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Resume
This paper presents a redundant multi-object detection method for 
autonomous driving, exploiting a combination of Light Detection and 
Ranging (LiDAR) and stereocamera sensors to detect different obstacles. 
These sensors are used for distinct perception pipelines considering 
a custom hardware/software architecture deployed on a self-driving electric 
racing vehicle. Consequently, the creation of a local map with respect to the 
vehicle position enables development of further local trajectory planning 
algorithms. The LiDAR-based algorithm exploits segmentation of point 
clouds for the ground filtering and obstacle detection. The stereocamera-
based perception pipeline is based on a Single Shot Detector using a deep 
learning neural network. The presented algorithm is experimentally 
validated on the instrumented vehicle during different driving maneuvers.

Article info
Received 29 April 2021
Accepted 4 June 2021
Online 30 September 2021

Keywords: 
perception, 
autonomous driving, 
obstacle detection, 
point-cloud segmentation, 
single shot detector, 
LiDAR (Light Detection  
and Ranging)

Available online: https://doi.org/10.26552/com.C.2022.1.C1-C17
ISSN 1335-4205 (print version)
ISSN 2585-7878 (online version)

A vast variety of sensors is currently exploited for 
the purpose of environment perception with peculiar 
characteristics [13]. Cameras can offer a wide range of 
configurations in resolution, frame rate, size and optics 
parameters. Moreover, stereocameras are effective sensors 
in the self-driving vehicles since they can also be used 
to estimate depth map from images, enabling further 
obstacle detection and trajectory planning algorithms 
[14-15]. Nevertheless, camera-based sensors have some 
drawbacks for autonomous driving tasks under varying 
light and visibility conditions and with scenes with a high 
dynamic range, such as in entering or exiting a tunnel 
[13]. Furthermore, stereo vision is characterized by depth 
inaccuracies in the case of low-textured patterns [13] and 
the computed depth map has typically a limited range, 
which could be useless for automated driving at high 
speed. Therefore, the LiDAR (Light Detection and Ranging) 
sensors represent a recent technology that accurately 
computes distance to objects by measuring the flight-time 
of multiple laser light pulses [13]. Although the LiDAR 
sensors are mostly indicated devoted to the creation of 
accurate 3D maps in a huge horizontal Field-Of-View (FOV) 
[13, 16], they have also some important drawbacks in the 
environment perception. They typically have a limited 
vertical resolution and they are not suitable for detecting 
small objects placed at great distances since they compute 
a sparse map [13]. Moreover, the LiDAR measurement 
could be strongly affected by light and weather conditions, 
suggesting the usage of the redundant camera sensors 
in self-driving vehicles [17-18]. In addition, the Radar 

1 Introduction
 
Self-driving vehicles are experiencing a steadily 

increasing interest all over the world thanks to the most 
recent technological development, as witnessed in [1] and 
[2]. Although many Advanced Driving Assistance Systems 
(ADAS) are already present in the majority of vehicles of the 
recent mass production [3], fully autonomous vehicles are 
still considered as a disruptive force that could eruptively 
change the traffic environment and the whole mobility 
in the next years, thanks to the contribution of Artificial 
Intelligence, as stated in [4-6]. Recently, immense research 
efforts have been dedicated to autonomous systems and the 
DARPA Grand Challenge is one of the great results that the 
global mobile robotics community has achieved in the last 
decades [7-8], allowing to reach the high level of autonomy 
in nowadays commercial cars [9]. Moreover, about 94 % of 
the road accidents are caused by human errors, according 
to a recent survey [10]. Therefore, these efforts have been 
motivated not only by the promise of preventing accidents, 
but also of reducing emissions and reducing driving-
related stress [11]. Nevertheless, a consistent burden to 
adoption of driverless vehicles is the lack of public trust, 
since significant concerns, including but not limited to 
privacy and cybersecurity, have arisen [4]. Considering 
this framework, environment perception is a fundamental 
task for autonomous vehicles, which provides the vehicle 
a crucial assessment about the driving scenario, including 
an accurate information about the surrounding obstacles 
positions [12]. 
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that is properly designed for the ground plane filtering. 
This filtering task is a common practice that is necessary to 
avoid considering ground points in the obstacles detection 
stage [26-27]. Therefore, an algorithm for point-cloud 
clustering is applied to detect clusters of point. Each cluster 
represents a detected object delimiting the structured 
track, as witnessed by other methods for clusters detection 
discussed in the recent literature [28]. The proposed 
LiDAR-based perception pipeline can estimate the distance 
and the position of the clusters representing the obstacles 
in the driving environment. In the autonomous driving 
framework, alternative methods for the object detection in 
3D point clouds are voxel-based Artificial Neural Networks 
(ANNs) [29] and other architectures of deep convolutional 
ANNs [30-32]. The vision-based perception pipeline is 
based on an SSD (Single Shot Detector) architecture 
based on MobileNetV1 using a single deep learning neural 
network to perform the object detection task in each frame. 
The SSD-based perception algorithms are proven to be 
very fast and robust in the recent literature [33-35]. The 
proposed perception algorithm can accurately estimate the 
distance of the detected objects by means of matching the 
depth map generated from the ZED stereocamera with the 
bounding boxes identified in the image by the SSD. The 
information deriving from the LiDAR and stereocamera 
pipelines is fused and synchronized to compute a detailed 
local map with the sensed obstacles up 20 m in front of 
the vehicle. Nevertheless, each of the two pipelines is 
redundant with respect to the other one in order to prevent 
inaccuracies in the obstacle detection process. Creation of 
a resulting local map enables further trajectory planning 
algorithms.

