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Summary  

Prognostics and Health Management (PHM) is an emerging field that aims to 

determine the Remaining Useful Life (RUL) of systems, in order to plan in advance 

the required maintenance interventions. Currently, components are replaced at the 

end of their design life, which is the result of a tradeoff between maintenance costs 

and reliability and availability requirements. With a PHM approach, it will be 

possible to schedule replacements accounting for the actual condition of the system, 

without decommissioning operable equipment or flying with worn components. In 

addition, prognostics performed in real-time may allow adapting the operational 

envelope of a vehicle adaptively, in order to increase the system life without 

jeopardizing the success of the mission. 

Most approaches to failure prognosis available in literature require a significant 

computational burden, not suitable for real-time computations, and are 

characterized by a large uncertainty associated to the RUL prediction. This in part 

is due to the inherent unpredictability of the propagation rate of damages, which is 

influenced by several variables that cannot be controlled nor measured; another 

source of uncertainty lies in the errors associated with the fault detection processes.  

This study addresses these limitations and provides a comprehensive 

computational framework for fast and reliable RUL prediction. Physics-based 

models of the system dynamics are combined with supervised and unsupervised 

machine learning to obtain surrogate representations of the equipment and allow 

for real-time evaluations. The method is tested on the RUL prediction task of an 

electromechanical actuator for aircraft flight controls. This is a challenging and 

representative case study as flight controls are complex subsystems of a vehicle that 

involve the interaction between a number of heterogeneous disciplines, such as 

mechanics, electronics, fluid dynamics and control theory. Multiple fault modes can 

affect an actuator at the same time and influence each other, making the fault 

detection and RUL prediction tasks difficult. Highly detailed physics-based 



simulations are employed as a simulated test bench for the PHM algorithms. An 

experimental validation of the numerical models is provided by a physical 

electromechanical actuator test rig. 

Additionally, innovative sensor technology is discussed as a promising 

candidate to collect some of the required input data for the prognostic process. 

Specifically, precise measurements of in-flight aerodynamic loads on the flight 

control actuators are required for on-board prognostics as they influence 

significantly the response of the flight control system. Often this information is not 

available as it cannot be measured reliably and conveniently with traditional 

technologies. Optical sensors are considered for the task as they permit to achieve 

high frequency, accurate measurements with a good spatial resolution and a 

minimally invasive installation. 
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𝑀𝑡 torsion moment 

𝑛 index of refraction 

𝑝𝑒 photoelastic coefficient 

𝑇𝑧 shear force 

Δ𝑇 temperature variation 

𝑉 airspeed 

𝑦 spanwise coordinate 

𝛼(𝑦) local angle of attack 

𝛼0 global angle of attack 

𝛼𝑐 contribution of control surface deflection to angle of attack 

𝛼𝑔 wing twist contribution to angle of attack 

𝛼𝑖  induced angle of attack 

𝛼𝑓 thermal expansion coefficient 

Γ circulation 

휀 strain 

Λ𝑔 axial pitch of Fiber Bragg Grating 

𝜆𝐵 peak wavelength of Fiber Bragg Grating 

𝜌 air density 

휁𝑓 thermo-optic coefficient 

𝜎 normal stress 

𝜏 shear stress 

Validation of physics-based models 

𝐴𝑖𝑛 amplitude of system input (for dynamical response) 

𝐴𝑜𝑢𝑡 amplitude of system output (for dynamical response) 

𝐹𝑙𝑐 force measured by loadcell 

𝐺𝑑𝑏 gain of transfer function 

𝑖 gear ratio 

𝑟 radial distance 

𝑇𝑚 motor torque 

𝑇𝑢 user torque 

𝑇𝑓 preload friction torque 

𝑧 number of teeth 

𝜙𝑖𝑛 phase of system input (for dynamical response) 

𝜙𝑜𝑢𝑡 phase of system output (for dynamical response) 

휂𝐷 direct efficiency (or opposing load efficiency) 



 

 

 

휂𝐼 inverse efficiency (or aiding load efficiency) 

𝜔𝑚 motor speed 

𝜔𝑢 user speed 

Validation of Machine Learning models  

𝐴 accuracy of SVM classifier 

𝑒𝑟𝑟𝑦 error on signal reconstruction 

𝑒𝑟𝑟𝛼 error on POD coefficients 

𝑒𝑟𝑟𝑘 error on FDI 

𝑓𝑓 false positives 

𝑓𝑡 true positives 

ℎ𝑓 false negatives 

ℎ𝑡 true negatives 

𝑘𝑠 SVM kernel scale 

𝐹𝑃 false negative ratio 

𝑀𝐷 false positive ratio 
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Chapter 1 

Introduction 

The complexity of aerospace systems is increasing steadily, as next generation 

platforms are developed and enter the market. As a result, the design and operation 

of the vehicle relies on the integration of a multitude of heterogeneous components 

interacting with each other. Each piece of equipment within the system is 

characterized by its own failure modes, and its malfunction influences the operation 

of the system as a whole, in ways that may be difficult to predict. This makes the 

troubleshooting tasks difficult and time expensive, and ultimately yields to worsen 

the reliability and availability of the aerospace platform. 

Traditionally, the approach to system safety and reliability relies on scheduling 

the maintenance intervention a priori: the periodical maintenance intervals are 

determined statically during the design phase, analysing the failure rate of the 

involved equipment [1, 2, 3]. The uncertainty associated to this approach is large, 

as two identical components subject to the same mission profile may fail at very 

different times. Then, the maintenance intervals are determined as a tradeoff 

between the risk of flying a damaged component and that of replacing equipment 

that is still operable. To mitigate the risk associated to failure of safety-critical 

equipment, redundancies are employed at component or system level [4, 5]; as a 

drawback, basic reliability and weight are worsened. 

Advances in Prognostics and Health Management (PHM) disciplines permit to 

monitor continuously the actual health condition of components and estimate their 

Remaining Useful Life (RUL) [6, 7, 8]. This information is leveraged by newer 

methods for product life-cycle management like Condition Based Maintenance 

(CBM) [9, 10, 11] and Integrated Vehicle health Management (IVHM) [12, 13, 14] 

to plan the maintenance interventions in an optimal way, to increase the mission 

reliability of the vehicle, and to reduce costs related to the operation of the fleet. 

Then, a significant research effort is focused on giving to next generation system 

the capability to diagnose their damages and faults in advance and predicting the 

RUL during operations, autonomously. This skill permits the replacement of 

components only when actually necessary, avoiding additional downtime on 
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systems that are still operable, and allows to reconfigure the mission profile of the 

vehicle dynamically in order to ensure a longer and safer system life [15, 16]. 

Most PHM strategies available in literature rely either on a model-based 

approach (i.e. employing physics-based models of the monitored systems) or on a 

data-driven one. Tinga and Loendersloot [17] provide a review of model-based 

strategies for prognostics. In [18] a model of spacecraft dynamics is compared 

against the measured attitude of a satellite to identify faults in the Attitude 

Determination and Control System (ADCS). A similar approach is leveraged by 

Henry et al. in [19]. Battipede et al. [20] discuss a model-based diagnostic strategy 

that analyses the output of an actuator through Fast Fourier Transform (FFT). A 

structured residual between a digital twin and the system response is employed in 

[21] to determine faults of industrial compressors. Shi et al. [22] employ particle 

filtering to perform failure prognosis on electrohydrostatic actuators. In [23], Huang 

et al. present a review of data-driven prognostic strategies. Bektas et al. [24] propose 

a neural network framework for similarity-based prognostics. An Extreme Learning 

Machine is leveraged in [25] for condition monitoring of wind power equipment. 

In [26] a neural network is employed for fault detection of an aircraft 

electromechanical actuator. In [27], RUL prediction of milling machine cutting 

tools is performed employing autoregressive integrated moving average (ARIMA). 

A similar case study is addressed in [28] employing Deep Learning. Usually, 

model-based strategies need long computational times and significant hardware 

resources, so they are not suitable for real-time execution. On the contrary, data-

driven approaches require large training datasets, which are impractical to collect 

from experimental or field data. For example, critical but uncommon failure modes 

tend to be underrepresented in field data, but they must be accounted for by 

prognostic algorithm. 

This study discusses a computational framework for a nearly real-time 

prediction of the Remaining Useful Life of dynamical assemblies, initially proposed 

by Berri et al. in [29, 30]. The input consists in the measurements taken from sensors 

installed on the system, either for feedback or for diagnostic purposes; these data 

can be of various nature and depend on the specific characteristics of the monitored 

equipment. Examples are the currents and voltages applied to an electrical circuit, 

speed and position of an actuator or pressure, torque produced by a motor, flow rate 

and temperature of hydraulic fluid. The procedure is characterized by the 

combination of an optimal signal compression method with reduced order 

modelling and machine learning algorithms. This way a computationally efficient 

map that permits to associate the sensor measurements to a prediction of the 

system’s RUL is built offline. As a result, the storage and processing power 

necessary for the real-time RUL prediction is reduced dramatically, even 

accounting for the time and hardware constraints usually associated to on-board 

computations. The proposed approach involves surrogate models of the system that 

are trained offline: these models are used online in order to reduce the 

computational burden, which is required for the diagnosis of the actual system 

health status and for the failure prognosis. In addition, the dimensionality of the 

problem is reduced by learning online an informative compression mask, which 
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allows to store and process online only a limited set of informative signal 

components, without compromising accuracy. 

In this study, the actuators for aircraft Flight Control Systems (FCSs) are taken 

into account for the application of the proposed methodology. FCSs are among the 

most critical systems of an aircraft, since their failure may result, in extreme 

scenarios, in the impossibility to control the vehicle, with obvious safety concerns. 

For this reason, monitoring the health status of the FCSs is very important because 

it can produce substantial progresses in terms of operating costs, aircraft 

performance, mission reliability and even ease requirements on system 

redundancies. 

The problem of FCS prognostics is intrinsically challenging: different 

disciplines interact in describing the model of FCS equipment; to guarantee the 

operation of the system, electrical/electronics, mechanical, aerodynamic, structural 

and  hydraulic subsystems need to work concurrently. The dimensionality of the 

FDI problem is a result of the large amount of the possible failure modes. Different 

faults may hide each other, or may have similar effects to that they are easily 

misidentified. Additionally, specific environmental or operating conditions can 

trigger false positive fault detections. Then, the specific test case of flight control 

actuators is an interesting one for the demonstration of the proposed computational 

framework. 

1.1 Problem formulation 

Usually the PHM process includes three tasks, namely signal measurement and 

feature extraction, Fault Detection and Identification (FDI), and prediction of 

Remaining Useful Life (RUL), as shown in Figure 1. 

In the signal measurement and feature extraction task, the output signals of the 

system are measured with a uniform acquisition frequency; they can be stored as 

time-series, or statistical features can be extracted such as moving averages, 

variance and skewness of the data. The monitored quantities shall be sensitive to 

the possible presence of incipient faults, and only marginally affected by changes 

 

 

Figure 1.1: Common PHM flow. 
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in the operating conditions of the system. In the FDI task, the output of the previous 

phase is processed and analysed in search of the early signs of damage to determine 

the actual health status of the components. Eventually, in the RUL prediction task, 

the current condition of the system is employed as a starting point for the failure 

prognosis, i.e. to inform an estimate of the RUL of the system. 

Traditionally, only the signal measurement and feature extraction task is 

performed online, as the computational burden required by FDI and RUL prediction 

is usually too high. The signal acquisition consists in acquiring a set of signals 

𝑦(𝒌, 𝑡), sampled with a constant frequency dependent on the capability of the 

hardware and on the characteristics of the information that shall be captured. The 

signals can be then resampled as a function of other parameters 𝑥 of the system in 

order to obtain and informative map 𝑦(𝒌, 𝑥), which can be stored in vector form 

𝒚(𝒌). This vector can be high dimensional and cumbersome to store and process; 

for this reason, the FDI and RUL prediction tasks are usually performed offline. In 

this work, this issue is addressed by finding a compressed representation of 𝒚(𝒌) to 

reduce the dimensionality of the FDI task. 

The informative map 𝒚(𝒌) is processed in the FDI to obtain an estimate of the 

current health status of the system. Several FDI approaches are model-based: they 

rely on physics-based models of the monitored equipment and compare their output 

to that measured from the physical equipment. For example, Freeman et al. [31] 

compute the residual between a model of aircraft dynamics and the actual response 

of the vehicle; this residual is analysed by a statistical algorithm to detect anomalies. 

In [32], a similar strategy is employed to detect flight control actuator faults on a 

small UAS; this strategy relies on the analysis of the fault effect at vehicle level; 

then, small, incipient damages are hardly identifiable. Meng et al. [33] propose to 

use a Kalman filter for model-based FDI of wind turbines. In these approaches, the 

FDI task is formalised as an optimisation problem whose solution is the fault 

condition 𝒌 that minimizes the discrepancies between the output 𝒚 measured from 

the physical equipment and that of a model sensitive to the health condition 𝒚𝑚(𝒌): 

𝒌 = argmin
𝒌

𝑒𝑟𝑟𝑦(𝒚 − 𝒚𝑚(𝒌)) (1.1) 

where, in general, the error 𝑒𝑟𝑟𝑦(𝒚 − 𝒚𝑚(𝒌)) is a monotonically increasing 

function of ‖𝒚 − 𝒚𝑚(𝒌)‖. The specific norm ‖∙‖ to be employed depends on the 

peculiar characteristic of each individual application. Under this assumption, 𝑒𝑟𝑟𝑦 

has a global minimum where 𝒚𝑚 is the best possible approximation of 𝒚. In this 

condition, the vector 𝒌 can be assumed as a good representation of the actual health 

of the system. The If a purely physics-based approach is used, the computation of 

the model 𝒚𝑚(𝒌) can be expensive; the use of an optimization algorithm to solve 

the problem of Equation (1.1) requires to evaluate this model iteratively until 

convergence, and yields a computational effort that is not suitable for real-time, on-

board FDI. In addition, the choice of an optimal error function may be challenging. 

On the contrary, data-driven algorithms allow for faster online computations, but 

require to learn surrogate models offline from large datasets that are often not 

available: their collection may require several thousands of hours of system 
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operation in nominal and faulty conditions, and can be obtained only after the 

system has entered service [34]. The output of the FDI task is an estimate of the 

health condition 𝒌 to be used for the prediction of Remaining Useful Life. 

The RUL of a system can be defined as the residual time before a failure occur; 

the term failure means the inability of the system to meet its functional or 

performance requirements [35, 36]. Formally, we can define a function 𝜙𝑎(𝒌) for 

the assessment of the system health [37]; 𝜙𝑎 is a binary classifier that compute the 

residual performance of the system under the effect of the faults 𝒌 and compares it 

to the applicable requirements. If the requirements are still met, a "healthy" label 

is assigned to 𝒌, otherwise a "faulty" label. Then, the RUL prediction problem can 

be written as: 

𝑅𝑈𝐿 = min(𝑡) 
s. t.     𝜙𝑎(𝑘(𝑡)) = "faulty" 

(1.2) 

assuming that the current time is 𝑡 = 0. In the traditional approach to system 

lifecycle management, the life of a piece of equipment is computed in the design 

cycle, as a combination of the failure rates of individual components. This kind of 

estimate has a very large uncertainty margin, as two identical parts may age 

differently and fail at different times. On the contrary, PHM methods rely on a RUL 

prediction performed during the operation of the system, accounting for its actual 

operating condition and health status. In order to obtain a RUL estimate, most 

approaches to failure prognosis either extrapolate the observed fault propagation 

rate [38] or evaluate a model of damage growth until the health condition 𝒌 reaches 

a failure threshold. In [39], a semi-markov model is combined with the Maximum 

Likelihood Estimation (MLE) method to infer a damage propagation model. Jacazio 

et al. [40] propose the use of Particle Filtering to predict the RUL. Li et al. [41] 

combine Particle Filtering with Canonical Variate Analysis (CVA) and 

Exponentially Weighted Moving Average (EWMA) for failure prognosis of 

industrial rotating machinery. Usually, the main limitations that characterize PHM 

strategies available in literature are related to the sensitivity to structured 

uncertainties (i.e. uncertainties associated to the parameters of the system model) 

and unstructured uncertainties (i.e. uncertainties associated to phenomena neglected 

by the system modes) affecting both the FDI and the model of damage propagation. 

In addition, the failure threshold is often set independently on each failure mode: 

however, when multiple faults interact in a complex system, the failure can happen 

before any individual fault mode reaches a critical value. Eventually, the 

computational time required for failure prognosis is usually not suitable for real-

time computations. 

This study attempts to address these limitations by proposing a comprehensive 

PHM framework to move the whole FDI and RUL prediction process on-board the 

vehicle. This is made possible by the use of surrogate models of the system response 

to faults, which are trained offline and evaluated online to speed up the 

computations and meet real-time constraints. 
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Chapter 2 

Proposed methodology 

The proposed methodology addresses the three phases of the general 

Prognostics and Health Management (PHM) problem described in Section 1.1. A 

combination of model-based and machine learning techniques is employed to 

reduce the computational burden associated with each phase of the process and 

speed up the estimation of the Remaining Useful Life (RUL). The purpose is to 

achieve a nearly real-time evaluation of the system RUL: such information can be 

employed to inform maintenance planning and possibly a dynamic reconfiguration 

of the mission, accounting for the residual capabilities of the equipment. 

