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Abstract—Ambient dispersed mechanical vibrations are a vi-
able energy source, that can be converted into usable electric
power. Ambient vibrations are random process, that can be
modeled by superposition of periodic signals. When most of the
energy is concentrated in a narrow frequency band, a single
periodic function may be a reasonable approximation. This work
shows that circuit theory, complemented with nonlinear dynamics
methods, are instrumental in designing efficient energy harvesters
for ambient mechanical vibrations. It is also shown that the
average extracted power can be maximized by a proper load
matching, and that the introduction of nonlinearities results in
a larger frequency bandwidth, increasing the efficiency of the
harvester at frequencies close to the resonance. Even for the
nonlinear harvester, the matched load boosts the performance
by a large amount.

RELEVANT NOMENCLATURE

Symbol Definition
q electrical charge
i current
ϕ flux linkage
e voltage
R resistance
G = 1/R conductance
L inductance
C capacitance
α electromechanical gain (N/V or As/m)
V̂ , Ê voltage phasor
Î current phasor
X , Y , Z reactance, admittance, impedance
Yin(ω), H(ω) transfer functions
ω angular frequency
Pout, Pin average powers
xrms root mean square of x
HB Harmonic Balance
x̆ vector of time samples of signal x(t)
x̃ vector of harmonic amplitudes of x(t)
Γ−1 DFT matrix operator
Ω time derivative matrix operator

I. INTRODUCTION

A. Motivation and Background

The rapid development of new technologies, e.g. the internet
of things paradigm, poses a whole set of new challenges:
Among others, the problem of how to supply power to
networks of electronic and electro-mechanical systems that
are not only miniaturized, but also wireless connected. Old
fashioned solutions, like disposable batteries, are not always a
valid solution, because of their limited power density, lifespan,
and for the related environmental hazards and problematic
disposal.

It is widely believed that systems able to scavenge energy
from the surrounding environment may become a viable al-
ternative [1]. Energy harvesting technology requires to design
electro-mechanical systems, able to collect the ambient energy
where and when necessary, being the ultimate power source
electromagnetic radiation, solar light, temperature gradients,
or mechanical vibrations. Among the many possible sources,
kinetic energy is perhaps the preferred one, because of its com-
paratively large power density and its widespread availability.
Kinetic energy exists in the form of mechanical vibrations,
regular or random displacements and driving forces. It can
be found in mechanical structures, due to impacts or periodic
motions, in buildings and bridges, due to traffic and wind, in
vehicles, due to road asperity and engine induced vibrations,
as well as in the very human body motion [2].

Irrespective of the working principle, energy harvesting
systems are limited by the relatively small power density
of the source, and by geometric constrains. For example, a
linear harvester must be carefully designed in such a way
that the oscillator’s resonant frequency matches the spectral
range of environmental vibrations where most of the energy is
concentrated. Unfortunately, the general rule is that the smaller
is the size of an object, the larger its resonant frequency will
be, making difficult the realization of energy harvesters that
are both miniaturized, and that work efficiently at the typical
frequencies of ambient mechanical vibrations.978-1-7281-7660-4/21/$31.00 2021 IEEE



B. Relevant Literature

A significant amount of recent literature suggests that non-
linear oscillators can perform better than linear ones [3]–[5].
When compared to their linear counterparts, nonlinear energy
harvesters show a wider steady-state frequency bandwidth and
may exhibit multi-stability and even chaotic dynamics, thus
suggesting that they can be more efficient especially in random
and non-stationary vibratory environments [6], [7].

C. Contributions and Organization

In this paper, we analyze a piezoelectric vibrational en-
ergy harvester subject to an external periodic force. First
(Section II), we derive the differential equations governing
the linear harvester’s dynamics using Lagrange formalism,
and piezoelectric material properties. Inspired by previous
works [8]–[13], in Section III we use circuit theory to show
that the condition for maximum power transfer cannot be
achieved using a simple resistive load, but a matched resistive-
reactive load must be used instead. For the nonlinear system
(Section IV), we use a spectral domain technique to analyze
the dynamic behavior, studying nonlinear resonances and the
main bifurcation phenomena. Our analysis shows that also
for the nonlinear system, the matched resistive-reactive load
offers significant advantages, both in terms of output power
and power efficiency, with respect to the purely resistive load.