Therefore, the main contribution of this manuscript is 
to provide a redundant combined method for the multi-object 
perception in a structured environment for an autonomous 
electric racing vehicle. Moreover, the peculiar design and 
integration of the perception pipeline is tested during the 
extensive experimental validation on a real vehicle. The 
reported results include a set of different outdoor driving 
situations at a varying vehicle’s speed. The redundancy 
in the perception pipeline is not novel at a system level in 
the context of driverless racing competitions, since it has 
been already proposed in [19] and [36]. Nevertheless, the 
investigated scheme is novel with respect to the existing 
literature, since it is based on an SSD and a clustering 
algorithm for point clouds that work in parallel, thus 
allowing to have a fully independent throughput from 
the perception pipeline. This configuration has not been 
reported in the literature so far.

The paper is structured as follows: section 2 illustrates 
the design of the proposed obstacle detection method 
for the LiDAR-based and stereocamera-based algorithms, 
along with the considered vehicle setup and the retained 
hardware and software architecture; section 3 presents 
the obtained results for both the perception pipelines 
and the creation of the local map during different  
maneuvers.

sensors are used in the automotive perception tasks, being 
characterized by a strong measurement robustness with 
respect to the light and weather conditions. However, the 
high sensibility to target reflectivity and the low resolution 
of the radar technology strongly discourage the application 
of the technology for certain kinds of driving scenario, 
such as environments with small or far obstacles, which 
are detected with a low accuracy [13]. Therefore, the 
Radar sensors are not considered for the proposed sensing 
architecture.

This paper proposes a combined sensor architecture 
with both stereocamera and LiDAR sensors to enhance the 
perception pipeline robustness in terms of redundancy of 
the system. The redundancy in the proposed perception 
algorithm is of pivotal importance to avoid misclassification 
in the object detection process and poor environment 
sensing, as witnessed in the recent literature [19-21]. The 
investigated method does not implement a sensor fusion 
technique between the stereocamera and LiDAR, since it 
is intended to build a local map from the sensors, even in 
the case of a failure on one of the two sensors. This task 
is crucial to enable any further trajectory planning and 
control algorithm for autonomous driving [22-25].

Specifically, the proposed perception method is devoted 
to a driverless electric racing vehicle, thus requiring 
redundancy and robustness in the environment sensing 
process. The LiDAR-based perception pipeline relies on 
data coming from a Velodyne VLP-16 sensor that is placed 
onto the vehicle’s front wing. The sensor can provide 
a full 360° view of the surrounding environment at 10 Hz 
to obtain an accurate real-time 3D data reconstruction, 
recorded by 16 light channels. It ranges up to 100 m with 
30 ° vertical field-of-view (FOV) and an angular resolution 
up to 0.1 ° in the horizontal plane. The stereocamera-based 
perception algorithm exploits a Stereolabs ZED dual 
camera that is mounted on the top of the vehicle’s roll bar. 
The stereocamera can perform a long-range 3D sensing 
up to 20 m distance with an increased accuracy in the 
short range (less than 10 m). The vehicle also features an 
NVIDIA Jetson AGX Xavier high-performance computing 
platform with embedded GPUs to process data coming from 
these sensors in a dedicated Robotic Operating System 
(ROS) software environment. The vehicle is autonomously 
driven on a racetrack at a varying speed without any 
prior knowledge of the path. The racetrack is properly 
structured with traffic cones, which are peculiar in terms 
of shape and colors (blue, yellow and orange). Since 
the ROS is not a hard-real-time system, a proprietary 
model-based software interface called RTMaps is used 
in the hardware that manages the vehicle dynamics 
control. In detail, RTMaps is a component-based software 
development and execution environment, which enables 
the synchronization and hard-real-time requirements for 
further control strategies that are implemented on target 
hardware machines.

The three-dimensional raw point cloud recorded by the 
LiDAR sensor is processed with a segmentation algorithm 
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its right side. The main vehicle’s parameters are listed in 
Table 1. A proper wiring system has been set up to correctly 
interface and supply the sensors to the computing platform, 
using a 12 V 10 Ah rechargeable Lithium battery as the 
devoted power source along with properly connected DC-DC 
power converter for the computing platform.

The Velodyne VLP-16 LiDAR sensor provides a full 
360-degree point-cloud of the surrounding environment at 
10 Hz to obtain an accurate real-time data reconstruction 
recorded by 16 light channels. It ranges up to 100 m with 
30° vertical field-of-view (FOV) and an angular resolution 
up to 0.1° in the horizontal plane [37]. The LiDAR sensor is 
connected to the computing platform with embedded GPUs 
through an Ethernet connection. Specifically, the computing 
platform creates a ROS network, which allows to process 
the information streaming from the LIDAR-based sensor. 
The ROS Melodic (2018) is used for the arm64 architecture 
of the computing platform that features Ubuntu 18.04 
release. 

