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Summary  

Prognostics and Health Management (PHM) is an emerging field that aims to 

determine the Remaining Useful Life (RUL) of systems, in order to plan in advance 

the required maintenance interventions. Currently, components are replaced at the 

end of their design life, which is the result of a tradeoff between maintenance costs 

and reliability and availability requirements. With a PHM approach, it will  be 

possible to schedule replacements accounting for the actual condition of the system, 

without decommissioning operable equipment or flying with worn components. In 

addition, prognostics performed in real-time may allow adapting the operational 

envelope of a vehicle adaptively, in order to increase the system life without 

jeopardizing the success of the mission. 

Most approaches to failure prognosis available in literature require a significant 

computational burden, not suitable for real-time computations, and are 

characterized by a large uncertainty associated to the RUL prediction. This in part 

is due to the inherent unpredictability of the propagation rate of damages, which is 

influenced by several variables that cannot be controlled nor measured; another 

source of uncertainty lies in the errors associated with the fault detection processes.  

This study addresses these limitations and provides a comprehensive 

computational framework for fast and reliable RUL prediction. Physics-based 

models of the system dynamics are combined with supervised and unsupervised 

machine learning to obtain surrogate representations of the equipment and allow 

for real-time evaluations. The method is tested on the RUL prediction task of an 

electromechanical actuator for aircraft flight controls. This is a challenging and 

representative case study as flight controls are complex subsystems of a vehicle that 

involve the interaction between a number of heterogeneous disciplines, such as 

mechanics, electronics, fluid dynamics and control theory. Multiple fault modes can 

affect an actuator at the same time and influence each other, making the fault 

detection and RUL prediction tasks difficult. Highly detailed physics-based 



simulations are employed as a simulated test bench for the PHM algorithms. An 

experimental validation of the numerical models is provided by a physical 

electromechanical actuator test rig. 

Additionally, innovative sensor technology is discussed as a promising 

candidate to collect some of the required input data for the prognostic process. 

Specifically, precise measurements of in-flight aerodynamic loads on the flight 

control actuators are required for on-board prognostics as they influence 

significantly the response of the flight control system. Often this information is not 

available as it cannot be measured reliably and conveniently with traditional 

technologies. Optical sensors are considered for the task as they permit to achieve 

high frequency, accurate measurements with a good spatial resolution and a 

minimally invasive installation. 
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Chapter 1 

Introduction  

The complexity of aerospace systems is increasing steadily, as next generation 

platforms are developed and enter the market. As a result, the design and operation 

of the vehicle relies on the integration of a multitude of heterogeneous components 

interacting with each other. Each piece of equipment within the system is 

characterized by its own failure modes, and its malfunction influences the operation 

of the system as a whole, in ways that may be difficult to predict. This makes the 

troubleshooting tasks difficult and time expensive, and ultimately yields to worsen 

the reliability and availability of the aerospace platform. 

Traditionally, the approach to system safety and reliability relies on scheduling 

the maintenance intervention a priori: the periodical maintenance intervals are 

determined statically during the design phase, analysing the failure rate of the 

involved equipment [1, 2, 3]. The uncertainty associated to this approach is large, 

as two identical components subject to the same mission profile may fail at very 

different times. Then, the maintenance intervals are determined as a tradeoff 

between the risk of flying a damaged component and that of replacing equipment 

that is still operable. To mitigate the risk associated to failure of safety-critical 

equipment, redundancies are employed at component or system level [4, 5]; as a 

drawback, basic reliability and weight are worsened. 

Advances in Prognostics and Health Management (PHM) disciplines permit to 

monitor continuously the actual health condition of components and estimate their 

Remaining Useful Life (RUL) [6, 7, 8]. This information is leveraged by newer 

methods for product life-cycle management like Condition Based Maintenance 

(CBM) [9, 10, 11] and Integrated Vehicle health Management (IVHM) [12, 13, 14] 

to plan the maintenance interventions in an optimal way, to increase the mission 

reliability of the vehicle, and to reduce costs related to the operation of the fleet. 

Then, a significant research effort is focused on giving to next generation system 

the capability to diagnose their damages and faults in advance and predicting the 

RUL during operations, autonomously. This skill permits the replacement of 

components only when actually necessary, avoiding additional downtime on 
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systems that are still operable, and allows to reconfigure the mission profile of the 

vehicle dynamically in order to ensure a longer and safer system life [15, 16]. 

Most PHM strategies available in literature rely either on a model-based 

approach (i.e. employing physics-based models of the monitored systems) or on a 

data-driven one. Tinga and Loendersloot [17] provide a review of model-based 

strategies for prognostics. In [18] a model of spacecraft dynamics is compared 

against the measured attitude of a satellite to identify faults in the Attitude 

Determination and Control System (ADCS). A similar approach is leveraged by 

Henry et al. in [19]. Battipede et al. [20] discuss a model-based diagnostic strategy 

that analyses the output of an actuator through Fast Fourier Transform (FFT). A 

structured residual between a digital twin and the system response is employed in 

[21] to determine faults of industrial compressors. Shi et al. [22] employ particle 

filtering to perform failure prognosis on electrohydrostatic actuators. In [23], Huang 

et al. present a review of data-driven prognostic strategies. Bektas et al. [24] propose 

a neural network framework for similarity-based prognostics. An Extreme Learning 

Machine is leveraged in [25] for condition monitoring of wind power equipment. 

In [26] a neural network is employed for fault detection of an aircraft 

electromechanical actuator. In [27], RUL prediction of milling machine cutting 

tools is performed employing autoregressive integrated moving average (ARIMA). 

A similar case study is addressed in [28] employing Deep Learning. Usually, 

model-based strategies need long computational times and significant hardware 

resources, so they are not suitable for real-time execution. On the contrary, data-

driven approaches require large training datasets, which are impractical to collect 

from experimental or field data. For example, critical but uncommon failure modes 

tend to be underrepresented in field data, but they must be accounted for by 

prognostic algorithm. 

This study discusses a computational framework for a nearly real-time 

prediction of the Remaining Useful Life of dynamical assemblies, initially proposed 

by Berri et al. in [29, 30]. The input consists in the measurements taken from sensors 

installed on the system, either for feedback or for diagnostic purposes; these data 

can be of various nature and depend on the specific characteristics of the monitored 

equipment. Examples are the currents and voltages applied to an electrical circuit, 

speed and position of an actuator or pressure, torque produced by a motor, flow rate 

and temperature of hydraulic fluid. The procedure is characterized by the 

combination of an optimal signal compression method with reduced order 

modelling and machine learning algorithms. This way a computationally efficient 

map that permits to associate the sensor measurements to a prediction of the 

systemôs RUL is built offline. As a result, the storage and processing power 

necessary for the real-time RUL prediction is reduced dramatically, even 

accounting for the time and hardware constraints usually associated to on-board 

computations. The proposed approach involves surrogate models of the system that 

are trained offline: these models are used online in order to reduce the 

computational burden, which is required for the diagnosis of the actual system 

health status and for the failure prognosis. In addition, the dimensionality of the 

problem is reduced by learning online an informative compression mask, which 
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allows to store and process online only a limited set of informative signal 

components, without compromising accuracy. 

In this study, the actuators for aircraft Flight Control Systems (FCSs) are taken 

into account for the application of the proposed methodology. FCSs are among the 

most critical systems of an aircraft, since their failure may result, in extreme 

scenarios, in the impossibility to control the vehicle, with obvious safety concerns. 

For this reason, monitoring the health status of the FCSs is very important because 

it can produce substantial progresses in terms of operating costs, aircraft 

performance, mission reliability and even ease requirements on system 

redundancies. 

The problem of FCS prognostics is intrinsically challenging: different 

disciplines interact in describing the model of FCS equipment; to guarantee the 

operation of the system, electrical/electronics, mechanical, aerodynamic, structural 

and  hydraulic subsystems need to work concurrently. The dimensionality of the 

FDI problem is a result of the large amount of the possible failure modes. Different 

faults may hide each other, or may have similar effects to that they are easily 

misidentified. Additionally, specific environmental or operating conditions can 

trigger false positive fault detections. Then, the specific test case of flight control 

actuators is an interesting one for the demonstration of the proposed computational 

framework. 

1.1 Problem formulation 

Usually the PHM process includes three tasks, namely signal measurement and 

feature extraction, Fault Detection and Identification (FDI), and prediction of 

Remaining Useful Life (RUL), as shown in Figure 1. 

In the signal measurement and feature extraction task, the output signals of the 

system are measured with a uniform acquisition frequency; they can be stored as 

time-series, or statistical features can be extracted such as moving averages, 

variance and skewness of the data. The monitored quantities shall be sensitive to 

the possible presence of incipient faults, and only marginally affected by changes 

 

 

Figure 1.1: Common PHM flow. 
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in the operating conditions of the system. In the FDI task, the output of the previous 

phase is processed and analysed in search of the early signs of damage to determine 

the actual health status of the components. Eventually, in the RUL prediction task, 

the current condition of the system is employed as a starting point for the failure 

prognosis, i.e. to inform an estimate of the RUL of the system. 

Traditionally, only the signal measurement and feature extraction task is 

performed online, as the computational burden required by FDI and RUL prediction 

is usually too high. The signal acquisition consists in acquiring a set of signals 

ώ▓ȟὸ, sampled with a constant frequency dependent on the capability of the 

hardware and on the characteristics of the information that shall be captured. The 

signals can be then resampled as a function of other parameters ὼ of the system in 

order to obtain and informative map ώ▓ȟὼ, which can be stored in vector form 

◐▓. This vector can be high dimensional and cumbersome to store and process; 

for this reason, the FDI and RUL prediction tasks are usually performed offline. In 

this work, this issue is addressed by finding a compressed representation of ◐▓ to 

reduce the dimensionality of the FDI task. 

The informative map ◐▓ is processed in the FDI to obtain an estimate of the 

current health status of the system. Several FDI approaches are model-based: they 

rely on physics-based models of the monitored equipment and compare their output 

to that measured from the physical equipment. For example, Freeman et al. [31] 

compute the residual between a model of aircraft dynamics and the actual response 

of the vehicle; this residual is analysed by a statistical algorithm to detect anomalies. 

