
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

PoinTap system: a human-robot interface to enable remotely controlled tasks / Sibona, Fiorella; CEN CHENG,
PANGCHENG DAVID; Indri, Marina; Di Prima, Danilo. - ELETTRONICO. - (2021). (Intervento presentato al convegno
26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2021) tenutosi a
Västerås (Sweden) nel September 7-10, 2021) [10.1109/ETFA45728.2021.9613546].

Original

PoinTap system: a human-robot interface to enable remotely controlled tasks

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ETFA45728.2021.9613546

Terms of use:

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2928406 since: 2021-12-16T16:54:18Z

IEEE

PoinTap system: a human-robot interface to enable
remotely controlled tasks

Fiorella Sibona, Pangcheng David Cen Cheng, Marina Indri, Danilo Di Prima
Dipartimento di Elettronica e Telecomunicazioni (DET)

Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
{fiorella.sibona, pangcheng.cencheng, marina.indri}@polito.it, danil.diprima@gmail.com

Abstract—In the last decades, industrial manipulators have
been used to speed up the production process and also to perform
tasks that may put humans at risk. Typical interfaces employed
to teleoperate the robot are not so intuitive to use. In fact, it takes
longer to learn and properly control a robot whose interface is
not easy to use, and it may also increase the operator’s stress
and mental workload. In this paper, a touchscreen interface for
supervised assembly tasks is proposed, using an LCD screen and
a hand-tracking sensor. The aim is to provide an intuitive remote
controlled system that enables a flexible execution of assembly
tasks: high level decisions are entrusted to the human operator
while the robot executes pick-and-place operations. A demon-
strative industrial case study showcases the system potentiality:
it was first tested in simulation, and then experimentally validated
using a real robot, in a laboratory environment.

Index Terms—Industrial manipulators, human-robot interface,
assembly tasks, remote control

I. INTRODUCTION AND STATE OF THE ART

Industrial manipulators have been widely used during the
last decades. They are typically employed for carrying out
automated repetitive tasks that may be dangerous or risky to
humans, such as those carried out at high speed or with heavy
objects involved. Depending on the application, there are many
scenarios in which a robotic arm can be used. It can be fixed
to a workstation to perform repetitive tasks, to work along
with a human operator or to be remotely controlled if the
environment is dangerous for human beings. In the latter case,
a Human-Robot interface is needed to properly monitor and
control the robot actions. A typical device to manually control
industrial manipulators is the Teach Pendant, whose interface
is similar to a joystick. However, this kind of interface is not
very intuitive, and it may require a lot of practice in some
applications [1].

In [2], a cyber-physical system is implemented to remotely
control a robot in hazardous manufacturing environments. In
particular, the human operator can control the physical robot
located in a remote workstation either using a virtual model of
the system or guiding a collaborative manipulator in a human-
robot workstation. In the second case, a wearable display
device is used to give a visual feedback of the teleoperated
robot to the human operator.

A robot can also be teleoperated using approaches exploit-
ing typical human to human communication interfaces, such
as speech or gestures. Industrial environments are usually

very noisy, so it is difficult to operate the robot using vocal
commands, and gestures are preferred over speech [3]. More-
over, gestures can be easily executed with only one hand, by
articulating a sequence of fingers and hand movements and
therefore, they are also easy to understand. A common gesture
used in human-human interaction is to point a part, a location
or indicating a position. This is as simple as it is useful to
codify real-world assembly tasks [4].

There exist other interfaces for teleoperation that may be
adopted to ensure a quick response, which improves usability.
In fact, in [5], it was seen that people perceive more accurately
and prefer a system they are more comfortable with, such as
a touchscreen. Nowadays, most of the human-robot interfaces
include a touch screen, becoming easy and intuitive to use [6].
It is worth noting that in an industrial environment, human
operators may wear gloves for safety reasons, so the Teach
Pendants with a touch screen interface may not be convenient,
since the screen is relatively small. A possible solution to
such problem could be that of enlarging the touch screen
device. Nevertheless, this approach could be not convenient,
as it cannot be adopted if the operator wears gloves and large
touch screen devices are usually expensive. In [7], an infrared-
matrix sensory system is used to emulate a touch screen
interface that recognizes the user’s actions and therefore, to
control the manipulator remotely. Four infrared matrices are
attached to the corners of a display, in such a way that the
infrared transmitters and receivers can detect correctly the
(x, y) coordinates of the fingers touching the screen.