The Stereolabs ZED stereocamera is connected via 
3.0 USB port to the computing platform. The considered 
stereocamera features stereo 2K cameras with dual 4MP 
RGB sensors. It has a field of view of 110° and can stream 
uncompressed video at a rate up to 100 FPS. Left and right 
video frames are synchronized and streamed as a single 
uncompressed video frame format. Several configurations 
parameters, as resolution, brightness, contrast, saturation, 
can be tuned properly [38]. In the investigated algorithm, 
default parameters have been set both for the LiDAR and 
stereocamera sensors. The camera is used in the high-

2 Method

In this section, the retained vehicle setup is presented 
first. Furthermore, the complete hardware and software 
architecture, deployed on a vehicle, is illustrated. Eventually, 
the designed LiDAR-based and stereocamera-based 
perception methods are described in devoted subsections, 
respectively, providing pseudo-code of the implemented 
algorithms.

2.1  Vehicle layout and hardware/software setup

The considered all-wheel drive electric vehicle is 
represented in Figure 1. A high-performance racing vehicle 
is considered due to reasons of prototyping, however, the 
outcomes of the research paper can be easily adapted to 
a commercial vehicle. The vehicle has an integral carbon 
fiber chassis built with honeycomb panels, double wishbone 
push-rod suspensions, an on-wheel planetary transmission 
system and a custom aerodynamic package. The vehicle 
can reach a maximum speed equal to 120 km/h with 
longitudinal acceleration peaks reaching up to 1.6 g. The 
Velodyne VLP-16 LiDAR sensor is mounted on the front 
wing of the vehicle. The sensor is fixed at a height equal to 
0.1 m from the ground. The Stereolabs ZED stereocamera 
sensor is mounted at a height of 1.05 m from the ground and 
it is fixed to the vehicle’s rollbar, as represented in Figure 
1. The NVIDIA Jetson Xavier high-performance computing 
platform is placed inside the vehicle’s monocoque, fixed to 

Figure 1 Vehicle and considered hardware positions: a) side view; b) top view. 1: Velodyne VLP-16 LiDAR sensor;  
2: Stereolabs ZED stereocamera; 3: NVIDIA Jetson AGX Xavier high-performance computing platform
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dual NVIDIA Deep Learning Accelerator (DLA) engines, 
NVIDIA Vision Accelerator engine, HD video codecs, 128 
Gbps of dedicated camera ingest and 16 lanes of PCIe Gen 
4 expansion. Memory bandwidth over the 256-bit interface 
weighs in at 137 GB/s, while the DLA inference accelerator 
engines offload inferencing of Deep Neural Networks 
(DNNs). The NVIDIA’s JetPack Software Development 
Kit 4.1.1 deployed for Jetson AGX Xavier includes CUDA 
10.0, cuDNN 7.3 and TensorRT 5.0 libraries, thus providing 
a complete artificial intelligence software stack [39].

In order to validate the proposed method, the driving 
environment is properly structured with traffic cones 
according to the rules listed in [40]. In fact, each traffic 
cone has a height equal to 0.325 m and a square base, with 
a side length equal to 0.228 m. The cones of the right lane 
boundary are yellow with a black stripe, while the right 

definition 1080 mode (HD1080) at 30 Frame Per Second 
(FPS). ZED stereocamera is used since it is capable of 
accurately recording dense depth map information using 
triangulation from the geometric model of non-distorted 
rectified cameras up to 10 m [38].

The NVIDIA Jetson AGX Xavier is an embedded Linux 
high-performance computing platform with embedded 
GPUs with 32 TOPS of peak computational power and 750 
Gbps of high-speed input/output capability in less than 
50 W of needed power. The retained high-performance 
computing platform enables intelligent vehicles with end-
to-end autonomous capabilities since it is based on the most 
complex System-on-Chip (SoC) ever created up to 2018 [39]. 
The platform comprises an integrated 512-core NVIDIA 
Volta GPU including 64 Tensor Cores, 8-core NVIDIA 
Carmel ARMv8.2 64-bit CPU, 16GB 256-bit LPDDR4x, 

