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Summary

Prognostics and Health Management (PHM) is an emerging fielcithatto
determine the Remaining Usefufé.(RUL) of systems, in order to plan in advance
the required maintenance interventio@sirrently, componds are replaced at the
end of their design life, which is the result of a tradeoff between maintenance costs
and reliability and availability requirements. With a PHM approaichyill be
possible to schedule replacements accounting for the actual coraditiee system
without decommissioningperable equipment or flying with worn components. In
addition, prognosticsperformed in reatime may allow adaptinghe operational
envelopeof a vehicle adaptively, in orddo increase the system life without
jeopardizing thesuccess of theission

Most approaches to failure prognosis available in literategeire a significant
computational burden, not suitable for réEle computations, andare
characterized by a large uncertainty associated to the RUIctioed This in part
is due to the inherent unpredictability of the propagation rate of damages, which is
influenced by several variables that cannot be controlled nor measured; another
source of uncertainty lies in the errors associated with the faalttagtprocesses.

This study addresses these limitations and provides a comprehensive
computational framework for fast and reliadRJL prediction. Physicbased
models of the system dynamics are combined with supervised and unsupervised
machine learningo obtain surrogate representations of the equipment and allow
for realtime evaluationsThe method is tested dhe RUL predictiontask ofan
electromechanical actuator for aircraft flight controls. This is a challenging and
representative case studyflight controls are complex subsystems of a vehicle that
involve the interaction between a number of heterogeneous disciplines, such as
mechanics, electronics, fluid dynamics and control theory. Multiple fault modes can
affect an actuator at the same timwed influence each other, making the fault
detection and RUL prediction tasks difficult. Highly detailed phybased



simulations are employed as a simulated test bench for the PHM algorkhms.
experimental validation of th@umerical models is providedby a physical
electromechanical actuator test rig.

Additionally, innovative sensor technology is discussel a promising
candidate to collect some of the required input data for the prognostic process.
Specifically, precise measurements offlight aeralynamic loads on the flight
control actuators areequired for orboard prognostics ashey influence
significantly the response of the flight control syst€&iften this information is not
available as it cannot be measured reliably and conveniently wethtional
technologies. Optical sensors are considered for the task as they permit to achieve
high frequency, accurate measurements with a good spatial resolution and a
minimally invasive installation.
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Chapter 1

Introduction

The complexityof aerospace systemsiiereasingsteadily as next generation
platforms are developed and enter the market. As a resutlesge andoperation
of the vehicleelies on the integration of a multitude of heterogeneous components
interacting with each other. Each piece of equipment within the system is
characterized by its own failure modes, and its malfunction influences theéiopera
of the system as a whol& ways that may be difficult to predict. This makes the
troubleshooting tasks difficult and time expensive, and ultimately yield®tsen
the reliability and availability of the aerospace platform.

Traditionally,the apprach to system safety and reliability relies on scheduling
the maintenance interventian priori: the periodical maintenance intervals are
determined statically during the design phase, analysing the failure rate of the
involved equipmenfl, 2, 3] The uncertainty associated to this approach is large,
as two identical components subject to the same mission profile may fail at very
different times. Then, the maintenance intervals are determined as a tradeoff
between the risk of flying a damaged component and that of replacing equipment
that is still operable. To mitigate the risk associated to failure of safiiyal
equipment, redundancies are employed at component or systendlebglas a
drawback, basic reliability and weight are worsened.

Advances in Prognostics and Health Management (PHM) disciplines permit to
monitor continuously the actual health condition of components and estimate their
Remaining Useful Life (RUL[6, 7, 8] This information is leveraged by newer
methods for product lifeycle management like Condition Based Maintenance
(CBM) [9, 10, 11]and Integrated Vebie health Management (IVHM}.2, 13, 14]
to plan the maintenance interventions in an optimal wayncrease the mission
reliability of the vehicle, ando reduce costs related tioe operation of the fleet
Then, a significant research effort is focusedgosing to next generation system
the capability to diagnose their damages and faultglvance and predicting the
RUL during operations, autonomously. This skill permits the replacement of
comporents only when actuallynecessary, avoiding additiondlowntime on



systems thaare still operable, and allows to reconfigure ission profileof the
vehicle dynamicallyn order to ensure a longer and safer systenjllfel1q.

Most PHM strategies available in literature rely either on a rbdséd
approach(i.e. employing physiecbased models of the monitored systeorsyn a
datadriven one Tinga and Loenderslodii7] provide a review of modéased
strategies for prognostics. [A8] a model of spacecraft dynamics is compared
against the measured attitude of a satellite to identify faults in the Attitude
Determination and Control System (ADC®).similar approachs leveraged by
Henry et al. if19]. Battipede et al[20] discuss a modddased diagnostic strategy
that analyses the output of an actuator through Fast Fourier Transform (FFT). A
structured residal between a digital twin and the system response is employed in
[21] to determindaults ofindustrial compressor§hi et al.[22] employ particle
filtering to perform failure prognosis on eladtiydrostatic actuators [23], Huang
et al. present a review of dadaven prognostic strategieBektas et al24] propose
a neural network framework for similaritbased prognosticén Extrene Learning
Machineis leveraged if25] for condition monitoring of wind power equipment.

In [26] a neural network is employed for fault detection of an aircraft
electromechanical actuatdn [27], RUL prediction of milling machine cutting
tools is performed employing autoregressive integrated moving average (ARIMA).
A similar case study is addressed[#8] employing Deep LearningJsually,
modetbased strategies need long computational times and significant hardware
resources, so they are not suitable for-taé execution. On the contrary, data
driven approaches require large training datasets, which are impractical to collect
from expeimental or field data. For example, critical but uncommon failure modes
tend to be underrepresented in field data, but they must be accounted for by
prognostic algorithm.

This study discusses a computational framework donearly reatime
prediction of he Remaining Useful Life of dynamical assembliegially proposed
by Berri et al. if29, 30] Theinput consists in themeasurements taken fragansors
installedon the system, either for feedback or for diagngstiqposesthese data
can be of various natuesd depend on the specific characteristics of the monitored
equipment. Examples atiee currerd and voltages applied &n electrical circuit,
speedand positiorof an actuator or pressuterque produced by motor, flow rate
and temperature of hydraulic fluid. The procedure is characterized by the
combination of an optimal signal compressiomethod with reduced order
modelling and machine learnirgggorithms. "his waya computationally efficient
map that pemits to associatéhe sensor measurements to a prediction of the
s y st RULGIss built offline. As a result, thestorage and processing power
necessaryfor the realtime RUL prediction isreduced dramatically, even
accounting for the time and hardware domists usually associated to-board
computationsThe proposedpproachnvolvessurrogate models of the systémat
are trainedoffline: these models are used online in order to reduce the
computationalburden, whichis required forthe diagnosisof the actual system
healthstatusandfor the failure prognosisin addition, the dimensionality of the
problem is reduced by learning online an informative compression mask, which
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allows to store and process online only a limited set of informative signal
conponents, without compromising accuracy

In this study the actuators for aircraft Flight Controjstems (FCSs) are taken
into account for the application of the proposed methodology. FC&snaneg the
most critical systemsof an aircraft, since their fare may result, in extreme
scenarios, ithe impossibility to control the vehiglavith obvious safety concerns
For this reason, monitoring the health status of the FCSs is very important because
it can produce substantial progresses in terms of opgratosts, aircraft
performance, mission reliability and even ease requirements on system
redundancies.

The problemof FCS prognosticsis intrinsically challenging: different
disciplines interact in describing the model of FCS equipntenguarantee the
opeation of the system, electrical/electronicschanical, aetynamic, structural
and hydraulicsubsystemseed to work concurrentlyfhe dimensionality of the
FDI problem isa result othe large amount of the possible failure moda#erent
faults mayhide each other, or may have similar effects to that they are easily
misidentified. Additionally, specific environmental or operating conditions can
trigger false positive fault detections. Then, the specific test case of flight control
actuators is an taresting one for the demonstration of the proposed computational
framework.

1.1 Problem formulation

Usually the PHM process includes three tasks, namely signal measurement and
feature extraction, Fault Detection and Identification (FDI), and prediction of
Remaining Useful Life (RUL), as shown in Figure 1.

In the signal measurement and feature extraction task, the output signals of the
system are measured with a uniform acquisition frequency; they can be stored as
time-series, or statistical features can beraoted such as moving averages,
variance and skewness of the data. The monitored quantities shall be sensitive to
the possible presence of incipient faults, and only marginally affected by changes

| On-board sensors |

Physical measurement x(k, t), y(k, t)

| Resampling |

Resampled measurement y(k, x)

Signal acquisition & Feature extraction

Feature y(k)

Fault Detection & Identification

Health condition k

RUL Prediction

Figure 11: Common PHM flav.
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in the operating conditions of the system. In the FDI task, the output of the previous
phase is processed and analysed in search of the early signs of damage to determine
the actual health status of the components. Eventually, in the RUL predictipn task
the current condition of the system is employed as a starting point for the failure
prognosis, i.e. to inform an estimate of the RUL of the system.

Traditionally, only the signal measurement and feature extraction task is
performed online, as the comptitaal burden required by FDI and RUL prediction
is usually too high. The signal acquisition consists in acquiring a set of signals
. , sampled with a constant frequency depenaenthe capability of the
hardware and on the characteristics of the information that shall be captured. The
signals can be then resampled as a function of other parametetise system in
order toobtain and informative mag & , which can be stored in vector form
. This vector can be high dimensional and cumbersome to store and process;
for this reason, the FDI and RUL prediction tasks are usually performed offline. In
this work, this isue is addressed by finding a compressed representat
reduce the dimensionality of the FDI task.