The quality of the interaction can be improved when there
exists a confirmation feedback within the human-robot com-
munication, as shown in [8]. It was demonstrated that the
selection accuracy while performing a task is higher than in
absence of any feedback. In a similar way, gestures can be used
in conjunction with visual feedback markers. However, this
approach often requires expensive devices due to the fact that
it generally works with Augmented Reality (AR) techniques.

In [9], an AR system is integrated to the communication
loop between humans and robots with the aim of enhancing the
human-robot interaction. In this framework, human operators
wear the Microsoft HoloLens glasses to receive real-time
information related to the tasks, and use the air tap gesture
to command the robots and to provide a feedback to the main
control system. Similarly in [10], AR is used to improve the

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

Fig. 1: Block diagram of the proposed system.

robot teleoperation experience, providing a virtual foresight of
the real robot trajectories and final location.

The scenario that will be considered in this work is a
production environment that does not allow the presence of
human operators due to safety reasons but, however, requires
the robotic system to be controlled onsite. In such cases,
the sensors used for monitoring the activity of the robot
and receiving the commands from the human operator are
fundamental to achieve an efficient communication between
humans and robots for teleoperation tasks [11].

Recently, a considerable literature has grown up around the
theme of hybrid make-to-stock/make-to-order manufacturing
strategies [12]; make-to-order manufacturing involves high
level decisions aiming at the customization of final products,
given the market demand that sees an increasing trend towards
customized goods production, and a consequent evolution
of the production line [13]. When some functional features
are available on the robot’s system, e.g., low level planning,
sensory system to monitor the workspace, status update and
the possibility to receive tasks inputs from the operator, it is
possible to command the robot with high level tasks [14]. An
interface that allows to control the robot with high level tasks
reduces the human operator workload, as demonstrated in [15],
[16], since the worker does not intervene in the motion of each
joint, but instead the robot is able to compute the shortest
trajectories for carrying out the operations.

This paper aims at showing an alternative way to remotely
control a robotic arm to perform assembly tasks. The proposed
system emulates a touch screen behaviour exploiting a hand-
tracking sensor along with a liquid-crystal display (LCD).
The latter is also employed to show a visual feedback to the
operator. A monocular camera streams the workspace where
objects to be identified and grasped lie. The remaining of
this paper is organized as follows: Section II illustrates the
main conceptual elements of the proposed PoinTap interface.
Then, with the aim of describing the functionalities of each
block, the PoinTap system implementation and testing applied
to a specific case study are unfolded in Sections III-B and IV,
respectively. Finally, Section V draws some conclusions and
identifies some open issues.

II. POINTAP INTERFACE – CONCEPT

The proposed interface aims at providing an innovative
combination of resources and devices to enable human-
controlled actions on a manipulator. In particular, the PoinTap
live feedback allows to improve the interaction experience of
the human operator, while exploiting a simple LCD screen.
The latter is upgraded to an emulated touchscreen, externally
enabled using a hand-tracking device, inspired by the work
presented in [17]. The present work enriches the emulated
touchscreen with the possibility of pointing to the screen while
receiving a live visual feedback. The whole system is imagined
as a human-robot interface to perform conjoined actions within
an industrial context.

Figure 1 shows the PoinTap interface system architecture in
the form of blocks: arrows highlight the data flow, clarifying
the input information combinations for each output. As can be
seen, the main system blocks serve as interface between the
human workspace and the robot workspace.

