
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Gear Teeth Deflection Model for Spur Gears: Proposal of a 3D Nonlinear and Non-Hertzian Approach / Bruzzone, Fabio;
Maggi, Tommaso; Marcellini, Claudio; Rosso, Carlo. - In: MACHINES. - ISSN 2075-1702. - ELETTRONICO. -
9:10(2021), p. 223. [10.3390/machines9100223]

Original

Gear Teeth Deflection Model for Spur Gears: Proposal of a 3D Nonlinear and Non-Hertzian Approach

Publisher:

Published
DOI:10.3390/machines9100223

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2928454 since: 2021-09-30T22:48:51Z

MDPI



machines

Article

Gear Teeth Deflection Model for Spur Gears: Proposal of a 3D
Nonlinear and Non-Hertzian Approach

Fabio Bruzzone 1,2,*,† , Tommaso Maggi 1,2,† , Claudio Marcellini 1,2 and Carlo Rosso 1,2

����������
�������

Citation: Bruzzone, F.; Maggi, T.;

Marcellini, C.; Rosso, C. Gear Teeth

Deflection Model for Spur Gears:

Proposal of a 3D Nonlinear and

Non-Hertzian Approach. Machines

2021, 9, 223.

https://doi.org/10.3390/

machines9100223

Academic Editor: Dan Zhang

Received: 26 August 2021

Accepted: 25 September 2021

Published: 30 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; tommaso.maggi@polito.it (T.M.);
claudio.marcellini@polito.it (C.M.); carlo.rosso@polito.it (C.R.)

2 GeDy TrAss s.r.l., Via Vincenzo Vela 42, 10128 Torino, Italy
* Correspondence: fabio.bruzzone@polito.it
† These authors contributed equally to this work.

Abstract: In this paper, a three-dimensional model for the estimation of the deflections, load sharing
attributes, and contact conditions will be presented for pairs of meshing teeth in a spur gear trans-
mission. A nonlinear iterative approach based on a semi-analytical formulation for the deformation
of the teeth under load will be employed to accurately determine the point of application of the load,
its intensity, and the number of contacting pairs without a priori assumptions. At the end of this
iterative cycle the obtained deflected shapes are then employed to compute the pressure distributions
through a contact mechanics model with non-Hertzian features and a technique capable of obtaining
correct results even at the free edges of the finite length contacting bodies. This approach is then
applied to a test case with excellent agreement with its finite element counterpart. Finally, several
results are shown to highlight the influence on the quasi-static behavior of spur gears of different
kinds and amounts of flank and face-width profile modifications.

Keywords: spur gears; STE; nonlinear; non-Hertzian

1. Introduction

Due to their inherent nature, load and stiffness fluctuations are the main source of
excitation and cause of failure in geared transmissions [1–3]. Early experimental works
from the Japanese school highlighted the interesting dynamic features of those systems,
analyzing their torsional behavior including other sources such as profile errors or mod-
ifications [4–8]. At first, the dynamic factor (DF) was used to characterize and explain
certain types of failures [9] by comparing the dynamic loads in operation with those under
static conditions. Vibrations and impacts can certainly be traced back to variations in
the input torque depending on the machine characteristics [10–12], but the time-varying
mesh stiffness (TVMS) was quickly found to be a key player [13]. Indeed, the stiffness of
an engaging gear pair changes continuously due its nature and can generate self-excited
vibrations which led many researches in the study of the transmission error (TE). Over the
years several methods have been proposed, starting from integral approaches [14,15] or
discrete ones [16,17]. Others considered the tooth as a trapezoidal beam [18] while also semi
empirical formulas have been proposed [19,20]. Experimental methods were also proposed
to study the static transmission error (STE) [21–23], while others included mounting and
manufacturing deviations to estimate the manufacturing transmission error (MTE) [24–27].
Finite element (FE) models were obviously proposed as well, but its time-consuming nature
and difficulty to set up made it applicable to limited aspects, such as tooth root stresses
and its structural behavior [28–30], crack propagation [31–35], or generally as a validation
tool for other proposed models. Hertzian theory [36] of cylinder-to-cylinder contact is
generally employed to model the contact between engaging flanks, simplifying several key
aspects of the gears, such as the continuously varying curvature and the presence of sharp
edges. When contact is not neglected it is generally introduced as an addition to the elastic
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behavior of the mating teeth, but still under Hertz’s hypotheses [37–41], while other works
included non-Hertzian properties, but neglected the flexibility under load of the teeth [42].
Hybrid approaches coupling a FE model with a semi analytical (SA) contact model have
also been proposed [43] with great success.