II. PIEZOELECTRIC ENERGY HARVESTER: MODELLING

A piezoelectric energy harvester for ambient mechanical
vibration scavenging, is composed by three main parts: A
mechanical structure designed to capture the kinetic energy of
parasitic mechanical vibration; an electrical domain for electric
energy storage or electric power supply; and a piezoelectric
transducer, responsible for the mechanical-to-electrical energy
conversion.

A schematic representation of a piezoelectric energy har-
vester is shown in Fig. 1. The harvester is composed of a
cantilever beam, covered by layers of piezoelectric material
and fixed at one end to a moving support. An inertial mass m
can be placed at the opposite end, to increase the oscillation
amplitude. Vibrations of the support produce oscillations of
the cantilever, inducing mechanical stress and strain in the
piezoelectric material that are, in turn, converted into electrical
current by a transducer. Finally the electrical current is used
to supply power or recharge an electrical load.
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Fig. 1. Schematic representation of a piezoelectric energy harvester.

To devise an accurate mathematical model for the energy
harvester, the piezoelectric transducer is considered first. The
constitutive equations for a linear piezoelectric material are
[14] [

S
D

]
=

[
sE d

dt εT

] [
T
E

]
(1)

where S and T are the mechanical strain and stress (rank two
tensors), while D and E are the dielectric charge displacement
and electric field strength (rank one tensors), respectively. sE

is the compliance tensor, under the condition of a constant
electric field defined as strain generated per unit stress, d is
the tensor of piezoelectric charge constants (rank one tensors).
Finally εT is the absolute permittivity, e.g. the dielectric
displacement per unit electric field for constant stress [15]

The linear equations (1) describe the behavior of piezoelec-
tric material on a local scale, in terms of mechanical stress
and strain, electric charge displacement and electrical field
strength. A lumped parameter model can be derived in terms
of global state variables, e.g. forces, displacements, currents
and voltages, through spatial integration of the local variables.
The corresponding equations in the quasi–static regime are

Fm = c x− α e (2)

q = αx− C e (3)

where Fm is the force applied on the mechanical part due to
the electrical domain, x is the displacement, q is the electrical
charge and e is the voltage. For the parameters, c is the
mechanical stiffness, α is the electromechanical coupling (in
N/V or As/m), and C is the electrical capacitance of the
mechanical unconstrained system.

The governing equations for the mechanical and electrical
parts of the harvester, can be conveniently derived using the
framework of Lagrange dynamics. The Lagrangian for the
mechanical part is

Lm(x, ẋ) = Km(ẋ)− Um(x) =
1

2
mẋ2 − Um(x) (4)

where Km(ẋ) and Um(x) are the kinetic energy and the elastic
potential respectively. The corresponding Lagrange equation is

d

dt

∂Lm(x, ẋ)

∂ẋ
− ∂Lm(x, ẋ)

∂x
+
∂Dm(ẋ)

∂ẋ
= Fm + fm (5)

where Dm(ẋ) = 1
2γẋ

2 is the mechanical dissipation function
with damping coefficient γ, and fm(t) represents an external
force acting on the mechanical domain. If the stiffness of the
piezoelectric material is neglected, the equation of motion is

mẍ+ U ′(x) + γẋ = fm(t)− αe (6)

Exploiting electrical-mechanical analogies, e.g. the impedance
analogy, masses are replaced by inductances, elastic potentials
by capacitors1, damping by resistors, coordinates by charges,
and forces by voltages. Thus the following substitutions are

1For a linear elastic force with stiffness constant k, the substitution k →
1/C1 is made.



used: m → L1, x → q1, ẋ → q̇1 = i1, γ → R1, fm(t) →
vs(t), and equation (6) is rewritten as a system of first order
ODEs

dq1
dt

=i1 (7)

di1
dt

=− 1

L1
U ′(q1)− R1

L1
i1 −

α

L1
e+

vs
L1

(8)