Given the analysed state of the art, the PoinTap interface
encapsulates previous works’ features to implement the en-
visioned interface on an LCD screen. The screen shows the
robot workspace scene, provided by a top-view camera, based
on which the human operator interacts through a “point at
part” gesture, fed to the Hand Tracking and Touch Emulation
(TE) blocks. The latters interpret this information and output
it as a feedback mark on the screen. The system verifies that
the pointed/tapped area on the streamed image is actually
corresponding to a recognized object and transforms its co-
ordinates into coordinates interpretable by the robot. Such a
region is then identified as an area of interest for a desired
task by the robot. The term PoinTap, introduced to denote
the proposed solution, is just related to such a capability
of translating the operator pointing/tapping gesture. While
Figure 1 helps distinguishing the flow of information among
input and output elements of the developed system, a top-down
description comes in handy to deepen the role of each single
block. We can see the PoinTap system as composed of several
layers, schematically arranged in Figure 2. In the extremities
(top and bottom) of the scheme, the input and output devices
can be found, while the software is in the middle. Note that

Fig. 2: Schematic representation of the proposed system and its division in layers.

information flows from the top (input devices) to the bottom
(output devices).

The role and the actions of the various layers are described
hereafter, as the information flows into each of them:

Input devices: a hand-tracking sensor is in charge of recog-
nizing human hands, while a camera positioned on top of
the manipulator gathers images of the robot workspace.

Drivers: the software tools in this layer are used as links
between the input devices and the main layer. They
perform a set-up phase to handle raw information to make
it available to the subsequent layer.

Main layer: this layer represents the core of the system. It is
responsible for: (i) the visualisation and manipulation of
images coming from the camera, (ii) the implementation
of the touch emulation system, and (iii) the detection and
recognition of objects in the robot workspace.

Command layer: this layer fuses together information that
comes from the user and the robot workspace. It takes the
information provided by the Touch Emulation block and
the one coming from the Find Objects block, and verifies
if the combination of the two leads to an intersection,
i.e., a touched area actually corresponds to an identified
object. If the latter is true, then the current layer sends
the command to the final one.

Output devices: the robot and the LCD screen, which shows
images coming from the camera and the live feedback
mark, are considered as output devices.

It is worth noting that several elements of the system can be
customized, to adapt the generic system to both the available
resources and the specific application. Table I highlights the
PoinTap elements that can be adjusted to the specific industrial
application.

TABLE I: PoinTap Blocks and relative features.

Block Features

Hand Tracking, Touch Em-
ulation (TE), TE Setup

The hand-tracking sensor can be freely
chosen: the implementation of the
Touch Emulation block and its setup
are not strictly interlinked to a specific
sensor. Indeed the information needed
as input is the position of the tip of the
index, independently of the sensor that
provides it.

Camera The camera sensor choice is indepen-
dent of the other blocks. A custom
choice can be made, considering that
the camera specifications affect the
quality of the streamed image of the
robot working space.

Find Objects This block’s implementation depends
on the selected object recognition tool.

Touch Objects This block should be used as it is.
Some adaptations may be needed, de-
pending on the software choices for the
previous and next blocks.

Feedback Marker This block strongly depends on the
framework used to implement the
PoinTap Interface.

Robot The manipulator can be chosen ac-
cording to the requirements specific to
the application or depending on the
available configuration.

LCD The LCD screen specifications (length,
width and height) are free to be chosen,
as they are saved as parameters. The
only requirement is that the screen lies
inside the field of view of the chosen
hand-tracking sensor.

With the goal of illustrating the PoinTap interface imple-
mentation, complete of the customisable blocks, a case study
is considered in the next Section.

III. POINTAP INTERFACE – IMPLEMENTATION

In order to provide a more detailed description of the
PoinTap system implementation, a possible use case in the
industrial context has been selected. The choice fell on one
of the most common applications for a manipulator, i.e., an
assembly task achieved by performing a sequence of pick and
place operations. The human operator can now see the robot
and a set of pieces on the screen. By using a “point at part”
gesture, the user points at the piece of interest and, guided by
the feedback mark, taps the corresponding area on the screen.
This is interpreted by PoinTap, which passes the information
to the robot as corresponding to the first object used in the
assembly task. This operation is performed one or more times
to choose the other pieces for the assembly task. The main
results obtained during the validation (both in simulation and
with a real robot) of a specific example of the envisioned
industrial use case are illustrated in Section IV.