In this paper, a combination of some of the presented approaches will be used to
accurately estimate the STE and the contact conditions, including the influence of the
micro-geometrical modifications of the teeth flanks both along its height and along the
face-width. An SA model [17] will be used to determine the stiffness of the different mating
pairs. No a priori assumptions will be made regarding the location of the contact point,
as well as the number of mating pairs bearing the load and the load sharing among them.
The rigid body kinematics will only be employed as the first tentative guess for a nonlinear
iterative scheme, in which, also, the working pressure angle will be dependent on the
deformation. A natural equilibrium condition is sought for the location, number, and load
intensity acting on the contact points found by a surface-to-surface intersection algorithm.
A three-dimensional non-Hertzian contact model is the employed to correctly model the
interaction between the meshing flanks. Said model is first compared to Hertzian theory
with great agreement, and side and tip mirroring corrections are then introduced to relieve
the stresses on the free surfaces of the finite-length bodies in contact allowing accurate
representation of the varying curvature and discontinuities of the flanks. After defining
the theory for the generation of the tooth geometry tooth profile modifications (TPM) are
introduced, as well as the ray tracing approach used to define the contact points [44]. Next
the SA model for tooth deformations is briefly described, along with the nonlinear iterative
scheme used to overcome the rigid kinematics approach. Next, the non-Hertzian contact
model is shown along with some results before introducing the concept and the effects of
plane mirroring to correctly model bodies of finite length in contact. The deformations of
the contact surfaces are then included as superposition to the previous results to finally
obtain the STE. This entire approach is then tested against a 3D FE model showing very
similar results both in terms of STE and contact pressures. Next, several results are shown
on a test case to highlight the influence of micro-geometrical modifications on the quantities
of interest and finally conclusions are drawn and future work is introduced.

2. Model Description
2.1. Tooth Geometry and Contact Points Detection

The detailed tooth geometry is obtained by applying Litvin’s vector approach [45]
by simulating the meshing interaction between a rack cutter and the gear blank upon
which TPM are then applied. Among the possible modifications along the tooth height
the main ones are tip and root relief, while along the face-width crowning modifications
are possible. Tip and root relief are defined by the diameter at which the modification
begins (dCa and dC f , respectively) and by the amount of material removed Ca and C f ,
respectively, as visible in Figure 1. The amount of material removed can follow a linear
law or a parabolic one. The crowning is a parabolic removal of material from the tooth
face-width along its entire height. The amount of material removed at the beginning and
end of the face-width is marked as CβIn and CβFin in Figure 1 and is evaluated at a distance
zLc along the face-width, while the axis of the parabola is defined by the coordinate zL.
If the helix deviation CHβ is different from zero, the profile of the face-width is obtained by
the summation of the previously defined parabola and a further amount due to the line
inclined of angle CHβ.

In this work, the location of the contact point is not defined kinematically by finding
the location of the intersection of the line of action (LOA) with the tooth profile at different
angular positions, but it is instead sought for by a surface to surface intersection method
on the rigid profiles for the first iteration, while on the deformed ones for the successive
iterations of the iterative algorithm that will be described later. The surfaces of the teeth
are triangulated as visible in Figure 2 and then rotated of a small angle (usually 10−5 rad)
towards each other around their center of rotation and resulting intersection points are
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found through the application of the Möller–Trumbore ray-triangle intersection algorithm
in which each triangle edge of each surface is treated as an infinitely long ray and an
intersection is sought with the triangular faces of the opposite surface as visible in Figure 3
(for more details on that methodology, please refer to [44,46,47]). If an intersection is found
between the ray and the surface of one of the triangles a check on the actual intersection is
made by verifying if the location of the intersection point pc lies between the endpoints of
the considered edge (p1, p2) by

||pc − p1||+ ||pc − p2|| = ||p2 − p1|| (1)

Figure 1. Nomenclature of different TPM. (left) Tip and root relief modifications, (right) TPM along
the face-width.

Figure 2. Triangulated tooth surfaces in initial rigid contact.
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Figure 3. Surface intersection between two engaging teeth and location of the contact point at
equilibrium after deformation.

Usually this kind of ray tracing is computationally heavy and almost unusable without
complex and specific hardware GPU acceleration, but its speed can be extremely improved
by using an octree data structure [46,47] to partition the triangles in which the groups of
triangles are recursively subdivided in eight bins, thus greatly reducing the computational
effort by a huge amount and making it usable in an iterative process, such as the one being
presented without slowing it down. Once the points of intersection between the profiles
are known, the location of the contact point O = {xcp, ycp, zcp}

′
is obtained as the average

coordinates of all intersection points.