The Lagrangian for the electrical part in flux coordinates is

Le(ϕ, ϕ̇) = W ∗c (ϕ̇)−Wi(ϕ) (9)

where ϕ is the flux linkage, W ∗c (ϕ̇) is the capacitive co-energy
stored in the capacitors, and Wi(ϕ) is the inductive energy
stored in the inductors. Considering that in flux coordinates
external forces are represented by currents, and taking the
time derivative of (3), the Lagrange equation for the electrical
domain is

d

dt

∂Le(ϕ, ϕ̇)

∂ϕ̇
− ∂Le(ϕ, ϕ̇)

∂ϕ
+
∂De(ϕ̇)

∂ϕ̇
= αẋ− Cė (10)

where De(ϕ̇) = 1
2Gϕ̇

2 is the electrical dissipative function
and G = 1/R is a conductance.
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Fig. 2. (a) Resistive load. (b) Resistive-inductive load.

Two different electrical representations of the harvester load
are considered: a purely resistive load and a resistive-reactive
(inductive) load, as shown in Fig. 2. For the resistive load,
W ∗c (ϕ̇) = 0 and Wi(ϕ) = 0, and the state equations are

dϕ

dt
=e (11)

de

dt
=− G

C
e+

α

C
i1 (12)

Conversely, for the resistive-reactive load W ∗c (ϕ̇) = 0, and
Wi(ϕ) = 1

2Lϕ
2, and the state equations become

dϕ

dt
=e (13)

de

dt
=− 1

LC
ϕ− G

C
e+

α

C
i1 (14)

Together with (7)-(8), equations (11)-(12) (respectively (13)-
(14)) define the dynamic behavior of the equivalent circuit
shown in Fig. 3, where the load is one of those shown in
Fig. 2.
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Fig. 3. Equivalent circuit for a piezoelectric energy harvester.

III. LINEAR HARVESTER: TRANSFER FUNCTION AND
MAXIMUM POWER

The equivalent circuit for a linear harvester is obtained
connecting linear two terminal elements. In particular, a
quadratic elastic potential U(x) = 1

2kx
2, where k is the elastic

constant, yields a linear elastic force F = kx that, according
to the mechanical-electrical analogy, is represented by a linear
capacitor with k → 1/C1 and v1 = q1/C1.

For the equivalent circuit in Fig. 3, at steady state in the
frequency domain, the governing equations are[

R1 + jX1 α
−α jωC + YL

] [
Î1
Ê

]
=

[
V̂s
0

]
(15)

where X1 = ωL1− 1/(ωC1) is the reactance of the left loop,
and YL is the load admittance. The relevant transfer functions
are

Yin(ω) =
Î1

V̂s
=

jωC + YL
(R1 + jX1)(jωC + YL) + α2

(16)

H(ω) =
Ê

V̂s
=

α

(R1 + jX1)(jωC + YL) + α2
(17)

Figure 4 shows a comparison of the transfer functions
H(ω) for the resistive and the resistive-inductive load. For
the resistive-reactive load, two different cases are considered:
On the left, the left loop and the right branches of the circuit
are tuned at the same resonant frequency ω0 = 1/

√
L1C1 =

1/
√
LC. On the right, the two parts are tuned at different

resonant frequencies. Parameters are normalized to yield a
resonance frequency of the left loop ω0 = 1/

√
L1C1 = 1

rad/s. The figure shows that a resistive-reactive load can be
used not only to increase the output voltage at the resonant
frequency, but also to increase the contribution from voltages
at nearby frequencies in the case of a multi-frequency input.

In the frequency domain, the average output power delivered
to the load is

Pout =
1

2
<[Ê Î?2 ] =

1

2
G|H(ω)|2|V̂s|2 (18)

where <[·] denotes the real part, and ? denotes complex
conjugate.