A. Software and Hardware

For what concerns the implementation of the PoinTap sys-
tem, the Robot Operating System (ROS) framework [18] was
chosen. Moreover, as mentioned before, the touch emulation
block was inspired to the already available Layered Touch
Panel [17], leading to the choice of the Leap Motion (LM)
sensor [19] as a hand-tracking sensor. The image stream
has been provided by a C210 Webcam by Logitech [20]
which has a resolution of 640 x 480 pixel, and is small and
inexpensive. The objects recognition task was entrusted to the
find_object_2d [21], a ROS package which integrates
the Find-Object application [22] provided by OpenCV [23]
with the image stream coming from the webcam to implement
SIFT, SURF, FAST, BRIEF and other feature detectors and
descriptors to detect and recognise images from a pre-recorded
database. The ROS visualization tool, rviz, was exploited
for the live feedback mark visualization, while the well-
established integration with the Gazebo simulator [24] allowed
for a smooth integration of the interface with a simulated
version of the chosen robot manipulator.

The implemented interface, even if imagined for the men-
tioned industrial use case, was tested on a research manipula-
tor, given the possibility to validate it in a laboratory environ-
ment. To this end, a Niryo One manipulator [25] was employed
for the showcased example. Niryo One is a 6-axis desk robotic
arm, conceived for educational and research purposes. It is
Open Source and 3D printed, favouring its use as a low-cost
option for technology prototyping and validation. Among the
available end effectors, the “Gripper 1” was used. It is worth
mentioning that, to improve performances, it was decided to
distribute the system among several machines: the simulation
software was run on a PC, the camera and vision nodes were
executed on a Raspberry Pi (RPI) board [26], and a further RPI
board ran the nodes in charge of interfacing and controlling the
robotic arm, adapted to our case. A summarizing schema of
the blocks implementation of the PoinTap system is reported
in Figure 3.

Note that blocks in the layers going from the Input layer to
the Command layer (refer back to Figure 2) can be considered
in common between the simulated version of the developed
case study and its execution on the real robot. With the aim
of providing a linear description of the implementation, the
main PoinTap blocks (refer back to Figure 1) are illustrated
in the next section, following the previously described layered
organization.

B. Implementation

As shown in Figure 3, the human workspace is composed of
the LCD screen (serving both as an input and an output device)
and the LM sensor, both placed on a flat surface. The latter
was considered to be perpendicular to the plane where the
LCD screen lied, as it is quite common to have the described
configuration on a working desk. Note that, beyond its use
as output device to display images coming from the camera
and the feedback marker, the LCD screen was used also as a
reference to define the touch and virtual panels. Furthermore,
it is worth recalling that the system implementation does not
depend on the chosen screen specifications, with the only
requirement that the latter lies inside the LM sensor field of
view.

For what concerns the robot workspace, the robot was
positioned at the center of the world frame while the camera
was placed above it, in such a way to visualise the whole
workspace. Moreover, the image plane axes were set to match
the plane where the robotic arm and pieces are placed, so as
to have a direct correspondence of coordinates.

1) Touch Emulation (TE): the development of this block
was led by the identification of the following problems in
gesture recognition:

• Recognizing a pointing finger gesture may require the op-
erator to achieve a high level of precision, resulting in an
unnatural gesture execution. Achieving a precise gesture
can be unpractical for the user, especially when the task
consists of a repetition of pick and place operations.

• Timing associated to the pointing gesture is relevant.
Indeed, a tradeoff must be identified to allow recognition
in an acceptable time while letting the user perform the
supervised assembly task.

• It is difficult to identify a “base point”. The connection of
the latter with the “tip point” (corresponding to the tip of
the index) defines the pointing line, which intersects the
pointed plane. In this case, as the user’s head cannot be
detected by the hand-tracking sensor, it could not have
been used as the base point. On the other hand, if the
base of the finger were taken as base point, the resulting
pointing line would mismatch what potentially expected
by the operator, making the interaction unnatural.