Table 1 Main parameters of the considered all-wheel drive electric vehicle

Parameter Symbol Value Unit

Mass m 190 kg

Vehicle wheelbase l 1.525 m

Overall length L 2.873 m

Front axle distance to CG a 0.839 m

Rear axle distance to CG b 0.686 m

Vehicle track width t 1.4 m

Overall width W 1.38 m

Wheel radius RW 0.241 m

Maximum power Pmax 80 kW

Motors peak torque Tmax 84 Nm

Figure 2 Redundant perception pipeline and global software architecture
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dimensionality from LiDAR 3D point-clouds to 2D grid 
fixed to the ground. Firstly, this approach was proposed by 
many teams participating at DARPA Urban Challenge robot 
competition in past years [42-44], although it is heavily 
affected by under-segmentation issues and merging of 
different objects in the same segments [26]. Recently, other 
algorithms can process the point-cloud in full 3D [26, 45-49]. 
However, most of them could not be implementable in real-
time because of the large amount of points they take into 
account resulting into a high computational costs, which 
can be solved only by means of treating the point cloud 
in cylindrical coordinates and fitting the line segments to 
the point-cloud [26]. Considering a LiDAR 3D point-cloud, 
the points belonging to the ground surface are often the 
majority of the recorded points. Therefore, the removal of 
the ground points can reduce the computational efforts 
required by further algorithms and ease the object detection 
task. In the proposed algorithm, an iterative multiple 
plane fitting technique for the ground-plane filtering is 
applied to the LiDAR 3D point-cloud in the considered 
ROI (x, y, z). A single plane model is often inaccurate in 
the segmentation of the actual ground surface, since the 
ground points are not uniquely defined and the LiDAR 
measurements are often affected by huge noise, especially 
in the case of long distances [27].

The investigated algorithm divides the point-cloud into 
multiple segments along the direction of travel of a vehicle, 
namely the x-axis and iteratively applies the ground plane 
filtering algorithm in each of these segments. In each point-
cloud, the retained LiDAR sensor can measure 16 segments 
according to the 16 sensing channels. The proposed ground 
plane filtering algorithm extracts a set of points with low 
height values (seeds), which are used to estimate the plane 
model of the ground surface in each of the considered point-
cloud segments. The initial seed points are defined using 
the lowest point representative (LPR) approach, using an 
average value of the lowest height values of points in the 
point-cloud [27]. Therefore, noisy measurements do not 
affect the plane estimation. Once the LPR is computed, it 
is assumed as the point with the lowest height in the point 
cloud, thus all the points inside the seed height threshold 
are used to build the initial seeds set. The seed height 
threshold is heuristically set to 0.35 m in the proposed 
algorithm. Then, each point in the segment is evaluated 
with respect to the estimated plane model by computing 
the distance from the orthogonal projection of the point 
onto the identified plane to the point itself. The resulting 
distance is then compared to a threshold distance, which 
is heuristically defined to decide if the point belongs to the 
ground surface or not. The points belonging to the ground 
plane are used as new seed points to estimate a new plane 
model and the process repeats for the defined number of 
iterations. Eventually, all the identified ground points in 
each of the segments are concatenated to define the ground 
plane. The number of iterations is heuristically set to 80, 
the threshold distance is set to 0.1 m and the number of 
LPR initial seeds is set to 14. At each iteration, the ground 
plane is estimated by a simple linear model that is defined 

lane boundary is built with blue cones with a white stripe. 
Bigger orange cones indicate the starting and the ending 
points of the track.

The sensor fusion is a renowned solution to increase 
obstacle estimation accuracy [36, 41], thus it could be 
also used as an alternative approach for the investigated 
application. Nevertheless, the sensor fusion is always 
constrained by the sensor with lower throughput frequency, 
i.e. 10 Hz in this case and is strongly dependent on both 
used sensors. On the contrary, as represented in Figure 
2, the proposed redundant perception pipeline can provide 
consistent results even in the case of failure of a single 
sensor. Moreover, the information at 30 Hz from camera-
based pipeline is used for the mapping purposes, at the 
same time. Furthermore, a fused local map with higher 
priority for trajectory planning is created in the real-
time synchronizing interfaced (RTMaps) at 10 Hz rate. 
This approach is quite different from the sensor fusion 
at a sensor level, that is performed in [41], because the 
information is fused and synchronized in the local map 
building process via over-imposition and synchronization of 
the detected obstacles. Indeed, avoiding the sensor fusion at 
a sensor level can save computational costs, as no additional 
algorithms are deployed on the devoted control unit. In fact, 
fusing information on the created local map only involves 
an easy operation of two-dimensional points over-imposition 
and time synchronization. The obtained local map is 
thus used with the higher priority for the local trajectory 
planning algorithms.

2.2  LiDAR-based perception algorithm

The LiDAR sensor records point clouds at a frequency 
equal to 10 Hz consisting of thousands of 3D points in 
a 360 ° range on the horizontal plane, while the vertical 
FOV is ±15 °. Each point-cloud contains the distance of 
each point in the 3D space along with the intensity of the 
reflected light in that point. Then, the raw point cloud is 
filtered by removing all the points out of the region-of-
interest (ROI). Therefore ROI (x, y, z) is defined as:
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A ground plane filtering segmentation algorithm is 
then applied to the raw point-cloud in ROI (x, y, z) in order 
to remove all the points belonging to the ground, which 
can badly affect the proposed object detection method. 
Therefore, a clustering algorithm is applied the filtered 
point-cloud and the distance to the detected obstacles is 
finally estimated.