2.2. SA Deflections

Since only spur gears and no misalignment are considered in this paper, the teeth
profiles are discretized in Ni points at the middle of the face-width. Bending and shear
properties of each tooth are computed by considering a clamped-free beam model with
non-uniform geometry as by Cornell [17] instead of the integral approach of Weber [14].
By applying a load Fj [id = r2] (total load exchanged by the considered flanks) the expression
of deflection is

δi
b =

Fjcos2µα

E

Ni

∑
i=1

δi

[
l2
i − liδi +

1
3 δ2

i
Īi

+
2.4(1 + ν) + tan2µα

Āi

]
(2)

where δi is the thickness of the ith slice of the tooth cross-section defined by two consecutive
points i and i + 1 (i = 1, 2, . . . , Ni) of the profile. E and ν are, respectively, the Young’s
modulus and Poisson coefficient of the material, while Āi and Īi are the area and moment
of inertia of the slice cross section evaluated at the middle point of the slice along tooth
height, li is the distance of the point of application of the load Fj from root radius of the
tooth. µα is the working pressure angle which will be in general different from the rigid
counterparts α due to teeth deflections and it is computed at the location of the contact
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point, as visible in Figure 4. Since all triangles considered
(

ÔAB, ÔBC, ÔCD, ÔDA
)

will
have in general a different normal vector the average of them is found by constructing
an orthogonal reference frame with origin in the contact point. Two reference frames are
defined, one referred to the single triangle and, hence, a local frame (X, Y, Z) and a global
one (x, y, z). The vector defining the local X axis is defined by

vx = uj −O (3)

where uj = {xj, yj, zj}
′

and j = A, B, C, D alternatively. An accessory vector is defined by

va = uk −O (4)

where uk = {xk, yk, zk}
′

and k = B, C, D, A alternatively. The vectors defining the Y and Z
axis are then obtained as

vz = vx × va
vy = vz × vx

(5)

The versors are then obtained dividing the vectors with their norm

nx =
vx

||vx||
, ny =

vy

||vy||
, nz =

vz

||vz||
(6)

Finally, the averaged versor defined with respect to the global reference frame and
normal to the surface in the contact point is simply obtained by

n̄z = {n̄z,1, n̄z,2, n̄z,3} = {nz,ÔAB
, n

z,ÔBC
, n

z,ÔCD
, n

z,ÔDA
} (7)

From the components of the n̄z versor the actual pressure angle µα can be found by

µα = tan−1
(

n̄z,2

n̄z,1

)
(8)

Figure 4. Points considered for the calculation of the normal vector to the contact point.
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Additionally, the compliance of the fillet region of the tooth and its foundation is
included through an analytical expression based on the theory of elastic rings as [48,49]

δi
f =

Fjcos2µα

bE

L∗
(

u
s f

)2

+ M∗
(

u
s f

)
+ P ∗

(
1 + Q ∗ tan2µα

) (9)

where b is the facewidth of the gear, u is the distance between the tooth base and the point
of application of the load on the tooth centerline, while s f is the chordal resisting section
measured at tooth root. The coefficients L∗, M∗, P∗, Q∗ are computed as

X∗(h f ,i, θ f ) = Ai/θ f + Bih2
f ,i + Cih f ,iθ f + Di/θ f + Eih f ,i + Fi (10)

where h f ,i is the ratio between the root circle and hub radii, while θ f is half of the tooth
root angular thickness. The coefficients Ai, Bi, Ci, Di, Ei, Fi are given in Table 1. Finally,
by using the superposition principle, the total deflection of a tooth pair j contacting at point
i can be defined as

δi
j =

(
δi

b

)
p
+
(

δi
f

)
p
+
(

δi
b

)
g
+
(

δi
f

)
g

(11)

where the subscript p indicates the deformation of the driving pinion, while g of the driven
gear. Those deformations are computed for each point of the profiles and will later be
applied to the 3D flanks in the procedure to obtain the equilibrium contact point. Hence,
the total stiffness of the engaging teeth pair j contacting in point i can be expressed as

ki
j =

Fj

δi
j

(12)

Table 1. Polynomial coefficients for Equation (10).