The informative map : : is processed in the FDI to obtain an estimate of the
current health status of the system. Several FDI approachesdetbased: they
rely onphysicsbased models of the monitored equipment and compare their output
to that measured from the physical equipme&iot. example, Freeman et §B1]
compute the residual between a model of airchafamics and the actual response
of the vehicle; this residual is analysed by a statistical algorithm to detect anomalies.
In [32], a similar strategy is employed to detect flight control actuator faults on a
small UAS; this gstategy relies on the analysis of the fault effect at vehicle level,
then, small, incipient damages are hardly identifiable. Meng §3jlpropose to
use a Kalman filter for modddased FDI of wind turbines. In these apprass;lihe
FDI task is formalised as an optimisation problem whose solution is the fault
condition, that minimizes the discrepancies between the outpagasured from
the physical equipment and that of a model sensitive to the health conditigin:

AOCIQETe « (1.1)
g

where, in general, the errdi « « is a monotonically increasing
function of &« £ The specific normE2to be employed depends on the
peculiar characteristiof each individual application. Under this assumpti@n,

has a global minimum where is the best possible approximation «f In this
condition, the vectal can be assumed as a good representation of the actual health
of the system. Th# a purely physicsdbased approach is used, the computation of
the modele can be expensivehé¢ use of an optimization algorithm to solve
the problem of Equation (1.1) requires to evaluate this model iteratively until
convergence, and yields a computational effort that is not suitable fdimnealbnr

board FDI. In addition, the choice of an opdil error function may be challenging.

On the contrarydatadriven algorithms allow for faster online computations, but
require to learn surrogate models offline from large datasets that are often not
available: their collection may require several thodsaof hours of system
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operation in nominal and faulty conditions, and can be obtained only after the
system has entered servi@]. The output of the FDI task is an estimate of the
0 be used for the pregion of Remaining Useful Life.
The RUL of a system can be defined as the residualtéfuee a failure occur;
the term failure means the inability of the system to meet its functional or
performance requiremeni35, 36]. Formally, we can define a functidé for
the assessment of the system hdd@; %o is a binary classifier that compute the
residual performance of the system under the effect of the faaltsl compares it
to the applicable requirements. liethequirements are still metcg A A 1 1@delU ¢
is assigned t& otherwisea A Celaliel) Then, the RUL prediction problem can
be written as:

YYO I Eb

&B % Q0 e«EAOI OUec
assuming that the current time ds 1t In the traitional approach to system
lifecycle management, the life of a piece of equipment is computed in the design
cycle, as a combination of the failure rates of individual components. This kind of
estimate has a very large uncertainty margin, as two idengards may age
differently and fail at differertimes. On the contrary, PHM methods rely on a RUL
prediction performed during the operation of the system, accounting for its actual
operating condition and health status. In order to obtain a RUL estimast, m
approaches to failure prognosis either extrapolate the observed fault propagation
rate[38] or evaluate a model of damage growth until the health co
a failure threshold. Ifi39], a semimarkov model is combined with the Maximum
Likelihood Estimation (MLE) method to infer a damage propagation maaedzio
et al.[40] propose the use of Particle Filtering to predict the Rlilet al. [41]
combine Particle Filtering with Canonical Variate Analysis (CVA) and
Exponentially Weighted Moving Average (EWMA) for failure prognosis of
industrial rotating machinery. Usually, the main limitations that characterize PHM
strategiesavailable in literature are related to the sensitivity to structured
uncertainties (i.e. uncertainties associated to the parameters of the system model)
and unstructured uncertainti@®. uncertainties associated to phenomena neglected
by the system modeajfecting both the FDI and the model of damage propagation.
In addition, thefailure threshold is often set independently on each failure mode:
however, when multiple faults interact in a complex system, the failure can happen
before any individual fault mad reaches a critical value. Eventually, the
computational time required for failure prognosis is usually not suitable for real
time computations.

This study attempts to address these limitations by proposing a comprehensive
PHM framework to move the whokDI and RUL prediction process moard the
vehicle. This is made possible by the use of surrogate models of the system response
to faults, which are trained offine and evaluated online to speed up the
computations and meet rdahe constraints.

(1.2)




Chapter 2

Proposed methodology

The proposed methodology addresses the three phases of the general
Prognostics andHealthManagement (PHMproblem described in Sectidnl A
combination of modebased and machine learning techniques is employed to
reduce the comypational burden associated with each phase of the process and
speed up the estimatiaf the Remaining Useful Life (RUL)The purpose is to
achieve a nearly redime evaluation of the systeRUL: such information can be
employed to inform maintenance ptang and possibly a dynamic reconfiguration
of the mission, accounting for the residual capabilities of the equipment.

The block diagram dfigure 21 depicts the higtevel structure of the proposed
PHM strategyhighlighting the subdivision of each phase in an offline training and
an online evaluation; the information flow between théedgnt blocks is shown as
well.

At first, information about the system behavior, both in nominal conditions and
in presence ofdults, is collected in a training dataset. The source of training data
can be either an experimental campaign, a phmsed simulation of the
equipment (calibrated and validated with respect to the response of the actual
physical system), historical reas of field data, or a combination of the three.
Generally speaking, highdelity data collected from actual hardware is to be
preferred, but often the amount of information required for training successfully the
machine learning tools is not availablken, high fidelity data may be integrated
with synthetic data computed with a simulation model. Specifically, for the
proposed methodology, the following information is required:

1 A set of fault combinations, sampled in the space of the considered fault
parameters. The number of fault combinations, as well as the particular
sampling criterion, are problem dependent. For the application discussed in
this manuscript, a particular importance sampling technique is employed. A
detailed description is providea@discussed in Section 2.1.

1 A set of informative maps of the system behavior, associated to each of the
aforementioned fault combinatisnThese maps shall be measurable with
the available sensors installed on the system, and shall be highly dependent
on the health condition of components; at the same time, dependency on
operating and environmental conditions shall be reduced as possible.

1 A set of Boolean values associated to each sampled fault combination,
determining whether or not that specific healtimaition is still compliant
with the requirements of the system. This information can be collected by
evaluating an assessment function, as propos@fjn
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Figure 21: Block diagram of the proped PHM strategy, highlighting the offline/online
arrangement of each phase.

After the training dataset is collected, a compression map is determined offline
to reduce the amount of data to be measured, stored and processedinmereal
two-step signal compression, initially proposed by42] and successfully
demonstrated for structural health monitoring problems, is leveraged. The first step
of compression employs Proper Orthogonal Decomposition (POD) to determine the
informative principal components of the system behavior maps from the training
set. Then, a SelDrganizing Map (SOM) yields a nonlinear projection of the
principal components to a set of optimal locations for-tiea¢ measurement.
Online, only those locationseaconsidered for measurement of the system behavior
map, thus reducing the required processing for FDI and RUL estimation. Most of
the information of the complete system behavior map is reconstructed in real time
via Gappy POD: as demonstratedd8, 30] this results in a significantly improved
computational time with respect to measuring the whole map.

After reconstruction via Gappy POD, the retained information from the system
behavior map is encoded in a set of fiorents associated to the principal
components of the measurements. A Mu#yer Perceptron (MLP) is trained
offline to associate the POD coefficients of the training set to the corresponding
fault combination. Online, the POD coefficients estimatednfrine reaktime
measurements are fed to the trained MLP in evaluation: the output of the neural
network constitutes an estimate for the actual health condition of the system.
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The estimated health condition is employed as a starting point to determine the
RUL of the system. To do so, a model for the propagation of faults is integrated
with respect to time. In order to reduce the sensitivity of the RUL estimate to the
uncertainty in FDI, all the last known health conditions are accounted for. A filter
based o a dynamical estimator, similar to a Kalman Filter, is employed to combine
the information from FDI with the known model of damage propagation, and to
extrapolate the time evolution of the health condition until a failure haggadhs
The stopping criterion for the extrapolation is the assessment function for the
system[37]; however, the computational cost is excessive and not suitable for real
time computation. Then, a Support Vector Machine (SWWyained offline as a
surrogate assessment function to speed up computations online.

Several approaches available in literature, based e.g. on AutoAssociative
Kernel Regressiof#4] or Principal Component Analysid5] build fault detection
models considering only nonal condition dataThe proposed method builds the
fault detection models cesidering data both from nominabndition systems and
from faulty systems. This approach has the advarmbgeoviding information not
only about the magnitude of the deviation from a nominal state, but also about the
specific fault modes detected in the equipment: this may ease the failure prognosis
process, as well as the troubleshooting tasks needed &xtcfaulty subsystems.

As a downside, a more demanding, but still feasible, data collection is required.

In this manuscript, Section 2.1 describes the particular importance sampling
criterion employed for the training set; Section 2.2 details the siggaisitoon and
two-step compression; the FDI process employing MLPs is discussed in Section
2.3; eventually, Section 2.4 describes the RUL estimation algorithm.

2.1 Acquisition of a training dataset via particular
importance sampling

The machine learning tootsnployed for the three phases of the PHM process
require datadriven knowledge about the behavior of the equipment in nominal and
off-nominal conditions. This information is collected with the acquisition of a
training dataset, employed offline to tralmetsurrogate models used through the
whole PHM strategy.

Specifically, three sets of data are collected, arranged into three matrices.

1 A matrix of fault combinationst ;
matrix is a& -dimensional vector encoding in its components the health
condition of the system or, in other words, a set of parameters related to the
state of the considered progressive damalfes.components 6P may be
physical quantities related to the level of wear of components of the system:
for example, the backlash or friction coefficient between two mechanical
components, the resistance of an electric connector, the thermal
conductvity of the heat sink of a circuit board. Since small, incipient faults
are considered for prognostic interest, the drift of a fault combination from
the nominal condition does not result immediately in a failure: the system
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may still be able to meet iperformance requirements for some time before
failing.