In [32], a similar strategy is employed to detect flight control actuator faults on a 

small UAS; this strategy relies on the analysis of the fault effect at vehicle level; 

then, small, incipient damages are hardly identifiable. Meng et al. [33] propose to 

use a Kalman filter for model-based FDI of wind turbines. In these approaches, the 

FDI task is formalised as an optimisation problem whose solution is the fault 

condition ▓ that minimizes the discrepancies between the output ◐ measured from 

the physical equipment and that of a model sensitive to the health condition ◐ ▓: 

▓ ÁÒÇÍÉÎ
▓
Ὡὶὶ◐ ◐ ▓  (1.1) 

where, in general, the error Ὡὶὶ◐ ◐ ▓  is a monotonically increasing 

function of ᴁ◐ ◐ ▓ᴁ. The specific norm ᴁϽᴁ to be employed depends on the 

peculiar characteristic of each individual application. Under this assumption, Ὡὶὶ 

has a global minimum where ◐  is the best possible approximation of ◐. In this 

condition, the vector ▓ can be assumed as a good representation of the actual health 

of the system. The If a purely physics-based approach is used, the computation of 

the model ◐ ▓ can be expensive; the use of an optimization algorithm to solve 

the problem of Equation (1.1) requires to evaluate this model iteratively until 

convergence, and yields a computational effort that is not suitable for real-time, on-

board FDI. In addition, the choice of an optimal error function may be challenging. 

On the contrary, data-driven algorithms allow for faster online computations, but 

require to learn surrogate models offline from large datasets that are often not 

available: their collection may require several thousands of hours of system 
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operation in nominal and faulty conditions, and can be obtained only after the 

system has entered service [34]. The output of the FDI task is an estimate of the 

health condition ▓ to be used for the prediction of Remaining Useful Life. 

The RUL of a system can be defined as the residual time before a failure occur; 

the term failure means the inability of the system to meet its functional or 

performance requirements [35, 36]. Formally, we can define a function ‰ ▓ for 

the assessment of the system health [37]; ‰  is a binary classifier that compute the 

residual performance of the system under the effect of the faults ▓ and compares it 

to the applicable requirements. If the requirements are still met, a ͼÈÅÁÌÔÈÙͼ label 

is assigned to ▓, otherwise a ͼÆÁÕÌÔÙͼ label. Then, the RUL prediction problem can 

be written as: 

ὙὟὒÍÉÎὸ 
ÓȢÔȢ     ‰ Ὧὸ ͼÆÁÕÌÔÙͼ 

(1.2) 

assuming that the current time is ὸ π. In the traditional approach to system 

lifecycle management, the life of a piece of equipment is computed in the design 

cycle, as a combination of the failure rates of individual components. This kind of 

estimate has a very large uncertainty margin, as two identical parts may age 

differently and fail at different times. On the contrary, PHM methods rely on a RUL 

prediction performed during the operation of the system, accounting for its actual 

operating condition and health status. In order to obtain a RUL estimate, most 

approaches to failure prognosis either extrapolate the observed fault propagation 

rate [38] or evaluate a model of damage growth until the health condition ▓ reaches 

a failure threshold. In [39], a semi-markov model is combined with the Maximum 

Likelihood Estimation (MLE) method to infer a damage propagation model. Jacazio 

et al. [40] propose the use of Particle Filtering to predict the RUL. Li et al. [41] 

combine Particle Filtering with Canonical Variate Analysis (CVA) and 

Exponentially Weighted Moving Average (EWMA) for failure prognosis of 

industrial rotating machinery. Usually, the main limitations that characterize PHM 

strategies available in literature are related to the sensitivity to structured 

uncertainties (i.e. uncertainties associated to the parameters of the system model) 

and unstructured uncertainties (i.e. uncertainties associated to phenomena neglected 

by the system modes) affecting both the FDI and the model of damage propagation. 

In addition, the failure threshold is often set independently on each failure mode: 

however, when multiple faults interact in a complex system, the failure can happen 

before any individual fault mode reaches a critical value. Eventually, the 

computational time required for failure prognosis is usually not suitable for real-

time computations. 

This study attempts to address these limitations by proposing a comprehensive 

PHM framework to move the whole FDI and RUL prediction process on-board the 

vehicle. This is made possible by the use of surrogate models of the system response 

to faults, which are trained offline and evaluated online to speed up the 

computations and meet real-time constraints. 
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Chapter 2 

Proposed methodology 

The proposed methodology addresses the three phases of the general 

Prognostics and Health Management (PHM) problem described in Section 1.1. A 

combination of model-based and machine learning techniques is employed to 

reduce the computational burden associated with each phase of the process and 

speed up the estimation of the Remaining Useful Life (RUL). The purpose is to 

achieve a nearly real-time evaluation of the system RUL: such information can be 

employed to inform maintenance planning and possibly a dynamic reconfiguration 

of the mission, accounting for the residual capabilities of the equipment. 

The block diagram of Figure 2.1 depicts the high-level structure of the proposed 

PHM strategy, highlighting the subdivision of each phase in an offline training and 

an online evaluation; the information flow between the different blocks is shown as 

well. 

At first, information about the system behavior, both in nominal conditions and 

in presence of faults, is collected in a training dataset. The source of training data 

can be either an experimental campaign, a physics-based simulation of the 

equipment (calibrated and validated with respect to the response of the actual 

physical system), historical records of field data, or a combination of the three. 

Generally speaking, high-fidelity data collected from actual hardware is to be 

preferred, but often the amount of information required for training successfully the 

machine learning tools is not available; then, high fidelity data may be integrated 

with synthetic data computed with a simulation model. Specifically, for the 

proposed methodology, the following information is required: 

¶ A set of fault combinations, sampled in the space of the considered fault 

parameters. The number of fault combinations, as well as the particular 

sampling criterion, are problem dependent. For the application discussed in 

this manuscript, a particular importance sampling technique is employed. A 

detailed description is provided and discussed in Section 2.1. 

¶ A set of informative maps of the system behavior, associated to each of the 

aforementioned fault combinations. These maps shall be measurable with 

the available sensors installed on the system, and shall be highly dependent 

on the health condition of components; at the same time, dependency on 

operating and environmental conditions shall be reduced as possible. 

¶ A set of Boolean values associated to each sampled fault combination, 

determining whether or not that specific health condition is still compliant 

with the requirements of the system. This information can be collected by 

evaluating an assessment function, as proposed in [37]. 
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Figure 2.1: Block diagram of the proposed PHM strategy, highlighting the offline/online 

arrangement of each phase. 

After the training dataset is collected, a compression map is determined offline 

to reduce the amount of data to be measured, stored and processed in real-time. A 

two-step signal compression, initially proposed by [42] and successfully 

demonstrated for structural health monitoring problems, is leveraged. The first step 

of compression employs Proper Orthogonal Decomposition (POD) to determine the 

informative principal components of the system behavior maps from the training 

set. Then, a Self-Organizing Map (SOM) yields a nonlinear projection of the 

principal components to a set of optimal locations for real-time measurement. 

Online, only those locations are considered for measurement of the system behavior 

map, thus reducing the required processing for FDI and RUL estimation. Most of 

the information of the complete system behavior map is reconstructed in real time 

via Gappy POD: as demonstrated in [29, 30], this results in a significantly improved 

computational time with respect to measuring the whole map. 

After reconstruction via Gappy POD, the retained information from the system 

behavior map is encoded in a set of coefficients associated to the principal 

components of the measurements. A Multi-Layer Perceptron (MLP) is trained 

offline to associate the POD coefficients of the training set to the corresponding 

fault combination. Online, the POD coefficients estimated from the real-time 

measurements are fed to the trained MLP in evaluation: the output of the neural 

network constitutes an estimate for the actual health condition of the system. 
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The estimated health condition is employed as a starting point to determine the 

RUL of the system. To do so, a model for the propagation of faults is integrated 

with respect to time. In order to reduce the sensitivity of the RUL estimate to the 

uncertainty in FDI, all the last known health conditions are accounted for. A filter 

based on a dynamical estimator, similar to a Kalman Filter, is employed to combine 

the information from FDI with the known model of damage propagation, and to 

extrapolate the time evolution of the health condition until a failure happens [43]. 

The stopping criterion for the extrapolation is the assessment function for the 

system [37]; however, the computational cost is excessive and not suitable for real-

time computation. Then, a Support Vector Machine (SVM) is trained offline as a 

surrogate assessment function to speed up computations online. 

Several approaches available in literature, based e.g. on AutoAssociative 

Kernel Regression [44] or Principal Component Analysis [45] build fault detection 

models considering only nominal condition data. The proposed method builds the 

fault detection models considering data both from nominal condition systems and 

from faulty systems. This approach has the advantage of providing information not 

only about the magnitude of the deviation from a nominal state, but also about the 

specific fault modes detected in the equipment: this may ease the failure prognosis 

process, as well as the troubleshooting tasks needed to correct faulty subsystems. 

As a downside, a more demanding, but still feasible, data collection is required. 

In this manuscript, Section 2.1 describes the particular importance sampling 

criterion employed for the training set; Section 2.2 details the signal acquisition and 

two-step compression; the FDI process employing MLPs is discussed in Section 

2.3; eventually, Section 2.4 describes the RUL estimation algorithm. 

2.1 Acquisition of a training dataset via particular 

importance sampling 

The machine learning tools employed for the three phases of the PHM process 

require data-driven knowledge about the behavior of the equipment in nominal and 

off-nominal conditions. This information is collected with the acquisition of a 

training dataset, employed offline to train the surrogate models used through the 

whole PHM strategy. 

Specifically, three sets of data are collected, arranged into three matrices. 

¶ A matrix of fault combinations + ▓ȟȣȟ▓ . Each row ▓ of this 

matrix is a ὲ-dimensional vector encoding in its components the health 

condition of the system or, in other words, a set of parameters related to the 

state of the considered progressive damages. The components of Ὧ may be 

physical quantities related to the level of wear of components of the system: 

for example, the backlash or friction coefficient between two mechanical 

components, the resistance of an electric connector, the thermal 

conductivity of the heat sink of a circuit board. Since small, incipient faults 

are considered for prognostic interest, the drift of a fault combination from 

the nominal condition does not result immediately in a failure: the system 
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may still be able to meet its performance requirements for some time before 

failing. 

¶ A matrix of informative behavior maps of the system 9 ◐ȟȣȟ◐ . 

Each column vector ◐ ◐▓ ώȟȣȟώ  encodes the behavior of the 

system associated to the Ὥ-th fault combination ▓. The vectors ◐ are given 

combinations of measurable operating parameters from the system, 

expressed as a function of another parameter ●: for example, ● can be a time 

coordinate, the output position or speed of an actuator, or the external load 

on a control surface. The particular behavior maps chosen for an application 

are strongly problem dependent. The requirements for the chosen quantities 

are that (1) they can be derived from data available from sensors installed 

on the equipment and (2) they are highly sensitive to the health condition of 

the system, and marginally influenced by operating and environmental 

conditions. 