Ai Bi Ci Di Ei Fi

L∗ −5.547× 10−5 −1.9986× 10−3 −2.3015× 10−4 4.7702× 10−3 0.0271 6.8045
M∗ 60.111× 10−5 28.100× 10−3 −83.431× 10−4 −9.9256× 10−3 0.1624 0.9086
P∗ −50.952× 10−5 185.50× 10−3 0.05380× 10−4 5.300× 10−3 0.2895 0.9236
Q∗−6.2042× 10−5 9.0889× 10−3 −4.0964× 10−4 7.8267× 10−3 −0.1472 0.6904

2.3. Nonlinear Algorithm

As detailed in [50] during engagement the elastic deformation of the meshing teeth
pairs causes a relative sliding between the contacting flanks causing a subsequent shift
of the contact point where the load should be applied. Since the contact point changes,
the stiffness of the engaged pair changes thus also altering the load sharing characteristics.
Furthermore, due to the deflection of the gear body teeth pairs not originally in rigid contact
can touch, while for the same reason the opposite might happen. For those considerations
an iterative approach has been applied starting from the rigid contact conditions and
then updating the contact point, the load of each teeth pair and the number of pairs in
contact. At the kth iteration using the updated contact point for the jth pair the load sharing
coefficient is computed by [51]

Ck,j =
k j

∑N
i=1 ki

(
1 + ∑N

i=1 kl Ẽjl

F

)
(13)

where Ẽjl = δj − δl and k j is defined in Equation (12) while F = T/rb = ∑N
j=1 Fj, where

T is the total torque to be transmitted and rb is the base radius of the pinion. A natural
equilibrium condition is reached when the contact points of the different engaging pairs
are in a stable position, as well as the load sharing coefficients, meaning
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xk,j − xk−1,j

xk,j
< εx ∧

yk,j − yk−1,j

yk,j
< εy ∧

zk,j − zk−1,j

zk,j
< εz ∧

Ck,j − Ck−1,j

Ck,j
< εC (14)

where xk,j, yk,j, zk,j are the coordinates of the contact point of the jth engaging pair at the
kth iteration and εx, εy, εz, and εC are tolerance values generally equal to 10−2%. Once
equilibrium is reached a detailed contact model, described in the next paragraph, is used
to study the contact between the so obtained deformed profiles.

2.4. Non-Hertzian Contact Model

To account for the continuously changing curvature of the flanks, the effects of the
profile modifications and discontinuities, such as the gear edges and tip, a detailed numeri-
cal rough frictionless non-Hertzian contact model is implemented. The contact problem is
usually stated as the Hertz–Signorini–Moreau problem [52–54]

h ≥ 0, pn ≥ 0, h · pn = 0, (15)

The first condition enforces that no interpenetration can occur between the contact
bodies and, therefore, the gap function h, which measures the distances between the
surfaces, can only be positive or equal to 0 in the contact area. The second condition
imposes that the contact is non-adhesive whereas the third condition enforces that the
normal pressures pn can only be different from 0 inside the contact area where h = 0 and
null everywhere else. The gap function h is expressed as

h = h0 + g + δ (16)

where h0 is the indentation between the profiles imposed as a rigid body motion along
the contact normal, g is the initial separation of the contacting surfaces and represents its
topography, while δ represents the elastic deformation of the surfaces due to the applied
normal pressure pn and can be expressed as [55]

δ = C · pn (17)

where C is a matrix of the influence coefficients which introduces the elasticity of the
contacting surfaces. Its components Cij(i, j = 0, 1, . . . N) relate the displacement δi at a
point i due to the application of a unit pressure at point j were proposed by Kalker and
Van Randen [56] and later fully derived and corrected by Boedo [57]. A linearly varying
normal pressure p(ξ, η) is imposed on the half-space region as

p(ξ, η) =
P0η

γ
(18)

In which P0 is the pressure in the apex (0, γ) of the triangle in the local coordinate
frame (ξ, η) with γ > 0 as visible in Figure 5.

The displacement Equation (17) is then solved, and a closed-form solution is obtained

I(a, b, c, t) = (a+bc)(t−c)[(a+bt)2+(t−c)2]1/2

4π(1+b)2|(t−c)| +

t2−c2

4π arcsinh
(

a+bt
t−c

)
+ (a+bc)(2c−ab+b2c)

4π(1+b2)3/2 ln(A + B)
(19)

where

A =
2b(a + bt) + 2(t− c)

(1 + b2)1/2 (20)

B =
2(t− c)[(a + bt)2 + (t− c)2]1/2

|t− c| (21)
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Figure 5. Local reference system for the contact formulation.