The block diagram of Figure 2.1 depicts the high-level structure of the proposed 

PHM strategy, highlighting the subdivision of each phase in an offline training and 

an online evaluation; the information flow between the different blocks is shown as 

well. 

At first, information about the system behavior, both in nominal conditions and 

in presence of faults, is collected in a training dataset. The source of training data 

can be either an experimental campaign, a physics-based simulation of the 

equipment (calibrated and validated with respect to the response of the actual 

physical system), historical records of field data, or a combination of the three. 

Generally speaking, high-fidelity data collected from actual hardware is to be 

preferred, but often the amount of information required for training successfully the 

machine learning tools is not available; then, high fidelity data may be integrated 

with synthetic data computed with a simulation model. Specifically, for the 

proposed methodology, the following information is required: 

 A set of fault combinations, sampled in the space of the considered fault 

parameters. The number of fault combinations, as well as the particular 

sampling criterion, are problem dependent. For the application discussed in 

this manuscript, a particular importance sampling technique is employed. A 

detailed description is provided and discussed in Section 2.1. 

 A set of informative maps of the system behavior, associated to each of the 

aforementioned fault combinations. These maps shall be measurable with 

the available sensors installed on the system, and shall be highly dependent 

on the health condition of components; at the same time, dependency on 

operating and environmental conditions shall be reduced as possible. 

 A set of Boolean values associated to each sampled fault combination, 

determining whether or not that specific health condition is still compliant 

with the requirements of the system. This information can be collected by 

evaluating an assessment function, as proposed in [37]. 
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Figure 2.1: Block diagram of the proposed PHM strategy, highlighting the offline/online 

arrangement of each phase. 

After the training dataset is collected, a compression map is determined offline 

to reduce the amount of data to be measured, stored and processed in real-time. A 

two-step signal compression, initially proposed by [42] and successfully 

demonstrated for structural health monitoring problems, is leveraged. The first step 

of compression employs Proper Orthogonal Decomposition (POD) to determine the 

informative principal components of the system behavior maps from the training 

set. Then, a Self-Organizing Map (SOM) yields a nonlinear projection of the 

principal components to a set of optimal locations for real-time measurement. 

Online, only those locations are considered for measurement of the system behavior 

map, thus reducing the required processing for FDI and RUL estimation. Most of 

the information of the complete system behavior map is reconstructed in real time 

via Gappy POD: as demonstrated in [29, 30], this results in a significantly improved 

computational time with respect to measuring the whole map. 

After reconstruction via Gappy POD, the retained information from the system 

behavior map is encoded in a set of coefficients associated to the principal 

components of the measurements. A Multi-Layer Perceptron (MLP) is trained 

offline to associate the POD coefficients of the training set to the corresponding 

fault combination. Online, the POD coefficients estimated from the real-time 

measurements are fed to the trained MLP in evaluation: the output of the neural 

network constitutes an estimate for the actual health condition of the system. 
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The estimated health condition is employed as a starting point to determine the 

RUL of the system. To do so, a model for the propagation of faults is integrated 

with respect to time. In order to reduce the sensitivity of the RUL estimate to the 

uncertainty in FDI, all the last known health conditions are accounted for. A filter 

based on a dynamical estimator, similar to a Kalman Filter, is employed to combine 

the information from FDI with the known model of damage propagation, and to 

extrapolate the time evolution of the health condition until a failure happens [43]. 

The stopping criterion for the extrapolation is the assessment function for the 

system [37]; however, the computational cost is excessive and not suitable for real-

time computation. Then, a Support Vector Machine (SVM) is trained offline as a 

surrogate assessment function to speed up computations online. 

Several approaches available in literature, based e.g. on AutoAssociative 

Kernel Regression [44] or Principal Component Analysis [45] build fault detection 

models considering only nominal condition data. The proposed method builds the 

fault detection models considering data both from nominal condition systems and 

from faulty systems. This approach has the advantage of providing information not 

only about the magnitude of the deviation from a nominal state, but also about the 

specific fault modes detected in the equipment: this may ease the failure prognosis 

process, as well as the troubleshooting tasks needed to correct faulty subsystems. 

As a downside, a more demanding, but still feasible, data collection is required. 

In this manuscript, Section 2.1 describes the particular importance sampling 

criterion employed for the training set; Section 2.2 details the signal acquisition and 

two-step compression; the FDI process employing MLPs is discussed in Section 

2.3; eventually, Section 2.4 describes the RUL estimation algorithm. 

2.1 Acquisition of a training dataset via particular 

importance sampling 

The machine learning tools employed for the three phases of the PHM process 

require data-driven knowledge about the behavior of the equipment in nominal and 

off-nominal conditions. This information is collected with the acquisition of a 

training dataset, employed offline to train the surrogate models used through the 

whole PHM strategy. 

Specifically, three sets of data are collected, arranged into three matrices. 

 A matrix of fault combinations K = [𝒌1
⊤, … , 𝒌𝑛𝑠

⊤ ]
⊤

. Each row 𝒌𝑖 of this 

matrix is a 𝑛𝑘-dimensional vector encoding in its components the health 

condition of the system or, in other words, a set of parameters related to the 

state of the considered progressive damages. The components of 𝑘𝑖 may be 

physical quantities related to the level of wear of components of the system: 

for example, the backlash or friction coefficient between two mechanical 

components, the resistance of an electric connector, the thermal 

conductivity of the heat sink of a circuit board. Since small, incipient faults 

are considered for prognostic interest, the drift of a fault combination from 

the nominal condition does not result immediately in a failure: the system 
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may still be able to meet its performance requirements for some time before 

failing. 

 A matrix of informative behavior maps of the system Y = [𝒚1, … , 𝒚𝑛𝑠]. 

Each column vector 𝒚𝑖 = 𝒚(𝒌1) = [𝑦1
𝑖 , … , 𝑦𝑛𝑒

𝑖 ] encodes the behavior of the 

system associated to the 𝑖-th fault combination 𝒌𝑖. The vectors 𝒚𝑖 are given 

combinations of measurable operating parameters from the system, 

expressed as a function of another parameter 𝒙: for example, 𝒙 can be a time 

coordinate, the output position or speed of an actuator, or the external load 

on a control surface. The particular behavior maps chosen for an application 

are strongly problem dependent. The requirements for the chosen quantities 

are that (1) they can be derived from data available from sensors installed 

on the equipment and (2) they are highly sensitive to the health condition of 

the system, and marginally influenced by operating and environmental 

conditions. 

 A matrix of values of a function for health condition assessment Φ =

[𝜙𝑎,1, … , 𝜙𝑎,𝑛𝑠]. The assessment function 𝜙𝑎,𝑖 = 𝜙𝑎(𝒌𝑖) associates to the 

fault combination 𝒌 a Boolean value expressing whether or not the 

considered system, affected by that fault combination, is still compliant to 

its requirements. Traditionally, common approaches to PHM employ a 

simple threshold for the individual fault parameters; however, this method 

is not able to consider accurately the combined effect of multiple fault 

modes, so a model-based approach is preferred. 

The matrix K is sampled in the space of fault combinations. The sampling 

method used for a specific application is problem dependent. For prognostic 

applications, the specific interest is to capture the behavior of the system in presence 

of the early precursors of incipient faults. Indeed, the faults shall be identified in 

advance of the actual failure, early enough to plan corrective actions. Then, the 

training dataset shall allocate a relatively high number of samples for small faults, 

i.e. for fault vectors 𝒌 near to the nominal condition 𝒌𝑁𝐶. For this reason, a 

particular importance sampling is adopted in this work. 

Being the space of fault combinations relatively high dimensional, if a sampling 

with uniform probability distribution was to be employed, either a prohibitively 

large number of samples would be required, or the resultant density of samples 

would be very low. For example, let the fault combination be 𝒌 an eight-

dimensional vector (i.e. 𝑛𝑘 = 8), its components normalized between 0 and 1, and 

let the nominal condition 𝒌𝑁𝐶 coincides with the origin of a Cartesian reference 

frame. The acceptable sampling space is an eight-dimensional hypercube with unit 

side; its (hyper)volume is 18 = 1. For comparison, the volume of the eight-

dimensional hypercube with half unit side is 0.58 ≈ 3.9 ∙ 10−3, or that of the locus 

of points with positive coordinates whose distance from the origin is less than 1 is: 

0.58 ∙ 𝜋 ≈ 0.012 (2.1) 

that is, only 1.2% of the total fault combinations have a Euclidean distance from 

the origin less than 1. Therefore, a uniform sampling distribution is not a viable 

option to achieve a good density near the nominal condition. To obtain a better 
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distribution for the samples, and assign more weight to health conditions close to 

the nominal one, we employ a standard Latin Hypercube sampling [46, 47, 48, 49]  

on an auxiliary set of variables, whose space is mapped to the space of the fault 

parameters via a nonlinear projection. At first, the auxiliary matrix J, 𝑛𝑠-by-𝑛𝑘 

dimensional, is built as a standard Latin Hypercube sample. The elements of the 

fault matrix K are then computed as a nonlinear projection of J; at this purpose, in 

this work we employ the function: 

K𝑖𝑗 = (J𝑖𝑗)
𝑛𝑘

 (2.2) 

It is possible to prove that a uniform distribution of the 𝐿∞ norm of 𝐾 is 

obtained this way. Specifically, let us consider the rows J𝑖,: contained in the matrix 

J, such that: 

𝐿∞(J𝑖,:) < 𝑙 (2.3) 

where 0 < 𝑙 < 1. These rows encode the coordinates of the points contained in a 

hypercube with side length 𝑙, in the space of the auxiliary variables. Being J a Latin 

Hypercube sample, its rows have a uniform the distribution; the number of points 

that satisfy the condition of Equation (2.3) is approximately: 

𝑛𝑠𝑙
𝑛𝑘  (2.4) 

where 𝑛𝑠 is the total number of points (i.e. rows of the matrix). These points are 

mapped to the space of the fault combinations 𝒌 that are contained in the hypercube 

with side length 𝑙𝑛𝑘. Then, the corresponding rows of K are subject to the condition: 

𝐿∞(K𝑖,:) < 𝑙𝑛𝑘 (2.5) 

that is, for any given positive scalar 𝑎, the number of points such that 𝐿∞(K𝑖,:) < 𝑎 

is proportional to 𝑎, thus achieving a uniform distribution in the 𝐿∞ of the sampling 

points, that is, an increasing density in the individual coordinates towards the origin. 

A graphical interpretation of the behavior of this sampling technique is shown in 

Figure 2.2, where a standard Latin Hypercube is compared to the proposed 

importance sampling method. 

After the matrix K is determined, Y and Φ are obtained using physics-based 

models of the system, and evaluating those models for each fault combination 𝒌𝑖. 

2.2 Signal Acquisition, Feature extraction and 

Compression 

The system behavior maps 𝒚(𝒙) contained in the training dataset are usually 

quite high-dimensional. Considering for example the application presented in this 

work, if employing the back-EMF coefficient of the motor as the map 𝒚, expressed 

as a function of the rotor angle 𝒙, to identify electrical faults, the voltages, currents, 

rotor angle and speed shall be measured and acquired with a high frequency (at least 

one order of magnitude above the commutation frequency of the motor, so typically 

in in excess of 10kHz). 
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Figure 2.2: Behavior of the proposed importance sampling in two dimensions. (a) standard 

Latin Hypercube sampling; (b) importance sampling. The proposed importance sampling increases 

the density of data points near the origin. 

This results in large amounts of data to store and process in real-time: assuming 

to allocate 16 bits for each signal, this approach generates a data stream in excess 

of 1Mbps. The system behavior map reconstructed from this data is, in turn, high-

dimensional, and encoded in an 𝑛𝑒-dimensional vector 𝒚. To process this data 

stream in real-time without some kind of compression would require substantial on-

board hardware resources, that are prohibitive for health monitoring purposes. 

Hence, an efficient method to reduce the amount of data is required. In this 

work, a two steps signal compression is employed, combining Proper Orthogonal 

Decomposition (POD) with Self-Organizing Maps (SOMs) to determine offline an 

optimal set of 𝑛𝑤 ≪ 𝑛𝑒 informative locations in which the system behavior maps 

are measured and processed. The method was initially developed by Mainini and 

Willcox [42, 50], and verified for structural health monitoring applications. Berri et 

al. demonstrated the application to actuator diagnostics in [29, 51]. 

Specifically, offline a set of informative locations (also referred to as a 

compression mask) is determined for measurement and processing of the system 

behavior map. Online, this compression mask is employed to speed up real-time 

computations; most of the information of the whole system map is recovered via 

Gappy POD. 

2.2.1 Offline 

In the offline step of the compression, the aim is to determine an efficient 

compression mask for the system output 𝒚(𝒙), in the form of a set of informative 

locations in 𝒙 where the observation 𝒚 is measured, stored and processed. The 

method developed in [51] is employed. The compression strategy includes two 

steps: (1) at first, Proper Orthogonal Decomposition (POD) identifies a linear 

projection of Y to the space of its principal modes; (2) then, a Self-Organizing Map 

performs a nonlinear projection of the dominant POD modes to the space of the 
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weight vectors of the map. As a result, this procedure allows embedding physics-

based knowledge in the signal processing, and obtaining an optimal compression 

mask to retain the significant information about the system. This dramatically 

reduces the amount of data to be processed in real-time. 

The following Paragraphs describe respectively the first step of compression 

employing POD, and the SOM leveraged to obtain the optimal compression mask. 

2.2.2 First step of compression: Proper Orthogonal Decomposition 

(POD) 

This phase of the PHM process aims at computing a reduced representation of 

the system behavior map, identifying its most informative components. The input 

of this step is the matrix of informative behavior maps of the system Y =

[𝒚1, … , 𝒚𝑛𝑠], obtained in Section 2.1. The output is represented by the POD modes, 

that is, the principal directions of variation of the system behavior 𝒚. 

Proper Orthogonal Decomposition (POD) [52, 53] is a numerical procedure 

closely related to Principal Component Analysis (PCA) [45] and commonly 

employed to find compressed representation and reduced models, by identifying 

underlying structures of possibly correlated data. While PCA is often employed in 

statistics for finitely dimensional data, POD is commonly used in several fields of 

engineering, such as: fluid-dynamics, structural mechanics, and signal processing. 

Its formulation, based on the Karhunen-Loeve expansion, guarantees that the 

compressed representation of the data is optimal in the least squares sense and 

retains the structure of the underlying physical phenomena [54]. For example, in 

[55] POD is employed to obtain surrogates of nonlinear dynamical systems for 

model-based control. Walton et al. [56] combine POD and radial basis functions to 

obtain reduced order models of unsteady fluid flows. Willcox and Peraire [57] 

employ Proper Orthogonal Decomposition to perform a balanced reduction of high-

order linear systems. In [58], POD is used to obtain a dynamical characterization 

and order reduction of linear and nonlinear dynamical systems. 

POD is applied to the matrix Y with the method of Snapshots [54]. The observed 

system outputs 𝒚 (snapshots) are arranged into the columns of Y ∈ ℝ𝑛𝑒×𝑛𝑠, and 

Singular Value Decomposition (SVD) is leveraged to find two orthogonal matrices 

U ∈ ℝ𝑛𝑒×𝑛𝑒 and V ∈ ℝ𝑛𝑠×𝑛𝑠 and a diagonal matrix Σ ∈ ℝ𝑛𝑒×𝑛𝑠 such that: 

Y = UΣV⊤ (2.6) 

An important property of SVD states that the first 𝑛𝑠 columns of U =

[𝒗1…𝒗𝑛𝑠] constitute an orthonormal basis for the columns of Y. As a result, a 

generic observation of the system 𝒚𝑖 can be written as the linear superposition of 

the modes 𝒗, weighted by the coefficients 𝛼: 

𝒚𝑖 = 𝒚0 +∑𝛼𝑖,𝑗

𝑛𝑠

𝑗=1

𝒗𝑗 
(2.7) 

where 𝒚0 is a baseline observation, e.g. the average of all the individual 

observations. The POD modes 𝒗𝑗 are optimal in a least squares sense, and are 
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ordered according to the associated eigenvalues 𝜆𝑗. In a geometrical interpretation 

of POD, the observations 𝒚 are represented as data points in the 𝑛𝑒-dimensional 

space; the POD modes are the principal directions of variation of the observation, 

i.e. the principal axes of an 𝑛𝑒-dimensional ellipsoid fitted over the distribution of 

the data points. The length of each axis is the eigenvalue associated to that mode, 

and provides a measure of the dispersion of the observations in that direction. The 

modes associated to the largest eigenvalues then explain most of the variability of 

the data; as a result, a compressed representation of the observations 𝑦 can be 

achieved by truncating the POD expansion of Equation (2.7) to the first 𝑛𝑚 modes: 

𝒚𝑖 ≈ 𝒚0 +∑𝛼𝑖,𝑗

𝑛𝑚

𝑗=1

𝒗𝑗 
(2.8) 

with 𝑛𝑚 ≪ 𝑛𝑠. The fraction of information of the original observation set retained 

by this representation is related to the cumulative sum 𝜎 of the eigenvalues 

associated to the retained modes: 

𝜎 =
∑ 𝜆𝑗
𝑛𝑚
𝑗=1

∑ 𝜆𝑗
𝑛𝑠
𝑗=1

 
(2.9) 

If the eigenvalues decay fast, i.e. if 𝜎 is already close to 100% for a small 𝑛𝑚, 

the compression provided by Equation (2.8) retains most of the original information 

within a limited set of parameters (i.e. the POD coefficients 𝛼𝑖,𝑗). Indeed, the set of 

modes is fixed for a given system, while the information associated to an individual 

observation is stored in the POD coefficients. 