The TE system was designed to be independent of the above
problems and to ease the human operator interaction by
enriching the system output with a feedback marker. The TE
system proposed in this work provides a 1:1 scale among the
scene image and the LCD screen, which corresponds to the
touching plane. Exploiting the concepts related to the Layered

Fig. 3: Block diagram of the PoinTap system implementation.

Touch Panel [17], the real time feedback was implemented by
adding a virtual panel to the LCD (Figure 4 shows the virtual
screen representation in rviz).

(i) TE setup block – A calibration phase is needed in order
to use the TE block. This procedure, to be performed
just once as soon as the system is set up, consists of the
screen definition using the Leap Motion. The user touches
with his/her index each screen edge, starting from the
top left corner of the screen, and saves its coordinates
by pressing the spacebar or the enter key. The edges
positions in space are processed to obtain the screen
parameters (dimensions, position and orientation with
respect to the world frame) that are saved on a .yaml
file, which loads them on the ROS Parameter server at
each system start. Note that the screen orientation, saved
as the normal vector entering the screen, is provided by
the assumption that the screen plane is perpendicular to
the plane on which the hand-tracking sensor is placed.

(ii) TE block – After the calibration phase is completed the
TE block is ready to work. Inspired by the Layered Touch
Panel, in the TE block two virtual planes parallel to the
LCD were defined, at a distance equal to the touching
distance and the hovering distance, respectively. The first

Fig. 4: Virtual representation of the screen in rviz.

virtual panel is used to capture a touching event, the
second for the hovering event. A schematic representation
of the considered virtual panels is shown in Figure 5.

Fig. 5: Graphical representation of the two virtual panels.

The hovering and touching distances are received as
input, along with the the LM data and other parameters,
e.g., the image dimension expressed in pixels and the
pointer radius of the marker visualised on the screen.
At the Drivers layer, the screen parameters are used to
create a new coordinate system to be associated to the
screen and to render its visualization. It was decided
to publish the information about the position and the
orientation of the screen at a very low rate, as it was
assumed that the screen and the hand-tracking sensor do
not move with respect to the world frame.
Then, within the Main layer, the position of the tip of
the index is transformed from the hand-tracking sensor’s
coordinate system to the screen coordinate system. Given
this information, the following conditions are checked:
• If the distance from the screen is less than the hov-

ering distance, a hovering event is triggered and a
message containing the position of the tip of the index
is published on the dedicated ROS topic, otherwise
nothing happens.

• If the tip of the index is in the hovering zone, another
condition needs to be checked: if the distance from the

screen is smaller than the touching distance, then the
touching event is generated and a message, containing
the index tip information, is published.

It is, of course, easier to verify these two conditions while
working in the screen frame, since only the values on the
z axis are compared.

2) Feedback Marker: As mentioned before, feedback to
the pointing gesture is usually implemented using expensive
devices for AR. In this work, live feedback was integrated
using low cost devices. Indeed, the LCD is used to (i) show the
real workspace and, in conjunction with the LM hand-tracking
sensor, emulate a touchscreen, and (ii) display a feedback
marker in correspondence of the finger tip. The Feedback
Marker block receives as input the image stream coming from
the camera and the hovering position sent by the TE block.
When an image is available, the block simply displays it or,
if it receives a message containing the hovering position from
the Touch Emulation block, a virtual marker is added to the
image.

The marker is represented by a black circle having radius
equal to a previously defined variable and it represents the
point that the finger is going to touch. The position of the tip
of the index is scaled to the screen range and converted into
pixels in order to have a direct correspondence. It is worth
noting that in this case, the position of the marker is simply
the normal projection of the fingertip on the screen, unlike
previous studies in which it was given by the intersection of
the plane and the pointing direction. This decision was made
to give the user the freedom to touch the screen not only using
the fingertip but also using the finger pad, which would lead to
project the virtual marker far from the fingertip if the pointing
direction was used.

