on the convergence of TLS and low-altitude 
aerial photogrammetry [255−259] (see section 4.1). 

3.2. Multispectral Data 
Regarding multi-sensor recording approaches, and some designs of integrated de-

vices, it is anticipated that the images from different spectral channels require to be shifted 
or spatially re-scaled to be registered (2D-to-2D fusion) to form aligned multispectral im-
age cubes. There are several algorithms associated with image registration [260]. Image 
registration involving linear shifts is relatively easy to compute and can be applied by 
performing cross-correlation. Spatial image scaling that involved re-sampling could result 
in some loss of information; as a result, it is best to design the system's optics to avoid 
scaling of the images. High-resolution imaging of large objects inevitably involves mosa-
icking of the images. Adjacent images need to be taken with sufficient overlap to allow 
automatic image registration. When the shifts are linear, a simple cross-correlation algo-
rithm can be used for image registration. Regarding cultural heritage applications, regis-
tering images collected in different spectra has often been addressed through the manual 
identification of common features [261]. 
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One prevalent form of multispectral data fusion for built heritage monitoring in-
volves multi-sensor acquisition. IBM and TLS-produced ortho-mosaics referenced at the 
same coordinate system can be treated as multispectral images. Sánchez-Aparicio et al. 
[262], Del Pozo et al. [263], and Conde et al. [264] experimented with fusing data from 
laser scanners operating at different wavelengths, multispectral and commercial digital 
cameras to produce multispectral ortho-mosaics for detecting pathologies in construc-
tions. 

3.3. Thermographic Data 
Registration between orthorectified thermal-infrared and color images/image-mosa-

ics is usually performed for cultural heritage applications by manually identifying com-
mon points distinguishable in both spectra (characteristic points, or, more commonly, spe-
cial targets with different reflectance characteristics) to define the necessary transfor-
mation [265,266]. However, the most frequently applied approach for the fusion of ther-
mal and metric data of historic architectures has been integrating thermograms and 3D 
measurements, collected with individual proximal sensing techniques. This process fre-
quently implies registering dense point clouds (or derivative 3D models) captured by 
TLS—containing metric spatial information—and thermographic images. This approach 
is considered the most cost-effective, especially when complete thermographic mapping 
of a historic structure or structural element is required. The estimation of the geometric 
relation between a point cloud/3D model and a thermogram (the relative position and the 
orientation matrix) is realized by defining common features, allowing the projection of the 
thermal intensities to create a thermal texture. 

Due to the limitations imposed by the low spatial resolution of thermal infrared im-
ages [267], research on thermographic modeling for built cultural heritage has largely con-
centrated on pipelines for reconstructing the 3D shape from color image datasets, and 
applying the texture from registered thermal infrared image datasets and hybrid work-
flows, which apply the photogrammetric principles on both color and thermal infrared 
image datasets, but use only the latter for texturing [268]. González-Aguilera et al. [269], 
Dlesk et al. [270], and Patrucco et al. [271] performed image-based modeling using ther-
mal infrared images captured with NEC TH9260, FLIR E95, and FLIR SC660 thermal cam-
eras, respectively, to reconstruct digitally and to inspect built heritage. Recent approaches 
take advantage of the thermal and color image sensors integrated into the thermographic 
camera [272–275]. 

The first approaches for thermal texturing via 2D-to-3D registration were developed 
on a manual basis. This method has been implemented by Spanò et al. [276], Zalama et al. 
[277], Costanzo et al. [278], and Mileto et al. [279] to investigate the pathology of historical 
buildings. However, since the correspondences between thermal images and 3D metric 
products may not always be visible, approaches have been recently developed to perform 
this 2D-to-3D registration automatically using features extracted from point clouds and 
thermal images [280,281]. 

Methodologies for simultaneous recording of high-density geometric and thermo-
graphic data have also been established, facilitating massive and more agile thermo-
graphic 3D modeling. Custom-made multi-sensor equipment has often been employed 
with this aim, necessitating the registration between different sensors used during acqui-
sition. The sensor registration parameters consist of a vector of the differences in the sen-
sors' relative position and the rotation angles between them, and they are necessary to 
transform and integrate data into the same coordinate system [282–288]. Overall, sensor 
registration that includes thermographic cameras is not usual due to thermal measure-
ments' requirements, as regards to angle and distance of acquisition [289]. 