While parameters a,b,c and t are dependent on the shape and size of the triangle,
as described in [57]. Equation (19) is used in several limits in order obtain the displacements
δ depending on the non-dimensional distance ȳ = y/γ, since it is undefined when t = c.
The dimensional pressure-displacement coefficients are obtained as

wij,k = δ
1− ν

G
(22)

where G = E
2(1+ν)

is the shear modulus of the material, E is the Young’s modulus and ν is
the Poisson coefficient and k = 1, 2, 3 since the values of wij,k for the entire triangulation
need to be obtained three times, considering as the apex γ a different vertex of each triangle.
Once this is done, the influence coefficient relating node i to node j is found by

Cij =
j=n

∑
j=1

∑
k=1,2,3

wij,k (23)

where n is the number of nodes in the triangulation and the summation is carried out by
choosing the appropriate k in which node i is the vertex γ in the local coordinate frame.
The process is repeated for the pinion p and the driven gear g and the final influence
coefficient matrix is defined as

C = Cp + Cg (24)

The surfaces displacements can then be obtained from

hs = Csp (25)

where s = p, g. To solve the problem stated in Equation (15) and satisfy all the conditions a
two nested sub-iterative processes are needed, as detailed in [50,58] to remove the residual
traction stresses and to obtain the correct total transmitted force based on the computed
force at the kth iteration fk and the value at the previous one fk−1. The first one is used
to identify the correct contact footprint devoid of tension forces given a certain initial
indentation h0, while the second is used to estimate the correct indentation to impose
to the profiles so that the resulting transmitted force is within tolerance of the applied
load. To validate the proposed approach and ellipsoid to ellipsoid contact is compared
to the results from Hertz theory [52]. The two contacting ellipsoids (E1 = E2 = 210 GPa,
ν1 = ν2 = 0.3) have major radii R1 = 100 mm and R2 = 20 mm and minor radii r1 = 40 mm
and r2 = 5 mm, respectively, pressed together by a normal load F = 10,500 N on a 3× 3 mm
contact plane with equilateral triangles with a side length l = 0.06 mm. The obtained
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pressure distribution is visible in Figure 6 in which the white line represents the predicted
contact area from Hertz’s theory. The visual comparison shows a very good agreement and
a numerical comparison is shown in Figure 7 where the obtained values for a varying load
between 1000 ÷ 15,000 N show an error for both the maximum pressure and the contact
area always lower than 1.6%. The influence of the mesh size is also visible in the same
figure for the maximum load and shows a trend quickly approaching lower errors as the
length of the triangles sides decreases.

Figure 6. Pressure distribution for the ellipsoid–ellipsoid contact.

The proposed contact model has been derived from the elastic half-space theory and,
hence, implies that in any transverse section a plane state of deformations is respected.
However, when one or both the contacting bodies have finite length, it is evident that the
end faces are to be treated as free boundaries, but in a plane state of deformations two shear
stresses and a normal stress would be present at the free faces. To remove those unrealistic
stresses a correction based on mirror pressure distribution and an iterative computation
was proposed by Heteńyi [59,60]. However, the iterative part is time consuming as the
number of iterations could theoretically go to infinity as the accuracy required increases [61]
and for this reason a correction factor was proposed [62] of the form

ψg = 1.29− 1
1− ν

(0.08− 0.5ν) (26)
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Figure 7. Ellipsoid–ellipsoid contact percent error versus Hertz’s theory.

For a body a of finite length with both free ends, the influence coefficient matrix with
the corrected mirroring planes is obtained as

Ccorr,a = Ca + ψgCmirror,left + ψgCmirror,right (27)

If the two bodies in contact have different finite length the mirroring operation is
carried out accordingly at the free edges of each body. In order to verify the non-Hertzian
results and the efficiency of the mirroring correction a model of a crowned roller bearing
contacting with a cylindrical inner race has been compared with the results from [61] and
the geometrical and material data are reported in Table 2. A mesh of right triangles with
equal sides of 0.02 mm was defined and the resulting non-Hertzian pressure distribution
obtained by the application of the current method can be seen in Figure 8 for a load
F = 33,800 N where a distinct pressure peak can be distinguished at the edge of the crowned
roller, while the central part has a trend similar to the ellipsoid to ellipsoid contact seen
in Figure 6. The obtained results agree extremely well with the numerical and FE values
detailed in [61], although minor differences are present due to the different discretization
of the contact plane.

Table 2. Crowned roller and inner race geometrical and material properties, from [61].

Crowned Roller

Diameter d1 15 mm
Crowning radius r1 1114 mm
Fillet radius f1 1.006 mm
Width b1 16 mm
Shear modulus G1 79.3 GPa
Poisson ratio ν1 0.3

Inner race

Diameter d2 58.5 mm
Width b2 25 mm
Shear modulus G2 79.3 GPa
Poisson ratio ν2 0.3
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Figure 8. Pressure distributions for the crowned roller and inner race contact.