3) Find Objects: The Find Object block receives the image
stream provided by the camera and a set of photos to be
recognised in the workspace. In particular, at setup time,
using the Qt based GUI provided by the find_object_2d
package, the user can load some objects that need to be
recognized in the form of locally stored images or taking
photos of the current workspace, as in this case. Note that
images of the simulated objects where used for recognition,
both in the simulated case and the experimental testing (further
details about the obtained results are available in Section IV).
As an object is recognised, a coloured polygon is drawn around
it and an unique numerical ID is assigned to it. Moreover, the
block generates in output a message containing the positions
of the recognised objects with respect to the whole image, as
soon as the application recognises a variation in the number
of recognised objects.

4) Touch Object: The Touch Object (TO) block receives as
input the data generated by the Find Objects and the Touch
Emulation blocks. In particular, when the message containing
the positions of the identified objects is published by the
Find Object block, the TO block stores the information in
an internal variable. Then, as a new message containing the
touch position is made available by the TE block, the TO

block verifies if the position of the tip of the index corresponds
to recognised object and, if the latter is true, it generates as
output a message containing the ID of the object that has
been touched. This information is then read by the robot and
used for the task execution. For simplicity, the condition to be
checked is considered to be satisfied if the index’s tip position
is inside the rectangle inscribed in the polygon.

IV. POINTAP INTERFACE – A CASE STUDY

In this section we report the results obtained during the
simulation and experimental validation. Consider that, given
the use of the ROS framework, the described PoinTap im-
plementation was valid for both the simulated case and the
experimental one: the ROS topics and nodes mechanisms
allowed for a smooth transition from the simulated case study
to the real one by simply substituting simulation nodes with
the ones needed to interface the real robot. As previously
anticipated, the envisioned use case sees the human operator
exploiting the PoinTap system in order to give high-level
commands to the manipulator in an assembly task. The idea
is that pieces are chosen following some criteria that the
manipulator is not able to evaluate (e.g., choices are influenced
by customized product requirements).

The human workspace was set up with an LCD screen posi-
tioned at a fixed pose with respect to the Leap Motion device.
For what concerns the robot workspace, twelve pieces were
placed around the robot along a horseshoe shape. Specifically,
the pieces used within the simulated environment (in Gazebo)
were reproduced as accurately as possible using cardboard, to
perform the experimental validation. As shown in Figure 6,
displayed objects were enclosed in coloured polygons, indi-
cating they were correctly recognized. In particular, Figure 6a
shows the twelve pieces in simulation, while Figure 6b reports
the corresponding configuration in the real-world scenario. The
pieces were numbered from 1 to 12 starting from the bottom-
left corner then moving clockwise, as the ID related to each
piece. As the human operator “point-tapped” the first object
on the touch-emulated screen, the feedback marker appeared
as shown in Figure 7.

Keeping in mind the structure in Figure 3, it is worth
pointing out that the simulated and real tests share the human
workspace configuration, the devices within it, and the core
PoinTap system including the robotic arm control and pick-
and-place planning nodes. Indeed, simulation only involved
the robot workspace and the devices within it, i.e., the robotic
arm and the camera.

First, the PoinTap system was tested within the simulated
environment. To perform the assembly task, two pieces were
selected by touching the screen and then, the simulated robot
picked and placed them in a dedicated space for the assembly
to happen. As soon as the first object (piece number 8, top-
right corner) was point-tapped by the operator and identified
by the system, the simulated Niryo One received the command
and performed the first pick-and-place operation, then waiting
for the second object to be touched (piece number 5, top-left
corner). As the second piece was recognized and selected by

(a) Visualisation of recognised objects in simulation.

(b) Visualisation of recognised objects in the real-world.

Fig. 6: Visualisation of the object recognition using the
find_object_2d GUI.

touching it, the robot grasped and placed it next to the previous
piece, as shown in Figure 8.

Then, with the aim of validating the algorithm, two different
pieces were point-tapped (hence, selected) by the operator to
let the real robot execute the operation. Considering the same
pieces’ configuration as in the simulation, the first object to be
grasped was piece number 5, followed by piece number 10,
as shown in Figure 9. The experimental validation results can
be seen at [27].