The combined application of IRT and GPR can be helpful for the detection and char-
acterization of moisture [290,291], but the produced results (thermograms and 2D slices) 
are not integrated, because they represent different planes of the investigated structures. 
Although some research has been produced towards the pixel-level fusion of IRT and GPR 
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for concrete bridge inspection [292], the application for built heritage poses many chal-
lenges due to the heterogeneity of historic materials, and their constant degradation. 

3.4. Radar, Ultrasonic, and Sonic Data 
Unlike thermography, GPR data are more challenging to interpret and have lower 

spatial resolution than TLS and close-range photogrammetry and, thus, are usually ac-
quired and used independently [293,294]. The expected level of fusion between geometric 
and geophysical data for architectural heritage nondestructive investigations is frequently 
the registration of GPR slices or surfaces interpolated from 3D grid-organized GPR meas-
urements, and metric products computed with methods for reality capturing [295,296]. 
When historical structures' surfaces with relatively flat geometries are investigated, the 
integration in 3D space is, according to the bibliography, achieved through measuring the 
3D positioning of control points (usually the start and end-point) of the scan lines [297–
300]. Apart from registration, the availability of a dense geometric 3D model or point 
cloud can also assist the spatial correction of GRP data collected for structures with more 
complex geometries, the most common example being historic bridges [301–309]. Pene-
trating radar exploration of historic structure’s columns may require only a simplified 
knowledge of the geometrical shapes [310,311]. The integration of positioning systems, 
laser scanning, and GPR presents exciting potential for integrated surface and subsurface 
mapping but is subject to limitations stemming from the multi-sensor approach [312]. 

Ultrasonic and sonic sensing, likewise, have lower spatial resolution than TLS and 
close-range photogrammetry. However, the registration of ultrasonic/sonic measure-
ments with color-textured 3D models and backscattered laser intensity-textured 3D mod-
els, from photogrammetry and TLS, respectively, can benefit the interpretation of shallow 
and inner anomalies of columns and pillars [313,314]. At the same time, referencing of 
longitudinal wave velocity maps or tomographic slices helps the better understanding of 
a historical asset’s structural condition in three dimensions, especially when integrated 
with deformation maps [236,237]. 

4. Conclusions and Outlooks 
In order to facilitate cohesive monitoring of built heritage, an identification of the 

advantages and limitations of each close-range sensing evaluation technique and their in-
tegrated use is necessary. Table 4 presents a brief comparison of close-range sensing tech-
niques for build heritage inspection and monitoring based on reviewed recent literature. 

Table 4. Characteristics of close-range sensing techniques for built heritage applications. 

 Defor-
mations 

Surface Fea-
tures 

Subsurface 
Features 

Material 
Depth 

Thermal 
Properties 

Moisture 
Detection 

Close Range 
Photogram-

metry 
× ×     

Laser Scan-
ning 

× ×    × 

Infrared 
Thermogra-

phy 
 ×   × × 

Near-Infra-
red/Multi-

spectral Im-
aging 

 ×    × 
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Ground 
Penetrating 

Radar 
  × ×  × 

Ultra-
sound/Sonic 

  × ×  × 

Laser Scanning and IBM satisfy the 3D modeling needs for inspection, multitemporal 
deformation monitoring, numerical modeling, and building information modeling (BIM) 
[315,316], and enable surface feature extraction regarding deterioration and physical de-
fects. The integration between them emphasizes the complementarity of geometric and 
color information. These techniques employ mobile instrumentation, are easily adapted 
for complicated acquisition scenarios, and can reach millimetric accuracy for the extracted 
features; however, they cannot provide any subsurface information. Conditionally, TLS 
can be applied for surface moisture detection, subject to calibration and knowledge of the 
material’s emissivity at the laser instrument’s operating band. 