¶ A matrix of values of a function for health condition assessment ɮ

‰ȟȟȣȟ‰ȟ . The assessment function ‰ȟ ‰ ▓  associates to the 

fault combination ▓ a Boolean value expressing whether or not the 

considered system, affected by that fault combination, is still compliant to 

its requirements. Traditionally, common approaches to PHM employ a 

simple threshold for the individual fault parameters; however, this method 

is not able to consider accurately the combined effect of multiple fault 

modes, so a model-based approach is preferred. 

The matrix + is sampled in the space of fault combinations. The sampling 

method used for a specific application is problem dependent. For prognostic 

applications, the specific interest is to capture the behavior of the system in presence 

of the early precursors of incipient faults. Indeed, the faults shall be identified in 

advance of the actual failure, early enough to plan corrective actions. Then, the 

training dataset shall allocate a relatively high number of samples for small faults, 

i.e. for fault vectors ▓ near to the nominal condition ▓ . For this reason, a 

particular importance sampling is adopted in this work. 

Being the space of fault combinations relatively high dimensional, if a sampling 

with uniform probability distribution was to be employed, either a prohibitively 

large number of samples would be required, or the resultant density of samples 

would be very low. For example, let the fault combination be ▓ an eight-

dimensional vector (i.e. ὲ ψ), its components normalized between 0 and 1, and 

let the nominal condition ▓  coincides with the origin of a Cartesian reference 

frame. The acceptable sampling space is an eight-dimensional hypercube with unit 

side; its (hyper)volume is ρ ρ. For comparison, the volume of the eight-

dimensional hypercube with half unit side is πȢυ σȢωϽρπ, or that of the locus 

of points with positive coordinates whose distance from the origin is less than 1 is: 

πȢυϽ“ πȢπρς (2.1) 

that is, only 1.2% of the total fault combinations have a Euclidean distance from 

the origin less than 1. Therefore, a uniform sampling distribution is not a viable 

option to achieve a good density near the nominal condition. To obtain a better 
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distribution for the samples, and assign more weight to health conditions close to 

the nominal one, we employ a standard Latin Hypercube sampling [46, 47, 48, 49]  

on an auxiliary set of variables, whose space is mapped to the space of the fault 

parameters via a nonlinear projection. At first, the auxiliary matrix *, ὲ-by-ὲ 

dimensional, is built as a standard Latin Hypercube sample. The elements of the 

fault matrix + are then computed as a nonlinear projection of *; at this purpose, in 

this work we employ the function: 

+ *  (2.2) 

It is possible to prove that a uniform distribution of the ὒ  norm of ὑ is 

obtained this way. Specifically, let us consider the rows *ȟȡ contained in the matrix 

*, such that: 

ὒ *ȟȡ ὰ (2.3) 

where π ὰ ρ. These rows encode the coordinates of the points contained in a 

hypercube with side length ὰ, in the space of the auxiliary variables. Being * a Latin 

Hypercube sample, its rows have a uniform the distribution; the number of points 

that satisfy the condition of Equation (2.3) is approximately: 

ὲὰ  (2.4) 

where ὲ is the total number of points (i.e. rows of the matrix). These points are 

mapped to the space of the fault combinations ▓ that are contained in the hypercube 

with side length ὰ . Then, the corresponding rows of + are subject to the condition: 

ὒ +ȟȡ ὰ  (2.5) 

that is, for any given positive scalar ὥ, the number of points such that ὒ +ȟȡ ὥ 

is proportional to ὥ, thus achieving a uniform distribution in the ὒ  of the sampling 

points, that is, an increasing density in the individual coordinates towards the origin. 

A graphical interpretation of the behavior of this sampling technique is shown in 

Figure 2.2, where a standard Latin Hypercube is compared to the proposed 

importance sampling method. 

After the matrix + is determined, 9 and ɮ are obtained using physics-based 

models of the system, and evaluating those models for each fault combination ▓. 

2.2 Signal Acquisition, Feature extraction and 

Compression 

The system behavior maps ◐● contained in the training dataset are usually 

quite high-dimensional. Considering for example the application presented in this 

work, if employing the back-EMF coefficient of the motor as the map ◐, expressed 

as a function of the rotor angle ●, to identify electrical faults, the voltages, currents, 

rotor angle and speed shall be measured and acquired with a high frequency (at least 

one order of magnitude above the commutation frequency of the motor, so typically 

in in excess of 10kHz). 
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Figure 2.2: Behavior of the proposed importance sampling in two dimensions. (a) standard 

Latin Hypercube sampling; (b) importance sampling. The proposed importance sampling increases 

the density of data points near the origin. 

This results in large amounts of data to store and process in real-time: assuming 

to allocate 16 bits for each signal, this approach generates a data stream in excess 

of 1Mbps. The system behavior map reconstructed from this data is, in turn, high-

dimensional, and encoded in an ὲ-dimensional vector ◐. To process this data 

stream in real-time without some kind of compression would require substantial on-

board hardware resources, that are prohibitive for health monitoring purposes. 

Hence, an efficient method to reduce the amount of data is required. In this 

work, a two steps signal compression is employed, combining Proper Orthogonal 

Decomposition (POD) with Self-Organizing Maps (SOMs) to determine offline an 

optimal set of ὲ Ḻὲ informative locations in which the system behavior maps 

are measured and processed. The method was initially developed by Mainini and 

Willcox [42, 50], and verified for structural health monitoring applications. Berri et 

al. demonstrated the application to actuator diagnostics in [29, 51]. 

Specifically, offline a set of informative locations (also referred to as a 

compression mask) is determined for measurement and processing of the system 

behavior map. Online, this compression mask is employed to speed up real-time 

computations; most of the information of the whole system map is recovered via 

Gappy POD. 

2.2.1 Offline 

In the offline step of the compression, the aim is to determine an efficient 

compression mask for the system output ◐●, in the form of a set of informative 

locations in ● where the observation ◐ is measured, stored and processed. The 

method developed in [51] is employed. The compression strategy includes two 

steps: (1) at first, Proper Orthogonal Decomposition (POD) identifies a linear 

projection of 9 to the space of its principal modes; (2) then, a Self-Organizing Map 

performs a nonlinear projection of the dominant POD modes to the space of the 
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weight vectors of the map. As a result, this procedure allows embedding physics-

based knowledge in the signal processing, and obtaining an optimal compression 

mask to retain the significant information about the system. This dramatically 

reduces the amount of data to be processed in real-time. 

The following Paragraphs describe respectively the first step of compression 

employing POD, and the SOM leveraged to obtain the optimal compression mask. 

2.2.2 First step of compression: Proper Orthogonal Decomposition 

(POD) 

This phase of the PHM process aims at computing a reduced representation of 

the system behavior map, identifying its most informative components. The input 

of this step is the matrix of informative behavior maps of the system 9

◐ȟȣȟ◐ , obtained in Section 2.1. The output is represented by the POD modes, 

that is, the principal directions of variation of the system behavior ◐. 

Proper Orthogonal Decomposition (POD) [52, 53] is a numerical procedure 

closely related to Principal Component Analysis (PCA) [45] and commonly 

employed to find compressed representation and reduced models, by identifying 

underlying structures of possibly correlated data. While PCA is often employed in 

statistics for finitely dimensional data, POD is commonly used in several fields of 

engineering, such as: fluid-dynamics, structural mechanics, and signal processing. 

Its formulation, based on the Karhunen-Loeve expansion, guarantees that the 

compressed representation of the data is optimal in the least squares sense and 

retains the structure of the underlying physical phenomena [54]. For example, in 

[55] POD is employed to obtain surrogates of nonlinear dynamical systems for 

model-based control. Walton et al. [56] combine POD and radial basis functions to 

obtain reduced order models of unsteady fluid flows. Willcox and Peraire [57] 

employ Proper Orthogonal Decomposition to perform a balanced reduction of high-

order linear systems. In [58], POD is used to obtain a dynamical characterization 

and order reduction of linear and nonlinear dynamical systems. 

POD is applied to the matrix 9 with the method of Snapshots [54]. The observed 

system outputs ◐ (snapshots) are arranged into the columns of 9ɴ ᴙ , and 

Singular Value Decomposition (SVD) is leveraged to find two orthogonal matrices 

5ᶰᴙ  and 6ᶰᴙ  and a diagonal matrix ɫɴ ᴙ  such that: 

9 5ɫ6  (2.6) 

An important property of SVD states that the first ὲ columns of 5

○ȣ○  constitute an orthonormal basis for the columns of 9. As a result, a 

generic observation of the system ◐ can be written as the linear superposition of 

the modes ○, weighted by the coefficients ‌: 

◐ ◐ ‌ȟ○ 

(2.7) 

where ◐ is a baseline observation, e.g. the average of all the individual 

observations. The POD modes ○ are optimal in a least squares sense, and are 
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ordered according to the associated eigenvalues ‗. In a geometrical interpretation 

of POD, the observations ◐ are represented as data points in the ὲ-dimensional 

space; the POD modes are the principal directions of variation of the observation, 

i.e. the principal axes of an ὲ-dimensional ellipsoid fitted over the distribution of 

the data points. The length of each axis is the eigenvalue associated to that mode, 

and provides a measure of the dispersion of the observations in that direction. The 

modes associated to the largest eigenvalues then explain most of the variability of 

the data; as a result, a compressed representation of the observations ώ can be 

achieved by truncating the POD expansion of Equation (2.7) to the first ὲ  modes: 

◐ ◐ ‌ȟ○ 

(2.8) 

with ὲ Ḻὲ. The fraction of information of the original observation set retained 

by this representation is related to the cumulative sum „ of the eigenvalues 

associated to the retained modes: 

„
В ‗

В ‗
 

(2.9) 

If the eigenvalues decay fast, i.e. if „ is already close to 100% for a small ὲ , 

the compression provided by Equation (2.8) retains most of the original information 

within a limited set of parameters (i.e. the POD coefficients ‌ȟ). Indeed, the set of 

modes is fixed for a given system, while the information associated to an individual 

observation is stored in the POD coefficients. 

The output of this step includes the POD modes and coefficients computed for 

the matrix 9, to be employed by the following phases of the PHM process. 

2.2.3 Second step of compression: Self-Organizing Map (SOM) 

The first step of compression through POD allows to find a compressed 

representation of the observations to reduce the amount of data to process for FDI. 

A second step of compression leverages unsupervised machine learning to 

determine an optimal compression mask to reduce the amount of data to be 

measured and stored online. The input of this phase are the first ὲ  POD modes 

computed in Section 2.2.1.1.  

Self-Organizing Maps (SOMs) were originally introduced by Kohonen [59, 

60]; they are a class of single-layer neural networks that exploit unsupervised 

learning to identify clusters of self-similar data. Kaski [61] discusses the use of 

SOMs to find structure in large multidimensional datasets, with applications in 

engineering, statistics and data mining. In [62], SOMs are employed to extract 

interpretable patterns from satellite imagery. Svensson et al. [63] leverage SOMs to 

diagnose cooling system faults in a fleet of vehicles, by obtaining low dimensional 

representations of sensor measurements. Kohonen maps are employed with 

agglomerative hierarchical algorithms to detect failures of induction motors in [64]. 
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A similar approach is tested for diagnostics of industrial automation equipment in 

[65].  