2.2.1 Ground-plane filtering segmentation

Efficient segmentation algorithms often try to reduce 
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The covariance matrix C should be decomposed in three 
singular vectors describing the directions of the seed 
dispersion by applying the singular value decomposition. 
Then, considering the ground plane, the normal x  
indicates the direction with the least variance. Therefore, 
d can be computed using Equation (2) by substitution of x 
by st . A complete theoretical background of the proposed 
method can be found in [27]. Once the ground plane has 
been identified, it can be filtered out of the point-cloud in 
order to consider only the remaining points for further 
processing algorithms. The pseudocode of the proposed 
approach is illustrated in Algorithm 1, that is represented in  
Figure 3.

as follows:

ax by cz d 0+ + + = , (2)

x dTx =- , (3)

where a b cT Tx = 6 @  and x x y z T= 6 @  and solved for x  
by using the covariance matrix C R3 3! # that is computed 
considering the set of seed points S R3!  as in:

C s s s sii S i
T

1
= - -

|=
t t^ ^h h| , (4)

with s R3!t  that is the mean of all the seeds s Ri
3! . 

Figure 3 Algorithm 1 - ground plane filtering for one segment of the point-cloud
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clustering method can be obtained with the renowned k-d 
tree algorithm in order to group the points in the correct 
cluster [52-53]. An efficient alternative method can be 
k-means clustering [16, 54]. An analysis on the robustness 
and stability of a k-d tree implementation of the proposed 
method, dedicated to detection of humans in point-clouds, 
is given by [52].

For each of the detected clusters, representing the 
obstacles in the structured environment, the centroid of the 
cluster is considered as the position of a cone in the defined 
ROI(x, y, z), by means of collapsing all the clustered points 
onto the horizontal plane. This operation is performed 
by means of setting a null z-coordinate to the clustered 
points. Thus, the centroid of each cluster is computed as the 
geometric center of all the points in the cluster. Therefore, 
if a generic cluster C  includes a certain number rC  of 
sparse points, its centroid ,x y~ ~ ~^ h  will be computed as:

,
;

x y

x x x

y y y1 2

1 2 g
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+ + +
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h . (8)

Eventually, a two-dimensional local map can be created 
considering the identified centroids. which represents the 
detected obstacles with respect to the LiDAR sensor position 
in the xy-plane.

2.3 Stereocamera-based perception algorithm

The stereocamera-based perception algorithm is 
designed to detect cones and extract the color features 
from the detected obstacles, namely blue, yellow and 
orange cones. The distance with respect to the sensor is 
then computed by matching the detected bounding boxes 
representing the obstacles with the recorded depth map 
from the ZED stereocamera. This algorithm is redundant to 
the LiDAR-based one. Nevertheless, it performs a peculiar 
task since it can estimate not only the position of the 
detected obstacles but also the color of the detected cones 
if nearer than 10 m from the sensor, i.e. the maximum 
distance in which the generated depth map is reliable. In 
this section, the proposed SSD design and architecture 
are presented. Then, the image and depth map matching 
method for distance estimation is discussed.

2.3.1 Single Shot Detector design  
  and architecture

The proposed perception stereocamera-based algorithm 
exploits an SSD algorithm based on the renowned 
MobileNetV1 structure to detect the objects [55]. This 
Convolutional Neural Network (CNN) structure is used 
since it is proven to be accurate and very fast in the 
object detection task in the recent literature [56], thus 
being compliant with the proposed real-time application 
of autonomous driving. As a matter of fact, the proposed 

2.2.2 Point-cloud clustering and obstacles  
  distance estimation

At each iteration, the point-cloud, obtained after the 
ground-plane filtering process, is further segmented in 
order to detect significant clusters of points representing 
the objects in the structured environment. Positions of the 
clusters are then estimated in real-time.

The input of the cluster detector is the filtered point-
cloud filtP  that includes all the non-ground points 
NOTgndr  defined in Algorithm 1. Non-overlapping clusters of 

adjacent points are then extracted considering their relative 
Euclidean distance in the three-dimensional space as 
commonly intended in [50] and [51]. However, considering 
the vertical angular resolution c  of the Velodyne VLP-16 
LiDAR sensor equal to 2 °, the resulting distance in the 
z-axis (vertical) can be huge for far objects. Although fast 
and effective, distance-based clustering could be inaccurate, 
especially in the case of distant objects. If the threshold 
distance is not properly set in the clusters definition, there 
is a risk of splitting single objects into multiple adjacent 
clusters or merging different objects into a single cluster 
[16]. Therefore, considering the two generic clusters Ca  
and Cb  both included in filtP , the non-overlapping 
condition can be written as:

min NOTgnd NOTgnd&+ 4 $r r dC C = -a b a b , (5)

where !a b  (i.e. the clusters are different), ,NOTgnd !r Caa  
NOTgnd !r Cbb and d  is the threshold distance to define 

the cluster that is defined as follows:

tan2 2$ $d t
c

= . (6)

By considering the non-ground points NOTgndr  only in 
the defined ROI(x, y, z), the risk of considering too many 3D 
points in the clustering is limited, avoiding to increase the 
computational effort. To further reduce the data complexity, 
the horizontal space in the xy-plane is divided into multiple 
nested regions at a fixed constant distance threshold 
within each of them, as proposed in [52]. Therefore, a set of 
threshold distance values id  is retained at multiple fixed 
intervals dd  where di i1d d= + d+ . In each of the defined 
intervals, the maximum cluster detection range it  is 
computed using Equation (6). Therefore, the corresponding 
radius Ri  is determined straightforward. The width of the 
i i-th region wi is simply computed as:

w R Ri i i 1= - - . (7)

To define the circular region, a width w equal to 1.5 m is 
set heuristically in the proposed algorithm and dd  is set to 
0.1 m, after a necessary trial and error stage to find the best 
parameters for detecting traffic cones used in the retained 
structured environments. Therefore, clusters that are too 
large or too small are neglected.