IRT evaluation is appropriate for surface detection and feature extraction of defects 
and moisture, but is less mobile than IBM/TLS and requires knowledge of the ambient 
and material influence on LWIR radiance measurements. The integration with metric sur-
veying allows for the quantification of extracted features and their correlation in 3D space 
to address potential sources of moisture, subsurface radiant sources, and calculate build-
ing envelopes for sustainable conservation. In addition, the resolution of thermographic 
results can be significantly improved through pan sharpening, super-resolution enhance-
ment, or hybrid color-thermal IBM. 

Near-infrared and multispectral imaging offer solutions for surface pattern extrac-
tion concerning weathering, moisture, and biological colonization, providing higher the-
matic accuracy of the extracted features comparing with color imaging and IBM. Espe-
cially the combination with learning-based digital image segmentation results in rapid 
mapping of the surface condition. However, challenges occur from the implementation of 
multi-sensor instrumentation due to increased cost, reduced mobility, and calibration 
needs. 

GPR introduces one of the most promising monitoring technologies due to its ability 
to identify material depth and locate discontinuities between materials due to their differ-
ent dielectric properties. The fusion of GPR measurements with geometric data enables 
spatial correction for structures of complex geometry but simultaneously facilitates better 
3D visualization of the prospection results and increases the accuracy of locating material 
discontinuities defects in 3D. Furthermore, 3D modeling, GPR and ultrasonic/sonic tech-
niques integration support truthful numerical modeling and parametrization for struc-
tural health analysis. 

In the sense of pixel-level fusion, data integration for built heritage is scarcely being 
applied through the quantization of multitemporal or multispectral images to increase 
interpretation, utilizing clustering classification or principal component analysis. On the 
other hand, integrated management of nondestructively recorded data through a geo-
graphic information system (GIS) is a more common approach that allows geo-processing 
analysis for thematic pathology representation. The concept of integrating nondestructive 
evaluation and BIM is a novel concept that aims to facilitate management, support the 
restoration and rehabilitation process, enhance historical research, and promote building 
sustainability in an integrated way [317–320]. 

4.1. The Aerial Perspective 
The recent substantial progress of uncrewed platform manufacturing, the increasing 

miniaturization of sensing payloads, and decreasing cost of integrated microelectronics, 
have gradually fostered the adoption of UAS for low-altitude aerial inspection of historic 
structures [111,259,295]. State-of-the-art UAS-born sensors include orientation systems, 
color cameras, multispectral cameras, hyperspectral cameras, infrared thermography 
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cameras, action cameras, and LiDAR instruments [321]. Non-destructive recording that 
utilizes UAS platforms is considerably more cost-effective for covering large historic 
building complexes (and their surroundings) and inaccessible areas of historical signifi-
cance than traditional data acquisition methods [322]. 

UAS-based close-range photogrammetry is a proven stand-alone approach to 3D 
modeling of built heritage [323−329]. Nevertheless, it can also support ground means such 
as terrestrial LiDAR [330–333] and simultaneous localization and mapping (SLAM)-based 
recording techniques [334,335]. UAS-born LiDAR is a 3D recording approach less ex-
plored for historical structures [336] than for landscape features induced by buried ar-
chaeological remains. Planning of the aerial surveys [258,337] is not the only important 
parameter for structural inspection, as the optimization of recorded large-volume data 
[338,339] can be considered equally essential. Furthermore, the automatic segmentation 
and classification of derived point clouds and 3D models [340–342] has particular im-
portance for the semantic description and virtual reassembly of historic structures, espe-
cially for BIM integration [343], and web and augmented/mixed reality applications [344]. 
UAS-based photogrammetry has also been implemented for assessing damage in post-
disaster scenarios through multitemporal 3D modeling [345–347], while the classification 
of images and point clouds collected with UAS sensors can also support structural health 
monitoring [348,349]. To conclude, the use of UAS presents us with an exciting prospect 
for damaged built heritage monitoring by supporting terrestrial non-destructive surveys 
via high-resolution modeling, multispectral mapping [162], and providing the necessary 
input for rapid inspections and numerical modeling [350]. 
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