Each of the ὲ  neurons of the SOM has two representations. One lies in the 

space of the weight vectors ◌ (that is equivalent to the space of the input): this 

representation is updated iteratively during learning. The second representation is 

in the usually bi-dimensional topological space of the network, and is fixed. 

The SOM exploits a form of unsupervised competitive learning. At first, the 

weight vectors are initialized to random values; during training, the examples Ⱳ are 

fed one by one to the network. For each example Ⱳ, a winner neuron ὰ is chosen as 

the one that minimizes the distance between its weight vector ◌  and the current 

training point Ⱳ: 

ὰ ÁÒÇÍÉÎ† ύ  (2.10) 

For most applications, including the one considered in this work, ᴁϽᴁ denotes 

an ὒ norm, that is the Euclidean distance between the weight vector and the 

training example. The weight vector of the winner neuron ὰ and its neighbors are 

then updated according to the following equation: 

ύ ύ —Ὦȟὰ‌Ὥ† ύ  (2.11) 

where —Ὦȟὰ is a neighborhood function, ‌Ὥ is a monotonically decreasing 

learning coefficient, Ὥ denotes the iteration of the learning process, and Ὦ is the 

particular neuron being updated. The neighborhood function is typically a 

decreasing function of the distance from the winner neuron ὰ, defined in the space 

of the topological representations of neurons. As a result, at each iteration, the 

weight vectors of the winner neuron and its neighbors are moved closer to the 

training point. This process is repeated for each input of the training set for several 

epochs. During each epoch, all the training points are submitted to the network, 

each time in a different, randomized order. The training is complete when one of 

the stopping criteria is met: for example, when a performance parameter reaches its 

goal value, or when the maximum number of epochs is reached. 

For the application discussed in this work, the training set 4 is composed by the 

first ὲ  modes of the POD ○ and the associated coordinate ●: 

4 ●ȟ○ȟȣȟ○  (2.12) 

Each training point is a row of 4, including a coordinate ὼ and the 

corresponding values of the POD modes. A property of SOMs implies that, after 

training, the weight vectors represent a nonlinear projection of the high-dimensional 

training data to the lower dimensional space of the neurons [66]. A consequence is 

that the weight vectors, defined in the space of the input, encode representative 

vectors for clusters of self-similar points. Then, an efficient compression mask can 

be obtained from the components of the weight vectors associated to the coordinate 

●: the system behavior maps ◐● will be measured and processed online only in 

correspondence of those ὲ  informative values ● of the coordinate ●, to obtain a 

compressed representation ◐. 
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2.2.4 Online 

The compression mask ● computed offline is employed to reduce the 

computational effort needed in real-time. During the operation of the monitored 

system, the sensors installed onboard capture a constant stream of data, whose 

frequency depends on the primary application of the individual sensor: indeed, data 

used for health monitoring purposes is preferably measured by sensors installed for 

a primary application different from prognostics. This way, virtually no weight or 

complexity is added to the onboard system, and its performances and reliability are 

not decreased. Data measured onboard is processed to obtain the system behavior 

map ◐. The reconstruction of the complete map ◐● would require substantial 

processing power, since the acquisition frequency of the sensors may be in the 

kilohertz range or above. Then, the compression mask allows to process only the 

ὲ  points whose coordinate ● have been determined offline. 

Those points ●ȟ◐ constitute an incomplete measurement of the behavior map 

of the system. The efficient placement of the measurement points through the two-

step compression guarantees that a large fraction of the information contained in 

the complete map is retained. The map could be fed directly to a regression neural 

network, as in [67]; however, random errors on the measurements could result in a 

biased fault detection. In this work, Gappy Proper Orthogonal Decomposition 

(Gappy POD) is employed to reconstruct an estimate of the POD coefficients 

associated to the incomplete map measured online. 

Gappy POD [68, 69, 70] is a procedure derived from POD, commonly 

employed to reconstruct data from sparse measurements, leveraging physics-based 

knowledge of the structures of data through the use of the POD modes. Saini et al. 

[71] discuss the use of Gappy POD for data recovery from the noisy particle image 

velocimetry measurements in combustors of gas turbines. Willcox [72] employs a 

similar technique to reconstruct unsteady fluid flows from incomplete 

measurements. Bui Thanh et al. [73] employ gappy proper orthogonal 

decomposition for efficient inverse airfoil design. In [74], stabilized reducer order 

models of nonlinear eddy currents are obtained with Gappy POD. 

For the implementation studied in this work, the goal is to reconstruct the POD 

coefficients associated to the incomplete measurement, as opposed to the complete 

observation. According to Equation (2.8), the quantity ◐ measured online can be 

approximated by a linear superposition of the first ὲ  POD modes. The objective 

of Gappy POD is to find a set of coefficients ♪ that minimize the mean squared 

error between the original signal and the reconstructed one, limited to the ὲ  known 

components ◐. This is done by solving the linear system: 

'♪ █ (2.13) 

where ' ὺὺ is the Gappy Matrix, and ὺ ○ȟȣȟ○  is a ὲ -by-ὲ  

dimensional matrix whose columns are the first ὲ  POD modes, considered only 

in their ὲ  informative elements corresponding to the coordinates ● of the 

compression mask. The vector █ is obtained by projecting the compressed signal ◐ 

along the compressed POD modes ’Ƕ: 
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█ ’Ƕ◐ (2.14) 

In the traditional application of Gappy POD, after solving the system of 

Equation (2.13), an approximation of the complete measurement ώ is reconstructed 

as the linear superposition of the first ὲ  POD modes, weighted by the coefficients 

♪ as per Equation (2.8). The specific implementation of the proposed methodology 

requires directly the use of the POD coefficients as a compressed representation of 

the high-dimensional observation ◐ for the Fault Detection and Identification phase. 

2.3 Fault Detection and Identification (FDI) 

This step of the proposed PHM procedure receives as an input a compressed 

representation of the system behavior map ◐ in the form of the POD coefficients ‌, 

to return in output the estimated health condition ▓ of the equipment. 

Common methods for Fault Detection and Identification (FDI) are either 

model-based or data-driven. The former category relies on physics-based digital 

twins of the monitored system: the measurements from the monitored equipment 

are compared to the output of the digital twin, and a parameter identification 

algorithm is employed to match the response of the two systems and estimate the 

actual health condition. This procedure can be highly accurate [75], but requires a 

computational effort that is usually not suitable for real-time execution. The latter 

category relies on machine learning tools to associate a measured output to a given 

fault condition. In this case, computational time is fast, but accuracy is not suitable 

to determine small, incipient faults [76], especially if the response of the system is 

influenced by several unpredictable variables. 

The proposed methodology for FDI is essentially data-driven; however, thanks 

to the efficient data compression, and with a suitable choice of the monitored 

parameters, it permits to combine good accuracy and fast computational time in 

evaluation. The methodology employs supervised machine learning to associate the 

estimated POD coefficients ♪ to the health condition of the system ▓. Specifically, 

a feedforward neural network is trained offline (with the fault conditions of the 

dataset + and the associated POD coefficients computed offline as per Section 

2.2.1) and evaluated online on the POD coefficients estimated by Gappy POD 

(Section 2.2.2). 

2.3.1 Offline 

A neural network is trained offline to associate an estimate of the fault condition 

▓ to a set of POD coefficients ♪. The use of a machine learning approach instead 

of a model-based one allows to keep the computational time in evaluation low and 

compatible with real-time constraints. In this application, a standard 

implementation of a Multi-Layer Perceptron (MLP) with a single hidden layer 

demonstrated to be suitable for the task. Depending on the specific problem, more 

complex machine learning paradigms may be required. 

Multi -Layer Perceptrons [77, 78] are a class of supervised learning, 

feedforward neural networks; their property of being universal approximators 
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makes them suitable for solving regression and classification problems. In [79] 

MLPs are employed to estimate fuel consumption of road vehicles accounting for 

variations of the operating condition. Li et al. [80] compare MLP networks and 

deterministic regression methods for the estimation of wind turbine power curves. 

In [81] MLPs and Support Vector Machines (SVMs) are combined to detect early 

faults of gearboxes from vibration measurements. 

The architecture of an MLP features neurons arranged in one or more hidden 

layers, followed by an output layer. MLPs are fully connected networks, meaning 

that each neuron receives as an input the outputs of all the neurons of the previous 

layer, and its output is fed to all neurons of the next layer. 

The implementation adopted in this work has a single hidden layer with ὲ 

sigmoid activation function, and an output layer with linear saturated activation 

function. The number of neurons in the output layer is determined by the problem, 

and is equal to the dimension of the output: then, for this work there are ὲ output 

neurons, being the output of the MLP an estimate of the fault vector. The training 

set is composed by the fault conditions of the training set + as the targets, and the 

associated POD coefficients ♪ computed in Section 2.2.1 as the inputs. 