The output of this step includes the POD modes and coefficients computed for 

the matrix Y, to be employed by the following phases of the PHM process. 

2.2.3 Second step of compression: Self-Organizing Map (SOM) 

The first step of compression through POD allows to find a compressed 

representation of the observations to reduce the amount of data to process for FDI. 

A second step of compression leverages unsupervised machine learning to 

determine an optimal compression mask to reduce the amount of data to be 

measured and stored online. The input of this phase are the first 𝑛𝑚 POD modes 

computed in Section 2.2.1.1.  

Self-Organizing Maps (SOMs) were originally introduced by Kohonen [59, 

60]; they are a class of single-layer neural networks that exploit unsupervised 

learning to identify clusters of self-similar data. Kaski [61] discusses the use of 

SOMs to find structure in large multidimensional datasets, with applications in 

engineering, statistics and data mining. In [62], SOMs are employed to extract 

interpretable patterns from satellite imagery. Svensson et al. [63] leverage SOMs to 

diagnose cooling system faults in a fleet of vehicles, by obtaining low dimensional 

representations of sensor measurements. Kohonen maps are employed with 

agglomerative hierarchical algorithms to detect failures of induction motors in [64]. 
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A similar approach is tested for diagnostics of industrial automation equipment in 

[65].  

Each of the 𝑛𝑤 neurons of the SOM has two representations. One lies in the 

space of the weight vectors 𝒘 (that is equivalent to the space of the input): this 

representation is updated iteratively during learning. The second representation is 

in the usually bi-dimensional topological space of the network, and is fixed. 

The SOM exploits a form of unsupervised competitive learning. At first, the 

weight vectors are initialized to random values; during training, the examples 𝝉 are 

fed one by one to the network. For each example 𝝉𝑖, a winner neuron 𝑙 is chosen as 

the one that minimizes the distance between its weight vector 𝒘𝑙 and the current 

training point 𝝉𝑖: 

𝑙 = argmin
𝑗
(‖𝜏𝑖 − 𝑤𝑗‖) (2.10) 

For most applications, including the one considered in this work, ‖∙‖ denotes 

an 𝐿2 norm, that is the Euclidean distance between the weight vector and the 

training example. The weight vector of the winner neuron 𝑙 and its neighbors are 

then updated according to the following equation: 

𝑤𝑗
𝑖+1 = 𝑤𝑗

𝑖 + 휃(𝑗, 𝑙)𝛼(𝑖)(𝜏𝑖 − 𝑤𝑗) (2.11) 

where 휃(𝑗, 𝑙) is a neighborhood function, 𝛼(𝑖) is a monotonically decreasing 

learning coefficient, 𝑖 denotes the iteration of the learning process, and 𝑗 is the 

particular neuron being updated. The neighborhood function is typically a 

decreasing function of the distance from the winner neuron 𝑙, defined in the space 

of the topological representations of neurons. As a result, at each iteration, the 

weight vectors of the winner neuron and its neighbors are moved closer to the 

training point. This process is repeated for each input of the training set for several 

epochs. During each epoch, all the training points are submitted to the network, 

each time in a different, randomized order. The training is complete when one of 

the stopping criteria is met: for example, when a performance parameter reaches its 

goal value, or when the maximum number of epochs is reached. 

For the application discussed in this work, the training set T is composed by the 

first 𝑛𝑚 modes of the POD 𝒗𝑖 and the associated coordinate 𝒙: 

T = [𝒙, 𝒗1, … , 𝒗𝑛𝑚] (2.12) 

Each training point is a row of T, including a coordinate 𝑥𝑖 and the 

corresponding values of the POD modes. A property of SOMs implies that, after 

training, the weight vectors represent a nonlinear projection of the high-dimensional 

training data to the lower dimensional space of the neurons [66]. A consequence is 

that the weight vectors, defined in the space of the input, encode representative 

vectors for clusters of self-similar points. Then, an efficient compression mask can 

be obtained from the components of the weight vectors associated to the coordinate 

𝒙: the system behavior maps 𝒚(𝒙) will be measured and processed online only in 

correspondence of those 𝑛𝑤 informative values �̂� of the coordinate 𝒙, to obtain a 

compressed representation �̂�. 
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2.2.4 Online 

The compression mask �̂� computed offline is employed to reduce the 

computational effort needed in real-time. During the operation of the monitored 

system, the sensors installed onboard capture a constant stream of data, whose 

frequency depends on the primary application of the individual sensor: indeed, data 

used for health monitoring purposes is preferably measured by sensors installed for 

a primary application different from prognostics. This way, virtually no weight or 

complexity is added to the onboard system, and its performances and reliability are 

not decreased. Data measured onboard is processed to obtain the system behavior 

map 𝒚. The reconstruction of the complete map 𝒚(𝒙) would require substantial 

processing power, since the acquisition frequency of the sensors may be in the 

kilohertz range or above. Then, the compression mask allows to process only the 

𝑛𝑤 points whose coordinate 𝒙 have been determined offline. 

Those points (𝒙, �̂�) constitute an incomplete measurement of the behavior map 

of the system. The efficient placement of the measurement points through the two-

step compression guarantees that a large fraction of the information contained in 

the complete map is retained. The map could be fed directly to a regression neural 

network, as in [67]; however, random errors on the measurements could result in a 

biased fault detection. In this work, Gappy Proper Orthogonal Decomposition 

(Gappy POD) is employed to reconstruct an estimate of the POD coefficients 

associated to the incomplete map measured online. 

Gappy POD [68, 69, 70] is a procedure derived from POD, commonly 

employed to reconstruct data from sparse measurements, leveraging physics-based 

knowledge of the structures of data through the use of the POD modes. Saini et al. 

[71] discuss the use of Gappy POD for data recovery from the noisy particle image 

velocimetry measurements in combustors of gas turbines. Willcox [72] employs a 

similar technique to reconstruct unsteady fluid flows from incomplete 

measurements. Bui Thanh et al. [73] employ gappy proper orthogonal 

decomposition for efficient inverse airfoil design. In [74], stabilized reducer order 

models of nonlinear eddy currents are obtained with Gappy POD. 

For the implementation studied in this work, the goal is to reconstruct the POD 

coefficients associated to the incomplete measurement, as opposed to the complete 

observation. According to Equation (2.8), the quantity 𝒚 measured online can be 

approximated by a linear superposition of the first 𝑛𝑚 POD modes. The objective 

of Gappy POD is to find a set of coefficients 𝜶 that minimize the mean squared 

error between the original signal and the reconstructed one, limited to the 𝑛𝑤 known 

components �̂�. This is done by solving the linear system: 

G𝜶 = 𝒇 (2.13) 

where G = 𝑣⊤𝑣 is the Gappy Matrix, and 𝑣 = [�̂�1, … , �̂�𝑛𝑚] is a 𝑛𝑤-by-𝑛𝑚 

dimensional matrix whose columns are the first 𝑛𝑚 POD modes, considered only 

in their 𝑛𝑤 informative elements corresponding to the coordinates �̂� of the 

compression mask. The vector 𝒇 is obtained by projecting the compressed signal �̂� 

along the compressed POD modes �̂�: 
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𝒇 = �̂�⊤�̂� (2.14) 

In the traditional application of Gappy POD, after solving the system of 

Equation (2.13), an approximation of the complete measurement 𝑦 is reconstructed 

as the linear superposition of the first 𝑛𝑚 POD modes, weighted by the coefficients 

𝜶 as per Equation (2.8). The specific implementation of the proposed methodology 

requires directly the use of the POD coefficients as a compressed representation of 

the high-dimensional observation 𝒚 for the Fault Detection and Identification phase. 

2.3 Fault Detection and Identification (FDI) 

This step of the proposed PHM procedure receives as an input a compressed 

representation of the system behavior map 𝒚 in the form of the POD coefficients 𝛼, 

to return in output the estimated health condition 𝒌 of the equipment. 

Common methods for Fault Detection and Identification (FDI) are either 

model-based or data-driven. The former category relies on physics-based digital 

twins of the monitored system: the measurements from the monitored equipment 

are compared to the output of the digital twin, and a parameter identification 

algorithm is employed to match the response of the two systems and estimate the 

actual health condition. This procedure can be highly accurate [75], but requires a 

computational effort that is usually not suitable for real-time execution. The latter 

category relies on machine learning tools to associate a measured output to a given 

fault condition. In this case, computational time is fast, but accuracy is not suitable 

to determine small, incipient faults [76], especially if the response of the system is 

influenced by several unpredictable variables. 

The proposed methodology for FDI is essentially data-driven; however, thanks 

to the efficient data compression, and with a suitable choice of the monitored 

parameters, it permits to combine good accuracy and fast computational time in 

evaluation. The methodology employs supervised machine learning to associate the 

estimated POD coefficients 𝜶 to the health condition of the system 𝒌. Specifically, 

a feedforward neural network is trained offline (with the fault conditions of the 

dataset K and the associated POD coefficients computed offline as per Section 

2.2.1) and evaluated online on the POD coefficients estimated by Gappy POD 

(Section 2.2.2). 

2.3.1 Offline 

A neural network is trained offline to associate an estimate of the fault condition 

𝒌 to a set of POD coefficients 𝜶. The use of a machine learning approach instead 

of a model-based one allows to keep the computational time in evaluation low and 

compatible with real-time constraints. In this application, a standard 

implementation of a Multi-Layer Perceptron (MLP) with a single hidden layer 

demonstrated to be suitable for the task. Depending on the specific problem, more 

complex machine learning paradigms may be required. 

Multi-Layer Perceptrons [77, 78] are a class of supervised learning, 

feedforward neural networks; their property of being universal approximators 



 

17 

 

makes them suitable for solving regression and classification problems. In [79] 

MLPs are employed to estimate fuel consumption of road vehicles accounting for 

variations of the operating condition. Li et al. [80] compare MLP networks and 

deterministic regression methods for the estimation of wind turbine power curves. 

In [81] MLPs and Support Vector Machines (SVMs) are combined to detect early 

faults of gearboxes from vibration measurements. 

The architecture of an MLP features neurons arranged in one or more hidden 

layers, followed by an output layer. MLPs are fully connected networks, meaning 

that each neuron receives as an input the outputs of all the neurons of the previous 

layer, and its output is fed to all neurons of the next layer. 

The implementation adopted in this work has a single hidden layer with 𝑛ℎ 

sigmoid activation function, and an output layer with linear saturated activation 

function. The number of neurons in the output layer is determined by the problem, 

and is equal to the dimension of the output: then, for this work there are 𝑛𝑘 output 

neurons, being the output of the MLP an estimate of the fault vector. The training 

set is composed by the fault conditions of the training set K as the targets, and the 

associated POD coefficients 𝜶 computed in Section 2.2.1 as the inputs. 

The inputs 𝜶 of the hidden layer, arranged as a column vector, are multiplied 

by the weight vectors 𝑾ℎ of the neurons (row vectors), added to a bias constant 𝑏ℎ, 

and then fed to a hyperbolic tangent activation function to obtain the output 𝑎 of 

the neuron. For the 𝑖-th neuron: 

𝑎𝑖 = tanh(𝑾𝑖
ℎ𝜶 + 𝑏𝑖

ℎ) (2.15) 

Figure 2.3 (a) shows the block diagram of a sigmoid neuron. The output layer 

receives in input the outputs 𝒂 = [𝑎1…𝑎𝑛ℎ]
⊤

 of the hidden layer; they are weighted 

by the vectors 𝑾𝑜, added to the bias 𝑏𝑜 and fed to the linear saturation activation 

function to compute the output of the MLP 𝒌 = [𝑘1…𝑘𝑛𝑘]. For the 𝑖-th neuron: 

𝑘𝑖 = {
0, if 𝑾𝑜𝒂 + 𝑏𝑜 < 0

𝑾𝑜𝒂 + 𝑏𝑜 , if 0 ≤ 𝑾𝑜𝒂 + 𝑏𝑜 ≤ 1
1, if 𝑾𝑜𝒂 + 𝑏𝑜 > 1

 
(2.16) 

The block diagram of a linear saturated neuron is shown in Figure 2.3 (b), while 

Figure 2.4 shows the overall arrangement of the MLP. The particular choice of the 

output activation function reflects the bounds of the output of the FDI problem: the 

components of the fault vector 𝒌 are normalized between 0 and 1. Additionally, the 

sharp transition of the output activation function permits to cut to zero the estimated 

fault condition when the dynamical response of the system is close to the nominal 

one, reducing the risk of false positive fault detections. 
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Figure 2.3: Block diagram of a sigmoid neuron (a) and linear saturated neuron (b) 

 

Figure 2.4: Arrangement of the single hidden layer Multi-Layer Perceptron (MLP) employed 

for FDI 

The weights and biases of the neurons are determined during training, to 

minimize a performance function in consisting in the mean squared error between 

the outputs of the networks and the targets, leveraging a Levenberg-Marquardt 

backpropagation algorithm [82]. The Levenberg-Marquardt algorithm is an 

optimization algorithm meant to approach the second-order convergence speed 

while avoiding the direct computation of the Hessian matrix of the problem. We 

define a vector 𝒙 containing in its elements the weight and bias parameters of each 

neuron of the network; 𝒌𝑡 is the target, i.e. the expected output of the network for 

the training set, while 𝒌𝑒 is the obtained output. Being the performance function a 

sum of squares, the Hessian matrix H of the errors with respect to the weight and 

biases can be approximated as: 

H ≈ J⊤J (2.17) 

and the gradient of the performance function is: 

𝒈 = J⊤𝒆 (2.18) 

where 𝒆 = 𝒌𝑡 − 𝒌𝑒 and J is the Jacobian matrix, which can be evaluated with a 

standard backpropagation method [83]. This approach is less expensive than the 

direct computation of the Hessian. At each iteration, the algorithm uses the 

approximated Hessian to update 𝒙 in a quasi-Newton form: 

𝒙𝑖+1 = 𝒙𝑖 − [H + 𝜇I]
−1𝒈 = 𝒙𝑖 − [J

⊤J + 𝜇I]−1J⊤𝒆 (2.19) 
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where the scalar parameter 𝜇 is decreased after each successful iteration (i.e. after 

a reduction of the performance function). The training is stopped when either the 

maximum number of epochs is reached or the performance gradient decreases 

below a threshold. The result of the offline step of the FDI phase is the trained MLP 

model for 𝒌(𝜶), to be employed online for real-time fault detection. The use of the 

low dimensional representation of the system’s response provided by the POD 

coefficients 𝜶 in place of the full dimensional 𝒚 reduces the number of neurons 

needed in the hidden layer and simplifies the training process. In addition, 𝜶 has an 

advantage over the compressed signal �̂�, as the Gappy POD step inherently checks 

the plausibility of the observations by comparison with the information contained 

in the POD modes, and mitigates the effect of local measurement errors. 

2.3.2 Online 

The MLP model trained offline is employed to speed up real-time FDI. The 

network receives as an input a new set of POD coefficients, associated with the map 

of system behavior observed and compressed online with the optimal compression 

mask �̂�. The POD coefficients are estimated via Gappy POD, with the procedure 

described in Section 2.2.2. 

The estimate of the current health condition of the system 𝒌𝑒 is computed as 

the output of the Multi-Layer Perceptron, employing Equations (2.15) and (2.16). 

This strategy allows to perform the FDI task in a few milliseconds, much faster than 

the several minutes required by model-based fault detection techniques [84]. 

Additionally, the combination of supervised machine learning with the two-step 

compression, which allows embedding physics-based domain knowledge into the 

compressed representation of the system observations, permits to retain a good 

accuracy of the estimate. 

The output of the online FDI is the real-time estimate of the system health 𝒌𝑒, 

which will be employed as a starting condition for the estimation of Remaining 

Useful Life. 

2.4 Estimation of Remaining Useful Life (RUL) 

The last phase of the PHM process is the actual estimation of the Remaining 

Useful Life. The input for the process is the current health condition determined by 

FDI, employed as a starting point for the evaluation of a model of damage 

propagation. 