A matrix of informative behavior maps of the syst&m « 8 he
Each column vector w M b encodes the behavior of the

system associated to ti&h fault combinatiorg . The vectors are given
combinations of measurable operating parameteosn fthe system,
expressed as a function of another parametiEr examples can be a time
coordinate, the output position or speed of an actuator, or the external load
on a control surface. The particular behavior maps chosen for an application
are stongly problem dependent. The requirements for the chosen quantities
are that (1) they can be derived from data available from sensors installed
on the equipment and (2) they are highly sensitive to the health condition of
the system, and marginally inflneed by operating and environmental
conditions

1 A matrix of values of a function for health condition assessnient
%o, B Mo, . The assessment functiGhy %o associates to the

fault combination. a Boolean value expressing whether or not the

considered system, affected by that fault combination, is still compliant to
its requrements. Traditionally, common approaches to PHM employ a
simple threshold for the individual fault parameters; however, this method
IS not able to consider accurately the combined effect of multiple fault
modes, so a modélased approach weferred.

The matrix+ is sampled in the space of fault combinations. The sampling
method used for a specific application is problem dependent. For prognostic
applicationsthe specific interest is to captuhe behavior of the system in presence
of the early precums's of incipient faultsindeed,the faults shall be identified in
advance of the actual failure, early enough to plan corrective actions. Then, the
training dataset shall allocate a relatively high number of samples for small faults,
near to the nominal conditi . For this reason, a
particular importance sampling is adopted in this work.

Being the space of fault combinations relatively high dimensional, if a sampling
with uniform probability distribution was to be employegither a prohibitively
large number of samples would be required, or the resultant density of samples
would be very low. For example, let the fault combination &
dimensional vector (i.& ), its components normalized between 0 anaht],
let the nominal conditi coincides with the origin of a Cartesian reference
frame. The acceptable sampling space is an-giigh¢nsional hypercube with unit
side; its (hyper)volume i® p. For comparison, the volume of the eight
dimensonal hypercube with half unit sidem® o8 1 , orthat of the locus
of points with positive coordinates whose distance from the origin is less than 1 is:

™ ¥ T8ip G (2.1)
that is, only 1.2% of the total fault combinations have a Euctidistance from

the origin less than 1. Therefore, a uniform sampling distribution is not a viable
option to achieve a good density near the nominal condition. To obtain a better




distribution for the samples, and assign more weight to health conditi@estolo

the nominal one, we employ a standard Latin Hypercube sanjpbng7, 48, 49]

on an auxiliary set of variables, whose space is mapped to the space of the fault
parameters via a nonlinear peofion. At first, the auxiliary matrix, € -by-¢
dimensional, is built as a standard Latin Hypercube sample. The elements of the
fault matrix+ are then computed as a nonlinear projectiot) af this purpose, in

this work we employ the funan:

+ * (2.2)

It is possible to prove that a uniform distribution of the norm of U is
obtained this way. Specifically, let us consider the rogysontained in the matrix
*, such that:
0 *p (2.3
wheet & p. These rows encode the coordinates of the points contained in a
hypercube with side lengthin the space of the auxiliary variables. BefragLatin
Hypercube sample, its rows have a uniform the distribution; the number of points
that satisfythe conditionof Equation(2.3) is approximately:
¢ a (2.4)
where¢ is the total number of points (i.e. rows of the matri)ese points are

mapped to the space of the fault combinatijtizat are contained in the hypercube
with side lengtha . Then, the corresponding rows+ofire subject to the condition:

0 + a (2.5)

that is, for any given positive scatarthe number of points such that + 5 @
is proportional tay thus achievig a uniform distribution in thé of the sampling
points, that is, an increasing density in the individual coordinates towards the origin.
A graphical interpretation of the behavior of this samptechnique is shown in
Figure 22, where a standard Latin Hypercube is compared to the proposed
importance sampling method.

After the matrix+ is determined9 andlz are obtained using phystbased
models of the system, and evaluating those models for each faulinedio

2.2 Signal Acquisition, Feature extraction and
Compression

The system behavior mapse contained in the training dataset are usually
guite highdimensional. Considering for example the application presented in this
work, if employing the Bck-EMF coefficient of the motor as the mepexpressed
as a function of the rotor angée to identify electrical faults, the voltages, currents,
rotor angle and speed shall be measured and acquired with a high frequency (at least
one order of magnitieabove the commutation frequency of the motor, so typically
in in excess of 10kHz).
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Figure 22: Behavior of the proposed importance sampling in two dimensions. (a) standard
Latin Hypercube sampling; (b) importance samplifilge proposed importance sampling increases
the density of data points near the origin.

This results in large amounts of data to store and process-tmneahssuming
to allocate 16 bits for each signal, this approach generates a data stream in excess
of 1Mbps. The system behavior map reconstructed from this data is, in turn, high
dimensional, and encoded in an-dimensional vector. To process this data
stream in reatime without some kind of compression would require substantial on
board hardwre resources, that are prohibitive for health monitoring purposes.

Hence, an efficient method to reduce the amount of data is required. In this
work, a two steps signal compression is employed, combining Proper Orthogonal
Decomposition (POD) with SefDrganizing Maps (SOMSs) to determine offline an
optimal set o€ L € informative locations in which the system behavior maps
are measured and processed. The method was initially developed by Mainini and
Willcox [42, 50] and verified for structural health monitoring apations.Berri et
al. demonstrated the application to actuator diagnasti@9, 51]

Specifically, offline a set of informative locations (also referred to as a
compression mask) is determined for measurement amegsiog of the system
behavior map. Online, this compression mask is employed to speed -timeeal
computations; mosif the information of the whole system map is recovered via
Gappy POD.

2.2.1 Offline

In the offline step of the compressiaihe aim isto detemine an efficient
compression mask for the system outpué , in the form of a set of informative
locations ine where the observation is measured, stored and processed. The
method developed ifbl] is employed. The copmession strategy includes two
steps: (1) at first, Proper Orthogonal Decomposition (POD) identifies a linear
projection of9 to the space of its principal modes; (2) then, a-Seffanizing Map
performs a nonlinear projection of the dominant POD modéketspace of the
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weight vectors of the map. As a result, this procedure allows embedding physics
based knowledge in the signal processing, and obtaining an optimal compression
mask to retain the significant information about the syst€ms dramatically
reduceghe amount of data to be processed in-tigad.

The following Paragraphs describe respectithby first step of compression
employing PODandthe SOM leveraged to obtain the optimal compression mask.

2.2.2 First step of compression: Proper Orthogonal [2composition
(POD)

This phase of the PHM process aims at computing a reduced representation of
the system behavior map, identifying its most informative components. The input
of this step is the matrix oinformative behavior maps of the systedn

« /B h , obtained in Section 2.1. The output is represented by the POD modes,
that is, the principal directions of variation of the system behavior

Proper Orthogonal Decomposition (PO[3R, 53] is a numerical procedure
closely related to Principal Component Analysis (PGA%] and commonly
employed to find compressed representation and reduced models, by identifying
underlying structures of possibly correlated d¥ithile PCA is often employed in
statistics for finitely dimensional data, POD is commonly used in several fields of
engineering, such as: fludiynamics, structural mechanics, and signal processing.
Its formulation, based on the Karhureoeve expansion, guaranteg¢hat the
compressed representation of the data is optimal in the least squares sense and
retains the structure of the underlying physical phenorftefila For example, in
[55] POD is employed to oain surrogates of nonlinear dynamical systems for
modetbased controMWalton et al[56] combine POD and radial basis functions to
obtain reduced order models of unsteady fluid floWwsllcox and Perairg57]
employ Proper Orthogonal Decomposition to perform a balanced reduction of high
order linear systems. I[®8], POD is used to obtain a dynamical characterization
and order reduction of linear and nonlinear dynamicstlesys.

POD is applied to the matr&with the method of Snapshq&#]. The observed

system outputs (snapshots) are arranged into the column8 ®fa , and
Singular Value Decomposition (SVD) is leveraged to find two orthogonal matrices
5N 1 andé N A and a diagonal matrik N g such that

9 516 (2.6)

An important property of SVD states that the fiest columns of 5
o 8 o constitute an orthonormal basis for the column®.0As a result, a
generic observation of the systamcan be written as the linear guposition of
the mode®, weighted by the coefficients.

(2.7,

where « is a baseline observation, e.g. the average of all the individual
observations. The POD modes are optimal in a least sgres sense, and are
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ordered according to the associated eigenvaluda a geometrical interpretation

of POD, the observations are represented as data points in&halimensional

space; the POD modes are the principal directions of \ariafi the observation,

i.e. the principal axes of an -dimensional ellipsoid fitted over the distribution of

the data points. The length of each axis is the eigenvalue associated to that mode,
and provides a measure of the dispersion of the obsamgan that direction. The
modes associated to the largest eigenvalues then explain most of the variability of
the data; as a result, a compressed representation of the obseruat@msbe
achieved by truncating the POD expansion of Equafiof) {o the first€ modes:

(2.8)

with & L € . The fraction of information of the original observation set retained
by this representation is related to the cumulative sumf the eigenvalues
associatd to the retained modes:

B _ (2.9)
" B

If the eigenvalues decay fast, i.e, ifs already close to 100% for a small,
the compression provided by Equati@r8f retains most of the original information
within a limited set of parameters (i.e. the POD coefficien{$. Indeed, the set of
modes is fixed for a given system, while the information associated to an individual
observation is stored in the POD coefficients.

The output of this step includehe POD modes and coefficients computed for
the matrix9, to be employed by the following phases of the PHM process.

2.2.3 Second step of compression: Sedrganizing Map (SOM)

The first step of compression through POD allows to find a compressed
representatio of the observations to reduce the amount of data to process for FDI.
A second step of compression leverages unsupervised machine learning to
determine an optimal compression mask to reduce the amount of data to be
measured and stored onlirihe input ofthis phase are the first POD modes
computed in Section 2.2.1.1.