V. CONCLUSIONS AND FUTURE WORKS

In this paper an interface to remotely control a robotic
arm was presented, in particular for supervised pick-and-place
operations within an industrial assembly task.

The PoinTap system can enhance flexibility when a re-
organization of the assembly task is required. Indeed, the
sequence of objects to be assembled can be intuitively selected
by point-tapping the LCD screen, without the need of trained
operators. Furthermore, as pointed out, in an industrial envi-
ronment, human operators usually wear gloves for safety rea-

Fig. 7: Representation of immediate feedback (black circle)
used in this system, for the simulated case study.

Fig. 8: Representation of the completed assembly task in the
Gazebo world.

sons, so they are not able to interact with touchscreen devices:
our approach may overcome this limitation. Moreover, since
the proposed system has different functional blocks, the latters
can work independently from each other, and consequently
be substituted with other blocks whose functions are similar.
Besides, given the fact that pieces are recognized through
software, their shape is not relevant, as it is sufficient to train
the object recognition system.

It is worth mentioning that, since the touch panel distance
from the screen is tunable, PoinTap can be useful to avoid
touching the screen so as to improve hygienic conditions.
This is a topic of interest when considering health emergency
situations such as the one we have and are witnessing.

However, the system presents some weak points to be
subsequently addressed. First of all, hand-tracking sensors
have a limited field of view so, depending on the screen size,
two or more sensors may be needed in order to cover the
necessary surface for a correct TE implementation; the need
for an additional sensor would lead to further tuning in order
to perform data fusion. Moreover, since a monocular camera
was used to monitor the scene, it is not possible for the robot
to be aware of the actual position of each piece, and hence,
if some pieces are initially placed in positions different from
the expected ones, the robot may not be able to grasp them.

(a) The human operator point-taps the second piece for assembly.

(b) After the touched object is identified, the robot picks and places
it, to complete the assembly.

Fig. 9: Pick-and-place procedure in the real-world scenario.

The PoinTap system could be improved equipping the robot
workspace with additional vision sensors, with the aim of
retrieving the objects’ positions. This would allow to correctly
plan the needed trajectory to reach the object even if its posi-
tion is slightly different from the expected one. Such upgraded
vision system could also improve the robot accuracy and
precision when pieces are released. Additionally, depending
on the screen size, different positions for the hand-tracking
sensor could be evaluated in order to cover the largest possible
area and boost hand-tracking capabilities. Finally, to customize
the assembly task, the range of input commands could be
extended, e.g., enabling the rotation of pieces or adding the
possibility to cancel or abort an operation.

REFERENCES

[1] K. Krot and V. Kutia, “Intuitive methods of industrial robot program-
ming in advanced manufacturing systems,” in International Conference
on Intelligent Systems in Production Engineering and Maintenance.
Springer, 2018, pp. 205–214.

[2] H. Liu and L. Wang, “Remote human–robot collaboration: A cyber–
physical system application for hazard manufacturing environment,”
Journal of manufacturing systems, vol. 54, pp. 24–34, 2020.

[3] G. H. Lim, E. Pedrosa, F. Amaral, N. Lau, A. Pereira, P. Dias, J. L.
Azevedo, B. Cunha, and L. P. Reis, “Rich and robust human-robot
interaction on gesture recognition for assembly tasks,” in 2017 IEEE
International Conference on Autonomous Robot Systems and Competi-
tions (ICARSC). IEEE, 2017, pp. 159–164.

[4] B. Gleeson, K. MacLean, A. Haddadi, E. Croft, and J. Alcazar, “Gestures
for industry intuitive human-robot communication from human observa-
tion,” in 2013 8th ACM/IEEE International Conference on Human-Robot
Interaction (HRI). IEEE, 2013, pp. 349–356.

[5] A. Dünser, M. Lochner, U. Engelke, and D. R. Fernandez, “Visual and
manual control for human-robot teleoperation,” IEEE computer graphics
and applications, vol. 35, no. 3, pp. 22–32, 2015.