The approach discussed in this work is the extension to system health 

monitoring of the damage tolerant design strategy for fatigue of structures. In the 

field of structural health monitoring, the components are inspected periodically in 

search of cracks. Since the rate of propagation of cracks in metal and composite 

structure is known and well described by physics based models, the next inspection 

is planned before the existing cracks reach a critical length; if no cracks are detected 

during the inspection, they are assumed to be just below the sensitivity of the 

employed equipment. 
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The extension of this approach to systems poses two issues: 

 The higher complexity of the monitored equipment makes accurate 

inspection impractical in periodical maintenance; then, this study proposes 

to replace, at least in part, manual inspections with the automatic, real-time 

FDI process described in Section 2.3. 

 The heterogeneous disciplines that rule the propagation of faults results in 

the difficulty (or often in the impossibility) to determine an accurate 

physics-based model for damage propagation. To address this obstacle, the 

proposed methodology uses an adaptive model for damage propagation, 

which is updated in real-time according to the observed time-history of the 

health condition. 

Leveraging the definition of Remaining Useful Life of Equation (1.2), a model 

of damage propagation is employed in the form of a state-space dynamical 

representation. The model is integrated numerically, starting from the current fault 

combination determined by FDI as the initial condition, and accounting for the 

entire known time history of faults through a dynamic estimator filter. The model 

is adaptive and leverages a simple system identification algorithm to tune itself to 

match the observations. A function for the assessment of health condition [29, 37] 

is employed as a stopping criterion for the integration. When the estimated health 

condition reaches a value that is no more compatible with the requirements of the 

system, the corresponding integration timestep is assumed as the RUL estimate: 

indeed, it is the remaining time after which the equipment will no longer meet the 

required performances. The function for assessment of the health condition is 

physics-based and implies a significant computational burden. To enable real-time 

evaluation, a Support Vector Machine (SVM) is trained offline as a surrogate 

assessment function. 

2.4.1 Offline 

The function for health condition assessment 𝜙𝑎(𝒌) behaves as a binary 

classifier: it simulates the response of the system under the effect of the fault 

combination 𝒌 and determines whether or not the applicable performance 

requirements are met by the equipment, assigning to 𝒌 a binary output in the form 

of a "healthy" or "faulty" label. For some simple application, the simple 

comparison of the fault vector with a threshold may be enough; however, this is 

usually not acceptable to deal with the combined effects of multiple fault modes 

affecting the equipment at the same time. More complex assessment function 

quickly become impractical to evaluate in real-time. For example, a viable option 

for the health assessment of an actuator is to evaluate its transfer function with an 

iterative simulation at variable frequency of the command: this results in 

computational times of several seconds or more. To enable real-time evaluation of 

the assessment function, this study proposes the use of a surrogate function in the 

form of a Support Vector Machine (SVM). 
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Figure 2.5: Geometrical interpretation of a linear Support Vector Machine binary classifier. 

SVMs [85, 86] are algorithms that leverage supervised machine learning to 

perform an efficient classification of the input. Goh et al. [87] discuss the use of 

SVM for image classification. In [88], Leng et al. propose a binary tree classifier 

that employs SVMs to perform large scale classification of data. In [89], a similar 

method for monitoring fatigue damage of airframes is proposed. Fan et al. [90] 

employ SVMs to obtain efficient surrogate modelling of fluid-dynamics problems. 

To train a surrogate assessment function, we assemble a training set with the 

matrices K = [𝒌1
⊤, … , 𝒌𝑛𝑠

⊤ ]
⊤

 and Φ = [𝜙1, … , 𝜙𝑛𝑠] discussed in Section 2.1. In the 

standard linear formulation, given a set of training points 𝒌𝑖, each defined in ℝ𝑛𝑘, 

and their classes 𝜙𝑖 = ±1, the SVM seeks an optimal hyperplane in ℝ𝑛𝑘  to separate 

the two classes. The equation of a generic hyperplane in ℝ𝑛𝑘  is: 

𝑓(𝒌) = 𝒌⊤𝜷 + 𝑏 = 0 (2.20) 

where 𝑓(𝒌) is a cost function, 𝜷 has the same dimensionality as 𝒌 and 𝑏 is a scalar 

bias. The goal of the training process for the SVM is to find the best separating 

hyperplane, that is, the one that results in the largest margin between the two classes 

𝜙 = ±1. A geometrical interpretation of a linear SVM is provided in Figure 2.5. 

The vector 𝜷 is normal to the hyperplane, and the optimal margin length 

between the two classes is 2/‖𝜷‖. Then, finding the best separating plane is 

equivalent to find the gradient 𝜷 and bias 𝑏 of the hyperplane that minimize ‖𝜷‖, 

subject to the set of constraints 𝜙𝑖𝑓(𝒌𝑖) ≥ 1. The training algorithm solves this 

optimization as a quadratic programming problem, using the method of Lagrange 

multipliers, introducing the positive coefficients 𝑐1…𝑐𝑛, and resulting in the 

objective function: 

𝐿𝑃 =
1

2
𝜷⊤𝜷 −∑𝑐𝑖(𝜙𝑖𝑓(𝒌𝑖) − 1)

𝑖

𝒈 = J⊤𝒆 
(2.21) 

which is equivalent to the dual problem: 
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min
𝑖
(
1

2
∑∑𝑐𝑖𝑐𝑗𝜙𝑖𝜙𝑗𝑘𝑖

⊤𝑘𝑗
𝑗𝑖

−∑𝑐𝑖
𝑖

)𝒈 = J⊤𝒆 

(2.22) 

Our application does not allow to separate the classes of the training dataset 

with a linear boundary. In these cases, the problem is addressed by introducing a 

nonlinear kernel to map the input vectors 𝒌 to an auxiliary space where a linear 

boundary exists. The dual formulation is modified as follows: 

min
𝑖
(
1

2
∑∑𝑐𝑖𝑐𝑗𝜙𝑖𝜙𝑗G𝑖𝑗

𝑗𝑖

−∑𝑐𝑖
𝑖

) 

s. t.∑𝑐𝑖𝜙𝑖
𝑖

= 0 

𝑐𝑖 ≥ 0 

(2.23) 

and subject to the Karush-Kuhn-Tucker complementarity conditions [91, 92]. G is 

the Gram matrix of the predictor vectors 𝑘1…𝑘𝑛𝑠 using the nonlinear kernel 

function: 

G𝑖𝑗 = 〈𝜓(𝒌𝑖), 𝜓(𝒌𝑗)〉 (2.24) 

where 〈∙〉 denotes an inner product. After the training, new input points are classified 

according to the sign of the score function: 

�̂�𝑎(𝒌) = sign(∑𝑐𝑖𝜙𝑖〈𝜓(𝒌),𝜓(𝒌𝑖)〉 + 𝑏

𝑖

) 
(2.25) 

where 𝑐𝑖 are the Lagrange multipliers optimized during training. The function 

�̂�𝑎(𝒌) is the surrogate function for the assessment of the health condition 𝒌, to be 

employed in the online RUL estimation procedure. 

2.4.2 Online 

Remaining Useful Life is estimated online by integrating a model of damage 

propagation in the form of a state-space dynamical model, which expresses the 

evolution in time of the health condition of the system, employing the surrogate 

assessment function �̂�𝑎(𝒌) as a stopping criterion. A block diagram of the online 

procedure is provided in Figure 2.6. 

The integration starts at time 𝑡0 = 0, corresponding to the oldest known health 

condition 𝑘0 measured by the first FDI. The integration from 𝑡0 to the current time 

𝑡𝑛𝑜𝑤 (that is, the time coordinate associated to the last FDI) accounts for the known 

time history of the fault vector 𝒌(𝑡) in order to filter out uncertainties in fault 

detection and tune the model of damage propagation. Indeed, one of the most 

important issues in system prognostics is that accurate physics-based descriptions 

of the fault growth rate are not commonly available. 
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Figure 2.6: Schematic flow chart of the proposed RUL estimation real-time procedure 

 

The proposed approach addresses this criticality by dynamically adapting a state 

space model to the obsevations. The general formulation of a state-space model is: 

{
�̇� = A𝒌 + B𝒖
𝒋 = C𝒌 + D𝒖

 
(2.26) 

Where A is the state matrix, B is the control matrix, C is the output matrix, D is 

the feedthrough matrix, 𝒌 is the state, 𝒋 is the observation, and 𝒖 is the input. For 

the application to RUL estimate addressed in this study, we can set 𝒌 = [𝑘1…𝑘𝑛𝑘]
⊤

 

as the health condition of the system, and 𝒖 = [𝑢1…𝑢𝑛𝑢]
⊤

 as the environmental 

and operating conditions; the observation 𝒋 can be considered equal to the state 𝒌 

(that is, the system health condition): then, we can neglect the second equation. 

The state and control matrices may be derived from physics-based knowledge 

of the system. However, in this case a large uncertainty is usually associated to the 

state-space model. Therefore, the matrices shall be estimated from observed data, 

allowing a more precise prediction of the evolution of faults. The elements of A and 

B can be computed from the equation: 

𝜅𝑖𝑎𝑖 = �̇�𝑖 for 𝑖 =1…𝑛𝑘 (2.27) 

where 𝜅 is a matrix containing the observed states 𝑘 and inputs 𝑢 of the last 𝑛 

timesteps: 
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𝜅𝑖 = [

𝑘1(𝑡𝑛𝑜𝑤−𝑛) ⋯ 𝑘𝑛𝑘(𝑡𝑛𝑜𝑤−𝑛) 𝑢1(𝑡𝑛𝑜𝑤−𝑛) ⋯ 𝑢𝑛𝑢(𝑡𝑛𝑜𝑤−𝑛)

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
𝑘1(𝑡𝑛𝑜𝑤) ⋯ 𝑘𝑛𝑘(𝑡𝑛𝑜𝑤) 𝑢1(𝑡𝑛𝑜𝑤) ⋯ 𝑢𝑛𝑢(𝑡𝑛𝑜𝑤)

] 

(2.28) 

𝑎𝑖 is a column vector with the elements of the 𝑖-th row of A and the 𝑖-th row of B: 

𝑎𝑖 = [𝐴𝑖,1…𝐴𝑖,𝑛𝑘 , 𝐵𝑖,1…𝐵𝑖,𝑛𝑢]
⊤

 (2.29) 

and �̇�𝑖 is a column vector containing the time history of the 𝑖-th element of the state 

derivative �̇�: 

�̇�𝑖 = [�̇�𝑖(𝑡𝑛𝑜𝑤−𝑛)… �̇�𝑖(𝑡𝑛𝑜𝑤)]
⊤

 (2.30) 

At each integration timestep, the matrices A and B are computed by solving the 

linear systems of Equation (2.27). The number of timesteps 𝑛 considered for the 

estimation shall be high enough to filter out uncertainties in the observations (i.e. 

the errors of the FDI process), while remaining low enough to allow real-time 

evaluation. In any case, 𝑛 shall be larger than 𝑛𝑘 + 𝑛𝑢, i.e. the sum of the number 

of elements of the state and control vectors: otherwise the system is under 

determined; a number of timesteps larger than 𝑛𝑘 + 𝑛𝑢 is allowed since Equation 

(2.27) can be solved in the least squares sense. 

After the state and control matrices A and B are identified, the state-space model 

is employed for two purposes: as dynamical estimator filter for the computation of 

the next fault condition, and as a predictor to extrapolate the future time evolution 

of the fault condition to determine the system RUL. 

The fault condition at the next timestep is estimated by fusing the information 

from FDI and the state-space system, that operates as a filter based on a dynamical 

observer. The method is similar to Kalman filtering, but does not make assumptions 

about the linearity of the system or the variance of the observations; these 

assumptions represent a limitation of traditional Kalman filters, as highlighted in 

[93]. The state is updated as a weighted sum of the prediction of the state-space 

model and the observation of the FDI procedure: 

𝒌𝑖+1 = 𝛾𝒌𝑒(𝑡𝑖+1) + (1 − 𝛾)[𝒌𝑖 + (A𝑖𝒌𝑖 + B𝑖𝒖𝑖)Δ𝑡] (2.31) 

where 𝛾 ∈ (0,1) is a scalar weight parameter, 𝒌𝑒(𝑡𝑖+1) is the fault condition 

measured by the FDI procedure according to Section 2.3, and the term 𝒌𝑖 +

(A𝑖𝒌𝑖 + B𝑖𝒖𝑖)Δ𝑡 = 𝒌𝑖 + �̇�𝑖Δ𝑡 is the fault condition predicted by the integration of 

the model. This procedure can be employed where the observations 𝒌𝑒 are 

available, that is, for 𝑡 ≤ 𝑡𝑛𝑜𝑤. Since future fault condition are not measurable, the 

propagation of the state for 𝑡 > 𝑡𝑛𝑜𝑤 is performed by the state space model alone: 

𝒌𝑖+1 = 𝒌𝑖 + (A𝒌 + B𝒖)Δ𝑡 (2.32) 

At each time step 𝑡𝑖 of the numerical integration, the surrogate assessment 

function �̂�𝑎(𝒌) trained offline determines whether the equipment is still able to 

operate under the effect of the fault combination 𝒌(𝑡𝑖). When a "faulty" condition 

is detected by the assessment function at time 𝑡𝑓, the integration is stopped, and the 
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difference between the failure time and the current time is assumed as the RUL 

estimate: 

𝑅𝑈𝐿 = 𝑡𝑓 − 𝑡𝑛𝑜𝑤 (2.33) 

The proposed methodology permits to achieve a good accuracy in RUL 

prediction, even if the rate of propagation of the damage from its incipient state at 

𝑡0 to the actual failure at 𝑡𝑓 is not known. This is often the case for complex 

mechatronic systems, where heterogeneous components described by different 

disciplines coexist and work together, sometimes interacting in ways that are 

difficult to predict analytically. Additionally, this method has a lower 

computational cost than comparable approaches available in literature (e.g. those 

based on particle filtering [40, 94]) and can be executed in real-time on limited 

hardware resources. The RUL estimate is deterministic: an uncertainty associated 

to the prediction can be estimated through a Monte-Carlo analysis. To do so, the 

RUL prediction process is repeated iteratively. At each iteration, a random noise is 

superimposed to the observed fault conditions 𝒌𝑒. This noise is sampled each time 

over the error distribution of the FDI, easily assessed offline over a validation 

dataset. As a result, an empirical characterization of the uncertainty distribution 

associated to RUL prediction is obtained. 
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Chapter 3 

Application 

Electromechanical Actuators (EMAs) are emerging as a novel technology for 

current and next generation flight control systems. As they convert directly 

electrical power into the mechanical power needed to drive the flight control 

surfaces [95, 96], they permit to adopt the More Electric [97] and All Electric 

Aircraft [98] system architectures. A widespread integration of EMAs in aircraft 

systems would eliminate the need for a centralized hydraulic system and would 

result in a reduction of the overall aircraft empty weight, with benefits in terms of 

fuel consumption and operating costs, as highlighted by Garcia Garriga et al. [99]. 

Electromechanical actuators replace the local hydraulic circuit of EHAs with a 

mechanical transmission [100]. A typical arrangement of an EMA is shown in 

Figure 3.1: the electric motor and its Power Drive Electronics is coupled to the user 

and external load by a reducer. Commonly the transmission includes an ordinary or 

planetary gearbox coupled to a device for conversion from rotary to linear motion, 

either a ball-screw or a roller-screw. Lead screws are usually avoided for their high 

friction, low efficiency and poor reliability. Alternatively, a high gear ratio reducer 

(such as a compound planetary, harmonic, or cycloidal drive) can be connected 

directly to the user through a rotary output shaft. In several applications, a rotary 

user is preferred since the transmission is more compact and allows a better power 

density. Additionally, the ballscrew is usually the first component of the 

transmission that is damaged in case of overload. Avoiding to convert the output to 

linear motion, reliability and robustness of the system are significantly improved. 

 

 

Figure 3.1: Cross section of an Electromechanical Actuator highlighting its main components 
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The electrical machines most commonly employed for aircraft EMAs are 

Brushless Direct Current (BLDC) motors or Permanent Magnet Synchronous 

Motors (PMSMs): those are chosen for their high power to weight ratio, and for 

their high reliability [101]. 

EMAs have some peculiar characteristic that differentiate them from other 

actuation systems. The absence of a hydraulic circuit, either centralized or local, 

eliminates all the issues related to the management of hydraulic fluid throughout 

the whole lifecycle of the product. Usually, aircraft-grade hydraulic fluids are toxic, 

pollutant or flammable; during maintenance, the system needs to be drained before 

disassembly and purged after the intervention, and a specialized maintenance crew 

is usually needed. Additionally, hydraulic components commonly feature very 

strict tolerances and small calibrated passageways, that are easily clogged if the 

fluid is accidentally contaminated. Therefore, maintenance interventions on EMAs 

are much easier, as discussed by Cronin [102]. 

EMAs are easily scalable to very small, low power and low weight applications: 

indeed, they are extensively employed for flight controls off small UAVs, with 

some actuators weighing down to few grams. Such miniaturization is not easily 

attainable by hydraulic systems. 

The placement of sensors on the electrical machine, which are used for closed 

loop control of the motor current and speed, enables to integrate health monitoring 

functions in a smart actuator; the particular architecture of EMAs allows for a much 

more accurate and reliable fault detection than, for example, EHs.  