The inputs ♪ of the hidden layer, arranged as a column vector, are multiplied 

by the weight vectors ╦  of the neurons (row vectors), added to a bias constant ὦ, 

and then fed to a hyperbolic tangent activation function to obtain the output ὥ of 

the neuron. For the Ὥ-th neuron: 

ὥ ÔÁÎÈ╦ ♪ ὦ  (2.15) 

Figure 2.3 (a) shows the block diagram of a sigmoid neuron. The output layer 

receives in input the outputs ╪ ὥȣὥ  of the hidden layer; they are weighted 

by the vectors ╦ , added to the bias ὦ and fed to the linear saturation activation 

function to compute the output of the MLP ▓ ὯȣὯ . For the Ὥ-th neuron: 

Ὧ
πȟ ÉÆ ╦ ╪ ὦ π

╦ ╪ ὦȟ ÉÆ π ╦ ╪ ὦ ρ
ρȟ ÉÆ ╦ ╪ ὦ ρ

 
(2.16) 

The block diagram of a linear saturated neuron is shown in Figure 2.3 (b), while 

Figure 2.4 shows the overall arrangement of the MLP. The particular choice of the 

output activation function reflects the bounds of the output of the FDI problem: the 

components of the fault vector ▓ are normalized between 0 and 1. Additionally, the 

sharp transition of the output activation function permits to cut to zero the estimated 

fault condition when the dynamical response of the system is close to the nominal 

one, reducing the risk of false positive fault detections. 
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Figure 2.3: Block diagram of a sigmoid neuron (a) and linear saturated neuron (b) 

 

Figure 2.4: Arrangement of the single hidden layer Multi-Layer Perceptron (MLP) employed 

for FDI 

The weights and biases of the neurons are determined during training, to 

minimize a performance function in consisting in the mean squared error between 

the outputs of the networks and the targets, leveraging a Levenberg-Marquardt 

backpropagation algorithm [82]. The Levenberg-Marquardt algorithm is an 

optimization algorithm meant to approach the second-order convergence speed 

while avoiding the direct computation of the Hessian matrix of the problem. We 

define a vector ● containing in its elements the weight and bias parameters of each 

neuron of the network; ▓ is the target, i.e. the expected output of the network for 

the training set, while ▓ is the obtained output. Being the performance function a 

sum of squares, the Hessian matrix ( of the errors with respect to the weight and 

biases can be approximated as: 

( ** (2.17) 

and the gradient of the performance function is: 

▌ *▄ (2.18) 

where ▄ ▓ ▓ and * is the Jacobian matrix, which can be evaluated with a 

standard backpropagation method [83]. This approach is less expensive than the 

direct computation of the Hessian. At each iteration, the algorithm uses the 

approximated Hessian to update ● in a quasi-Newton form: 

● ● ( ‘) ▌ ● ** ‘) *▄ (2.19) 
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where the scalar parameter ‘ is decreased after each successful iteration (i.e. after 

a reduction of the performance function). The training is stopped when either the 

maximum number of epochs is reached or the performance gradient decreases 

below a threshold. The result of the offline step of the FDI phase is the trained MLP 

model for ▓♪, to be employed online for real-time fault detection. The use of the 

low dimensional representation of the systemôs response provided by the POD 

coefficients ♪ in place of the full dimensional ◐ reduces the number of neurons 

needed in the hidden layer and simplifies the training process. In addition, ♪ has an 

advantage over the compressed signal ◐, as the Gappy POD step inherently checks 

the plausibility of the observations by comparison with the information contained 

in the POD modes, and mitigates the effect of local measurement errors. 

2.3.2 Online 

The MLP model trained offline is employed to speed up real-time FDI. The 

network receives as an input a new set of POD coefficients, associated with the map 

of system behavior observed and compressed online with the optimal compression 

mask ●. The POD coefficients are estimated via Gappy POD, with the procedure 

described in Section 2.2.2. 

The estimate of the current health condition of the system ▓ is computed as 

the output of the Multi-Layer Perceptron, employing Equations (2.15) and (2.16). 

This strategy allows to perform the FDI task in a few milliseconds, much faster than 

the several minutes required by model-based fault detection techniques [84]. 

Additionally, the combination of supervised machine learning with the two-step 

compression, which allows embedding physics-based domain knowledge into the 

compressed representation of the system observations, permits to retain a good 

accuracy of the estimate. 

The output of the online FDI is the real-time estimate of the system health ▓, 

which will be employed as a starting condition for the estimation of Remaining 

Useful Life. 

2.4 Estimation of Remaining Useful Life (RUL) 

The last phase of the PHM process is the actual estimation of the Remaining 

Useful Life. The input for the process is the current health condition determined by 

FDI, employed as a starting point for the evaluation of a model of damage 

propagation. 

The approach discussed in this work is the extension to system health 

monitoring of the damage tolerant design strategy for fatigue of structures. In the 

field of structural health monitoring, the components are inspected periodically in 

search of cracks. Since the rate of propagation of cracks in metal and composite 

structure is known and well described by physics based models, the next inspection 

is planned before the existing cracks reach a critical length; if no cracks are detected 

during the inspection, they are assumed to be just below the sensitivity of the 

employed equipment. 
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The extension of this approach to systems poses two issues: 

¶ The higher complexity of the monitored equipment makes accurate 

inspection impractical in periodical maintenance; then, this study proposes 

to replace, at least in part, manual inspections with the automatic, real-time 

FDI process described in Section 2.3. 

¶ The heterogeneous disciplines that rule the propagation of faults results in 

the difficulty (or often in the impossibility) to determine an accurate 

physics-based model for damage propagation. To address this obstacle, the 

proposed methodology uses an adaptive model for damage propagation, 

which is updated in real-time according to the observed time-history of the 

health condition. 

Leveraging the definition of Remaining Useful Life of Equation (1.2), a model 

of damage propagation is employed in the form of a state-space dynamical 

representation. The model is integrated numerically, starting from the current fault 

combination determined by FDI as the initial condition, and accounting for the 

entire known time history of faults through a dynamic estimator filter. The model 

is adaptive and leverages a simple system identification algorithm to tune itself to 

match the observations. A function for the assessment of health condition [29, 37] 

is employed as a stopping criterion for the integration. When the estimated health 

condition reaches a value that is no more compatible with the requirements of the 

system, the corresponding integration timestep is assumed as the RUL estimate: 

indeed, it is the remaining time after which the equipment will no longer meet the 

required performances. The function for assessment of the health condition is 

physics-based and implies a significant computational burden. To enable real-time 

evaluation, a Support Vector Machine (SVM) is trained offline as a surrogate 

assessment function. 

2.4.1 Offline 

The function for health condition assessment ‰ ▓ behaves as a binary 

classifier: it simulates the response of the system under the effect of the fault 

combination ▓ and determines whether or not the applicable performance 

requirements are met by the equipment, assigning to ▓ a binary output in the form 

of a ͼÈÅÁÌÔÈÙͼ or ͼÆÁÕÌÔÙͼ label. For some simple application, the simple 

comparison of the fault vector with a threshold may be enough; however, this is 

usually not acceptable to deal with the combined effects of multiple fault modes 

affecting the equipment at the same time. More complex assessment function 

quickly become impractical to evaluate in real-time. For example, a viable option 

for the health assessment of an actuator is to evaluate its transfer function with an 

iterative simulation at variable frequency of the command: this results in 

computational times of several seconds or more. To enable real-time evaluation of 

the assessment function, this study proposes the use of a surrogate function in the 

form of a Support Vector Machine (SVM). 
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Figure 2.5: Geometrical interpretation of a linear Support Vector Machine binary classifier. 

SVMs [85, 86] are algorithms that leverage supervised machine learning to 

perform an efficient classification of the input. Goh et al. [87] discuss the use of 

SVM for image classification. In [88], Leng et al. propose a binary tree classifier 

that employs SVMs to perform large scale classification of data. In [89], a similar 

method for monitoring fatigue damage of airframes is proposed. Fan et al. [90] 

employ SVMs to obtain efficient surrogate modelling of fluid-dynamics problems. 

To train a surrogate assessment function, we assemble a training set with the 

matrices + ▓ȟȣȟ▓  and ɮ ‰ȟȣȟ‰  discussed in Section 2.1. In the 

standard linear formulation, given a set of training points ▓, each defined in ᴙ , 

and their classes ‰ ρ, the SVM seeks an optimal hyperplane in ᴙ  to separate 

the two classes. The equation of a generic hyperplane in ᴙ  is: 

Ὢ▓ ▓♫ ὦ π (2.20) 

where Ὢ▓ is a cost function, ♫ has the same dimensionality as ▓ and ὦ is a scalar 

bias. The goal of the training process for the SVM is to find the best separating 

hyperplane, that is, the one that results in the largest margin between the two classes 

‰ ρ. A geometrical interpretation of a linear SVM is provided in Figure 2.5. 

The vector ♫ is normal to the hyperplane, and the optimal margin length 

between the two classes is ςȾᴁ♫ᴁ. Then, finding the best separating plane is 

equivalent to find the gradient ♫ and bias ὦ of the hyperplane that minimize ᴁ♫ᴁ, 

subject to the set of constraints ‰Ὢ▓ ρ. The training algorithm solves this 

optimization as a quadratic programming problem, using the method of Lagrange 

multipliers, introducing the positive coefficients ὧȣὧ, and resulting in the 

objective function: 

ὒ
ρ

ς
♫♫ ὧ‰Ὢ▓ ρ▌ *▄ 

(2.21) 

which is equivalent to the dual problem: 
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ÍÉÎ
ρ

ς
ὧὧ‰‰ὯὯ ὧ ▌ *▄ 

(2.22) 

Our application does not allow to separate the classes of the training dataset 

with a linear boundary. In these cases, the problem is addressed by introducing a 

nonlinear kernel to map the input vectors ▓ to an auxiliary space where a linear 

boundary exists. The dual formulation is modified as follows: 

ÍÉÎ
ρ

ς
ὧὧ‰‰' ὧ  

ÓȢÔȢ ὧ‰ π 

ὧ π 

(2.23) 

and subject to the Karush-Kuhn-Tucker complementarity conditions [91, 92]. ' is 

the Gram matrix of the predictor vectors ὯȣὯ  using the nonlinear kernel 

function: 

' ộ‪▓ ȟ‪▓ Ớ (2.24) 

where ộϽỚ denotes an inner product. After the training, new input points are classified 

according to the sign of the score function: 

‰ ▓ ÓÉÇÎὧ‰ộ‪▓ȟ‪▓ Ớ ὦ  
(2.25) 

where ὧ are the Lagrange multipliers optimized during training. The function 

‰ ▓ is the surrogate function for the assessment of the health condition ▓, to be 

employed in the online RUL estimation procedure. 

2.4.2 Online 

Remaining Useful Life is estimated online by integrating a model of damage 

propagation in the form of a state-space dynamical model, which expresses the 

evolution in time of the health condition of the system, employing the surrogate 

assessment function ‰ ▓ as a stopping criterion. A block diagram of the online 

procedure is provided in Figure 2.6. 

The integration starts at time ὸ π, corresponding to the oldest known health 

condition Ὧ measured by the first FDI. The integration from ὸ to the current time 

ὸ  (that is, the time coordinate associated to the last FDI) accounts for the known 

time history of the fault vector ▓ὸ in order to filter out uncertainties in fault 

detection and tune the model of damage propagation. Indeed, one of the most 

important issues in system prognostics is that accurate physics-based descriptions 

of the fault growth rate are not commonly available. 
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Figure 2.6: Schematic flow chart of the proposed RUL estimation real-time procedure 

 

The proposed approach addresses this criticality by dynamically adapting a state 

space model to the obsevations. The general formulation of a state-space model is: 

▓ !▓ "◊
▒ #▓ $◊

 
(2.26) 

Where ! is the state matrix, " is the control matrix, # is the output matrix, $ is 

the feedthrough matrix, ▓ is the state, ▒ is the observation, and ◊ is the input. For 

the application to RUL estimate addressed in this study, we can set ▓ ὯȣὯ  

as the health condition of the system, and ◊ όȣό  as the environmental 

and operating conditions; the observation ▒ can be considered equal to the state ▓ 

(that is, the system health condition): then, we can neglect the second equation. 