[6] J. Berg and S. Lu, “Review of interfaces for industrial human-robot
interaction,” Current Robotics Reports, vol. 1, no. 2, pp. 27–34, 2020.

[7] S. Bier, R. Li, and W. Wang, “A full-dimensional robot teleoperation
platform,” in 2020 11th International Conference on Mechanical and
Aerospace Engineering (ICMAE). IEEE, 2020, pp. 186–191.

[8] C. P. Quintero, R. Tatsambon, M. Gridseth, and M. Jägersand, “Visual
pointing gestures for bi-directional human robot interaction in a pick-
and-place task,” in 2015 24th IEEE International Symposium on Robot
and Human Interactive Communication (RO-MAN). IEEE, 2015, pp.
349–354.

[9] N. Kousi, C. Stoubos, C. Gkournelos, G. Michalos, and S. Makris,
“Enabling human robot interaction in flexible robotic assembly lines:
An augmented reality based software suite,” Procedia CIRP, vol. 81,
pp. 1429–1434, 2019.

[10] M. E. Walker, H. Hedayati, and D. Szafir, “Robot teleoperation with
augmented reality virtual surrogates,” in 2019 14th ACM/IEEE Interna-
tional Conference on Human-Robot Interaction (HRI). IEEE, 2019, pp.
202–210.

[11] A. Bonci, P. D. Cen Cheng, M. Indri, G. Nabissi, and F. Sibona,
“Human-robot perception in industrial environments: A survey,” Sensors,
vol. 21, no. 5, p. 1571, 2021.

[12] T. S. Kuthambalayan and S. Bera, “A review of the literature on mixed
make-to-stock/make-to-order production systems: major findings and
directions for future research,” International Journal of Services and
Operations Management, vol. 37, no. 3, pp. 372–406, 2020.

[13] M. Indri, L. Lachello, I. Lazzero, F. Sibona, and S. Trapani, “Smart
sensors applications for a new paradigm of a production line,” Sensors,
vol. 19, no. 3, p. 650, 2019.

[14] V. Annem, P. Rajendran, S. Thakar, and S. K. Gupta, “Towards remote
teleoperation of a semi-autonomous mobile manipulator system in
machine tending tasks,” in International Manufacturing Science and
Engineering Conference, vol. 58745. American Society of Mechanical
Engineers, 2019, p. V001T02A027.

[15] T. Stoyanov, R. Krug, A. Kiselev, D. Sun, and A. Loutfi, “Assisted tele-
manipulation: A stack-of-tasks approach to remote manipulator control,”
in 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2018, pp. 1–9.

[16] A. Singh, S. H. Seo, Y. Hashish, M. Nakane, J. E. Young, and A. Bunt,
“An interface for remote robotic manipulator control that reduces task
load and fatigue,” in 2013 IEEE RO-MAN. IEEE, 2013, pp. 738–743.

[17] Y. Tsukada and T. Hoshino, “Layered touch panel: the input device
with two touch panel layers,” in CHI’02 Extended Abstracts on Human
Factors in Computing Systems, 2002, pp. 584–585.

[18] “Robot operating system website,” Available online: http://wiki.ros.org.
[19] “Leap motion developer website,” Available online: https:

//developer-archive.leapmotion.com/documentation/v2/cpp/index.html
(accessed May 2021).

[20] “Webcam c210 specifications,” Available online: https://support.logi.
com/hc/en-au/articles/360023462133-C210-Technical-Specifications
(accessed May 2021).

[21] “find-object ROS package,” Available online: https://github.com/
introlab/find-object (accessed May 2021).

[22] M. Labbé, “Find-Object interface,” Available online: http://introlab.
github.io/find-object (accessed May 2021).

[23] “Opencv website,” Available online: https://opencv.org (accessed May
2021).

[24] “Gazebo website,” Available online: http://gazebosim.org (accessed May
2021).

[25] NIRYO, “Niryo one mechanical specifications,” 2018.
[26] “Raspberry pi website,” Available online: https://www.raspberrypi.org/

(accessed May 2021).
[27] “Experimental test video demo,” Available online: https://youtu.be/

7HvFw0sa3Lg.