On the other hand, some disadvantages are also related to Electromechanical 

devices. First, their power density is much lower than that of hydraulic systems, 

although the use of rare-earth permanent magnet is somehow reducing this penalty 

for advanced EMAs. Actuators based on hydraulic power rely on the working fluid 

as a heat sink; EMAs do not have this option, and can easily overheat if they operate 

in off-nominal conditions; then, thermal control of the equipment is of critical 

importance and must be accurately designed. 

The issue of EMAs that most limits their diffusion in flight-critical aerospace 

applications is that their transmission is prone to mechanical jamming: that is, as a 

result of its most probable failure modes, the transmission gets locked in position. 

This condition may cause the loss of the associated aerodynamic surface, and 

control of the aircraft can become difficult [103]. Some configurations that allow 

redundancy of the mechanical transmission are available [104, 105, 106], but they 

all imply a significant increase in complexity and weight of the system. 

Hence, the health monitoring task is of great importance for Electromechanical 

Actuators. An accurate and robust PHM framework would allow to overcome the 

aforementioned limitations in reliability often associated to EMAs and ease the 

early integration of such technologies into new aircraft designs. However, EMAs 

constitute a challenging application for Prognostic methodologies. The operation of 

electromechanical systems depends on the interaction of several components whose 

behavior is described by heterogeneous disciplines, such as mechanics, electronics, 

control theory, fluid dynamics and heat transfer. In aerospace applications, EMAs 
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often experience operating and environmental conditions that are hardly repeatable 

and predictable: as opposed to an industrial actuator, that will likely follow the same 

motion profile for thousands or millions of cycles, in a semi-controlled 

environment, an aerospace flight control servomechanism will face a different time 

history for each mission. All these aspects contribute to the complexity of the 

physics describing the propagation rate of wear and damage, as well as their effect 

on the behavior of the system as a whole. As a result, PHM strategies for these 

systems are still an open field of research. 

3.1 High Fidelity (HF) Model 

A High Fidelity model of an EMA was developed as a simulated test bench to 

collect reference data of the actuator operation, in different working conditions, and 

under the effect of multiple fault modes. The model is a physics-based, lumped 

parameters simulation characterized by a very high level of detail. The general 

architecture of the model is shown in Figure 3.2, and reflects the subsystem and 

components hierarchy of common hardware EMAs. Specifically, the model 

includes the following subsystems: 

 The Actuator Control Electronics (ACE) model implements the control law 

employed to compare the commanded position with the feedback signals of 

measured position and speed, in order to determine the torque command to 

the motor. 

 The model of Power Electronics has two main functions: (1) evaluate the 

commutation sequence of the motor phases, as a function of the current 

angular position of the rotor, and (2) close the current/torque control loop, 

applying to the stator coils the voltage needed for the motor to produce the 

commanded torque. 

 The Electromagnetic model of the motor evaluates the magnetic coupling 

between rotor and stator, to determine dynamically the current, torque and 

back-EMF for a given input voltage, also accounting for the effect of 

possible fault precursors. 

 

Figure 3.2: Block diagram of the HF model 
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 The Dynamical model of the motor and transmission computes the position 

and velocity of the actuator, under the combined effects of motor torque and 

external loads. 

 Eventually, the Load model estimates the hinge moment by integrating a 

linearized model of the longitudinal aircraft dynamics. 

The following sections describe in detail the implementation of the subsystems 

of the EMA in the high fidelity simulation model. 

3.1.1 Controller Model 

The Controller model, whose block diagram is shown in Figure 3.3, computes 

the control law of the EMA, to compute the torque and current requested to the 

electrical machine. The control law reflects common implementations on industrial 

and aerospace hardware, with a proportional position loop and a Proportional-

Integral-Derivative (PID) velocity loop. Specifically, the controller accepts as an 

input the position or velocity setpoint, the measured motor speed, and the measured 

user position. Although more advanced control techniques are available in 

literature, such as State-space controllers, Fuzzy logic, or Neural Networks, PID are 

still the standard implementation for most industrial and aerospace applications, 

since they provide better robustness, especially when dealing with significant 

uncertainties in the behavior of the controlled plant. 

The speed-position mode switch allows to choose among a position control 

mode and speed control mode. In position control mode, the setpoint is compared 

to the user position measured by a transducer. The position error is multiplied by a 

proportional gain to determine a velocity setpoint. In speed control mode, the 

position loop is disabled and the velocity setpoint is provided externally. In both 

cases, the velocity setpoint is limited by a saturation accounting for the maximum 

speed achievable by the motor, and the resulting command speed is compared to 

the actual motor speed signal. Then, a velocity error is fed to a PID controller to 

determine the required motor torque. 

The PID includes a filter on the derivative branch and an anti-windup logic, as 

shown in Figure 3.4. The derivative filter is a low-pass, first order transfer function 

that allows to reduce the high frequency noise on the error signal, which would be 

 

Figure 3.3: Block diagram of the Controller subsystem 
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otherwise amplified by the derivative. The transfer function of the derivative branch 

is then: 

𝑦𝐷
𝑒
=

𝐺𝐷𝑠

𝜏𝐷𝑠 + 1
 (3.1) 

where 𝐺𝐷 is the derivative gain and 𝜏𝐷 is the characteristic time of the filter. The 

anti-windup logic is needed for the integrative branch, to mitigate the excess 

overshoot usually associated to the interaction of integrative control with a 

nonlinear plant characterized by a limited maximum rate of change. Several 

arrangements for anti-windup logic are available in literature; the algorithm 

implemented in this model temporarily disables the integral contribution if at least 

one of the following conditions is met: 

 The error grows larger than a tolerance band, or 

 The output of the PID reaches its saturation. 

The output of the PID controller has the dimensions of a reference torque for 

the motor. This torque signal is divided by the nominal back-EMF coefficient of 

the motor, to determine the required stator current. The current command is limited 

by a saturation accounting for the peak current that can be handled by the motor, 

and routed to the Commutation and Power Electronics subsystem.  

To simulate the effect of electromagnetic interference on the signal 

transmission lines, a band-limited white noise is added to the reference current 

signal. 

 

 

Figure 3.4: PID controller as implemented in the HF EMA model 
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3.1.2 Power Electronics Model 

The model of power electronics determines the motor phase commutation 

sequence and actuates the current control for each of the motor phases. The model 

is slightly different if considering an EMA based on BLDC or PMSM electrical 

machine. 

3.1.3 Brushless Direct Current (BLDC) motor 

A Brushless Direct Current (BLDC) motor is a permanent magnet machine 

characterized by a trapezoidal waveform of the back-EMF of each phase. Voltage 

is applied to two out of three phases at a time, with a square waveform. The rotor 

position is sensed by three Hall sensors, with a resolution of 60°/𝑃, where 𝑃 is the 

number of pole pairs. Figure 3.5 (a) shows the typical arrangements of the phases 

and Hall sensors for a 2 pole pairs configuration. Each Hall sensor outputs a 

Boolean 1 when it is over a magnetic north, and a Boolean 0 when it is over a 

magnetic south. The signals of the Hall sensors are plotted against the rotor position 

in Figure 3.5 (b); additionally, the required phase currents are shown. 

 

Figure 3.5: (a) Typical phase and Hall sensors configuration of a 2 pole pairs BLDC motor; (b) 

Readings of the Hall sensors and phase commutation sequence. 

The reference currents (i.e. the phase currents required for a given torque 

command and a given rotor position) can be expressed as a function of the current 

setpoint 𝐼𝑟𝑒𝑓 and the readings of the Hall sensors H1, H2, H3: 

{

𝐼𝑟𝑒𝑓,𝐴 = 𝐼𝑟𝑒𝑓(H2 − H1)

𝐼𝑟𝑒𝑓,𝐵 = 𝐼𝑟𝑒𝑓(H3 − H2)

𝐼𝑟𝑒𝑓,𝐶 = 𝐼𝑟𝑒𝑓(H1 − H3)

 (3.2) 

The reference currents are compared with the measured phase currents by a 

hysteresis controller, which computes the actual activation signals for the switches 

of the three-phase bridge. The output of the hysteresis controller is a vector of three 

Boolean elements, each of which commutes from 0 to 1 if: 
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𝐼𝑟𝑒𝑓,𝑗 − 𝑖𝑗 > 𝑏ℎ (3.3) 

and commutes from 1 to 0 if: 

𝐼𝑟𝑒𝑓,𝑗 − 𝑖𝑗 < −𝑏ℎ (3.4) 

where 𝑏ℎ is the amplitude of the hysteresis band, for 𝑗 = 𝐴, 𝐵, 𝐶. This signal is 

routed to the three-phase bridge, and commands the activation of the six switches. 

Specifically, when the output of the 𝑗-th hysteresis controller is high, the 

corresponding phase is connected to supply voltage; otherwise, it is connected to 

ground. A block-diagram of the Power Electronics model for the BLDC motor is 

shown in Figure 3.6. 

3.1.4 Permanent Magnet Synchronous Motor (PMSM) 

A Permanent Magnet Synchronous Motor (PMSM) is conceptually similar to a 

BLDC machine, but the polar expansions of the stator and the permanent magnets 

on the rotor are arranged to produce a sine wave back-EMF on each of the stator 

phases. The rotor position is measured either by a resolver or an absolute encoder, 

with a resolution at least in the order of 1°/𝑃. 

The behavior of a PMSM is studied by introducing three different reference 

frames to describe the electrical angle, as shown in Figure 3.7: 

 𝛼 – 𝛽 axes are fixed with respect to the stator, the 𝛼 axis being aligned with 

the axis of symmetry of the electrical phase A, and the 𝛽 axis is offset by 

90° electrical to form a right-handed frame. The angle Φ is used as a polar 

coordinate to describe the angles along the stator, starting from the  

𝛼 axis. 

 𝑑 – 𝑞 axes are a reference frame rotating with the rotor. The d axis is aligned 

with a north pole of the rotor, and the q axis is 90° electrical in advance. The 

angle 𝜉 is used as polar coordinate to describe the angles along the rotor, 

starting from the 𝑑 axis. 

 The three-phase reference frame with axes A, B, and C aligned with the 

respective stator phases. The A axis of this reference frame coincides with 

the 𝛼 axis. 

 

 

Figure 3.6: Block diagram of the Power Electronics model configured for the BLDC motor 
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Figure 3.7: Reference frames for the Clarke-Park transformations 

The angle between the 𝛼 – 𝛽 frame and the 𝑑 – 𝑞 frame is 휃𝑒. Two coordinate 

changes allow to switch between the three reference frames. Specifically, the Clarke 

transformation allows to convert the current and magnetic flux vectors expressed in 

the three-phase reference frame to the 𝛼 – 𝛽 reference frame. The Park 

transformation allows to convert the current and magnetic flux vectors expressed in 

the 𝛼 – 𝛽 reference frame to the 𝑑 – 𝑞 reference frame. 

The current vector expressed in the 𝛼 – 𝛽 reference frame has the form: 

𝒊 = 𝑖𝛼 + 𝑗𝑖𝛽 (3.5) 

where the bold denotes a vector quantity, and 𝑗 is the imaginary unit. Similarly, in 

the three-phase reference frame the same current vector is expressed as: 

𝒊 = 𝑖𝐴 + 𝑒
𝑗2𝜋
3 𝑖𝐵 + 𝑒

𝑗4𝜋
3 𝑖𝐶 (3.6) 

Since axis 𝛼 id aligned with axis A, and axes B and C are ±120° apart, the 

following two identities hold: 

𝑖𝛼 =
2

3
(𝑖𝐴 −

1

2
𝑖𝐵 −

1

2
𝑖𝐶) (3.7) 

𝑖𝛽 =
2

3

√3

2
(𝑖𝐵 − 𝑖𝐶) (3.8) 

Expressing those two equations in matrix form yields to the formulation of the 

Clark transformation: 

[
𝑖𝛼
𝑖𝛽
] =

2

3
[
 
 
 1 −

1

2
−
1

2

0
√3

2
−
√3

2 ]
 
 
 

[
𝑖𝐴
𝑖𝐵
𝑖𝐶

] = [𝐵] [
𝑖𝐴
𝑖𝐵
𝑖𝐶

] (3.9) 

where [𝐵] is the Clarke matrix. Similarly, the current vector expressed in the 𝑑 – 𝑞 

reference frame has the form: 
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𝒊 = 𝑖𝑑 + 𝑗𝑖𝑞 (3.10) 

and the transformation between this form and the 𝛼 – 𝛽 frame is: 

[
𝑖𝑑
𝑖𝑞
] = [

cos (휃) sin (휃)
−sin (휃) cos (휃)

] [
𝑖𝛼
𝑖𝛽
] = [𝐴] [

𝑖𝛼
𝑖𝛽
] (3.11) 

where [𝐴] is the Park matrix. In order to produce the maximum torque with 

minimum current, in usual operating conditions the PMSM power electronics 

command a stator current in quadrature with respect to the permanent magnet rotor. 

A direct current component may be commanded to reduce the effective 

electromagnetic coupling of the motor and the back-EMF produced at high speed, 

in order to reach rotation speed that would otherwise result in a back-EMF higher 

than the supply voltage.  

In the model, as shown in Figure 3.8, this condition is not covered by the 

commutation logic, and the current setpoint 𝐼𝑟𝑒𝑓 from the control electronics is 

routed directly to 𝑖𝑞. This is acceptable if the required performances are compatible 

with the supply voltage and nominal back-EMF coefficient of the motor. The 

current setpoints for the three phases 𝐼𝑟𝑒𝑓𝐴, 𝐼𝑟𝑒𝑓𝐵, 𝐼𝑟𝑒𝑓𝐶 are evaluated through 

inverse Park and inverse Clarke transformations. Then, a hysteresis controller 

(implemented as per Section 3.1.2.1) commands the switches of the three-phase 

bridge to supply the required voltage to the stator. 

3.1.5 Electromagnetic Model of the motor 

The Electromagnetic model of the motor computes the torque and back-EMF 

produced by the electrical machine. The electromagnetic coupling between rotor 

and the stator phases is accounted for by three back-EMF coefficients 𝑘𝐴, 𝑘𝐵, 𝑘𝐶. 

Those are defined as the derivative of magnetic flux concatenated with each phase, 

with respect to the rotor angle 휃𝑚. The back-EMF coefficients are computed 

considering the different distribution of magnetic field and windings for BLDC and 

PMSM machines (Figure 3.9): 

 

 
Figure 3.8: Block diagram of the Power Electronics model configured for the PMSM 
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 For the BLDC motor, a lookup table is employed to generate three 

trapezoidal waves, multiplied by the nominal back-EMF coefficient from 

the motor datasheet. 

 For the PMSM, three sine waves, 120° apart from each other, are computed 

and multiplied by the nominal back-EMF coefficient. 

The coefficients are then modified according to Section 3.1.6 to simulate the 

electrical fault modes. To evaluate the phase currents, a three-phase RL circuit is 

employed, as shown in Figure 3.10. The circuit is connected with a star arrangement 

and computed by Simscape, solving the following set of equations for each 

integration timestep: 

𝑖𝐴 + 𝑖𝐵 + 𝑖𝐶 = 0 (3.12) 

𝑉𝑗 − 𝑘𝑗𝜔 = 𝑅𝑗𝑖𝑗 + 𝐿𝑗
𝑑𝑖𝑗

𝑑𝑡
 (3.13) 

for 𝑗 = 𝐴, 𝐵, 𝐶. The resistance and inductance of each phase, 𝑅𝑗 and 𝐿𝑗 respectively, 

are the nominal values from the motor datasheet, modified to account for potential 

faults. 

The currents, alongside with the respective back-EMF coefficients, are 

employed to compute the motor torque. Assuming a linear superposition of the 

contributions of each phase, the total motor torque is given by the sum of the torques 

produced by each of the three phases: 

𝑇𝑚 = ∑ 𝑖𝑗𝑘𝑗
𝑗=𝐴,𝐵,𝐶

 (3.14) 

In addition, the torque is limited by a saturation accounting for the maximum 

magnetic flux through the stator polar expansions. 

 

 

Figure 3.9: Phase back-EMF coefficients for BLDC (a) and PMSM (b) 
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Figure 3.10: Equivalent circuit of the motor 

3.1.6 Dynamical Model of motor and transmission 

The dynamical model of motor and transmission computes the positions of 

motor and user, receiving as an input the motor torque and external load torque. 

The core of the model is a second order dynamical representation of the system, 

described by the equation: 

𝑇𝑚 − 𝑇𝑙 = 𝐽𝑚
𝑑2휃𝑚
𝑑𝑡2

+ 𝐶𝑚
𝑑휃𝑚
𝑑𝑡

 (3.15) 

where 𝐽𝑚 and 𝐶𝑚 are the inertia and damping of the motor-user assembly, expressed 

in the reference of the motor shaft. In addition, the model accounts for a number of 

non-linear phenomena affecting the behavior of the actuators, such as endstops, dry 

friction, and backlash. The viscous friction coefficient 𝐶𝑚 is dependent on speed, 

to account for the Stribeck effect and potentially other nonlinear effects. 