The state and control matrices may be derived from physics-based knowledge 

of the system. However, in this case a large uncertainty is usually associated to the 

state-space model. Therefore, the matrices shall be estimated from observed data, 

allowing a more precise prediction of the evolution of faults. The elements of ! and 

" can be computed from the equation: 

‖ὥ ‖ ÆÏÒ Ὥ ρȣὲ (2.27) 

where ‖ is a matrix containing the observed states Ὧ and inputs ό of the last ὲ 

timesteps: 



 

24 

 

‖

Ὧ ὸ Ễ Ὧ ὸ ό ὸ Ễ ό ὸ

ể Ệ ể ể Ệ ể
Ὧ ὸ Ễ Ὧ ὸ ό ὸ Ễ ό ὸ

 

(2.28) 

ὥ is a column vector with the elements of the Ὥ-th row of ! and the Ὥ-th row of ": 

ὥ ὃȟȣὃȟ ȟὄȟȣὄȟ  (2.29) 

and ‖ is a column vector containing the time history of the Ὥ-th element of the state 

derivative ▓: 

‖ Ὧὸ ȣὯὸ  (2.30) 

At each integration timestep, the matrices ! and " are computed by solving the 

linear systems of Equation (2.27). The number of timesteps ὲ considered for the 

estimation shall be high enough to filter out uncertainties in the observations (i.e. 

the errors of the FDI process), while remaining low enough to allow real-time 

evaluation. In any case, ὲ shall be larger than ὲ ὲ, i.e. the sum of the number 

of elements of the state and control vectors: otherwise the system is under 

determined; a number of timesteps larger than ὲ ὲ  is allowed since Equation 

(2.27) can be solved in the least squares sense. 

After the state and control matrices ! and " are identified, the state-space model 

is employed for two purposes: as dynamical estimator filter for the computation of 

the next fault condition, and as a predictor to extrapolate the future time evolution 

of the fault condition to determine the system RUL. 

The fault condition at the next timestep is estimated by fusing the information 

from FDI and the state-space system, that operates as a filter based on a dynamical 

observer. The method is similar to Kalman filtering, but does not make assumptions 

about the linearity of the system or the variance of the observations; these 

assumptions represent a limitation of traditional Kalman filters, as highlighted in 

[93]. The state is updated as a weighted sum of the prediction of the state-space 

model and the observation of the FDI procedure: 

▓ ‎▓ ὸ ρ ‎ ▓ !▓ "◊ ɝὸ (2.31) 

where ‎ɴ πȟρ is a scalar weight parameter, ▓ ὸ  is the fault condition 

measured by the FDI procedure according to Section 2.3, and the term ▓

!▓ "◊ ɝὸ ▓ ▓ɝὸ is the fault condition predicted by the integration of 

the model. This procedure can be employed where the observations ▓ are 

available, that is, for ὸ ὸ . Since future fault condition are not measurable, the 

propagation of the state for ὸ ὸ  is performed by the state space model alone: 

▓ ▓ !▓ "◊ɝὸ (2.32) 

At each time step ὸ of the numerical integration, the surrogate assessment 

function ‰ ▓ trained offline determines whether the equipment is still able to 

operate under the effect of the fault combination ▓ὸ . When a ͼÆÁÕÌÔÙͼ condition 

is detected by the assessment function at time ὸ, the integration is stopped, and the 
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difference between the failure time and the current time is assumed as the RUL 

estimate: 

ὙὟὒὸ ὸ  (2.33) 

The proposed methodology permits to achieve a good accuracy in RUL 

prediction, even if the rate of propagation of the damage from its incipient state at 

ὸ to the actual failure at ὸ is not known. This is often the case for complex 

mechatronic systems, where heterogeneous components described by different 

disciplines coexist and work together, sometimes interacting in ways that are 

difficult to predict analytically. Additionally, this method has a lower 

computational cost than comparable approaches available in literature (e.g. those 

based on particle filtering [40, 94]) and can be executed in real-time on limited 

hardware resources. The RUL estimate is deterministic: an uncertainty associated 

to the prediction can be estimated through a Monte-Carlo analysis. To do so, the 

RUL prediction process is repeated iteratively. At each iteration, a random noise is 

superimposed to the observed fault conditions ▓. This noise is sampled each time 

over the error distribution of the FDI, easily assessed offline over a validation 

dataset. As a result, an empirical characterization of the uncertainty distribution 

associated to RUL prediction is obtained. 
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Chapter 3 

Application 

Electromechanical Actuators (EMAs) are emerging as a novel technology for 

current and next generation flight control systems. As they convert directly 

electrical power into the mechanical power needed to drive the flight control 

surfaces [95, 96], they permit to adopt the More Electric [97] and All Electric 

Aircraft [98] system architectures. A widespread integration of EMAs in aircraft 

systems would eliminate the need for a centralized hydraulic system and would 

result in a reduction of the overall aircraft empty weight, with benefits in terms of 

fuel consumption and operating costs, as highlighted by Garcia Garriga et al. [99]. 

Electromechanical actuators replace the local hydraulic circuit of EHAs with a 

mechanical transmission [100]. A typical arrangement of an EMA is shown in 

Figure 3.1: the electric motor and its Power Drive Electronics is coupled to the user 

and external load by a reducer. Commonly the transmission includes an ordinary or 

planetary gearbox coupled to a device for conversion from rotary to linear motion, 

either a ball-screw or a roller-screw. Lead screws are usually avoided for their high 

friction, low efficiency and poor reliability. Alternatively, a high gear ratio reducer 

(such as a compound planetary, harmonic, or cycloidal drive) can be connected 

directly to the user through a rotary output shaft. In several applications, a rotary 

user is preferred since the transmission is more compact and allows a better power 

density. Additionally, the ballscrew is usually the first component of the 

transmission that is damaged in case of overload. Avoiding to convert the output to 

linear motion, reliability and robustness of the system are significantly improved. 

 

 

Figure 3.1: Cross section of an Electromechanical Actuator highlighting its main components 
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The electrical machines most commonly employed for aircraft EMAs are 

Brushless Direct Current (BLDC) motors or Permanent Magnet Synchronous 

Motors (PMSMs): those are chosen for their high power to weight ratio, and for 

their high reliability [101]. 

EMAs have some peculiar characteristic that differentiate them from other 

actuation systems. The absence of a hydraulic circuit, either centralized or local, 

eliminates all the issues related to the management of hydraulic fluid throughout 

the whole lifecycle of the product. Usually, aircraft-grade hydraulic fluids are toxic, 

pollutant or flammable; during maintenance, the system needs to be drained before 

disassembly and purged after the intervention, and a specialized maintenance crew 

is usually needed. Additionally, hydraulic components commonly feature very 

strict tolerances and small calibrated passageways, that are easily clogged if the 

fluid is accidentally contaminated. Therefore, maintenance interventions on EMAs 

are much easier, as discussed by Cronin [102]. 

EMAs are easily scalable to very small, low power and low weight applications: 

indeed, they are extensively employed for flight controls off small UAVs, with 

some actuators weighing down to few grams. Such miniaturization is not easily 

attainable by hydraulic systems. 

The placement of sensors on the electrical machine, which are used for closed 

loop control of the motor current and speed, enables to integrate health monitoring 

functions in a smart actuator; the particular architecture of EMAs allows for a much 

more accurate and reliable fault detection than, for example, EHs.  

On the other hand, some disadvantages are also related to Electromechanical 

devices. First, their power density is much lower than that of hydraulic systems, 

although the use of rare-earth permanent magnet is somehow reducing this penalty 

for advanced EMAs. Actuators based on hydraulic power rely on the working fluid 

as a heat sink; EMAs do not have this option, and can easily overheat if they operate 

in off-nominal conditions; then, thermal control of the equipment is of critical 

importance and must be accurately designed. 

The issue of EMAs that most limits their diffusion in flight-critical aerospace 

applications is that their transmission is prone to mechanical jamming: that is, as a 

result of its most probable failure modes, the transmission gets locked in position. 

This condition may cause the loss of the associated aerodynamic surface, and 

control of the aircraft can become difficult [103]. Some configurations that allow 

redundancy of the mechanical transmission are available [104, 105, 106], but they 

all imply a significant increase in complexity and weight of the system. 

Hence, the health monitoring task is of great importance for Electromechanical 

Actuators. An accurate and robust PHM framework would allow to overcome the 

aforementioned limitations in reliability often associated to EMAs and ease the 

early integration of such technologies into new aircraft designs. However, EMAs 

constitute a challenging application for Prognostic methodologies. The operation of 

electromechanical systems depends on the interaction of several components whose 

behavior is described by heterogeneous disciplines, such as mechanics, electronics, 

control theory, fluid dynamics and heat transfer. In aerospace applications, EMAs 
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often experience operating and environmental conditions that are hardly repeatable 

and predictable: as opposed to an industrial actuator, that will likely follow the same 

motion profile for thousands or millions of cycles, in a semi-controlled 

environment, an aerospace flight control servomechanism will face a different time 

history for each mission. All these aspects contribute to the complexity of the 

physics describing the propagation rate of wear and damage, as well as their effect 

on the behavior of the system as a whole. As a result, PHM strategies for these 

systems are still an open field of research. 

3.1 High Fidelity (H F) Model 

A High Fidelity model of an EMA was developed as a simulated test bench to 

collect reference data of the actuator operation, in different working conditions, and 

under the effect of multiple fault modes. The model is a physics-based, lumped 

parameters simulation characterized by a very high level of detail. The general 

architecture of the model is shown in Figure 3.2, and reflects the subsystem and 

components hierarchy of common hardware EMAs. Specifically, the model 

includes the following subsystems: 

¶ The Actuator Control Electronics (ACE) model implements the control law 

employed to compare the commanded position with the feedback signals of 

measured position and speed, in order to determine the torque command to 

the motor. 

¶ The model of Power Electronics has two main functions: (1) evaluate the 

commutation sequence of the motor phases, as a function of the current 

angular position of the rotor, and (2) close the current/torque control loop, 

applying to the stator coils the voltage needed for the motor to produce the 

commanded torque. 

¶ The Electromagnetic model of the motor evaluates the magnetic coupling 

between rotor and stator, to determine dynamically the current, torque and 

back-EMF for a given input voltage, also accounting for the effect of 

possible fault precursors. 

 

Figure 3.2: Block diagram of the HF model 
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¶ The Dynamical model of the motor and transmission computes the position 

and velocity of the actuator, under the combined effects of motor torque and 

external loads. 

¶ Eventually, the Load model estimates the hinge moment by integrating a 

linearized model of the longitudinal aircraft dynamics. 

The following sections describe in detail the implementation of the subsystems 

of the EMA in the high fidelity simulation model. 