To determine the optimal load that maximizes the collected
power, consider the Thevenin equivalent circuit at the load
terminals. This is characterized by a Thevenin equivalent
voltage source

V̂eq =
α

α2 + jωC(R1 + jX1)
V̂s (19)
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Fig. 4. Transfer function H(ω) = Ê/V̂s for the equivalent circuit of Fig. 3.
Normalized parameters values are: R1 = 0.1 Ω, L1 = 0.4 H, C1 = 2.5 F,
α = 0.1, R = 10 Ω, C = 5 F. Left: L = 0.2 H. Right: L = 1 H.

and by the equivalent impedance

Zeq =
R1 + jX1

α2 + jωC(R1 + jX1)
(20)

Assuming that the left loop is tuned at the resonant frequency
ω0 = 1/

√
L1C1 implies X1 = 0 and

Zeq =
α2R1 − jω0CR

2
1

α4 + ω2
0C

2R2
1

(21)

Maximum power is transferred from the source to the load if
the load impedance is matched to Zeq , that is if ZL = Z?

eq .
Such a condition cannot be obtained if the load is a simple
resistor. Conversely, load matching can be achieved if the load
is composed by an inductor L connected in parallel with a
resistor R. Straightforward calculations show that maximum
power transfer2 is obtained for R = R1/α

2 and L = L1C1/C,
with the maximum power absorbed by the load

Pmax =
|V̂s|2

8R1
(22)

and the well know 50% power efficiency. Larger values for
the efficiency can be obtained, but renouncing to extract the
maximum power.

As it was suggested by Fig. 4, the matched RL load
increases the collected power over a wide frequency interval.
Figure 5 (left) shows the average output power given by (18),
versus the forcing frequency for both the matched RL load
and a purely resistive load. The average power delivered by
the source is

Pin(ω) =
1

2
<[V̂s Î

?
1 ] =

1

2
<[Yin(ω)] |V̂s|2 (23)

leading to the power efficiency

η(ω) =
Pout(ω)

Pin(ω)
=
G |H(ω)|2

<[Yin(ω)]
(24)

shown in the right part of Fig. 5.
It is clearly seen that for the matched RL load both the

maximum average output power and the maximum power

2In practical applications the load resistance RL may be fixed a priori and
could not be chosen at will. Technical solutions exist to obtain load matching
for fixed load. For the sake of clarity, we consider here only the simplest
situation.
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1.21.4

Power (W)
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Fig. 5. Left: Average output power vs frequency for the resistive and matched
RL loads. Right: power efficiency for the resistive and matched RL loads.
Normalized parameters values are: L = 0.2H, α = 0.4, R = R1/α2, and
Vs = 1V. Other parameters are the same as in figure 4.

efficiency are obtained at the same frequency (the resonant
frequency), whereas for the resistive load the efficiency de-
creases as the frequency is increased.

IV. NONLINEAR ENERGY HARVESTER ANALYSIS

It is believed that a nonlinear energy harvester may outper-
form linear ones, trading off the efficiency at the resonant fre-
quency for a larger bandwidth. An energy harvester is nonlin-
ear when nonlinear stiffness effects are taken into account, e.g.
when the elastic potential takes the form U(x) = ax2 + bx4,
where a and b are real valued parameters. In the system we
shall analyze, nonlinearity in the mechanical part is matched
in the load, connecting a nonlinear inductor, with flux linkage-
current characteristic iL(t) = 1

Lϕ + 1

L̃
ϕ3, in parallel with a

linear resistor, so that (13)-(14) are replaced by

dϕ

dt
= e (25)

de

dt
=
α

C
i1 −

1

LC
ϕ− 1

L̃C
ϕ3 − G

C
e (26)

Consequently, the governing equations become nonlinear, non-
autonomous differential equations, whose analysis is nontrivial
and requires an ad hoc technique.

A. The Harmonic Balance technique

Harmonic Balance (HB) is a powerful numerical technique
commonly exploited in many scientific areas, including elec-
tronic engineering, to efficiently tackle the direct determination
of periodic or quasi-periodic solutions of dynamical systems,
thus avoiding the computation of the transient part of the
solution altogether. Essentially, HB transforms the system dif-
ferential equations into an algebraic systems whose unknowns
are the coefficients of the Fourier series representing the
steady-state solution [16].