 

Figure 3.11: Block diagram of the motor-transmission dynamical model 
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As shown in Figure 3.11, the collision with endstops is detected by a saturated 

position integrator. When a saturation is detected, the following actions are 

performed: 

 The velocity integrator is reset to zero 

 If the total torque acting on the system (including motor torque, external 

load, and viscous and dry friction) is aligned with the endstop (i.e. pushes 

the actuator against the endstop), it is overwritten to zero. 

Dry friction is simulated with the Borello model [107]. This is a numerical 

implementation of the Coulomb friction model, intended to overcome some 

limitation of alternative formulations (i.e. the saturated hyperviscous, Quinn, and 

Karnopp friction models). Specifically, to correctly simulate dry friction, a model 

shall be able: 

 To apply a force of constant modulus (equal to the dynamic friction value) 

against the direction of motion, when the system is in motion; 

 To act as a constraint, with a reaction that can grow up to the static friction 

value, usually higher than the dynamic friction one, when the system is 

stopped. 

While the dynamic behavior is simple to implement numerically, static friction 

may cause unintended interactions with the numerical integration. Specifically, the 

integration method may skip the time instant when velocity crosses zero, failing to 

apply the static friction condition. This issue is usually addressed by adding a dead 

band near zero velocity (Quinn [108] and Karnopp models [109]), or by simulating 

static friction as a very large viscous action (hyperviscous saturated model, [110]). 

However, both these models require the introduction of non-physical parameters 

(i.e. dead band amplitude, viscous force) that need to be calibrated to work with a 

given model and a given integration method. Additionally, some models (e.g. 

hyperviscous) fail to keep the speed to zero in the static friction condition. The 

Borello model of dry friction addresses these points by adding a zero-crossing 

detection routine to the velocity integrator. When the system speed changes 

direction, the velocity integrator is reset to zero for one timestep. As a result, it is 

possible to apply correctly the static friction condition. 

Backlash is modelled with a hysteresis band on the user shaft position. 

Specifically, the behavior of the Backlash model is summarized by Equation (3.16): 

휃𝑢(𝑡) =

{
 
 

 
 
휃𝑚(𝑡)

𝑖
+ 𝐵𝐿𝐾, if 휃𝑢(𝑡 − 𝑑𝑡) −

휃𝑚(𝑡)

𝑖
> 𝐵𝐿𝐾

휃𝑚(𝑡)

𝑖
− 𝐵𝐿𝐾, if 휃𝑢(𝑡 − 𝑑𝑡) −

휃𝑚(𝑡)

𝑖
< −𝐵𝐿𝐾

휃𝑢(𝑡 − 𝑑𝑡), otherwise

 (3.16) 

that is, the user position is constrained within a band of width 2𝐵𝐿𝐾 from the motor 

position reduced to the slow shaft. If the user position at the last timestep 휃𝑢(𝑡 −

𝑑𝑡) already lies inside the backlash band, it is not updated at the current timestep 

(i.e. the user does not move). This model yields acceptable results if the main source 
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of backlash is assumed to be the connection of the user shaft position sensor: under 

this assumption, the inertia and load downstream the mechanical play are 

negligible, and do not affect the overall system response. A more detailed model 

would require a multibody simulation of the mechanical transmission, accounting 

for the multiple degrees of freedom of each individual moving part. 

3.1.7 Load Model 

The load on the actuator is simulated assuming to install it in the elevator 

control of an aircraft. In particular, the dynamical model of the F-16 fighter aircraft 

is employed, as available from Stevens [111] . For the scope of this work, only the 

longitudinal linearized dynamics is considered, expressed in the state-space form: 

{
�̇� = [𝐴]𝑥 + [𝐵]𝑢

𝑦 = [𝐶]𝑥 + [𝐷]𝑢
 (3.17) 

where 𝑥 is the state vector, 𝑦 is the output vector, 𝑢 is the control vector, [𝐴] is the 

state matrix, [𝐵] is the control matrix, [𝐶] is the output matrix and [𝐷] is the 

feedthrough matrix. Considering only longitudinal dynamics, the state vector is 𝑥 =

[Δ𝑉 Δ𝛼 Δ휃 Δ𝑞]⊤, where Δ denotes variations from the equilibrium condition, 𝑉 is 

the flight speed, 𝛼 is the angle of attack, 휃 is the pitch angle, and 𝑞 is the pitch rate, 

and the control vector is 𝑢 = [Δ𝛿𝑡 Δ𝛿𝑒]
⊤, where 𝛿𝑡 is the throttle command and 𝛿𝑒 

is the elevator deflection. For the considered application, 𝑦 is a scalar containing 

the hinge moment on the elevator, required to evaluate the load on the actuator. The 

matrices [𝐴] and [𝐵] of the state space model are derived from [111], and linearized 

for a trimmed condition at sea level at 153m/s (550km/h). The matrices [𝐶] and [𝐷] 

are evaluated combining thin airfoil theory and Prandtl lifting line model, from 

available images of the F-16 all moving tail. The numerical values of the matrices 

used for the state-space model are the following: 

𝐴 = [

−1.9311 ∙ 10−2 8.8157 −32.170 −0.57499
−2.5389 ∙ 10−4 −1.0189 0 0.90506

0 0 0 1
0 −0.82225 0 −1.0774

] 

 

𝐵 = [

1.0754 ∙ 10−4 0.17370
0 −2.1499 ∙ 10−3

0 0
3.9644 ∙ 10−6 0.17555

] 

 

𝐶 = [−5.9978 −8.9812 ∙ 103 0 −2.6102 ∙ 102] 
 

𝐷 = [0 9.4643 ∙ 103] 

(3.18) 

The computed load is multiplied by a gain to account for the geometry of the 

linkage between the actuator and control surface, and fed back to the EMA model. 

This way, the model is able to simulate an operation close to the actual load 

condition experienced in flight by an FCS actuator, in order to demonstrate the 

applicability of the proposed diagnostic and prognostic approach in real-time. 
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3.1.8 Simulation of faults 

In order to be employed as a simulated test bench for diagnostic algorithms, the 

EMA model shall be able to reproduce the behavior of the actuator accounting for 

the effect of a set of fault modes, both in their incipient stage and in system failure 

condition. Specifically, in this work the following failure modes are considered: 

 Variation of friction 

 Variation of backlash 

 Partial short circuit of a motor phase 

 Static eccentricity of the motor 

 Drift of the controller proportional gain 

For this case study, those are selected among the most common failure modes 

affecting electromechanical systems, according to the available literature [103, 112, 

113, 114]. Alternatively, when applying the proposed procedure to a newly 

designed system, the selection of failure modes to be considered may be driven by 

the Reliability, Availability, Maintainability & Safety (RAMS) documentation of 

the equipment, such as a Failure Modes Effects & Criticality Analysis.  The faults 

considered in this study are analyzed in the following sections, and their effect on 

the actuator response is discussed. 

3.1.9 Friction 

An increase of friction may result from the degradation of mechanical elements 

of the transmission of the actuator, such as spalling of the gear teeth sides or bearing 

rolling surfaces. This fault mode is easily simulated by varying the static and 

dynamic friction torque parameters within the Borello model (Section 3.1.4). The 

increase of friction from its nominal value determines a worsening of the 

positioning accuracy, and may result in a reduced margin of stability, stick-slip 

phenomena, or a limit cycle, interacting with the integrative contribution of the 

control law. 

As shown in Figure 3.12, increasing the value of dry friction from the nominal 

5% to 15% of the motor stall torque results in three distinct effects on the no-load 

response to a step command. 

 An increase delay while starting from standstill; 

 A reduction of the no-load speed, seen as a decreasing slope of the 

constant-speed phase of the actuation; 

 A decrease of positioning accuracy resulting from a larger static error. 

Figure 3.13 shows the response to a ramp command with a low slope, in 

presence of an increasing amount of dry friction. With a relatively low static friction 

(i.e. for 𝑇𝑓/𝑇𝑚,𝑚𝑎𝑥 = 0.1) the output position follows the setpoint smoothly, 

although with a small static error. Increasing the dry friction coefficient, a stick-slip 

phenomenon appears, where the system repeatedly starts, overshoots the speed 
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setpoint, and stops under the effect of friction. This behavior translates into 

vibration and noise of the transmission. 

Figure 3.14 shows the interaction between the integrative branch of the PID 

controller and an increasing amount of dry friction, resulting in a limit cycle. As the 

system overshoots the position setpoint, the integrative contribution of the PID 

winds up until the system starts up and tries to compensate the static error, but 

overshoots the setpoint in the opposite direction; the cycle repeats until the setpoint 

changes. 

 

Figure 3.12: Effect of increasing friction on the step response. 

 

 

Figure 3.13: Stick slip on ramp response caused by an increasing amount of dry friction 
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Figure 3.14: Interaction of integral controller and dry friction resulting in a limit cycle. 

3.1.10 Backlash 

Backlash is the mechanical play between components of a transmission. On an 

actuator transmission, it may interact with the control law producing limit cycles or 

reducing the system stability and accuracy. The interaction between backlash and 

controller can be avoided if the position sensor is installed upstream the mechanical 

play, but aerospace actuators commonly require a feedback on the user shaft to 

achieve an absolute position reference. For these reasons, the components of an 

electromechanical actuator are designed with a small interference, in order to give 

the transmission a preload and virtually no backlash. However, wear and 

degradation of contact surfaces of sliding and rolling elements of the transmission, 

such as gear teeth, or bearing rollers, may result in the increase of backlash affecting 

the actuator. 

In this work, the backlash fault is simulated by varying the hysteresis amplitude 

𝐵𝐿𝐾 within the dynamical model of the motor and transmission, as expressed by 

Equation (3.16). 

Figure 3.15 shows the effect of an increasing backlash amplitude on the 

response of the actuator to a sine wave position command. The user position is 

affected by a delay during the inversion of motion; conversely, when the user moves 

in a constant direction the control system is able to compensate even for quite large 

backlash amplitudes. A more visible effect is experienced by the motor current: 

when the direction is reversed, the transmission to the user disengages for a while 

due to the mechanical play. Then, the controller sees an increasing error and 

overcompensates, causing an oscillation. When the system engages back in the 

opposite direction, the position error decreases and the oscillation in current 

dampens out. 
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Figure 3.15: Response to a sine wave position command: effect of increasing backlash on user 

position (top) and motor current (bottom). 

3.1.11 Partial Short Circuit 

Short circuit of the windings is a common failure mode of most electrical 

machines. In a brushless motor, either PMSM or BLDC, each phase of the stator is 

manufactured with a number of windings of enameled copper wire. The polymeric 

coating of the wire is intended to insulate electrically the windings from each other, 

but has inherently a limited tolerance to high temperature. Occasionally, for 

example due to unexpectedly unfavorable operating conditions, the maximum 

temperature for the wire insulation may be exceeded locally, resulting in the short 

circuit of a winding with the next one. Depending on the extent and location of the 

damage, three classes of failure modes may be identified: 

 Coil-to-coil short circuit, when two coils of the same phase come in contact 

 Phase-to-phase short circuit, when the damage is located between two coils 

belonging to different phases 

 Phase-to-ground short circuit, when a phase comes in contact with the motor 

case or with the iron core of the stator. 

The latter two cases result immediately in a complete failure of the motor, since 

one or more phases are lost. The coil-to-coil short is commonly characterized by a 

more progressive evolution, since the short circuit currents involved are smaller and 

result in lower heating. Additionally, this fault mode is the most common of the 

three, since typically most of the windings are surrounded by windings belonging 

to the same phase; usually, only a small fraction of the windings is next to another 

phase or to the motor case. For these reasons, only the coil-to-coil partial short 

circuit is considered for this work. 
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Figure 3.16: Equivalent circuit of a healthy stator (a) and one affected by a partial short circuit 

of phase A (b). 

The equivalent circuit of Figure 3.16 is employed to model the effect of a partial 

short circuit fault on the operation of the motor. Defining 0 ≤ 𝑁𝐴 ≤ 1 as the 

fraction of healthy windings of phase A, since the faulty fraction of the phase is 

bypassed by the short circuit, the effective resistance of the phase will be: 

𝑅𝐴 = 𝑁𝐴𝑅𝑚 (3.19) 

where 𝑅𝑚 is the nominal phase resistance of the motor. The same method cannot 

be applied directly to the phase inductance, since the healthy and faulty fractions of 

the coil cannot be assumed to be in series and magnetically isolated. The inductance 

of a solenoid is proportional to the square of the number of turns. Then, we can 

assume that the effective inductance of the phase is proportional to 𝑁𝐴
2: 

𝐿𝐴 = 𝑁𝐴
2𝐿𝑚 (3.20) 

where 𝐿𝑚 is the nominal phase inductance of the motor. The magnetic coupling 

with the rotor is proportional to the magnetic flux crossing the windings of each 

phase. Then, the back-EMF coefficient of phase A is proportional to 𝑁𝐴: 

𝑘𝐴 = 𝑁𝐴𝑘 (3.21) 

This results both in a reduction of back-EMF seen by the damaged phase, and 

on a reduction of the torque produced by the same phase. An additional effect of 

the short circuit is a damping torque contribution produced by parasite currents 

flowing in the damaged fraction of the phase. Specifically, the short-circuited 

windings have a resistance of: 

𝑅𝐴,𝑆 = (1 − 𝑁𝐴)𝑅𝑚 (3.22) 

and is subject to a back-EMF: 

𝐸𝐴,𝑆 = (1 − 𝑁)𝑘𝜔 (3.23) 

resulting in a parasite current: 

𝑖𝐴,𝑆 =
𝐸𝐴,𝑆
𝑅𝐴,𝑆

=
𝑘𝜔

𝑅𝑚
 (3.24) 

This current produces waste heat 𝑃𝑊 in the winding and results in a braking 

torque 𝑇𝐴,𝑆 proportional to the velocity of the motor: 
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𝑃𝑊 = 𝑖𝐴,𝑆
2 𝑅𝐴,𝑆 = (1 − 𝑁𝐴)

𝑘2𝜔2

𝑅𝑚
 (3.25) 

𝑇𝐴,𝑆 = (1 − 𝑁𝐴)
𝑘2𝜔

𝑅𝑚
 (3.26) 

Then, the presence of a partial phase short circuit has two effects on the 

operation of the motor: a reduced torque produced by the damaged phase (both for 

the reduction of magnetic coupling with the stator and for the braking contribution 

resulting from parasite currents) and an increased power dissipation, resulting in 

higher operating temperatures. As a result, the no-load speed of the motor is 

reduced, and a ripple can be detected in the current signal due to the unbalance 

between the phases. Figure 3.17 shows this effect of a partial short circuit of 

increasing magnitude on the current signal. 

 

Figure 3.17: Motor current for constant speed, constant load actuation and increasing partial 

short circuit of phase A. 