3.1.1 Controller Model  

The Controller model, whose block diagram is shown in Figure 3.3, computes 

the control law of the EMA, to compute the torque and current requested to the 

electrical machine. The control law reflects common implementations on industrial 

and aerospace hardware, with a proportional position loop and a Proportional-

Integral-Derivative (PID) velocity loop. Specifically, the controller accepts as an 

input the position or velocity setpoint, the measured motor speed, and the measured 

user position. Although more advanced control techniques are available in 

literature, such as State-space controllers, Fuzzy logic, or Neural Networks, PID are 

still the standard implementation for most industrial and aerospace applications, 

since they provide better robustness, especially when dealing with significant 

uncertainties in the behavior of the controlled plant. 

The speed-position mode switch allows to choose among a position control 

mode and speed control mode. In position control mode, the setpoint is compared 

to the user position measured by a transducer. The position error is multiplied by a 

proportional gain to determine a velocity setpoint. In speed control mode, the 

position loop is disabled and the velocity setpoint is provided externally. In both 

cases, the velocity setpoint is limited by a saturation accounting for the maximum 

speed achievable by the motor, and the resulting command speed is compared to 

the actual motor speed signal. Then, a velocity error is fed to a PID controller to 

determine the required motor torque. 

The PID includes a filter on the derivative branch and an anti-windup logic, as 

shown in Figure 3.4. The derivative filter is a low-pass, first order transfer function 

that allows to reduce the high frequency noise on the error signal, which would be 

 

Figure 3.3: Block diagram of the Controller subsystem 
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otherwise amplified by the derivative. The transfer function of the derivative branch 

is then: 

ώ

Ὡ

Ὃί

†ί ρ
 (3.1) 

where Ὃ  is the derivative gain and † is the characteristic time of the filter. The 

anti-windup logic is needed for the integrative branch, to mitigate the excess 

overshoot usually associated to the interaction of integrative control with a 

nonlinear plant characterized by a limited maximum rate of change. Several 

arrangements for anti-windup logic are available in literature; the algorithm 

implemented in this model temporarily disables the integral contribution if at least 

one of the following conditions is met: 

¶ The error grows larger than a tolerance band, or 

¶ The output of the PID reaches its saturation. 

The output of the PID controller has the dimensions of a reference torque for 

the motor. This torque signal is divided by the nominal back-EMF coefficient of 

the motor, to determine the required stator current. The current command is limited 

by a saturation accounting for the peak current that can be handled by the motor, 

and routed to the Commutation and Power Electronics subsystem.  

To simulate the effect of electromagnetic interference on the signal 

transmission lines, a band-limited white noise is added to the reference current 

signal. 

 

 

Figure 3.4: PID controller as implemented in the HF EMA model 
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3.1.2 Power Electronics Model 

The model of power electronics determines the motor phase commutation 

sequence and actuates the current control for each of the motor phases. The model 

is slightly different if considering an EMA based on BLDC or PMSM electrical 

machine. 

3.1.3 Brushless Direct Current (BLDC) motor 

A Brushless Direct Current (BLDC) motor is a permanent magnet machine 

characterized by a trapezoidal waveform of the back-EMF of each phase. Voltage 

is applied to two out of three phases at a time, with a square waveform. The rotor 

position is sensed by three Hall sensors, with a resolution of φπЈȾὖ, where ὖ is the 

number of pole pairs. Figure 3.5 (a) shows the typical arrangements of the phases 

and Hall sensors for a 2 pole pairs configuration. Each Hall sensor outputs a 

Boolean 1 when it is over a magnetic north, and a Boolean 0 when it is over a 

magnetic south. The signals of the Hall sensors are plotted against the rotor position 

in Figure 3.5 (b); additionally, the required phase currents are shown. 

 

Figure 3.5: (a) Typical phase and Hall sensors configuration of a 2 pole pairs BLDC motor; (b) 

Readings of the Hall sensors and phase commutation sequence. 

The reference currents (i.e. the phase currents required for a given torque 

command and a given rotor position) can be expressed as a function of the current 

setpoint Ὅ  and the readings of the Hall sensors H1, H2, H3: 

Ὅ ȟ Ὅ (ς (ρ

Ὅ ȟ Ὅ (σ (ς

Ὅ ȟ Ὅ (ρ (σ

 (3.2) 

The reference currents are compared with the measured phase currents by a 

hysteresis controller, which computes the actual activation signals for the switches 

of the three-phase bridge. The output of the hysteresis controller is a vector of three 

Boolean elements, each of which commutes from 0 to 1 if: 
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Ὅ ȟ Ὥ ὦ (3.3) 

and commutes from 1 to 0 if: 

Ὅ ȟ Ὥ ὦ (3.4) 

where ὦ is the amplitude of the hysteresis band, for Ὦ ὃȟὄȟὅ. This signal is 

routed to the three-phase bridge, and commands the activation of the six switches. 

Specifically, when the output of the Ὦ-th hysteresis controller is high, the 

corresponding phase is connected to supply voltage; otherwise, it is connected to 

ground. A block-diagram of the Power Electronics model for the BLDC motor is 

shown in Figure 3.6. 

3.1.4 Permanent Magnet Synchronous Motor (PMSM) 

A Permanent Magnet Synchronous Motor (PMSM) is conceptually similar to a 

BLDC machine, but the polar expansions of the stator and the permanent magnets 

on the rotor are arranged to produce a sine wave back-EMF on each of the stator 

phases. The rotor position is measured either by a resolver or an absolute encoder, 

with a resolution at least in the order of ρЈȾὖ. 

The behavior of a PMSM is studied by introducing three different reference 

frames to describe the electrical angle, as shown in Figure 3.7: 

¶ ‌ ï ‍ axes are fixed with respect to the stator, the ‌ axis being aligned with 

the axis of symmetry of the electrical phase A, and the ‍ axis is offset by 

90° electrical to form a right-handed frame. The angle ɮ is used as a polar 

coordinate to describe the angles along the stator, starting from the  

‌ axis. 

¶ Ὠ ï ή axes are a reference frame rotating with the rotor. The d axis is aligned 

with a north pole of the rotor, and the q axis is 90° electrical in advance. The 

angle ‚ is used as polar coordinate to describe the angles along the rotor, 

starting from the Ὠ axis. 

¶ The three-phase reference frame with axes A, B, and C aligned with the 

respective stator phases. The A axis of this reference frame coincides with 

the ‌ axis. 

 

 

Figure 3.6: Block diagram of the Power Electronics model configured for the BLDC motor 
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Figure 3.7: Reference frames for the Clarke-Park transformations 

The angle between the ‌ ï ‍ frame and the Ὠ ï ή frame is —. Two coordinate 

changes allow to switch between the three reference frames. Specifically, the Clarke 

transformation allows to convert the current and magnetic flux vectors expressed in 

the three-phase reference frame to the ‌ ï ‍ reference frame. The Park 

transformation allows to convert the current and magnetic flux vectors expressed in 

the ‌ ï ‍ reference frame to the Ὠ ï ή reference frame. 

The current vector expressed in the ‌ ï ‍ reference frame has the form: 

░ Ὥ ὮὭ (3.5) 

where the bold denotes a vector quantity, and Ὦ is the imaginary unit. Similarly, in 

the three-phase reference frame the same current vector is expressed as: 

░ Ὥ Ὡ Ὥ Ὡ Ὥ (3.6) 

Since axis ‌ id aligned with axis A, and axes B and C are ρςπЈ apart, the 

following two identities hold: 

Ὥ
ς

σ
Ὥ
ρ

ς
Ὥ

ρ

ς
Ὥ  (3.7) 

Ὥ
ς

σ

Ѝσ

ς
Ὥ Ὥ  (3.8) 

Expressing those two equations in matrix form yields to the formulation of the 

Clark transformation: 
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 (3.9) 

where ὄ is the Clarke matrix. Similarly, the current vector expressed in the Ὠ ï ή 

reference frame has the form: 



 

34 

 

░ Ὥ ὮὭ (3.10) 

and the transformation between this form and the ‌ ï ‍ frame is: 

Ὥ
Ὥ

ÃÏÓ — ÓÉÎ —
ÓÉÎ — ÃÏÓ —

Ὥ
Ὥ ὃ

Ὥ
Ὥ  (3.11) 

where ὃ is the Park matrix. In order to produce the maximum torque with 

minimum current, in usual operating conditions the PMSM power electronics 

command a stator current in quadrature with respect to the permanent magnet rotor. 

A direct current component may be commanded to reduce the effective 

electromagnetic coupling of the motor and the back-EMF produced at high speed, 

in order to reach rotation speed that would otherwise result in a back-EMF higher 

than the supply voltage.  

In the model, as shown in Figure 3.8, this condition is not covered by the 

commutation logic, and the current setpoint Ὅ  from the control electronics is 

routed directly to Ὥ. This is acceptable if the required performances are compatible 

with the supply voltage and nominal back-EMF coefficient of the motor. The 

current setpoints for the three phases Ὅ , Ὅ , Ὅ  are evaluated through 

inverse Park and inverse Clarke transformations. Then, a hysteresis controller 

(implemented as per Section 3.1.2.1) commands the switches of the three-phase 

bridge to supply the required voltage to the stator. 

3.1.5 Electromagnetic Model of the motor 

The Electromagnetic model of the motor computes the torque and back-EMF 

produced by the electrical machine. The electromagnetic coupling between rotor 

and the stator phases is accounted for by three back-EMF coefficients Ὧ, Ὧ , Ὧ. 

Those are defined as the derivative of magnetic flux concatenated with each phase, 

with respect to the rotor angle — . The back-EMF coefficients are computed 

considering the different distribution of magnetic field and windings for BLDC and 

PMSM machines (Figure 3.9): 

 

 
Figure 3.8: Block diagram of the Power Electronics model configured for the PMSM 
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¶ For the BLDC motor, a lookup table is employed to generate three 

trapezoidal waves, multiplied by the nominal back-EMF coefficient from 

the motor datasheet. 

¶ For the PMSM, three sine waves, ρςπЈ apart from each other, are computed 

and multiplied by the nominal back-EMF coefficient. 

The coefficients are then modified according to Section 3.1.6 to simulate the 

electrical fault modes. To evaluate the phase currents, a three-phase RL circuit is 

employed, as shown in Figure 3.10. The circuit is connected with a star arrangement 

and computed by Simscape, solving the following set of equations for each 

integration timestep: 

Ὥ Ὥ Ὥ π (3.12) 

ὠ Ὧ‫ ὙὭ ὒ
ὨὭ

Ὠὸ
 (3.13) 

for Ὦ ὃȟὄȟὅ. The resistance and inductance of each phase, Ὑ and ὒ respectively, 

are the nominal values from the motor datasheet, modified to account for potential 

faults. 