In order to introduce the notation first, a scalar real function
x(t) is considered, represented in the frequency domain by
means of a (truncated) exponential Fourier series

x(t) =

NH∑
h=−NH

x̃h e jhω0t (27)

where x̃h is the h-th harmonic amplitude associated to the
(angular) frequency hω0 = h2π/T (h-th harmonic). As x(t)



is real, x̃−h = x̃?h, so that the Fourier series is fully defined
by 2NH + 1 real coefficients. The numerical implementation
of HB is more effectively carried out replacing (27) by the
trigonometric series representation [17], however for theo-
retical developments the more compact exponential form is
preferred here.

After discretizing the ]0, T ] fundamental period with a
set of 2NH + 1 time samples tk (k = 1, . . . , 2NH +
1), the time sampled variable are collected into vec-
tor x̆ = [x(t1), x(t2), . . . , x(t2NH+1)]T, which in turn is
related to the collection of harmonic amplitudes x̃ =
[x̃−NH , x̃−NH+1, . . . , x̃0, . . . , x̃NH ]T by means of the discrete
Fourier transform (DFT) invertible linear operator Γ−1

x̆ = Γ−1x̃⇐⇒ x̃ = Γx̆. (28)

Clearly for NH → ∞, Γ−1 is the matrix representation of
the operator defining the Fourier series representation of a T -
periodic function.

In the frequency domain, for the exponential series a
diagonal matrix Ω ∈ C(2NH+1)×(2NH+1) proportional to ω0

represents the time derivative [16]

˜̇x = Γ˘̇x = Ωx̃ (29)

where α̇(t) = dα/dt.
Moving now to the vector case, considering x(t) ∈ Rn

(28) and (29) are easily generalized by expanding each time
sample α(ti) into a vector x(ti) ∈ Rn, whose collection be-
comes x̆ = [xT(t1),xT(t2), . . . ,xT(t2NH+1)]T ∈ Rn(2NH+1).
Correspondingly, the frequency domain representation is x̃ =
[x̃T
−NH

, . . . , x̃T
0, . . . , x̃

T
NH

]T ∈ Cn(2NH+1). In this way, equa-
tions (28) and (29) can formally be extended by defining two
block diagonal matrices Γ−1n and Ωn built replicating n times
the fundamental operators Γ−1 and Ω

x̆ = Γ−1n x̃ ˜̇x = Ωnx̃. (30)

Let us now apply these concepts to the case of a vector
dynamical system forced by a T -periodic source term s(t):

ẋ(t) = f(x(t)) + s(t) (31)

After time-sampling and DFT transformation, (31) becomes

Ωnx̃ = f̃(Γ−1n x̃) + s̃ (32)

where f̃ represents the collection of harmonic amplitudes for
the T periodic function f(x(t)).

Algebraic equation (32) can be solved numerically exploit-
ing the Newton algorithm, and specialized techniques have
also been developed for specific analyses, such as the stability
assessment of the resulting solution [17]–[20].

B. Nonlinear piezoelectric energy harvester analysis

The HB technique has been applied to analyze the nonlinear
energy harvester described by the ODE (7)-(8) (with U(q1) =
q1
C1

+
q31
C̃1

), and (25)-(26). To speed up the procedure, the HB
technique has been applied in conjunction with a continuation
method, using the solution for a certain value of the forcing

Fig. 6. r.m.s. value for the input current i1(t) (left) and the output voltage
e(t) (right) vs the forcing frequency. Blacks circles are asymptotically stable
solutions; red circles are unstable solution of saddle type; blue diamonds are
stable solutions for the resistive load case, shown for comparison. Parameters
are L̃ = 10 H V2s2, C̃1 = 10 F A2s2, α = 0.1, other parameters are the
same of figures 4-5. HB simulation performed with NH = 100 harmonics.

frequency as the initial condition for the Newton algorithm
applied to the following value of this parameter. It is worth
mentioning that another advantage of the HB is that it permits
to detect both stable and unstable solutions, including limit
cycle of saddle type that cannot be detected through numerical
integration, neither forward nor backward in time.