3.1.12 Rotor Eccentricity 

Rotor eccentricity is the effect of a misalignment of the bearings supporting the 

shaft, or of the geometric tolerances of the shaft itself. In general, the axis of rotation 

of the rotor, the axis of symmetry of the stator, and a principal axis of inertia of the 

rotor may be slightly offset from each other. The misalignment between the axis of 

symmetry of the stator and the axis of rotation of the rotor is defined as static 

eccentricity, while that between the axis of rotation and principal axis of inertia of 

the rotor is the dynamic eccentricity. The first contribution causes a non-uniform 

distribution of the air gap width over the revolution, which is fixed with respect to 

the stator. On the other hand, dynamic eccentricity causes a distribution of the air-

gap which moves with the rotor; additionally, the mass unbalance with respect to 

the axis of rotation is a source of vibration. Dynamic eccentricity is easily detected 

with a dedicated accelerometer, measuring the vibration at the frequency of the 

motor rotation. Conversely, static eccentricity has no immediate effect on 

vibrations, but can be detected from the ripples produced on currents and voltages 

of the motor. Then, this work focuses on modelling static eccentricity only. 
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Figure 3.18: Distribution of the air gap in presence of a static rotor eccentricity 

Figure 3.18 proposes a diagram of the rotor and the stator in presence of a static 

eccentricity aligned with the x axis. With a Cartesian reference frame centered on 

the rotor, the edges of rotor and stator are described respectively by the equations: 

𝑥2 + 𝑦2 = 𝑟𝑟
2 (3.27) 

(𝑥 − 𝑥0)
2 + 𝑦2 = 𝑟𝑠

2 (3.28) 

where 𝑟𝑟 is the radius of the rotor and 𝑟𝑠 is the radius of the stator. This translates in 

polar coordinates: 

𝜌 = 𝑟𝑟 (3.29) 

𝜌2 − 2𝜌𝑥0 cos 휃 + 𝑥0
2 − 𝑟𝑠

2 = 0  (3.30) 

The local air gap for a given direction 𝑔(휃) is the distance between the rotor 

and the inner wall of the stator, that is, the difference in the radial coordinate: 

𝑔(휃) = 𝑥0 cos 휃 − √1 − (
𝑥0
𝑟𝑠
)
2

sin2 휃 − 𝑟𝑟

≅ 𝑥0 + 𝑟𝑠 [1 −
1

2
(
𝑥0
𝑟𝑠
)
2

sin2 휃] − 𝑟𝑟 ≅ 𝑥0 cos 휃 + 𝑔0 

(3.31) 

where 𝑔0 = 𝑟𝑠 − 𝑟𝑟 is the nominal air gap, i.e. the air gap when the eccentricity 𝑥0 =

0. In the previous equation, the Taylor expansion √1 + 𝑥 ≅ 1 + 𝑥/2 was 

employed, since 𝑥0 is small compared to 𝑟𝑠. Additionally, the term in 𝑥0
2/𝑟𝑠 is 

negligible with respect to 𝑥0. Introducing the non-dimensional eccentricity 

parameter 휁, the air gap can be expressed in the form: 

𝑔(휃) = 𝑔0(1 + 휁 cos 휃) (3.32) 
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The effect of rotor eccentricity on the distribution of magnetic flux density is 

evaluated with the approach proposed by [115, 116]. The air gap seen by a magnetic 

pole of the rotor is assumed to be constant and equal to the actual air gap found on 

the axis of symmetry of the pole. This avoids to run a computationally expensive 

electromagnetic FEM to determine the instantaneous back-EMF coefficients of the 

motor phases. By solving the magnetic circuit composed by the stator, rotor and air 

gap, it is possible to compute the magnetic flux 𝜓𝑖(휃𝑚) experienced by the 𝑖-th 

phase of the stator; the derivative of this quantity with respect to the rotor angle 

𝑑Ψ𝑖(휃𝑚)/𝑑휃𝑚 is equivalent to the back-EMF coefficient for that phase. As a result, 

the back-EMF coefficients are corrected as follows: 

𝑘1 = 𝑘1,0(1 + 휁 cos(휃𝑚 + 𝜙)) (3.33) 

𝑘2 = 𝑘2,0(1 + 휁 cos(휃𝑚 + 𝜙 + 2𝜋/3)) (3.34) 

𝑘3 = 𝑘3,0(1 + 휁 cos(휃𝑚 + 𝜙 − 2𝜋/3)) (3.35) 

Figure 3.19 and Figure 3.20 show the effect of static rotor eccentricity on the 

response of the system. Specifically, Figure 3.19 is referred to an eccentricity of 

varying amplitude and fixed phase, aligned with the stator phase A. Figure 3.20 

shows the effect of an eccentricity of constant amplitude (equal to half of the 

nominal air gap) and a varying phase. In both cases, the simulations were performed 

assuming a constant speed, constant load actuation. The presence of rotor 

eccentricity produces a noticeable ripple in current, which can be leveraged for fault 

detection. 

The model employed to predict the effect of rotor eccentricity on the behavior 

of the electrical machine is quite simplified, and does not account for local 

variations of the magnetic flux. A more detailed simulation would require a 

complete 3D electromagnetic Finite Element (FE) analysis; however, the 

prognostic methodology proposed in this work is not constrained to use a particular 

formulation, and can be employed as well by switching the eccentricity model to a 

more accurate one. 

 

Figure 3.19: Motor current for steady state operation, in presence of static eccentricity of 

increasing magnitude 
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Figure 3.20: Motor current for steady state operation, in presence of static eccentricity of 

constant amplitude and varying phase. 

3.1.13 Proportional Gain Drift 

A drift of the position loop proportional gain is considered in this study as an 

additional fault mode. Although this may be the effect of the variation of electrical 

characteristics in an analogue controller, it does not usually appear in modern digital 

electronics. However, even if this behaviour is not completely representative of a 

physical fault mode of a modern actuator, it is implemented in this work in order to 

validate the proposed strategy with a larger number of possible system failures. 

Figure 3.21 shows the effect of a variation of the position loop proportional 

gain on the step response of the actuator. The green curve corresponds to the 

nominal gain 𝐺𝑃0. The blue curve result from a progressive reduction of the gain 

down to 50% of the nominal value: the response becomes slower and more damped, 

as the rise time and the static error increase. The red and yellow curves are caused 

by an increase of the nominal gain up to 150%; in this case, the stability of the 

system is reduced and the overshoot increases. 

 

Figure 3.21: Effect of a variation of the position loop proportional gain on the step response 

of the actuator. 
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3.2 First Low Fidelity (LF1) Model 

The High Fidelity model described in Section 3.1 allows to simulate the 

behavior of an electromechanical actuator accounting for the physical interactions 

of its subsystems and components. The result is a detailed emulation of the 

operation of the equipment, although obtained through a lumped parameter model. 

Therefore, the HF model can be employed as a simulated test bench to assess the 

performance of diagnostic and prognostic strategies, or to collect ground truth data 

for training machine learning algorithms within the aforesaid prognostic strategies. 

However, the computational burden required by the HF model is significant: on a 

common laptop PC, the computational time of the HF model lies almost two orders 

of magnitude above the simulated time interval. Thanks to the lumped parameter 

formulation, this is much faster than simulations employed in other fields of 

engineering requiring the solution of Partial Derivative Equations (PDEs), such as 

Finite Elements Methods (FEM) or Computational Fluid Dynamics (CFD). 

However, the computational effort is still high and not suitable for real-time or 

nearly real-time evaluation, which is usually required for onboard monitoring 

algorithms. 

These reasons motivate the development of lower fidelity simulations of the 

system, able to run in a fraction of the computational time required by the HF 

model, while retaining an acceptable level of accuracy in simulating both nominal 

and faulty operation of the servoactuator. In the proposed methodology, the LF1 

model is employed to collect the matrix of informative behavior maps for the 

training dataset. The model LF2 (Section 3.3) is used to compute the dynamical 

response of the actuator within the assessment of the system health condition, 

during the evaluation of the Remaining Useful Life (as described in Section 2.4). 

A first simplified model is implemented by replacing the three-phase models 

of the inverter and motor (Sections 3.1.2 and 3.1.3) with an equivalent single-phase 

formulation. 

 

 

Figure 3.22: Layout of the LF1 model 
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Figure 3.23: Block diagram of the controller subsystem. 

The layout of the LF1 model is shown in Figure 3.22, and includes the 

following subsystems: 

 The controller compares the position setpoint with the measured position 

and velocity, and computes a torque/current setpoint 𝐼𝑟𝑒𝑓 

 The electromagnetic model accepts as an input the current setpoint and rotor 

position to evaluate the torque generated by the motor, accounting for the 

bounds resulting from the limited supply voltage, magnetic flux saturation, 

and the possible presence of short circuit or eccentricity faults. 

 The mechanical model of the motor and transmission computes position and 

velocity of the rotating assembly, accounting for the non-linearities 

resulting from dry friction, backlash and mechanical end-stops. 

These subsystems are described in detail in the following sections. 

3.2.1 Controller model 

The controller model shares a similar architecture to its HF counterpart, as 

shown in Figure 3.23. The position setpoint is compared to the measured position, 

and the error, through a proportional gain, results in a velocity setpoint. Then, PID 

controller evaluates the current setpoint 𝐼𝑟𝑒𝑓 for the electromagnetic model 

subsystem. 

 

With respect to the HF model, the PID controller has the simplified transfer 

function: 

𝐼𝑟𝑒𝑓 = 𝐺𝑃𝑒𝑣 +
𝐺𝐼𝑒𝑣
𝑠

+ 𝐺𝐷𝑒𝑣𝑠 (3.36) 

and does not integrate any anti-windup or derivative filtering strategies. The 

dynamic behavior of the controller will therefore be slightly different from the HF 

model, but the discrepancy will only emerge in a relatively small fraction of the 

whole operating envelope of the actuator. Then, the simplified model can be used 

as a surrogate of the HF model for monitoring purpose or for collecting the training 

dataset for FDI, assuming to exclude from the diagnostic analysis the operating 

condition that lie outside the applicability region of the LF1 model. Additionally, 
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the additive noise on the current setpoint, implemented in the HF model, is 

neglected in the LF1 one. 

3.2.2 Equivalent single-phase EM model 

The first LF model employs a single-phase formulation with an overall 

behavior equivalent to the three-phase HF model of the power electronics and 

motor. The electromagnetic model is represented schematically by the block 

diagram of Figure 3.24. 

The current setpoint 𝐼𝑟𝑒𝑓 is compared to the actual current flowing in the motor, 

and a simplified on-off control applies ground or supply voltage to the motor. The 

stator is modeled as a RL circuit, with governing equation: 

𝑉𝑚 − 𝑘𝜔 = 𝑅𝑖𝑚 + 𝐿
𝑑𝑖𝑚
𝑑𝑡

 (3.37) 

where 𝑉𝑚 = ±𝑉𝑠 is the voltage applied to the stator, 𝑉𝑠 is the supply voltage, 𝑘 is 

the back-EMF coefficient, 𝜔 is the angular rate of the rotor, 𝑅 and 𝐿 are the 

equivalent single-phase resistance and inductance of the stator respectively, and 𝑖𝑚 

is the motor current. The simple control law for the current loop is expressed by: 

𝑉𝑚 = {

𝑉𝑠, 𝑖𝑚 < 𝐼𝑟𝑒𝑓
0, 𝑖𝑚 = 𝐼𝑟𝑒𝑓

−𝑉𝑠, 𝑖𝑚 > 𝐼𝑟𝑒𝑓

 (3.38) 

In order to obtain from the LF1 model a behavior comparable to the HF model, 

the parameters 𝑘, 𝑅 and 𝐿 are set as follows: 

{

𝑅 = 2𝑅𝑠
𝐿 = 2𝐿𝑠
𝑘 = 𝑘𝑣

 (3.39) 

This way, the supply-to-ground resistance of the motor is preserved, as well as 

the maximum stator current and RL characteristic time 𝜏𝐹 = 𝐿/𝑅. Additionally, the 

LF1 model shares the same current-torque characteristic of the HF model, by using 

the same nominal back-EMF coefficient. 

 

 

Figure 3.24: Block diagram of the LF1 Electromagnetic model 
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The motor torque 𝑇𝑚 is computed starting from the stator current, and limited 

by the saturation of magnetic flux, which is expressed by a maximum torque value 

𝑇𝑚,𝑚𝑎𝑥: 

𝑇𝑚 = {

−𝑇𝑚,𝑚𝑎𝑥, 𝑇𝑚 < −𝑇𝑚,𝑚𝑎𝑥
𝑘𝑖𝑚, −𝑇𝑚,𝑚𝑎𝑥 ≤ 𝑇𝑚 ≤ 𝑇𝑚,𝑚𝑎𝑥

𝑇𝑚,𝑚𝑎𝑥, 𝑇𝑚 > 𝑇𝑚,𝑚𝑎𝑥

 (3.40) 

The equivalent single-phase electromagnetic model significantly reduces the 

computational time of the simulation. In the HF model, the solution of the three-

phase circuit requires an iterative procedure to be run at each time step, since the 

Y-connected phases may suffer from an imbalance due to the presence of faults and 

Y-Δ conversions cannot be employed. Conversely the LF model allows for a direct 

solution of each time step. 

On the other hand, the single-phase formulation complicates the 

implementation of electrical faults affecting the separate phases of the full model 

in a different way, such as partial short circuit or eccentricity. Additionally, a 

suitable strategy to obtain comparable signals for the motor currents and voltages 

from the two models is necessary. These two issues are addressed in the following 

sections. 

3.2.3 Equivalent current of the HF model 

In order to compare the three-phase currents and voltages of the HF model to 

the single-phase formulation of the LF model, a conversion strategy is required. In 

this work, this problem is addressed by defining an equivalent single-phase current 

signal 𝐼3𝑒𝑞 as a combination of signals from the HF model. The definition of 𝐼3𝑒𝑞 

varies between the BLDC and PMSM models. 

In the BLDC model, an equivalent current is defined as the current flowing 

through each of the two phases that are active at any time. Since the currents are 

equal in modulus and have opposite signs, only their modulus is retained. This 

signal is computed within the HF model by evaluating the following expression at 

each timestep: 

𝐼3𝑒𝑞 =
1

2
(|𝑖𝐴| + |𝑖𝐵| + |𝑖𝐶|) (3.41) 

Note that the 1/2 coefficient is needed since only two phases out of three have 

non zero current at any time. This current signal has the same behavior of, and can 

be compared to, the modulus of the single-phase current computed by the LF model. 

In the PMSM model, the 𝐼3𝑒𝑞 signal is equivalent to the quadrature component 

reconstructed from the measured stator currents. To recover the quadrature current 

component from the measured three-phase currents, the Clarke-Park 

transformations are employed: 

[
𝑖𝑑
𝑖𝑞
] = [𝐴] [

𝑖𝛼
𝑖𝛽
] = [𝐴][𝐵] [

𝑖𝐴
𝑖𝐵
𝑖𝐶

] (3.42) 

where: 
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[𝐴] = [
cos (휃) sin (휃)
−sin (휃) cos (휃)

] (3.43) 

is the Park matrix, and: 

[𝐵] =
2

3
[
 
 
 1 −

1

2
−
1

2

0
√3

2
−
√3

2 ]
 
 
 

 (3.44) 

is the Clarke matrix. Note that, in the HF model, the reconstructed quadrature and 

direct currents do not necessarily coincide with the commanded current components 

described in Section 3.1.2.2, due to the dynamics of the hysteresis controllers and 

RL circuits. The quadrature current computed above is proportional to the motor 

torque, and can be compared to the single-phase current of the LF model. 

The hysteresis control of the current loops produces a significant ripple that is 

not easily reproducible (with the same amplitude, frequency and phase) by an LF 

model. Since this may lower the accuracy of the comparison between the HF and 

LF models within a monitoring algorithm, the current signal is low-pass filtered. 

Specifically, a third order filter was chosen, with transfer function: 

𝑦

𝑥
=

1

(𝜏𝐹𝑠 + 1)3
 (3.45) 

This filter allowed to reduce significantly the amount of noise on the current 

signals, while retaining the information related to the operating condition of the 

motor and the possible presence of fault modes. As a side effect, the filter introduces 

a delay that may cause a discrepancy between the LF and HF models. To 

compensate for this delay, the same filtering is applied to the LF model, in order to 

keep the two signals synchronized. 

3.2.4 Shape functions for simulation of faults 

The equivalent single-phase model of the motor requires modeling the effect of 

some of the failure modes in a non-physical manner. Specifically, partial phase 

short circuit and static rotor eccentricity, as described in Sections 3.1.6, affect each 

phase in a different way.  

A first cut approach for modelling this behavior consists in averaging the effect 

over the three phases: this way, the resistance, inductance and back-EMF 

coefficient of each phase are modified statically, as the mean value of the three 

phases: 

 In presence of partial short circuit, the equivalent single-phase resistance is 

𝑅 = 2/3(𝑅𝐴 + 𝑅𝐵 + 𝑅𝐶), and the equivalent single-phase inductance is 

𝐿 = 2/3(𝐿𝐴 + 𝐿𝐵 + 𝐿𝐶); the back-EMF coefficient of the LF model is 𝑘 =

(𝑘𝐴 + 𝑘𝐵 + 𝑘𝐶)/3. 

 Static eccentricity cannot be simulated with this approach since, the 

resistance and inductance are not modified; the back-EMF coefficient could 
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be averaged over one revolution and for the three phases, but the sinusoidal 

distribution of the air gap only results in a ripple with null average. 

This approach proved to be highly inefficient and not suitable to produce an 

acceptable surrogate of the HF model. Figure 3.25 compares the motor current of 

the HF and LF models, in nominal condition and under the effect of partial short 

and eccentricity faults; the previously mentioned, revolution-averaged approach for 

fault simulation is employed for the LF model. Clearly, this approach is not 

acceptable: the characteristic ripple produced by faults is not modelled. The partial 

short circuit results only in a net increase of current, while eccentricity cannot be 

modelled at all. 

A more accurate model of the electrical faults is implemented leveraging a 

modulation of the motor parameters as a function of the rotor angular position; this 

solution was initially implemented in [117] for BLDC motors, and extended to 

PMSM in [118]. Specifically, the motor resistance, inductance and back-EMF 

coefficient are modulated over the rotor revolution by shape functions sensitive to 

faults, intended to mimic the response of the HF model. 

The shape function for the partial phase short circuit fault is determined 

considering the active phases for a given rotor position. For the BLDC motor, the 

commutation sequence yields the following expression for the modulating function 

𝜙𝑆𝐶: 

𝜙𝑆𝐶 =

{
 
 

 
 
𝑁𝐴 + 𝑁𝐵

2
, −

𝜋

6
+ 𝑛𝜋 < 휃𝑒 ≤

𝜋

6
+ 𝑛𝜋

𝑁𝐵 + 𝑁𝐶
2

,
𝜋

6
+ 𝑛𝜋 < 휃𝑒 ≤

𝜋

2
+ 𝑛𝜋

𝑁𝐴 + 𝑁𝐶
2

,
𝜋

2
+ 𝑛𝜋 < 휃𝑒 ≤

5

6
𝜋 + 𝑛𝜋

 (3.46) 

 

 

Figure 3.25: Comparison between the HF model LF1 model with the first cut approach for the 

simulation of electrical faults 
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Figure 3.26: Dynamical response of the HF and LF models in nominal conditions (top). 