Once the number of clusters k in filtP  is computed, 
a straightforward implementation of the proposed 
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Once a sufficiently large dataset of images, related to the 
structured environment, has been collected, containing 
labeled images of the three classes of cones in different light 
conditions and weather, a proper transfer learning stage is 
applied in order to define the three retained object classes: 

vision-based algorithm can detect obstacles in the fed 
images and draw the related bounding boxes at a frequency 
up to 30 Hz in the actual real-time application when 
deployed on the NVIDIA Jetson AGX Xavier. Specifically, 
the left camera is used for the SSD object detector only. 

Figure 4 CNN MobileNet v1 architecture

Table 2 MobileNetV1 CNN architecture. Conv: standard convolutional layer; Conv DW: depthwise convolutional layer; AVG 
Pool: average pooling layer

Type Stride Kernel shape Input size

Conv 2 3 × 3 × 3 × 32 224 × 224 × 3

Conv DW 1 3 × 3 × 32 112 × 112 × 32

Conv 1 1 × 1 × 32 × 64 112 × 112 × 32

Conv DW 2 3 × 3 × 64 112 × 112 × 64

Conv 1 1 × 1 × 64 × 128 56 × 56 × 64

Conv DW 1 3 × 3 × 128 56 × 56 × 128

Conv 1 1 × 1 × 128 × 128 56 × 56 × 128

Conv DW 2 3 × 3 × 128 56 × 56 × 128

Conv 1 1 × 1 × 128 × 256 56 × 56 × 128

Conv DW 1 3 × 3 × 256 28 × 28 × 256

Conv 1 1 × 1 × 256 × 256 28 × 28 × 256

Conv DW 2 3 × 3 × 256 28 × 28 × 256

Conv 1 1 × 1 × 256 × 512 14 × 14 × 256

Conv DW 1 3 × 3 × 512 14 × 14 × 512

Conv 1 1 × 1 × 512 × 512 14 × 14 × 512

Conv DW 1 3 × 3 × 512 14 × 14 × 512

Conv 1 1 × 1 × 512 × 512 14 × 14 × 512

Conv DW 1 3 × 3 × 512 14 × 14 × 512

Conv 1 1 × 1 × 512 × 512 14 × 14 × 512

Conv DW 1 3 × 3 × 512 14 × 14 × 512

Conv 1 1 × 1 × 512 × 512 14 × 14 × 512

Conv DW 1 3 × 3 × 512 14 × 14 × 512

Conv 1 1 × 1 × 512 × 512 14 × 14 × 512

Conv DW 2 3 × 3 × 512 14 × 14 × 512

Conv 1 1 × 1 × 512 × 1024 7 × 7 × 512

Conv DW 2 3 × 3 × 1024 7 × 7 × 1024

Conv 1 1 × 1 × 1024 × 1024 7 × 7 × 1024

AVG Pool 1 Pool 7 × 7 7 × 7 × 1024

Fully Connected 1 1024 × 1000 1 × 1 × 1024

Softmax 1 Classifier 1 × 1 × 1000
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where f is the focal length, b is the baseline distance of 
the stereocamera and xi xiL R-  is the disparity value 
[38, 58]. The focal length f is assumed equal for the two 
cameras retaining that they are co-planar with parallel 
optical axes. The left camera is assumed as the origin frame 
for the resulting depth map. Disparity map is inversely 
proportional to the two-dimensional depth map, since 
the high disparity means that the point is closer to the 
stereocamera baseline and vice versa.

The 3D reconstruction phase uses the depth 
information in the disparity map along with camera 
calibration parameters by matching the RGB pixels with 
the two-dimensional coordinates, related to the disparity 
map created with respect to the optical center of the left 
camera. The result of this process is a dense map of the 
RGB points in 3D coordinates [59], which is accurately 
obtained for distances lower than 10 m. Therefore, the 
obtained 3D reconstruction can be finally exploited for 
estimating the distance of the objects, corresponding to the 
identified bounding boxes. This task is commonly performed 
by computing the center point in each of the bounding boxes 
and projecting it into the disparity map. The distance from 
the left camera frame to each of the point is computed 
straightforward, as in [59] and [60]. Therefore, a two-
dimensional local map can be computed by knowing the 
position and distance of the detected obstacles.

A block scheme of the proposed stereocamera-based 
perception algorithm is provided in Figure 5.