The currents, alongside with the respective back-EMF coefficients, are 

employed to compute the motor torque. Assuming a linear superposition of the 

contributions of each phase, the total motor torque is given by the sum of the torques 

produced by each of the three phases: 

Ὕ ὭὯ

ȟȟ

 (3.14) 

In addition, the torque is limited by a saturation accounting for the maximum 

magnetic flux through the stator polar expansions. 

 

 

Figure 3.9: Phase back-EMF coefficients for BLDC (a) and PMSM (b) 
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Figure 3.10: Equivalent circuit of the motor 

3.1.6 Dynamical Model of motor and transmission 

The dynamical model of motor and transmission computes the positions of 

motor and user, receiving as an input the motor torque and external load torque. 

The core of the model is a second order dynamical representation of the system, 

described by the equation: 

Ὕ Ὕ ὐ
Ὠ—

Ὠὸ
ὅ
Ὠ—

Ὠὸ
 (3.15) 

where ὐ and ὅ  are the inertia and damping of the motor-user assembly, expressed 

in the reference of the motor shaft. In addition, the model accounts for a number of 

non-linear phenomena affecting the behavior of the actuators, such as endstops, dry 

friction, and backlash. The viscous friction coefficient ὅ  is dependent on speed, 

to account for the Stribeck effect and potentially other nonlinear effects. 

 

Figure 3.11: Block diagram of the motor-transmission dynamical model 
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As shown in Figure 3.11, the collision with endstops is detected by a saturated 

position integrator. When a saturation is detected, the following actions are 

performed: 

¶ The velocity integrator is reset to zero 

¶ If the total torque acting on the system (including motor torque, external 

load, and viscous and dry friction) is aligned with the endstop (i.e. pushes 

the actuator against the endstop), it is overwritten to zero. 

Dry friction is simulated with the Borello model [107]. This is a numerical 

implementation of the Coulomb friction model, intended to overcome some 

limitation of alternative formulations (i.e. the saturated hyperviscous, Quinn, and 

Karnopp friction models). Specifically, to correctly simulate dry friction, a model 

shall be able: 

¶ To apply a force of constant modulus (equal to the dynamic friction value) 

against the direction of motion, when the system is in motion; 

¶ To act as a constraint, with a reaction that can grow up to the static friction 

value, usually higher than the dynamic friction one, when the system is 

stopped. 

While the dynamic behavior is simple to implement numerically, static friction 

may cause unintended interactions with the numerical integration. Specifically, the 

integration method may skip the time instant when velocity crosses zero, failing to 

apply the static friction condition. This issue is usually addressed by adding a dead 

band near zero velocity (Quinn [108] and Karnopp models [109]), or by simulating 

static friction as a very large viscous action (hyperviscous saturated model, [110]). 

However, both these models require the introduction of non-physical parameters 

(i.e. dead band amplitude, viscous force) that need to be calibrated to work with a 

given model and a given integration method. Additionally, some models (e.g. 

hyperviscous) fail to keep the speed to zero in the static friction condition. The 

Borello model of dry friction addresses these points by adding a zero-crossing 

detection routine to the velocity integrator. When the system speed changes 

direction, the velocity integrator is reset to zero for one timestep. As a result, it is 

possible to apply correctly the static friction condition. 

Backlash is modelled with a hysteresis band on the user shaft position. 

Specifically, the behavior of the Backlash model is summarized by Equation (3.16): 
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 (3.16) 

that is, the user position is constrained within a band of width ςὄὒὑ from the motor 

position reduced to the slow shaft. If the user position at the last timestep — ὸ

Ὠὸ already lies inside the backlash band, it is not updated at the current timestep 

(i.e. the user does not move). This model yields acceptable results if the main source 
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of backlash is assumed to be the connection of the user shaft position sensor: under 

this assumption, the inertia and load downstream the mechanical play are 

negligible, and do not affect the overall system response. A more detailed model 

would require a multibody simulation of the mechanical transmission, accounting 

for the multiple degrees of freedom of each individual moving part. 

3.1.7 Load Model 

The load on the actuator is simulated assuming to install it in the elevator 

control of an aircraft. In particular, the dynamical model of the F-16 fighter aircraft 

is employed, as available from Stevens [111] . For the scope of this work, only the 

longitudinal linearized dynamics is considered, expressed in the state-space form: 

ὼ ὃὼ ὄό

ώ ὅὼ Ὀό
 (3.17) 

where ὼ is the state vector, ώ is the output vector, ό is the control vector, ὃ is the 

state matrix, ὄ is the control matrix, ὅ is the output matrix and Ὀ is the 

feedthrough matrix. Considering only longitudinal dynamics, the state vector is ὼ

ɝὠ ɝ‌ ɝ— ɝή , where ɝ denotes variations from the equilibrium condition, ὠ is 

the flight speed, ‌ is the angle of attack, — is the pitch angle, and ή is the pitch rate, 

and the control vector is ό ɝ‏ ɝ‏ , where ‏ is the throttle command and ‏ 

is the elevator deflection. For the considered application, ώ is a scalar containing 

the hinge moment on the elevator, required to evaluate the load on the actuator. The 

matrices ὃ and ὄ of the state space model are derived from [111], and linearized 

for a trimmed condition at sea level at 153m/s (550km/h). The matrices ὅ and Ὀ 

are evaluated combining thin airfoil theory and Prandtl lifting line model, from 

available images of the F-16 all moving tail. The numerical values of the matrices 

used for the state-space model are the following: 

ὃ

ρȢωσρρϽρπ ψȢψρυχ σςȢρχπ πȢυχτωω
ςȢυσψωϽρπ ρȢπρψω π πȢωπυπφ

π π π ρ
π πȢψςςςυ π ρȢπχχτ

 

 

ὄ

ρȢπχυτϽρπ πȢρχσχπ
π ςȢρτωωϽρπ
π π

σȢωφττϽρπ πȢρχυυυ

 

 

ὅ υȢωωχψψȢωψρςϽρπ π ςȢφρπςϽρπ 
 

Ὀ π ωȢτφτσϽρπ 

(3.18) 

The computed load is multiplied by a gain to account for the geometry of the 

linkage between the actuator and control surface, and fed back to the EMA model. 

This way, the model is able to simulate an operation close to the actual load 

condition experienced in flight by an FCS actuator, in order to demonstrate the 

applicability of the proposed diagnostic and prognostic approach in real-time. 
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3.1.8 Simulation of faults 

In order to be employed as a simulated test bench for diagnostic algorithms, the 

EMA model shall be able to reproduce the behavior of the actuator accounting for 

the effect of a set of fault modes, both in their incipient stage and in system failure 

condition. Specifically, in this work the following failure modes are considered: 

¶ Variation of friction 

¶ Variation of backlash 

¶ Partial short circuit of a motor phase 

¶ Static eccentricity of the motor 

¶ Drift of the controller proportional gain 

For this case study, those are selected among the most common failure modes 

affecting electromechanical systems, according to the available literature [103, 112, 

113, 114]. Alternatively, when applying the proposed procedure to a newly 

designed system, the selection of failure modes to be considered may be driven by 

the Reliability, Availability, Maintainability & Safety (RAMS) documentation of 

the equipment, such as a Failure Modes Effects & Criticality Analysis.  The faults 

considered in this study are analyzed in the following sections, and their effect on 

the actuator response is discussed. 

3.1.9 Friction  

An increase of friction may result from the degradation of mechanical elements 

of the transmission of the actuator, such as spalling of the gear teeth sides or bearing 

rolling surfaces. This fault mode is easily simulated by varying the static and 

dynamic friction torque parameters within the Borello model (Section 3.1.4). The 

increase of friction from its nominal value determines a worsening of the 

positioning accuracy, and may result in a reduced margin of stability, stick-slip 

phenomena, or a limit cycle, interacting with the integrative contribution of the 

control law. 

As shown in Figure 3.12, increasing the value of dry friction from the nominal 

5% to 15% of the motor stall torque results in three distinct effects on the no-load 

response to a step command. 

¶ An increase delay while starting from standstill; 

¶ A reduction of the no-load speed, seen as a decreasing slope of the 

constant-speed phase of the actuation; 

¶ A decrease of positioning accuracy resulting from a larger static error. 

Figure 3.13 shows the response to a ramp command with a low slope, in 

presence of an increasing amount of dry friction. With a relatively low static friction 

(i.e. for ὝȾὝȟ πȢρ) the output position follows the setpoint smoothly, 

although with a small static error. Increasing the dry friction coefficient, a stick-slip 

phenomenon appears, where the system repeatedly starts, overshoots the speed 
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setpoint, and stops under the effect of friction. This behavior translates into 

vibration and noise of the transmission. 

Figure 3.14 shows the interaction between the integrative branch of the PID 

controller and an increasing amount of dry friction, resulting in a limit cycle. As the 

system overshoots the position setpoint, the integrative contribution of the PID 

winds up until the system starts up and tries to compensate the static error, but 

overshoots the setpoint in the opposite direction; the cycle repeats until the setpoint 

changes. 

 

Figure 3.12: Effect of increasing friction on the step response. 

 

 

Figure 3.13: Stick slip on ramp response caused by an increasing amount of dry friction 
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Figure 3.14: Interaction of integral controller and dry friction resulting in a limit cycle. 

3.1.10 Backlash 

Backlash is the mechanical play between components of a transmission. On an 

actuator transmission, it may interact with the control law producing limit cycles or 

reducing the system stability and accuracy. The interaction between backlash and 

controller can be avoided if the position sensor is installed upstream the mechanical 

play, but aerospace actuators commonly require a feedback on the user shaft to 

achieve an absolute position reference. For these reasons, the components of an 

electromechanical actuator are designed with a small interference, in order to give 

the transmission a preload and virtually no backlash. However, wear and 

degradation of contact surfaces of sliding and rolling elements of the transmission, 

such as gear teeth, or bearing rollers, may result in the increase of backlash affecting 

the actuator. 

In this work, the backlash fault is simulated by varying the hysteresis amplitude 

ὄὒὑ within the dynamical model of the motor and transmission, as expressed by 

Equation (3.16). 

Figure 3.15 shows the effect of an increasing backlash amplitude on the 

response of the actuator to a sine wave position command. The user position is 

affected by a delay during the inversion of motion; conversely, when the user moves 

in a constant direction the control system is able to compensate even for quite large 

backlash amplitudes. A more visible effect is experienced by the motor current: 

when the direction is reversed, the transmission to the user disengages for a while 

due to the mechanical play. Then, the controller sees an increasing error and 

overcompensates, causing an oscillation. When the system engages back in the 

opposite direction, the position error decreases and the oscillation in current 

dampens out. 




















































































































































































