Figure 6 show the root mean square 3 (r.m.s.), value for the
input current i1(t) and the output voltage e(t), as functions
of the forcing frequency. It can be seen that the system
exhibits the following behavior: For small value of ω, there
is a unique, asymptotically stable periodic solution (black
circles). As the forcing frequency is increased, the r.m.s. values
increase, implying that the amplitude of the periodic solution
increases. At the critical value ωSN1

≈ 1.71 rad/s, a saddle
node bifurcation, identified by a Floquet multiplier equal to
one, occurs. Two new periodic solutions emerge: the smaller
is asymptotically stable, whereas the larger is unstable of
saddle type. At the critical frequency ωSN2

≈ 2 rad/s the
unstable solution and the large, stable periodic solution collide,
and disappear through a second saddle-node bifurcation. The
small, stable limit cycle remains as the unique solution. For the
sake of comparison, the r.m.s. values for the purely resistive
load are also shown. These values have been obtained through
numerical integration and averaging of equations (7)-(8) and
(11)-(12). It can be seen that, especially for the output voltage,
the matched RL load offers much better performance over a
wide frequency range.

The r.m.s. values of i1 and e allow for an easy calculation
of the average injected and extracted power. For the equivalent
circuit shown in Fig. 3, the average power transferred to the
load is

Pout =
G

T

∫ T

0

e(t)2 dt = Ge2rms (33)

3The r.m.s. value of a T -periodic function x(t) is defined as

xrms =

√
1

T

∫ T

0
[x(t)]2dt



Fig. 7. Average output power (left) and power efficiency (right) vs forcing
frequency. Black circles are for the matched RL load; blue diamonds are for
the resistive load. Parameters are the same of figure 6.

For the input power, using Tellegen’s theorem, we have

Pin =
1

T

∫ T

0

vs(t)i1(t) dt = R1i
2
1,rms +Ge2rms (34)

where we used the fact that the controlled sources do not
dissipate power, as they only transfer it from the left loop
to the right branches, and that reactive elements (inductors
and capacitors) do not absorb active power, but only reactive
power.

Figure 7 shows the average power transferred to the load (on
the left) and the power efficiency η = Pout/Pin as functions
of the forcing frequency. Both the matched RL load and the
purely resistive load are shown. It is evident that, for the
average output power, the matched RL load outperforms the
resistive load over a wide frequency band. Moreover, for these
parameter values, the maximum efficiency is achieved at the
resonant frequency, whereas for the resistive load the efficiency
is a decreasing function of the forcing frequency.

V. CONCLUSIONS

Ambient dispersed mechanical vibrations are a viable en-
ergy source, that can be converted into usable electrical power
using piezoelectric energy harvesters. In general, ambient
vibrations are random processes, that can be modeled as a
superposition of periodic functions, with random amplitudes
and frequencies. When most of the power is concentrated in
a narrow frequency band, however, a single periodic function
may be used as a reasonable approximation.

In this work, we have analyzed a piezoelectric energy
harvester subject to a periodic external force. The differential
equations describing the harvester’s dynamics have been de-
rived applying the Lagrange approach to electro-mechanical
systems, and an equivalent circuit model has been devised
exploiting mechanical-to-electrical analogies. Application of
circuit theory has allowed to prove that maximum power can
be transferred to the load by a proper load matching. In the
linear case, matching is obtained by connecting a reactive
element in parallel with a resistive load. Under resonant con-
ditions, the harvester becomes equivalent to a pair of coupled
oscillators, running at the same frequency. The well known
50% efficiency under maximum power transfer conditions is
achieved at the same resonant frequency.

For a nonlinear harvester, we have shown that the system
can be efficiently analyzed applying a frequency domain

technique, namely the harmonic balance. The occurrence of
nonlinear resonance and bifurcation phenomena has been illus-
trated and analyzed. Similarly to the linear case, modification
of the load with a reactive component increases the average
power transferred to the load and the power efficiency with
respect to the simple resistive load case.
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