3  Results and discussion

In this section, the results of the proposed LiDAR-
based and stereocamera-based object detection algorithms 
are presented, considering multiple dataset recorded on 
the instrumented vehicle in the structured environment. 
Specifically, the acquisitions are performed in Italy 
(Piedmont region) in 2020, in two different racetracks 
under different light and weather conditions. The proposed 
redundant method accurately detects the obstacles at fast 
refresh rates: up to 10 Hz for the LiDAR-based algorithm 
and up to 30 Hz for the stereocamera-based method, 
when running at the same time in the NVIDIA Jetson 

blue cone (class 1), yellow cone (class 2) and orange cone 
(class 3). This is a standard procedure to apply a known 
CNN structure to a specific target domain of images, as 
widely discussed in [57].

MobileNetV1 is an efficient CNN architecture that 
use the depthwise separable convolutions, which factorize 
a standard convolution into a depthwise convolution and 
a pointwise convolution, in order to efficiently build lighter 
models with respect to earlier architectures [55]. Moreover, 
MobileNetV1 introduces two global hyper-parameters, which 
allow to perform a trade-off between latency and accuracy, 
namely the width multiplier and resolution multiplier. 
Therefore, the MobileNetV1 is built with multiple depthwise 
separable convolution layers and each depthwise separable 
convolution layer consists of a depthwise convolution and 
a pointwise convolution. The MobileNetV1 has 28 layers by 
counting depthwise and pointwise convolution as separate 
layers [55]. The size of the input images is 224# 224# 3 
pixels, thus the streaming images from the ZED left camera 
are properly resized before feeding them into the proposed 
CNN. The detailed architecture of the MobileNetV1 is given 
in Table 2 [55]. A complete theoretical background about 
the CNN MobileNetV1 can be found in [55].

Figure 4 illustrates the layout of the retained CNN 
MobileNetV1 with reference to Table 2 and [55].

2.3.2 Stereo image and depth map matching  
  for distance estimation

After a preliminary camera calibration stage performed 
with the provided ZED Software Development Kit (SDK), 
the ZED stereocamera is ready to provide a reliable depth 
information in real-time up to 10 m distance, thanks to 
its embedded algorithms. The ZED stereocamera already 
provides rectified images, facilitating the stereo disparity 
estimation, which is a fundamental process prior to the 
estimation of the depth map [38]. The ZED camera can 
compute depth map using triangulation from the geometric 
model of non-distorted rectified cameras. The depth D of 
each point p is computed as:

D
xi xi
fb

L R=
-

, (9)

Figure 5 Block-scheme of the proposed stereocamera-based perception algorithm
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to 1 m. The zoomed portions show how the unnecessary 
ground points are filtered out of the point-cloud without 
loss of information with respect to the points representing 
the obstacles.

Figure 8 represents the LiDAR-based detection results 
obtained at standstill in racetrack 1, at the starting point of 
the track. Clusters centroids are indicated with red arrows 
in Subfigure 8b and the LiDAR sensor position is indicated 
by a black dot. The resulting two-dimensional local map is 
shown in Subfigure 8b with by grey dots representing the 
centroids of the detected obstacles.

Similarly, Figure 9 illustrates the LiDAR-based 
detection results obtained at standstill in racetrack 1, at 
the end of the track. Clusters centroids are indicated with 
red arrows in Subfigure 9b and the two-dimensional local 
map is shown in Subfigure 9b.

Figure 10 represents the detection results obtained 
with the LiDAR-based algorithm in poor weather and 
light conditions in racetrack 2, with the vehicle moving in 
a left curve. The vehicle speed is not constant during this 
maneuvers and can reach up to 80 km/h. Clusters centroids 
are indicated with red arrows in Subfigure 10b and the two-

AGX Xavier platform. The 10 Hz frequency of the LiDAR 
detections could not be feasible for the real-time assessment 
of environment perception during the vehicle motion at 
high speed. However, it is important to notice that the 
proposed perception method is particularly devoted to an 
accurate assessment of the obstacles position during the 
first lap of the racing track, that is driven at low speed 
(up to 15 km/h). Once the first lap is concluded, a global 
map can be generated via Simultaneous Localization 
and Mapping (SLAM) algorithms. Then, global trajectory 
planning algorithms can be implemented, neglecting the 
streaming data from the perception pipeline.

Figure 6 shows aerial images of the retained racetracks 
where the cones are properly placed to define the structured 
environment. The image data are taken from Google Maps 
service (2020).

Figure 7 illustrates an example of a single frame while 
moving in the racetrack 1. The LiDAR raw point-cloud is 
represented in Subfigure 7a and the ground-filtered point-
cloud is shown in Subfigure 7b. LiDAR points have the 
color of the reflected light intensity parameters (from 0 to 
255). In the figure, each square box has a side length equal 

Figure 6 Aerial views of a racetrack 1 and a racetrack 2  
(data from Google Maps, 2020)
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Figure 7 Example of a single LiDAR frame while moving 
in the driving scenario (racetrack 1): a) raw point-cloud;  

b) filtered point-cloud

Figure 8 LiDAR-based detection results (racetrack 1)  
at standstill (start of the track): a) filtered ground-points 

and cluster centroids; b) resulting 2D local map

Figure 9 LiDAR-based detection results (racetrack 1)  
at standstill (end of the track): a) filtered ground-points  

and cluster centroids; b) resulting 2D local map

Figure 10 LiDAR-based detection results (racetrack 2) 
during the cornering (left curve): a) filtered ground-points 

and cluster centroids; b) resulting 2D local map
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position and color for each of the detected obstacles. The 
computed bounding boxes and the estimated obstacles 
distances are reported in each of Figures 12-15 onto the 
recorded raw left image of the stereocamera. 