2.5. Application to Gear Contact

Since the equilibrium contact point is known through the algorithm detailed in
Section 2.3, the mean tangent plane to both gear profiles is taken as the plane where
contact will lie. From this line the initial separation h0 is obtained as the normal distance
between the mean common tangent at the equilibrium contact point and the deformed
profiles. In the ellipsoid–ellipsoid contact, as well as the crowned roller and inner race
contact shown earlier, the imposed rigid body indentation h0 was intended as a vertical
displacement of either body towards the other. In the pinion–gear contact instead, in order
to respect the meshing kinematics, a rotation is imposed as a rigid body rotation of the
pinion towards the gear. Therefore, at each iteration it is needed to estimate again the initial
separation gk obtained through a tentative rigid body rotation θ0,k for the kth iteration
computed as

θ0,k = θ0,k−1 +
θ0,k−1 − θ0,k−2

fk − fk−1
(Fj − fk−1) (28)

Evidently also gears have finite face-width and, therefore, the mirroring operation
is carried out as described earlier its effect is visible in Figure 9. The data of the tested
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gears are listed in Table 3 and it is clear that if no mirroring is applied two important
pressure peaks are present at the free edges of the contacting flanks, which disappear as
expected when the proper measures are taken. However, if one of the two bodies has
a face-width greater than the other those peaks correctly reappear, although with lower
values. Furthermore, gears have another free side at the tip of the tooth which must be
taken into account. For this reason, a tip mirror plane is accounted for when part of the
contact plane of one of the two gears lies outside of the flank and in this case the tip edge is
taken as the mirror line, as visible in Figure 10.

Table 3. Gear pair parameters.

Parameter Pinion p Gear g

Number of teeth z [-] 28 28
Module m [mm] 3.175 3.175
Pressure angle αp [◦] 20 20
Facewidth b [mm] 6.35 6.35
Hub radius [mm] 20 20
Young modulus E [MPa] 210,000 210,000
Poisson coefficient ν [-] 0.3 0.3

Figure 9. Effect of plane mirroring on the pressure distribution for meshing gears. (a) No mirroring,
bp = bg (b) Mirroring, bp = bg (c) Mirroring, bp = 2bg.
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Figure 10. Side and tip mirror planes in gear contact used to obtain the mirror pressure distributions
in order to take into account the free edges of the contacting bodies.

3. Application to Case Studies

The final expression for the STE, considering the cumulative effect of the SA deflections
and the contact analysis, can be given as

STE = max
[(

θgrb,g − θprb,p

)
j

]
(29)

where the rotations of the jth engaged pair of the pinion (p) and driven gear (g) are
measured at the point of maximum displacement inside the contact area. Since the analyses
in the present paper will deal with quasi-static conditions no dynamic effect is included.
Additionally, no manufacturing, mounting, or other possible errors are considered at
this point, hence the STE is equal to the global transmission error (TE). Results from the
proposed SA approach are firstly compared against a 3D FE model from Ansys which
adopts quadratic 20-node solid elements (SOLID186) and a very refined mesh (0.01 mm for a
total of 441,562 nodes, 394,002 elements and 1,311,456 degrees of freedom) for the contacting
flanks which are modeled as pairs of frictionless contact-target elements (CONTA174-
TARGE170) in surface-to-surface contact using the augmented Lagrangian algorithm.
The hub of the pinion gear is grounded through rigid body elements to a central node
which is only free to rotate around its axis and where the torque is applied and the
displacement recorded. Similarly, the hub of driven gear is constrained against all possible
motion. The FE mesh and an example of the obtained contact pressures are visible in
Figure 11, while the relevant data are listed in Table 3. A sequence of 20 nonlinear static
analyses with automatic substepping is performed at different rotation angles to cover
the whole mesh cycle which corresponds to 2π

z , as done in [63,64]. Since the transmission
ratio of the studied gears is equal to one, between each analysis the FE mesh of the gears is
rigidly rotated of the same angle according to their rotation directions, hence the motion
is not caused by the applied torque but imposed by the angular displacement of the
contacting gears. A comparison of the different approaches is visible in Figure 12 for
three different torque levels. The overall agreement of the results is evident, while a small
difference in the double contact zone is visible which amounts to a maximum of 0.002◦

at the highest load. The agreement is extremely good also in terms of maximum contact
pressure, as visible in Figure 13, for both the single and double contact regions, as well
as the pressure peaks occurring when tip-corner contact is present. However, it must be
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noted the the calculation in Ansys on a laptop equipped with an Intel Core i7-7700HQ CPU
and 32Gb ram takes around 4 h with a so refined mesh at the surface of the engaging teeth,
whereas the proposed SA approach employs only 3 min on the same machine, yielding a
significant time saving without even considering the time spent to properly generate the
FE model.