SeltOrganizing Maps (SOMs) were originally introduced by Kohofteh
60]; they are a class of singlayer neural networks that exploit unsupsed
learning to identify clusters of sedimilar data.Kaski [61] discusses the use of
SOMs to find structure in large multidimensional datasets, with applications in
engineering, statistics and data mining.[82], SOMs are employed to extract
interpretable patterns from satellite imag&yensson et gl63] leverage SOMs to
diagnose cooling system faults in a fleet of vehicles, by obtaining low dimensional
repregentations of sensor measuremerf@honen maps are employed with
agglomerative hierarchical algorithms to detect failures of induction matfg4).
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A similar approach is tested for diagnostics of industrial automation equipme
[65].

Each of thee neurons of the SOM has two representations. One lies in the
space of the weight vectors (that is equivalent to the space of the input): this
representation is updated iteratively during learning. The second representation is
in the usually bdimensional topological space of the network, and is fixed.

The SOM exploits a form of unsupervised competitive learning. At first, the
weight vectors are initialized to random values; during training, the exakihates
fed one by one to the network. Focka&xampléV, a winner neuroiis chosen as
the one that minimizes the distance between its weight vectand the current
training pointW:

& AGCETT 0 (2.10
For most applications, including the one cdesed in this work&2 denotes
an 0 norm that isthe Euclidean distance between the weight vector and the

training example. The weight vector of the winner neurand its neighbors are
then updated according to the following equation:
6 0 @ Qt o (2.11,

where —@ is a neighborhood function, 'Q is a monotonically decreasing
learning coefficient;Qdenotes the iteration of the learning process, ‘Bsdthe
particular neuron being updated. efmeighborhood function is typically a
decreasing function of the distance from the winner negrdefined in the space
of the topological representations of neurons. As a result, at each iteration, the
weight vectors of the winner neuron and its neagsbare moved closer to the
training point. This process is repeated for each input of the training set for several
epochs. During each epoch, all the training points are submitted to the network,
each time in a different, randomized order. The trainingpmplete when one of
the stopping criteria is met: for example, when a performance parameter reaches its
goal value, or when the maximum number of epochs is reached.

For the application discussed in this work, the training $s&composed by the
first¢ modes of the POD and the associated coordinate

4 efp B o (2.12

Each training point is a row ofl, including a coordinatew and the
corresponding values of the POD modes. A property of SOMs implies that, after
training, the weight vectors represent a nonlinear projection of thedimggmsional
training data to the lower dimensional space of the nelié@j)sA consequence is
that the weight vectors, defined in the space of the jrgntode representative
vectors for clusters of sedimilar points. Then, an efficient compression mask can
beobtained from the components of the weight vectors associated to the coordinate
e: the system behavior mapse will be measured and processed online only in
correspondence of those informative values of the coordinate, to obtain a
compressed representation
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2.2.4 Online

The compression maske computed offline isemployed to reduce the
computational effort needed in rdahe. During the operation of the monitored
system, the sensors installed onboard capture a constant stream of data, whose
frequency depends on the primary application of the individual sendeedndata
used for health monitoring purposes is preferably measured by sensors installed for
a primary application different from prognostics. This way, virtually no weight or
complexity is added to the onboard system, and its performances and rekabilit
not decreased. Data measured onboard is processed to obtain the system behavior
map «. The reconstruction of the complete mep» would require substantial
processing power, since the acquisition frequency of the sensors may be in the
kilohertz lange or above. Then, the compression mask allows to process only the
¢ points whose coordinasehave been determined offline.

Those pointsefx constitute an incomplete measurement of the behavior map
of the system. The efficient placemeifithe measurement points through the-two
step compression guarantees that a large fraction of the information contained in
the complete map is retained. The map could be fed directly to a regression neural
network, as irf67]; however, random errors on the measurements could result in a
biased fault detection. In this work, Gappy Proper Orthogonal Decomposition
(Gappy POD) is employed to reconstruct an estimate of the POD coefficients
associated to the incomplete map measundide

Gappy POD[68, 69, 70]is a procedure derived from POD, commonly
employed to reconstruct data from sparse measurements, leveraging-phgsids
knowledge of the structures of data through the useedP@®D modesSaini et al.

[71] discuss the use of Gappy POD for data recovery from the noisy particle image
velocimetry measurements in combustors of gas turbiWélsox [72] employs a
similar tedinique to reconstruct unsteady fluid flows from incomplete
measurements.Bui Thanh et al.[73] employ gappy pneer orthogonal
decomposition for efficient inverse airfoil desidn.[74], stabilizedreducer order
models of nonlinear eddy currents are obtained with Gappy POD.

For the implementation studied in this work, the goal is to reconstruct the POD
coefficients associated to the incomplete measurement, as opposed to the complete
observation. Accaling to Equation.8), the quantitye measured online can be
approximated by a linear superposition of the irstPOD modes. The objective
of Gappy POD is to find a set of coefficientsthat minimize the mean squared
error between the originailgnal and the reconstructed one, limited tecth&nown
components . This is done by solving the linear system:

I | (2.13
where' 0 U is the Gappy Matrix, and) o I8 hp is a€ -by-¢
dimensional maix whose columns are the first POD modes, considered only
in their ¢ informative elements corresponding to the coordinatesf the

compression masK he vectolis obtained by projecting the compressed signal
along the compressé&DD modes 1
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B~ (2.14
In the traditional application of Gappy POD, after solving the system of
Equation 2.13), an approximation of the complete measuremgstreconstructed
as the linear superposition of the figst POD modes, wighted by the coefficients
) as per Equatior2(8). The specific implementation of tipeoposed methodology
requires directly the use of the POD coefficients as a compressed representation of
the highdimensional observationfor the Fault Detection aldentification phase.

2.3 Fault Detection and ldentification (FDI)

This step of the posed PHM procedure receives asrgout a compressed
representation of the system behavior maip the form of the POD coefficients
to return in output the estimaté&ealth conditi

Common methods for Fault Detection and ldentification (FDI) are either
modetbased or datdriven. The former category relies on physiesed digital
twins of the monitored system: the measurements from the mahigougpment
are compared to the output of the digital twin, and a parameter identification
algorithm is employed to match the response of the two systems and estimate the
actual health condition. This procedure can be highly accp#ajebut requires a
computational effort that is usually not suitable for 4tgake execution. The latter
category relies on machine learning tools to associate a measured output to a given
fault condition. In this case, computational time is fast,accuracy is not suitable
to determine small, incipient faulfg6], especially if the response of the system is
influenced by several unpredictable variables.

The proposed methodology for FDI is essentially dliteen; havever, thanks
to the efficient data compression, and with a suitable choice of the monitored
parameters, it permits to combine good accuracy and fast computational time in
evaluation. The methodology employs supervised machine learning to associate the
estmated POD coefficients to the health condition of the syst€inSpecifically,

a feedforward neural network is trained offline (with the fault conditions of the
dataset+ and the associated POD coefficients compuitfiihe as per Section
2.2.7) and ewaluated online on the POD coefficients estimatedSappy POD
(Section 2.2.2).

2.3.1 Offline

A neural network is trained offline to associate an estimate of the fault condition
o a set of POD coefficients. The use of a machine learning approexstead
of a modelbased one allows to keep the computational time in evaluation low and
compatible with reatime constraints. In this application, a standard
implementation of a MultLayer Perceptron (MLP) with a single hidden layer
demonstrated to be suitable fbe task. Depending on the specific problem, more
complex machine learning paradigms may be required.

Multi-Layer Perceptrong77, 78] are a class of supervised learning,
feedforward neural networks; their propertf lmeing universal approximators
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makes them suitable for solving regression and classification problerfi&9]

MLPs are employetb estimate fuel consumption of road vehicles accounting for
variations of the operating conditioLi et al.[80] compare MLP networks and
deterministic regression methods for the estimation of wind turbine power curves.
In [81] MLPs and Support Vector Machines (SVMs) are combined to detect early
faults of gearboxes from vibration measurements.

The architecture of an MLP features neurons arranged in one or more hidden
layers, followed by an outpuayer. MLPs are fully connected networks, megn
that each neuron receives asrgout the outputs of all the neurons of the previous
layer, and its output is fed to all neurons of the next layer.

The implementation adopted in this work has a single hidalggr with €
sigmoid activation function, and an output layer with linear saturated activation
function. The number of neurons in the output layer is determined by the problem,
and is equal to the dimension of the output: then, for this work thege anefput
neurons, being the output of the MLP an estimate of the fault vector. The training
set is composed by the fault conditions of the training st the targets, and the
associated POD coefficientscomputed irSection 2.2.1s the inputs.