The proposed redundant perception method is not 
affected by ambient and light conditions since it is proven 
in different racetracks and weather circumstances. The 
ground points are correctly filtered out of the raw point-
cloud and the information related to the obstacles points 
is robustly preserved from being filtered. The refresh map 
of the two-dimensional local map is always high when 
deployed on the NVIDIA Jetson AGX Xavier platform, thus 

dimensional local map is shown in Subfigure 10b. Similarly, 
Figure 11 illustrates the results obtained in the same poor 
light and weather conditions (racetrack 2), while the vehicle 
is moving in a right curve.

Figures 12-14 illustrate the results obtained with the 
stereocamera-based algorithm along with the resulting 
two-dimensional local map in the following maneuvers: 
at standstill at the start of the racetrack (Figure 10); 
approaching the end of the racetrack 2 (Figure 13); during 
the cornering left or right in racetrack 1 (Figures 14 and 15, 
respectively). The sensor position in the map is represented 
by a black dot, while the other dots represent the estimated 

Figure 11 LiDAR-based detection results (racetrack 2) 
during the cornering (right curve): a) filtered ground-points 

and cluster centroids; b) resulting 2D local map

Figure 12 Stereocamera-based detection results and 
resulting 2D local map (racetrack 2) at standstill  

(start of the track)

Figure 13 Stereocamera-based detection results  
and resulting 2D local map (racetrack 2) while approaching 

the end of the track

Figure 14 Stereocamera-based detection results  
and resulting 2D local map during the cornering  

(racetrack 1, left curve)



R E D U N D A N T  M U L T I - O B J E C T  D E T E C T I O N  F O R  A U T O N O M O U S  V E H I C L E S  I N  S T R U C T U R E D . . .  C13

V O L U M E  2 4  C O M M U N I C A T I O N S    1 / 2 0 2 2

The method can accurately filter out of the point-cloud 
the unnecessary points with a segmentation algorithm 
and identify the clusters relative to each obstacle in the 
structured environment. Moreover, it is very robust with 
respect to outliers in the vision-based perception algorithm, 
that is performed with an SSD architecture. The solution 
is presented as a reliable alternative to existing methods 
to guarantee redundancy on the local map, which is 
successfully created, frame by frame, up to 20 m in front of 
the vehicle. The performance of the method was evaluated 
experimentally during the real driving maneuvers, which 
have been performed by an all-wheel drive electric racing 
vehicle in a properly structured racetrack. The proposed 
approach is different from the sensor fusion at a sensor 
level, because the information is fused and synchronized 
in the local map building process via the two-dimensional 
over-imposition and synchronization of the detected 
obstacles. In fact, avoiding the sensor fusion at a sensor 
level can save computational costs, as no additional 
algorithms are deployed on the devoted control unit. 
According to the proposed perception method, creation of 
a local map, with respect to the vehicle position, is enabled 
for the deployment of further local trajectory planning 
algorithms. Consequently, an extensive validation stage 
of the method, considering several obstacles, is required 
before its deployment on commercial vehicles.
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enabling its usage for autonomous driving purposes. The 
local map is actually created up to 20 m in the case of the 
LiDAR-based algorithm and up to 10 m using the stereo-
camera based method. The method is also robust with 
respect to possible outliers, being proven in a challenging 
environment, i.e. stripes on the ground and other types of 
objects in the environment that can affect the accuracy.

The distance estimation has been validated with 
respect to the ground truth provided by a roll-meter with 
a negligible error that is equal to few centimeters, as well 
as in the case of stereocamera-based algorithm.

The proposed method could also be implemented for 
any other kind of obstacles by means of properly changing 
the clustering parameters and by applying a proper transfer 
learning procedure for the SSD image classifier. This 
process is beyond the purpose of this paper since it is 
addressed to a peculiarly structured environment.

The algorithm is sufficiently redundant in the case 
of a failure in one of the sensors, thus avoiding common 
issues in the LiDAR-camera sensor fusion, when both 
measurements must always be provided to build a local 
map. Therefore, the local map can enable any further 
trajectory planning technique for autonomous driving.

4 Conclusion

Considering the recent innovations in the framework 
of the self-driving vehicles, a redundant multi-object 
detection algorithm has been presented. The proposed 
method exploits the combination of the LiDAR and 
stereocamera sensors, both to detect different obstacles and 
to create a local map by estimating the obstacles distance. 

Figure 15 Stereocamera-based detection results and resulting 2D local map  
during the cornering (racetrack 1, right curve)
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