Figure 11. Mesh of the solid model and pressure results from Ansys.



Machines 2021, 9, 223 15 of 24

Figure 12. Comparison of the STE obtained from the SA model and Ansys.

Figure 13. Comparison of the maximum pressure obtained from the SA model and Ansys.

The STE and load sharing coefficients of the same gear pair under a load of 100 Nm
are visible in Figure 14. In the same figure, it is possible to appreciate the dependency of
the load sharing factor and contact ratio with respect to the torque level. In particular, it is
evident that the increase in the contact ratio as the torque increases which is not considered
by the standards. The actual contact ratio, which can be extracted by the load sharing
characteristics, ranges from the value computed according to literature [65] 1.638 to the
highest 1.85 due to the maximum torque, that corresponds to an increase of about 13%. A
detailed pressure map of the flank at the highest torque displaying the pressure peaks due
to tip contact is shown in Figure 15. Under these conditions the maximum pressure reaches
2648 MPa which could cause surface damage since it is higher than the design value in the
single contact zone (1336 MPa).
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Figure 14. STE and LSF of the tested gear pair without modifications.

Figure 15. Flank pressure distribution of the tested gear pair without modifications.

To mitigate this problem, the effect of the linear tip relief is now analyzed. Firstly, an
amount of material removed Ca is analyzed for a fixed modification diameter dCa = 94.245 mm
as visible in Figure 16 varying from Ca = 0.008÷ 0.040 mm. Evidently, this modification
slightly affects the mesh-in and mesh-out condition of the engaging flanks, effectively
reducing the contact ratio since the single contact zone of the mesh cycle grows. Further-
more, the load sharing characteristics are not greatly affected since after a certain threshold
increasing the amount of material removed effectively means reducing the working part of
flanks due to a lower dNa [66], thus the curves of the STE and load sharing factor (LSF)
converge to a new stable condition. Instead, modifying the length of the modification
by reducing the start diameter of the modification dCa has a huge impact, as visible in
Figure 17. The start of the modification is changed in the range dCa = 94.245÷ 90.245 mm
and evident improvements are visible on both the STE and LSF. Indeed, the minimum
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value of the STE increases as the length of the modification increases, effectively reducing
the peak to peak transmission error (PPTE), while simultaneously smoothing the transition
between the single and double contact reducing the possibility of impacts on the flanks due
to abrupt discontinuities. This kind of profile modification also has beneficial effects on
the pressure distribution on the flanks as visible in Figure 18, where a linear tip relief was
applied with Ca = 0.032 mm and dCa = 94.245 mm. The contact area is reduced since the
flanks are not able to come into contact up to the tip circle, but are limited by the presence
of the modification. However, the pressure peak is greatly reduced, displaying a value of
1780 MPa which, while higher than the corresponding value in the single contact zone, is
significantly reduced compared to the case where no TPM was applied.

Figure 16. Effect of linear tip relief amount of material removed on the STE and load sharing.

Figure 17. Effect of linear tip relief length of modification on the STE and load sharing.
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Figure 18. Flank pressure distribution of the tested gear pair with linear tip relief, dCa = 94.245 mm
and Ca = 32µm.

Similar considerations can be applied when the amount of material removed Ca is
applied on a parabolic tip relief, as visible in Figure 19. Due to the fact that the removal
rate is lower than the linear one, the effects of this parameter for a fixed dCa = 94.245 mm
are even lower than before and can hardly benefit the transmission both in terms of STE
and LSF. Indeed, the different curves are almost overlapping, showing only a minimal
increase in the single contact region as expected. Additionally, increasing the length of
modification has similar effects to what has been shown before as visible in Figure 20.
Indeed, the PPTE decreases as the length increases and the transition of the load between
the teeth pair is smoothed, but the overall effect is lower than the linear modification
due to the lower removal rate of the material earlier mentioned. However, a gear pair
modified with parabolic tip relief dCa = 94.245 mm and Ca = 0.032 mm has significant
benefits in terms of pressure distribution along the flank as visible in Figure 21. This kind
of modification is even more effective at reducing the pressure peak around the tip and
root regions since the transition between the pure involute and the modified portion of the
tooth is smoother and the lower removal rate offers more material for the flanks to come
into contact with. The maximum pressure achieved is indeed only 1426 MPa which is just
90 MPa higher than the single contact zone thus reducing any risk of potential damage.