The inputss of the hidden layer, arranged as a column vector, are multiplied
by the weight vectorg of the neurons (row vectors), added to a bias congtant
and then fed to a hyperbolic tangent activation function to obtain the @itgfut
the neuronFor the'@h neuron:

w OAIfFE» & (2.15
Figure 23 (a) shows the block diagram of a sigmoid neuron. The output layer

receives ininputthe outputs & 8 &  of the hideén layer; they are weighted
by the vectorsy , added to the biad and fed to the linear saturation activation
function to compute the output of the MEP Q8 Q . For the’@h neuron:

o EfE+ & m (2.16
0 o+ R EE T+ D oo

ph E#fE+ o p

The block diagram of a linear saturated neuron is showigure 23 (b), while

Figure 24 shows the overall arrangement of the MLP. The particular choice of the
output activation function reflects the bounds of the output of the FDI problem: the
components of the fault vectiirare normalized between 0 and 1. Additionally, the
sharp transition ahe output activation function permits to cut to zero the estimated
fault condition when the dynamical response of the system is close to the nominal
one, reducing the risk of false positive fault detections.
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Figure 24: Arrangement of the single hidden layer Muleiyer Perceptron (MLP) employed
for FDI

The weights and biases of the neurons are determined duaingng, to
minimize a performance function in consisting in the mean squared error between
the outputs of the networks and the targets, leveraging a LevelMlaeggardt
backpropagation algorithnj82]. The Levenbergfarquardt algorithm is an
optimizaton algorithm meant to approach the secorakr convergence speed
while avoiding the direct computation of the Hessian matrix of the problem. We
define a vectom containing in its elements the weight and bias parameters of each
s the target, i.e. the expected output of the network for
the training set, wh is the obtained output. Being the performance function a
sum of gjuares, the Hessian mat(ixof the errors with respect to the weight and
biases can be approximated as:

( ** (2.17
and the gradient of the performance function is:
l "= (2.18]

where g and* is the Jacobian matrix, which cae kvaluated with a
standard backpropagation meth@3]. This approach is less expensive than the
direct computation of the Hessian. At each iteration, the algorithm uses the
approximated Hessian to updatén a quasiNewtonform:

° ° ( )Y | o R B (2.19
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where the scalar parameters decreased after each successful iteration (i.e. after
a reduction of the performance function). The training is stopped when either the
maximum number of epochs is reached or the performance gradient decreases
below a threshold. The result of the offline step of the FDI phase is the trained MLP
b , to be employed online for retine fault detectionThe use of the

low dimensionale pr esent ati on of the systemos
coefficients) in place of the full dimensional reduces the number of neurons
needed in the hidden layer and simplifies the training protressldition,» has an
advantage over the compregsegnal«, as the Gappy POD step inherently checks
the plausibility of the observations by comparison with the information contained
in the POD modes, and mitigates the effect of local measurement errors.

2.3.2 Online

The MLP model trained offline is employdo speed up rediime FDI. The
network receives aminput a new set of POD coefficients, associated with the map
of system behavior observed and compressed online with the optimal compression
maske. The POD coefficients are estimated via Gappy P@ilh the procedure
described in Section 2.2.2.

The estimate of the current health condition of the s
the output of the MultLayer Perceptron, employing Equatio2s1f) and @.16).

This strategy allows to perform the FDI tasla few milliseconds, much faster than

the several minutes required by moebteked fault detection techniquéd4].
Additionally, the combination of supervised machine learning with thestep
compression, which allows emlabidg physicsbhased domain knowledge into the
compressed representation of the system observations, permits to retain a good
accuracy of the estimate.

The output of the online FDI is the rdahe estimate of the system hegl
which will be employed as a starting condition for the estimation of Remaining
Useful Life.

2.4 Estimation of Remaining Useful Life (RUL)

The last phase of the PHM process is the actual estimation of the Remaining
Useful Life. The input for the proceissthe current health condition determined by
FDI, employed as a starting point for the evaluation of a model of damage
propagation.

The approach discussed in this work is the extension to system health
monitoring of the damage tolerant design strategydtigue of structures. In the
field of structural health monitoring, the components are inspected periodically in
search of cracks. Since the rate of propagation of cracks in metal and composite
structure is known and well described by physics basedlsjdde next inspection
is planned before the existing cracks reach a critical length; if no cracks are detected
during the inspection, they are assumed to be just below the sensitivity of the
employed equipment.
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The extension of this approach to systemmsas two issues:

1 The higher complexity of the monitored equipment makes accurate
inspection impractical in periodical maintenance; then, this study proposes
to replace, at least in part, manual inspections with the automatitiyneal
FDI process descrilden Section 2.3.

1 The heterogeneous disciplines that rule the propagation of faults results in
the difficulty (or often in the impossibility) to determine an accurate
physicsbased model for damage propagation. To addresslibiaclethe
proposed methardogy usesan adaptive model for damage propagation,
which is updated in redime according to the observed tithestory of the
health condition.

Leveraging the definition of Remaining Useful Life of Equatidr?), amodel
of damage propagatiors emploed in the form of a st&space dynamical
representationThe model is integrated numerically, starting from the current fault
combination determined by FDI as the initial condition, and accounting for the
entire known time history of faults through a dgma estimator filter. The model
is adaptive and leverages a simple system identification algorithm to tune itself to
match the observations. A function for the assessment of health cofaaidv]
is employed as aapping criterion for the integration. When the estimated health
condition reaches a value that is no more compatible with the requirements of the
system, the corresponding integration timestep is assumed as the RUL estimate:
indeed, it is the remainingntie after which the equipment will no longer meet the
required performances. The function for assessment of the health condition is
physicsbased and implies a significant computational burden. To enablgmeal
evaluation, a Support Vector Machine (SVA) trained offline as a surrogate
assessment function.

2.4.1 Offline

The function for health condition assessméfat: . behaves as a binary
classifier: it simulates the response of the system under the effect of the fault
. and determines whe¢r or not the applicable performance
requirements are met by the equipment, assigniggistdinary output in the form
of a ¢E A A lc OrEdEA Geilabdl. For some simple application, the simple
comparison of the fault vector with a threshold may be enocoglvever, this is
usually not acceptable to deal with the combined effects of multiple fault modes
affecting the equipment at the same time. More complex assessment function
quickly become impractical to evaluate in raale. For example, a viable option
for the health assessment of an actuator is to evaluate its transfer function with an
iterative simulation at variable frequency of the command: this results in
computational times of several seconds or mboeenable realime evaluation of
the assessme function, this study proposéise use ofn surrogate function in the
form of a Support Vector Machine (SVM).
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Figure 25: Geometrical interpretation of a linear Support Vector Machine binary classifier.

SVMs [85, 86] are algorithms that leverage supervised machine learning to
perform an efficient classification of the input. Goh et{&F] discuss the use of
SVM for image classification. I{88], Leng et al. propose a binary tree classifier
that employs SVMs to perform large scale classification of da{&9ln a similar
method for monitoring fatigue damage of airframes is proposed. Fan[80Jl.
employ SVMs to obtain efficient surrogate modelling of fldighamics problems.

To train a surrogate assessment function, we assemble a training set with the

matrices+ B andg  %ofB %o discussed in Section 2.th the
standard linear formulation, given a set of training pg htseach defined ism
and their classéo p, the SVM seeks an optimal hyperplang@ to separate
the two classes. The equation of a generic hyperplame ims:

bias. The goal of the training prosefr the SVM is to find the best separating
hyperplane, that is, the one that results in the largest margin between the two classes
%0 p. A geometrical interpretation of a linear SVM is providedFigure 25.

The vector 1 is normal to the hyperplane, and the optimal margin length
between the two classes (@A&nA Then, finding the best separating plase
equivalent to find the gradient and biasoof the hyperplane that minimizei&
subject to the set ofoostraintsko Q. p. The training algorithm solves this
optimization as a quadratic programming problem, using the method of Lagrange
multipliers, introducing the positive coefficient® 8 @, and resulting in the
objective function:

(2.21

0 -

which is equivalent to the dual problem:
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(2.22,
G%0%0 ' Q Q Ol *m

Our application does not allow separate the classes of the training dataset
with a linear boundary. In these cases, the problem is addressed by introducing a
nonlinear kernel to map the input vectg 40 an auxiliary space where a linear
boundary exists. The dual formulation is moetifias follows:

i ET 00%0%0' ®

. (2.23
BB wWho T
W T
and subject to the Karugfuhn-Tucker complementarity conditiof81, 92] ' is

the Gram matrix of the predictor vecto® 8 'Q using the nonlinear kernel
function:

(2.24,

where@@ienotes an inner product. After the training, new input points are classified
according to the sign d¢he score function:

(2.25

. is the surrogate function for the assessment of the health
employed in the online RUL estimation procedure.

2.4.2 Online

Remaining Useful Life is estimated online by integrating a model of damage
propagation inthe form of a statespace dynamical model, whigxpresses the
evolution in time of the health odition of the system, employing the surrogate
assessment functidio as a stopping criteriorA block diagram of the online
procedure igprovided inFigure 26.

The integration starts at tinte 1T, corresponding to the oldest known health
conditionQ measured by the first FDI. The integration fronto the current time
0 (thatis, the time coordinate associated to the last FDI) accounts for the known
time history of the fault vecto_ 0 in order to filter out uncertainties in fault
detection and tune the model of damage propagation. Indeed, one of the most
important issues in system prognostics is that accurate piasesl descriptions
of the fault growth rate are not commoalyailable.
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Figure 26: Schematic flow chart of the proposed RUL estimationtiea procedure

The proposed approach addresses this criticality by dynamically adapting a state
space model to the obsevations. The generaidtation of a statspace model is:

"o (2.26

$0

Where! is the state matrix, is the control matrix# is the output matrix$ is

the feedthrough matrix i is the state, is the observation, and is the input. For

foX-JNo)
as the health condition of the system, and 6 8 0 as the environmental

and operating conditions; the observatitean be considered equal to the sfiite
(that is, the system health catiah): then, we can neglect the second equation.

The state and control matrices may be derived from phppsissd knowledge
of the system. However, in this case a large uncertainty is usually associated to the
statespace model. Therefore, the matriceallshe estimated from observed data,
allowing a more precise prediction of the evolution of faults. The elemehtaraf

" can be computed from the equation:

the application to RUL estimate addressed in tiidys we can s

Il I El'®Dp8e (2.27

wherell is a matrix containing the observed stat@and inputsd of the lasté
timesteps:
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® is a column vector with the elements of &k row of! and theé€h row of" :
0 O0i806F Mr86 (2.29
andll is a column vector containing the time history of file element of the state

I Qo 8Q0 (2.30,

At each integration timestep, thetmees! and" are computed by solving the
linear system®sf Equation (2.2Y. The number of timestegs considered for the
estimation shall be high enough to filter out uncertainties in the observations (i.e.
the errors of the FDI process), while remagnilow enough to allow redime
evaluation. In any case,shall be larger thag € , i.e. the sum of the number
of elements of the state and control vectors: otherwise the system is under
determined; a number of timesteps larger than ¢ is allowed since Equation
(2.27 can be solved in the least squares sense.