Lastly, a combination of parabolic tip relief and face-width crowning will be discussed.
The STE and LSF have been computed for different levels of symmetric crowning with
Cβ = CβIn = CβFin in combination with a parabolic tip relief with dCa = 94.245 mm and
Ca = 32µm and the results are visible in Figure 22. The axis of the parabola is fixed at
zL = b/2 (Figure 1), while the amount of material removed is evaluated at zLc = 0.8b
as commonly done in the industry. Since the symmetric crowning modification does not
influence the mesh-in or mesh-out phases the LSF is unaffected while also the STE has
minimal changes. Indeed, the only difference is the contribution of the elastic deflections
δp and δg of the contact surface that increase since the contact are is more and more
localized towards the axis of the parabola. This localization is also evident in Figure 23
where the pressures experienced by the flank are visible. Due to this effect the side edges
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are completely unloaded, however the pressure the gears are subjected towards b/2 are
increased up to 1539 MPa in the single contact region and up to 1762 MPa in the tip and
root zones. This kind of modification is indeed useful mostly when gears with different
face-width need to be designed or when shafts misalignment due to deflections must be
compensated, since otherwise side pressure peaks would appear as discussed earlier in
Figure 9.

Figure 19. Effect of parabolic tip relief amount of material removed on the STE and load sharing.

Figure 20. Effect of parabolic tip relief length of modification on the STE and load sharing.
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Figure 21. Flank pressure distribution of the tested gear pair with parabolic tip relief, dCa = 94.245 mm
and Ca = 32 µm.

Figure 22. Effect of parabolic tip relief length of modification on the STE and load sharing in combination with face-width
crowning Cβ = CβIn = CβFin, zL = b/2 and zLc = 0.8b (dCa = 94.245 mm and Ca = 32µm ).
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Figure 23. Flank pressure distribution of the tested gear pair with parabolic tip relief,
dCa = 94.245 mm and Ca = 32µm and Cβ = CβIn = CβFin = 2µm, zL = b/2 and zLc = 0.8b
parabolic crowning.

4. Conclusions

Aim of this paper has been to establish an accurate model to determine gear deflections
under load and the contact condition that are present during meshing. For this purpose,
on the basis of well established SA foundations a nonlinear iterative scheme was imple-
mented seeking for a natural equilibrium condition between the location of the contact
point, which slides due to the deflections, the load intensity, since the change in contact
position alters the stiffness as well, and, ultimately, the number of the engaged teeth pairs.
The contact between the deformed flanks has been studied in detail using a non-Hertzian
contact model to account for the variable curvatures of the flanks, as well as the profile
modifications. Appropriate measures have been included to avoid overestimations of
the pressures at the free edges of the finite length gears by including a mirroring of the
contact plane. A mirroring operation has also been carried out when one of the tooth tips
comes in contact with the mating flank of the opposing gear. The contact model has been
firstly validated against Hertz hypotheses and later for a non-Hertzian contact, giving
extremely accurate results. Then, the whole proposed model has been applied to a test
case and the comparison of the results against a FE counterpart has shown very good
agreement. The same test case has been studied under a variety of combinations of profile
modifications, namely linear and parabolic tip relief, as well as crowning. For all those
tests the STE and LSF have been analyzed along with the resulting pressure distributions
on the flanks of the teeth, showing different behaviors. The linear tip relief has been found
to be able to effectively modify the STE and reduce the PPTE, but the parabolic one was
more effective at reducing the pressure increase when contact is close to the tip of one of
the gears. Indeed, the proposed SA model produces results with the same level of accuracy
of a refined FE model, with some significant advantages. The setup of the model for the
proposed approach is almost automatic by just specifying the parameters of the generating
tool and of the wanted gear pair, while complex operations need to be carried out to set
up the FE counterpart correctly. Additionally, the saving on the computational time is
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huge since the proposed method generates the results in minutes, while several hours are
required if the FE approach is chosen instead. The present results also highlight the strong
influence between the contact ratio and the applied load, the micro-geometrical modifica-
tions and the STE. A correct balance of these aspects can improve not only the endurance of
the studied gears, but also their dynamic behavior. Further research will be carried out to
further increase the prediction capability of this approach firstly by extending the method
to model also helical gears by introducing the appropriate modifications where needed.
Next, the influence of other components of the transmission such as shafts, bearings and
the casing will be included to correctly estimate the contact under misaligned conditions.
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