After the state and control matrideand" are identified, the statgpace model
is employed for two purposeas dynamical estimator filter féihe computation of
the nextfault condition, and as a predictor to extrapolate the future time evolution
of the fault condition to determine the system RUL.

The fault condition at the next timestep is estimated by fusing the information
from FDI and the statepace system, that opées as a filter based on a dynamical
observer. The method is similar to Kalman filtering, but does not make assumptions
about thelinearity of the system or thgariance of the observatignshese
assumptions represent a limitation of traditional Kalmterg, as highlighted in
[93]. The state is updated as a weighted sum of the prediction of thezhate
model and the observation of the FDI procedure:

"0 30 (2.31]

0 is the fault condition

p T
wherel N T1ip is a scalar weight parame

"0 30

available, that is,foo 0 . Since future fault condition are not measurable, the
propagation of the state for 0 is perfamed by the state space model alone:

(2.32

At each time step of the numerical integration, the surrogate assessment
function %o trained offlinedetermines whether the equipment is still able to
operate uder the effect of the fault combinati@o . When ae/EA O kcaddition
is detected by the assessment function at éige integration is stopped, and the
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difference between the failure time and the current time is assumed as the RUL
estimde:
YYO O o (2.33]

The proposed methodology permits to achieve a good accuracy in RUL
prediction, even if the rate of propagation of the damage from its incipient state at
0 to the actual failure ab is not known. This is ®&n the case for complex
mechatronic systems, where heterogeneous components described by different
disciplines coexist and work together, sometimes interacting in ways that are
difficult to predict analytically. Additionally, this method has a lower
compuational cost than comparable approaches available in literature (e.g. those
based on particle filterinfd0, 94) and can be executed in réahe on limited
hardware resource$he RUL estimate is deterministic: ancentainty associated
to the prediction can be estimatinougha Monte-Carlo analysis. To do sthe
RUL prediction process is repeated iteratively. At each iteradioandom noise is
superimposed tthe observed fault conditiogs . This noise isampledeach time
over the error distribution of the FDI, easily assessed offline over a validation
datasetAs a result, an empirical characterization of the uncertainty distribution
associated to RUL prediction is obtained.
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Chapter 3

Application

Electomechanical Actuators (EMASs) are emerging as a novel technology for
current and next generation flight control systems. As they convert directly
electrical power into the mechanical power needed to drive the flight control
surfaceg[95, 96] they permit to adopt the More Electf@7] and All Electric
Aircraft [98] system architectures. widespread integration of EMAs in aircraft
systems woulcliminate the neg for a centralized hydraulic system and would
result in a reduction of the overall aircraft empty weight, with benefits in terms of
fuel consumption and operating cqosts highlighted by Garcia Garriga et[8B].

Electromebanical actuators replace the local hydraulic circuit of EHAs with a
mechanical transmissioil00]. A typical arrangement of an EMA is shown in
Figure3.1: the electric motor and its PewDrive Electronics is coupled to the user
and external load by a reducer. Commonly the transmission includes an ordinary or
planetary gearbox coupled to a device for conversion from rotary to linear motion,
either a ballscrew or a rollesscrew. Lead semws are usually avoided for their high
friction, low efficiency and poor reliability. Alternatively, a high gear ratio reducer
(such as a compound planetary, harmonic, or cycloidal drive) can be connected
directly to the user through a rotary output shiaftseveralapplications, a rotary
user is preferred since the transmission is more compact and allows a better power
density. Additionally, the ballscrew is usually the first component of the
transmission that is damaged in case of overload. Avoidingreect the output to
linear motion, reliability and robustness of the system are significantly improved.

User position sensor

Ballscrew

Motor position sensor

y
=———== Control & Power
electronics

|

Permanent magnet synchronous motor

Gearbox

Figure3.1: Cross section of an Electromechanical Actuator highlighting its main components
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The electrical machines aat commonly employed for aircraft EMAs are
Brushless Direct Current (BLDC) motors or Permanent Magnet Synchronous
Motors (PMSMs): those are chosen for their high power to weight ratio, and for
their high reliability[101].

EMAs have some peculiar characteristic that differentiate them from other
actuation systems. The absence of a hydraulic circuit, either centralized or local,
eliminates all the issues related to the management of hydraulic fluid throughout
the whole lifecycleof the product. Usually, aircraffrade hydraulic fluids are toxic,
pollutant or flammable; during maintenance, the system needs to be drained before
disassembly and purged after the intervention, and a specialized maintenance crew
is usually needed. Adubnally, hydraulic components commonly feature very
strict tolerances and small calibrated passageways, that are easily clogged if the
fluid is accidentally contaminated. Therefore, maintenance interventions on EMAS
are mucteasier, as discussed by Crofiif2].

EMAs are easily scalable to very small, low power and low weight applications:
indeed, they are extensively employed for flight controls off small UAVs, with
some actuators weighing down to few grams. Such miniatwoizadi not easily
attainable by hydraulic systems.

The placement of sensors on the electrical machine, which are used for closed
loop control of the motor current and speed, enables to integrate health monitoring
functions in a smart actuator; the particwechitecture of EMAs allows for a much
more accurate and reliable fault detection than, for example, EHs.

On the other hand, some disadvantages are also related to Electromechanical
devices. First, their power density is much lower than that of hydrayitems,
although the use of rassarth permanent magnet is somehow reducing this penalty
for advanced EMAs. Actuators based on hydraulic power rely on the working fluid
as a heat sink; EMAs do not have this option, and can easily overheat if theg operat
in off-nominal conditions; then, thermal control of the equipment is of critical
importance and must be accurately designed.

The issue of EMAs that most limits their diffusion in fligiritical aerospace
applications is that their transmission is prémenechanical jamming: that is, as a
result of its most probable failure modes, the transmission gets locked in position.
This condition may cause the loss of the associated aerodynamic surface, and
control of the aircraft can become diffic(it03]. Some configurations that allow
redundancy of the mechanical transmission are availad# 105, 106]but they
all imply a significant increase in complexity and weight of the system.

Hence, the health monitoring task is of great importance for Electtangal
Actuators. An accurate and robust PHM framework would allow to overcome the
aforementionedimitations in reliability often associated to EMAs and ease the
early integration okuch technologies into new aircraft designs. However, EMAs
constitute a challenging application for Prognostic methodologlesoperation of
electromechanical systems depends on the interaction of several components whose
behavior is described by hetgeneous disciplines, such as mechanics, electronics,
control theory, fluid dynamics and heat transfer. In aerospace applications, EMAs
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often experience operating and environmental conditions that are hardly repeatable
and predictable: as opposed to an stdal actuator, that will likely follow the same
motion profile for thousands or millions of cycles, in a seomtrolled
environment, an aerospace flight control servomechanism will face a different time
history for each mission. All these aspects cobote to the complexity of the
physics describing the propagation rate of wear and damage, as well as their effect
on the behavior of the system as a whole. As a result, PHM strategies for these
systems are still an open field of research.

3.1 High Fidelity (H F) Model

A High Fidelity model of an EMA was developed as a simulated test bench to
collect reference data of the actuator operation, in different working conditions, and
under the effect of multiple fault modes. The model is a phmsed, lumped
paraméers simulation characterized by a very high level of detail. The general
architecture of the model is shownhigure 32, and reflects the subsystem and
components hierarchy of common hardware EMAs. Specificalig, model
includes the following subsystems:

1 The Actuator Control Electronics (ACE) model implements the control law
employed to compare the commanded position with the feedback signals of
measured position and speed, in order to determine the torque ndrtona
the motor.

1 The model of Power Electronics has two main functions: (1) evaluate the
commutation sequence of the motor phases, as a function of the current
angular position of the rotor, and (2) close the current/torque control loop,
applying to the sttor coils the voltage needed for the motor to produce the
commanded torque.

1 The Electromagnetic model of the motor evaluabesmagnetic coupling
betweerrotor and stator, to determine dynamically the current, torque and
backEMF for a given input voltag also accounting for the effect of
possible fault precursors.
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Figure 32: Block diagram of the HF model
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1 The Dynamical model of the motor and transmission computes the position
and velocity of the actuator, under the coneblieffects of motor torque and
external loads.

1 Eventually, the Load model estimates the hinge moment by integrating a
linearized model of the longitudinal aircraft dynamics.

The following sections describe in detail the implementation of the subsystems
of the EMA in the high fidelity simulation model.

3.1.1 Controller Model

The Controller model, whose block diagram is showhRigure 33, computes
the control law of the EMA, to compute the torque and current requestbd to t
electrical machine. The control law reflects common implementations on industrial
and aerospace hardware, with a proportional position loop and a Propertional
IntegratDerivative (PID) velocity loop. Specificallfhe controller accepts as an
input theposition or velocity setpoint, the measured motor speed, and the measured
user position. Although more advanced control techniques are available in
literature, such as Stagpace controllers, Fuzzy logic, or Neural Networks, PID are
still the standard impmentation for most industrial and aerospace applications,
since they provide better robustness, especially when dealing with significant
uncertainties in the behavior of the controlled plant.

The speegosition mode switch allows to choose among a msitiontrol
mode and speed control mode. In position control mode, the setpoint is compared
to the user position measured by a transducer. The position error is multiplied by a
proportional gain to determine a velocity setpoint. In speed control mode, the
position loop is disabled and the velocity setpoint is provided externally. In both
cases, the velocity setpoint is limited by a saturation accounting for the maximum
speed achievable by the motor, and the resulting command speed is compared to
the actual rator speed signal. Then, a velocity error is fed to a PID controller to
determine the required motor torque.

The PID includes a filter on the derivative branch and arvantlup logic, as
shown inFigure3.4. The ckrivative filter is a lowpass, first order transfer function
that allows to reduce the high frequency noise on the error signal, which would be

Speed-position
made switch

. | Speed _ spaed Current

| setpaint M error wetpaint y —
Position ___ Position [~ i P -t ) PiC: WAl g )
setpint / \ T - : b

= -____.--" i H
Band-limited
white noise

[ 8y )
Ca, )

o

Figure 33: Block diagram of the Controller subsystem
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otherwise amplified byhie derivative. The transfer function of the derivative branch
is then:

@ Ol

Q ti p
where"O is the derivative gain antl is the characteristic time of the filter. The
antrwindup logic is needed for the integraioranch to mitigate the excess
overshoot usually associated to the interaction of integrative control with a
nonlinear plant characterized by a limited maximum rate of change. Several
arrangemerst for antiwindup logic are available in literature; thegalithm
implemented in this model temporarily disables the integral contribution if at least
one of the following conditions is met:

(3.1)

1 The error grows larger than a tolerance band, or
1 The output of the PID reaches its saturation.

The output of the PID contiler has the dimensions of a reference torque for
the motor. This torque signal is divided by the nominal HalglE coefficient of
the motor, to determine the required stator current. The current command is limited
by a saturation accounting for the peakrent that can be handled by the motor,
and routed to the Commutation and Power Electronics subsystem.

To simulate the effect of electromagnetic interference on the signal
transmission lines, a bastidhited white noise is added to the reference current
signal.
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Figure3.4: PID controller as implemented in the HF EMA model

30



3.1.2 Power Electronics Model

The model of power electronics determines the motor phase commutation
sequence and actuates the current control for each of tloe phatses. The model
is slightly different if considering an EMA based on BLDC or PMSM electrical
machine.

3.1.3 Brushless Direct Current (BLDC) motor

A Brushless Direct Current (BLDC) motor is a permanent magnet machine
characterized by a trapezoidal waveforiihe backEMF of each phase. Voltage
is applied to two out of three phases at a time, with a square waveform. The rotor
position is sensed by three Hall sensors, with a resolutipnr@® , where0 is the
number of pole pairdzigure 35 (a) shows the typical arrangements of the phases
and Hall sensors for a 2 pole pairs configuration. Each Hall sensor outputs a
Boolean 1 when it is over a magnetic north, and a Boolean O when it is over a
magnetic south. The sigisaof the Hall sensors are plotted against the rotor position
in Figure 35 (b); additionally, the required phase currents are shown.

B e, 0 /2 T 3m/2 2m

) O e i
w e

Magnetic L1 L '
North |
Magnetic | | | Hi1
South !
! -1 11 m
1 1 [ m
i
| ) (b)

Figure 35: (a) Typical phase and Hall sensorsifiguration of a 2 pole pairs BLDC motor; (b)
Readings of the Hall sensors and phase commutation sequence.

The reference currents (i.e. the phase currents required for a given torque
command and a given rotor position) can be expressed as a functiorcofrdre
setpointfO and the readings of the Hall sensors H1, H2, H3:

Or © (c(p
Or O (0o (¢ (3.2)
Or O (p (o0

The reference currents are compared with the measured phase currents by a
hysteress controller, which computes the actual activation signals for the switches
of the threephase bridge. The output of the hysteresis controller is a vector of three
Boolean elements, each of which commutes from O to 1 if:
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O Q0 w (3.3
and commutes from 1 to O if:

Dr Q ® (3.4
where is the amplitude of the hysteresis band, ®@r 6/, This signal is
routed to thehreephasebridge, and commands the activation of the six switches.
Specifically, whenthe output of the'@h hysteresis controller is high, the
corresponding phase is connected to supply voltage; otherwise, it is connected to

ground.A block-diagram of the Power Electronics model for the BLDC motor is
shown inFigure 36.

3.1.4 Permanent Magnet Synchronous Motor (PMSM)

A Permanent Magnet Synchronous Motor (PMSM) is conceptually similar to a
BLDC machine, but the polar expansions of the stator and the permanent magnets
on the rotor are arranged to prodacsine wave backMF on each of the stator
phases. The rotor position is measured either by a resolver or an absolute encoder,
with a resolution at least in the orderpo®0.

The behavior of a PMSM is studied by introducing three different reference
frames to describe the electrical angle, as show#igre 37:

T | 71 axes are fixed with respect to the stator| tlaxis beingaligned with
the axis of symmetry of the electrical phase A, and tlais is offset by
90° electrical to form a rigkittanded frame. The andgeis used as a polar
coordinate to describe the angles along the stator, starting from the
| axis.

1 Qi i axes are a reference frame rotating with the rotor. The d axis is aligned
with a north pole of the rotor, and the g axis is 90° electrical in advance. The
angle, is used as polar coordinate to describe the angles along the rotor,
starting from théQaxis

1 The threephase reference frame with axes A, B, and C aligned with the
respective stator phases. The A axis of this reference frame coincides with

the| axis.
Three-phase bridge

F
A _ T I *'I r..l N T
| Leepa | A ) 'x:-_-:' gisd Tk P
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(tegr } sequence r: .,T cantroller l{f P Y 1 H
1 § g Ay Y =) T
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— I H

l: (. H:I - Hall sensors

Figure 36: Block diagram of the Power Electronics model égunfed for the BLDC motor
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C

Figure 37: Reference frames for the ClarRark transformations

The angle between thei f frame and thé&i r) frame is—. Two coordinate
changes allow to switch between the three refardérames. Specifically, the Clarke
transformation allows to convert the current and magnetic flux vectors expressed in
the threephase reference frame to the 7 | reference frame. The Park
transformation allows to convette current and magnetic flwectors expressed in
thel 11 reference frame to tH@T N reference frame.

The current vector expressedie| i1 reference frame has the form:

0w (3.5)

where the bold denotes a vector quantity, @sthe imaginary unitSimilarly, in
the threephase reference frame the same current vector is expressed as:

S QO a9 Q (3.6)
Since axig id aligned with axis A, and axes B and C arg ¢ mapart, the
following two identities hold:

Q % Q -Q -0 (3.7)

N |0
2l o)

Vo
q $%%q q (38
O C

Expressing those two equations in matrix form yields to the formulation of the
Clark transformation:

Q P P Py 0 Q
0 RN . E ‘C_I’I 0 O 0 (39]
oll o |/|0|°,| 0 0
e v

where 6 is the Clarke matrix. Similarly, the current vector expressélddii n
reference frame has the form:
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Q' (3.10
and the transformation betwetns form and the i1 frame is:

Q Al OE+ Q ., 1 ‘

o Oel AT @ O 0 (311
where 0 is the Park matrix. In order to produce the maximum torque with
minimum current, in usual openag conditions the PMSM power electronics
command a stator current in quadrature with respect to the permanent magnet rotor.
A direct current component may be commanded to reduce the effective
electromagnetic coupling of the motor and the bab producedat high speed,
in order to reach rotation speed that would otherwise result in aEdEkhigher
than the supply voltage.

In the model, as shown iRigure 38, this condition is not covered by the
commutation logi, and the current setpoif® from the control electronics is
routed directly tdQ This is acceptable if the required performances are compatible
with the supply voltage and nominal baEKF coefficient of the motor. The
current setpointfor the three phase® , O , ‘O are evaluated through
inverse Park and inverse Clarke transformations. Themysteresis controller
(implemented as per Section 3.1.2.1) commands the switches tiréephase
bridge to spply the required voltage to the stator.

3.1.5 Electromagnetic Model of the motor

The Electromagnetic model of the motor computes the torque aneEiéiek
produced by the electrical machine. The electromagnetic coupling between rotor
and the stator phases is aasted for by three baeEMF coefficientsQ, Q, Q.

Those are defined as the derivative of magnetic flux concatenated with each phase,
with respect to the rotor angle-. The backEMF coefficients are computed
considering the different distribution of magnetic field and wigdifor BLDC and

PMSM machinesHKigure 39):

Three-phase bridge

S SE—
A i =S, = S T
w —y =y o = V)
Ir-.'_r_-l A _..1_'&"?'1 B N L tA S
3::I'.-.-Ju:\.-—' Clarke-park fropn Hysteresis :;f—. '—'_;_{i:'
transfarmation .l'n_r i cantroller r - i B Eo :
A A= A = ——
: 999 W
8,
-
T Retor shaft
e S T encoder
P 1|
iy )
1 I.H |
L -

{ iz )

Figure 38: Block diagram of the Power Electronics model configured for the PMSM



i For the BLDC motor, a lookup table is employed to geeethtee
trapezoidal waves, multiplied by the nominal b&MF coefficient from
the motor datasheet.

1 Forthe PMSM, three sine wavesg madart from each other, are computed
and multiplied by the nominal badkMF coefficient.

The coefficients are then moifl according to Section 3.1.6 to simulate the
electrical fault modes. To evaluate the phase currents, aghese RL circuit is
employed, as shown Figure 310. The circuit is connected with a star arrangement
and computed by Simscape, solving the following set of equations for each
integration timestep:

M Q Q = (3.12
. .. aa .
G QYQ e (3.13
for’Q 6M . The resistance and inductance of each phassdd respectively,
are the nominal values from the motor datasheet, modifiadaount for potential
faults.

The currents, alongside with the respective Habl coefficients, are
employed to compute the motor torque. Assuming a linear superposition of the
contributions of each phase, the total motor torque is given by the suetofdhes
produced by each of the three phases:

Y

Y X (3.14
Ak
In addition, the torque is limited by a saturation accounting for the maximum
magnetic flux through the stator polar expansions.
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Figure 39: Phase backEMF coefficients for BLOC (a) and PMSM (b)
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Figure 310: Equivalent circuit of the motor

3.1.6 Dynamica Model of motor and transmission

The dynamical model of motor and transmission computes the positions
motor and user, receiving as mput the moto torque and external load torque.
The core of the model is a second order dynamical representation of the system,
described by the equation:

YUY b o 8 (3.5
(@] Qo
where0 and0 are the inertia and damping of the metser assembly, expressed
in the reference of the motor shaft. In addition, the model accounts for a number of
nortlinear phenomena affecting the behavior of the actuators, such as endstops, dry
friction, and backlashThe viscous friction coefficiert is dependent on speed,
to account for the Stribeck effect and potentially other nonlinear effects.
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T -l.:;:?' | ot Speed reset Saturation port
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| ' — ull: ",
[including Stribeck effect) —

Figure3.11: Block diagram of the motdransmission dynamical model
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As shownin Figure3.11, the collision with endstops is detected by a saturated
position integrator. When a saturation detected, the following actions are
performed:

1 The velocity integrator is reset to zero

1 If the total torque acting on the system (including motor torque, external
load, and viscous and dry friction) is aligned with the endstop (i.e. pushes
the actuator aggnst the endstop), it is overwritten to zero.

Dry friction is simulated with the Borello modgl07]. This is a numerical
implementation of the Coulomb friction model, intended to overcome some
limitation of alternative formuaitions (i.e. lhe saturated hyperviscous, Quiamd
Karnopp friction models). Specifically, to correctly simulate dry friction, a model
shall be able:

1 To apply a force of constant modulus (equal to the dynamic friction value)
against the direction of motipwhen the system is in motion;

1 Toact as a constraint, with a reaction that can grow up to the static friction
value, usually highrethan the dynamic friction one, when the system is
stopped.

While the dynamic behavior is simple to implement numericatbtjc friction
may cause unintended interactions with the numerical integration. Specifically, the
integration method may skip the time instant when velocity crosses zero, failing to
apply the static friction condition. This issue is usually addressedding a dead
band near zero velocit@(inn[108] andKarnopp moded[109]), or by simulating
static friction as a very large viscous action (hyperviscous saturated, fiddd).
However, both these models require the introduction ofpigrsical parameters
(i.e. dead band amplitude, viscous force) that need to be calibrated to work with a
given model and a given integration method. Additionally, some models (e.g.
hypeviscous) fail to keep the speed to zero in the static friction condition. The
Borello modé of dry friction addresses thesmwints by adding a zercrossing
detection routine to the velocity integrator. When the system speed changes
direction, the velocit integrator is reset to zero for one timestep. As a result, it is
possible to apply correctly the static friction condition.

Backlash is modelled with a hysteresis band on the user shaft position.
Specifically,the behavior of the Backlash model is sumget by Equation (3.16):

2 b woon B E—;CE . ,Q N - b oo e
a— oV (0] (o] - ouv
1y Q Q
- b |‘v_ b w on B E—)CE . ,Q \ - b w o e (316:
- oV (0] (0] - ovv
v Q Q

¥ —o0 Qi T OEAOxEOA
that is, the user position is caraned within a band of widtgd 0 drom the motor
position reduced to the slow shaft. If thger position at the last timestep 0

‘Q o0 already lies inside the backlash band, it is not updated at the current timestep
(i.e. the user does not m&®). This model yields acceptable results if the main source
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of backlash is assumed to be the connection of the user shaft position sensor: under
this assumption, the inertia and load downstream the mechanical play are
negligible, and do not affect the oa# system response. A more detailed model
would require a multibody simulation of the mechanical transmission, accounting
for the multiple degrees of freedom of each individual moving part.

3.1.7 Load Model

The load on the actuator is simulated assuming tealhg in the elevator
control of an aircraft. In particular, the dynamical model of & Fighter aircraft
is employed, as available from Stevé¢h%1] . For the scope of this work, ortlye
longitudinal linearized dynamsds considered, expressed in the ssptee form:

W o0w 06
w O0w 0o
wherewis the state vectonis the output vecton is the control vectord is the
state matrix, ® is the control matrix,0 is the output matrix andO is the
feedthrough matrix. Consideringlgriongitudinal dynamics, the state vectocis
3w3y 3—=31 , wherez denotes variations from the equilibrium conditianis
the flight speed, is the angle of attack:is the pitch angle, anglis the pitch rate,
and the control vector & 3] 3 , wherd is the throttle command anhd
is the elevator deflection. For the considered applicatins,a scalar containing
the hinge moment on the elevator, required to evaluate the load on the actuator. The
matrices 0 and 6 of the state space model are derived ffbiri], and linearized
for a trimmed condition at sea level at 153m/s (550km/h). The matéicend O
are evaluated combining thin airfoil theory and Prandtinliftine model, from
available images of the-E6 all moving tail.The numerical values of the matrices
used for the statspace model are the following:

pB8oo pPp 1T JBpuyx o@XT TMXT OWW

(3.17

5 ¢® o JJom p8ip Yw T T@OTIVL TTQ
T T ] p
n TCGCU T PBLX X T
pP8TX L T T X OX T
5 L1 CP T v TT (3.18
T L1

o8 @ TP T T X LULU
6 VBWX YyBYypp T T CHPpTRTT

O mwotpmn
The computed load is multiplied by a gain to account for the geometry of the
linkage betweetthe actuator and control surface, and fed back to the EMA model.
This way, the model is able to simulate an operation close to the actual load
condition experienced in flight by an FCS actuator, in order to demonstrate the
applicability of the proposed djaostic and prognostic pach in reatime.
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3.1.8 Simulation of faults

In order to be employed as a simulated test bench for diagnostic algorithms, the
EMA model shall be able to reproduce the behavior of the actuator accounting for
the effect of a set of faumodes, both in their incipient stage and in system failure
condition. Specifically, in this work the following failure modes are considered:

Variation of friction

Variation of backlash

Partial short circuit of a motor phase
Static eccentricity of the mot

Drift of the controller proportional gain

E R ]

For this case studyhose are selected among the most common failure modes
affecting electromechanical systems, according to the available litefEdGr& 12,
113, 114] Alternatively, when applying the proposed procedure to a newly
designed system, the selection of failure modes to be considered may be driven by
the Reliability, Availability, Maintainability & Safety (RAMS) documentation of
the equipmentsuch as a Failure Modes Effects & Criticality Analysi$e faults
considered in this studgre analyzed in the following sections, and their effect on
the actuator response is discussed.

3.1.9 Friction

An increase of friction may result from the degradatibmechanical elements
of the transmission of the actuator, such as spalling of the gear teeth sides or bearing
rolling surfaces. This fault mode is easily simulated by varying the static and
dynamic friction torque parameters within the Borello model t{iSe@d.1.4). The
increase of friction from its nominal value determines a worsening of the
positioning accuracy, and may result in a reduced margin of stability;sick
phenomena, or a limit cycle, interacting with the integrative contribution of the
control law.

As shown inFigure 312, increasing the value of dry friction from the nominal
5% to 15% of the motor stall torque results in three distinct effects on tloado
response to a step command.

1 Anincreasealelay while starting from standstill;

1 A reduction of the ndoad speed, seen as a decreasing slope of the
constanispeed phase of the actuation;

1 A decrease of positioning accuracy resulting from a larger static error.

Figure 3.13 shows the response to a ramp command with a low slope, in
presence of an increasing amount of dry friction. With a relatively low static friction
(i.e. for "YI'Yp ) the output position follows the setpoint smoothly,
althaugh with a small static error. Increasing the dry friction coefficient, a-stipk
phenomenon appears, where #ystem repeatedly starts, overshoots the speed
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setpoint, and stops under the effect of friction. This behavior translates into
vibration andhoise of the transmission.

Figure 3.14 shows the interaction between the integrative branch of the PID
controller and an increasing amount of dry friction, resulting in a limit cycle. As the
system overshoots the giton setpoint, the integrative contribution of the PID
winds up until the system starts up and tries to compensate the static error, but
overshoots the setpoint in the opposite direction; the cycle repeats until the setpoint
changes.
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Figure3.13: Stick slip on ramp response caused by an increasing amount of dry friction
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Figure3.14: Interaction dintegral controller and dry friction resulting in a limit cycle.

3.1.1Backlash

Backlash is the mechanical play between components of a transmission. On an
actuator transmission, it may interact with the control law producing limit cycles or
reducing the systa stability and accuracy. The interaction between backlash and
controller can be avoided if the position sensor is installed upstream the mechanical
play, but aerospace actuators commonly require a feedback on the user shaft to
achieve an absolute positioeference. For these reasons, the components of an
electromechanical actuator are designed with a small interference, in order to give
the transmission a preload and virtually no backlash. However, wear and
degradation of contact surfaces of sliding aviting elements of the transmission,
such as gear teeth, or bearing rollers, may result in the increase of backlash affecting
the actuator.

In this work, the backlash fault is simulated by varying the hysteresis amplitude
0 0 wvithin the dynamical model of the motor and transmission, as expressed by
Equation (3.16).

Figure 315 shows the effect of an increasing backlash amplitude on the
response of the actuator to a sine wave positommand. The user position is
affected by a delagiuring the inversion of motion; conversely, when the user moves
in a constant direction the control system is able to compensate even for quite large
backlash amplitudes. A more visible effect is exgeeed by the motor current:
when the direction is reversed, the transmission to the user disengages for a while
due to the mechanical playhen, the controller sees an increasing error and
overcompensates, causing an oscillation. When the system engeges lihe
opposite direction, the position error decreases and the oscillation in current
dampens out.
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