Dynamical response of the HF and LF models, in presence of 50% short circuit on phase A (middle). 

Dynamical response of the LF and HF models, in presence of static eccentricity of 50% the nominal 

air gap width, aligned with the axis of symmetry of phase A (i.e. 𝜻 = 𝟎. 𝟓, 𝝍 = 𝟎) (bottom). 

Then, 𝜙𝑆𝐶  assume the average value of the fractions 𝑁 of healthy windings 

associated with the phases that are active for any given rotor angle 휃𝑒. 

In the case of the PMSM model, all three phases are active at any time, with a 

different fraction of the total current setpoint. Hence, the modulating function 

assumes the following form, found by trial and error and standing that 𝜙𝑆𝐶 ≤ 1 and 

𝜙𝑆𝐶 = 1 when all phases are healthy (i.e. 𝑁𝐴,𝐵,𝐶 = 1): 

𝜙𝑆𝐶 =
2

3
[𝑁𝐴 sin

2 휃𝑒 + 𝑁𝐵 sin
2 (휃𝑒 −

𝜋

3
) + 𝑁𝐶 sin

2 (휃𝑒 +
𝜋

3
)] (3.47) 

Figure 3.26 shows the behavior of this approach. In Figure 3.26 (top), the 

response of the LF model in nominal conditions is shown to be unaffected by the 

shape functions. The middle graph of Figure 3.26 shows the response of the LF and 

HF models in presence of 50% short circuit on phase A. Comparing this to Figure 

3.25 (middle), clearly the proposed approach is able to capture the effect of short 

circuit fault with high accuracy, and without increasing significantly the 

computational burden. 

As regards static eccentricity, a similar approach is adopted. For the BLDC 

motor, the expression of the modulating function is found by trial and error in the 

form of: 

𝜙𝐸 = 1 − 휁𝐿𝐹[cos(휃𝑒 + 𝜓) + 𝜎(6휃𝑒 − 𝜋) sin(휃𝑒 + 𝜓)] (3.48) 

where 𝜎(𝑥) is the sawtooth function: 

𝜎(𝑥) =
𝑥

2𝜋
− floor (

𝑥

2𝜋
) (3.49) 
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𝜓 is the angular displacement between the axis of symmetry of phase A and the 

location of the minimum air gap width, and 휁𝐿𝐹 is a function of the normalized 

eccentricity amplitude 휁. A linear regression, explained in deeper detail in Section 

3.4, allowed to determine the relationship 휁𝐿𝐹 ≈ 0.42 휁. The step discontinuities of 

𝜙𝐸 , introduced by the sawtooth function, reflect the abrupt commutations 

happening in the operation of BLDC motors. The same approach applied to the 

PMSM yields: 

𝜙𝐸 = 1 − 휁𝐿𝐹 cos(휃𝑒 + 𝜓) (3.50) 

The comparison between the HF and LF models is shown in the bottom graph 

of Figure 3.26, with the effect of static eccentricity of 50% the nominal air gap 

width, aligned with the axis of symmetry of phase A. A significant increase in 

accuracy can be noticed with respect to the simplified formulation of Figure 3.25 

(bottom). 

3.2.5 Mechanical Model 

The mechanical model is a second order dynamical model, implemented in a 

similar way as that of the HF model. The behavior of the model is described by the 

differential equation: 

𝑇𝑚 − 𝑇𝑙 = 𝐽𝑚
𝑑2휃𝑚
𝑑𝑡2

+ 𝐶𝑚
𝑑휃𝑚
𝑑𝑡

+ 𝐾𝑚휃𝑚 (3.51) 

where 𝐽𝑚, 𝐶𝑚 and 𝐾𝑚 are the inertia, viscous friction coefficient and stiffness of the 

system, respectively. The nonlinearity of Dry Friction, Backlash and endstops are 

considered as in Section 3.1.4. 

Differently from the HF model described in Section 3.1.4, the viscous 

contribution is linear (i.e. 𝐶𝑚 is a constant) and the elastic component 𝐾𝑚휃𝑚 is 

introduced to integrate the load model: Equation (3.17) expresses the external load 

as a function of the flight condition 𝒙 and the position of the control surface: 

Δ𝑀ℎ = [𝐶] [

Δ𝑉
Δ𝛼
Δ휃
Δ𝑞

] + [0 𝐷12] [
Δ𝛿𝑡
Δ휃𝑢

] (3.51) 

However, considering simulations with a short duration compared to the 

characteristic time of the aircraft modes (which is in the order of some seconds), 

the contribution of the flight condition is almost constant. Then, the load on the 

actuator can be expressed as the sum of a constant contribution depending on the 

flight condition (included in the 𝑇𝑙 term of Equation (3.51)) and an elastic 

contribution 𝐾𝑚휃𝑚 = 𝐷12휃𝑢/𝑖, where 𝑖 is the transmission ratio. 

3.3 Second Low Fidelity (LF2) Model 

The LF1 model described in Section 3.2 leverages a single-phase equivalent 

circuit for the motor (instead of the three-phase HF model) and does not require 

iterative solution of the stator circuit. Therefore, the number of operations to be 
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performed at each timestep is small, and the computational burden is greatly 

reduced with respect to the HF model. 

However, an even more simplified model is desirable for some applications. 

Specifically, the assessment function for the estimation of Remaining Useful Life 

requires an iterative execution of a dynamical simulation of the system: 

consequently, the HF and LF1 models involve computational times which are 

impractical even for offline computations. The minimum timestep of the LF1 model 

is limited by the time constant 𝜏𝑅𝐿 of the RL circuit which emulates the electrical 

behavior of the stator coils: 

𝜏𝑅𝐿 =
𝐿

𝑅
 (3.52) 

In most practical applications, the inductance of the stator is very small 

compared to the resistance, resulting in a small time constant and a fast response of 

the stator circuit. Then, the integration timestep must be very small, usually at least 

one order of magnitude smaller than the time constant, to achieve acceptable 

numerical accuracy. This translates in a rather long computational time for the 

model. 

As 𝜏𝑅𝐿 is small, a second LF model (LF2) has been developed assuming that 

the inductance of the stator is negligible. This allowed to increase the timestep and 

speed up the computation; under the right conditions, the loss of accuracy is 

acceptably small. The model was initially presented in [119] for the BLDC model; 

the extension to PMSM is trivial. 

3.3.1 Simplified model for the current loop to increase integration 

time step 

The electromagnetic subsystem of the LF1 model, shown in the block diagram 

of Figure 3.24 and described in Section 3.2.2, behaves as a current control loop 

following the current setpoint 𝐼𝑟𝑒𝑓. During normal operations, current loop 

produces a delay in the order of 𝜏𝑅𝐿. As the motor speed increases, so does the back-

EMF, until the supply voltage is no more enough to keep the commanded current 

flowing in the motor. In this saturation condition, the stator current is a function of 

the back-EMF, supply voltage and stator resistance. 

A block diagram for the electrical subsystem of the second LF model is shown 

in Figure 3.27. Neglecting the effect of stator inductance, the equivalent circuit of 

the motor is subject to the following governing equation: 

𝑉𝑚 − 𝑘𝜔 = 𝑅𝑖𝑚 (3.53) 

When the supply voltage is sufficient to overcome the back-EMF, the current 

control loop achieves a quasi-instantaneous regulation of 𝑖𝑚, so that the motor 

current is equal to the current setpoint 𝐼𝑟𝑒𝑓: 

𝑖𝑚 = 𝐼𝑟𝑒𝑓 (3.54) 

In saturation, the maximum and minimum net voltages (including the effect of 

back-EMF) that can be applied to the stator are respectively: 
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𝑉𝑚𝑎𝑥 = 𝑉𝑆 − 𝑘𝜔 (3.55) 

𝑉𝑚𝑖𝑛 = −𝑉𝑆 − 𝑘𝜔 (3.56) 

where 𝑉𝑆 is the supply voltage. Then, the stator current is bounded between: 

𝑖𝑚𝑎𝑥 =
𝑉𝑚𝑎𝑥
𝑅

 (3.57) 

and: 

𝑖𝑚𝑖𝑛 =
𝑉𝑚𝑖𝑛
𝑅

 (3.58) 

This behavior is achieved by the dynamical saturation block shown in Figure 

3.27. Note that this block is available in Simulink, and allows to define variable 

upper and lower bounds for the output. 

3.4 Assessment function 

Model LF2 is employed within the assessment function 𝜙𝑎(𝒌) [37] that permits 

to evaluate the performance of the system affected by the fault combination 𝒌 and 

determine if it still meets its requirements. The assessment function runs the LF2 

model in order to compute: 

 The no-load speed of the actuator: this is done by sending a step 

command large enough to saturate the position control loop of the 

system. 

 The stall load: to do so, the system is actuated at a low, constant speed 

(in order to limit inertial effects) while the load increases linearly with 

time. The stall load is the minimum load needed to stop the actuator. 

 The stability margins: the LF model is ran iteratively in open-loop 

mode, with sine wave commands of varying amplitude, to build its 

open-loop Bode plot. Then, the phase margin is the distance from the 

system’s phase to -180° when the gain is 0dB; the gain margin is the 

gain of the system corresponding to a phase of -180°. 

 

Figure 3.27: Electrical subsystem of the second LF model, highlighting the dynamical 

saturation block employed to replace the current control loop of the first LF model. The rest of the 

model is in common with the first LF model (Section 3.2). 
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These performance parameters are then compared to a set of requirements. If 

all the requirements are met, the assessment function associates a "healthy" label 

to the system; otherwise, a "faulty" label. The whole process requires 

approximately 50 evaluations of the LF2 model, for a computational time in the 

order of 40 seconds. 
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Chapter 4 

Estimation of actuator load 

Diagnostic and prognostic algorithms analyze the response and behavior of a 

system in order to determine its health condition and estimate its Remaining Useful 

Life (RUL). However, the behavior of any system is influenced by a multitude of 

factors other than the system health. Mainly, we can refer to those as the operating 

and environmental conditions: the formers are strictly related to the particular 

operating scenario of the equipment (for example, the command time history for an 

actuator); the latters are external factors for which a limited or null control authority 

is available (such as vibration and external temperature). 

Among those factors, the external load has a particularly significant impact on 

the performance of actuation devices. Specifically, actuator load influences the 

dynamical response of the system, especially when its magnitude gets close to the 

stall force of the actuator; this effect can be confused with a fault in the equipment, 

e.g. an increase of friction between mechanical elements of the transmission. 

Additionally, external load affects the rate at which degradation of components 

propagates: a high load causes increased internal forces, pressures, friction and 

temperatures, reducing the expected life of the system. 

For some actuation devices, external load has a repeatable time history in 

nominal conditions. For example, this is often the case for servoactuators employed 

within the industrial automation context. Those systems are usually subject to a 

periodical time history regarding both command and external loads. Therefore, the 

effect of operating conditions can be neglected when monitoring the dynamical 

behavior of the system, and discrepancies from the nominal response can be usually 

ascribed to faults of the equipment. 

On the other hand, servosystems employed in vehicles, including aircraft flight 

control actuators, are usually subject to unpredictable operating conditions. The 

command time history depends on the input from the pilot or the flight control 

computer, while the external load is determined mainly by the aerodynamic flow. 

For health monitoring purposes, the command time history can be easily logged, 

since on a fly-by-wire system it is already in the form of a digital signal; its 

knowledge can be leveraged to improve the estimate of the condition of the actuator. 

Conversely, the external load is not commonly available since it is not measured by 

a sensor. Usually, this prevents the execution of advanced heath monitoring 

algorithms in real-time. Several approaches to PHM [120, 40, 121] propose to 

measure the dynamical response of servoactuators during either pre-flight checks 

or planned maintenance interventions. In this condition, the wind speed is null and 

so is the actuator load: hence, the behavior of the system is not influenced by 
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external factors and can be employed to estimate faults. Real-time processing is 

usually reserved to properly called diagnostic algorithms, which aim to identify 

complete failures of the system in order to manage redundancies [122, 123]. 

However, as highlighted by [124, 125], the adoption of PHM strategies in real-time 

would provide significant benefits for maintenance planning and logistic 

management of the fleet, as well as allow a dynamic reconfiguration of the mission 

accounting for the residual capability of the system. 

Ideally, three alternative techniques could be employed to estimate the external 

load on flight control actuators. 

The most direct approach consists in the installation a dedicated sensor to 

measure load, namely a load cell in series with the actuator. This method provides 

a good accuracy, and requires limited signal conditioning and post processing to 

obtain a useful measurement: a Wheatstone bridge arrangement of the sensitive 

elements of the load cell, followed by an amplifier, low-pass filter and analog-to-

digital converter is usually all the hardware required for the operation of the sensor. 

A load-cell installed between the actuator and aerodynamic control surface would 

need to bear all the force exchanged between the two components, and would 

introduce a weak spot in the mechanical transmission. In case of mechanical failure 

of the load cell, the control surface would be disconnected from the actuation line, 

with obvious safety and reliability issues. As a result, direct measurement of the 

actuator load using a load cell is not commonly employed, except for airframes 

purposely instrumented for flight-testing. 

Alternatively, the aerodynamic load can be estimated from the flight condition 

and an aerodynamic model of the aircraft. The model could leverage information 

from the air data system and inertial measurement unit in order to determine the 

relative wind speed and direction to the control surfaces; then the pressure 

distribution on the controls can be integrated to estimate the hinge moment. This 

approach has the advantage of not requiring additional hardware to be installed 

onboard, except the computational resources needed for processing, if the 

estimation is to be performed in real-time. As a drawback, it is difficult to achieve 

an acceptable accuracy with this method. Complex nonlinear and unsteady effects, 

such as turbulence, cannot be accounted for if the aerodynamic model employed 

for the estimation of hinge moment is too simplified: for example, this is the case 

of lumped parameter models based on aerodynamic derivatives. The employ of 

more detailed fluid dynamic models, such as those based on CFD, rapidly leads to 

computational times not suitable for real-time evaluation, while the uncertainty may 

be still unacceptable to estimate the effect of load on the actuator dynamical 

response. 

A third possible approach suggests estimating the aerodynamic load on the 

flight control actuators starting from the deformation of the airframe. Aerodynamic 

and inertial loads result in a strain field on the structure, which can be measured 

with a set of strain gages. By placing the sensors in optimal locations [42, 50] and 

mapping the strain information to the loads, it is possible to determine the hinge 

moment on each control surface. The computation essentially implies the 

application of an inverse Finite Element Method (FEM), and the associated 
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computational burden is intermediate between the two methods described 

previously, whereas machine learning and reduced order modelling technique could 

help speeding up real-time computations. The accuracy is potentially good, and 

close to that achievable with a direct measurement, provided that the individual 

sensors are placed in strategic locations where the deformation is highly affected 

by the hinge moment and less by other load distributions. The areas near the 

mechanical connection between the actuator and airframe are usually good 

candidates for the placement of strain gages. However, this method requires the 

installation of a large number of strain sensors (at least in the order of tenths). 

Traditional resistive strain gages require individual wiring for each sensor, and 

relatively heavy equipment for signal conditioning and acquisition. Additionally, 

the length of electrical cables from the sensors to the acquisition equipment is 

potentially prone to electromagnetic disturbance and variation of resistance due to 

temperature: both these effects can alter the readings, reducing the accuracy of the 

system. These disadvantages result in this approach being employed only in flight-

testing of newly developed aircraft. Extensive use on commercial flight is usually 

not applicable for health monitoring purposes. 

Neither of the methods described above for the estimation of hinge moment is 

commonly viable for practical, large scale applications, due to the multiple issues 

related to accuracy, system complexity, cost and weight, safety and reliability. 

Although, innovative sensor technologies may allow for a viable approach to in-

flight measurement of the airframe deformation, enabling the real-time estimation 

of actuator loads for health monitoring. The following Sections propose a possible 

algorithm for the estimation of hinge moment from structural strain, and describe 

optical strain sensors that overcome the main disadvantages of traditional strain 

gages. 

4.1 Load reconstruction from deformation of the 

structure 

An example of simplified algorithm for determining the actuator load starting 

from the FBG measurement is provided as a proof of concept for the feasibility of 

the method. More advanced techniques are currently under development and will 

be published in future works. A simple aerodynamic model (Section 4.1.1) of a 

wing with two control surfaces (an aileron and a flap) is employed in combination 

with a one-dimensional structural model (Section 4.1.2) to obtain the strain 

measurements and the hinge moment acting on the aerodynamic surfaces in 

different flight conditions. Then, Section 4.1.3 shows a simple strategy to estimate 

the hinge moment starting from the strain measurements. 

4.1.1 Aerodynamic model 

The distribution of lift and pitching moment on the wing is estimated with 

Prandtl’s lifting line theory. Despite less accurate than a complete CFD model, this 
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method offers a simpler implementation and is considered suitable for the sake of 

this study. 

The wing is modelled with a distribution of chord 𝑐, angle of attack 𝛼 and airfoil 

(i.e. the lift and moment coefficients versus angle of attack) along the wingspan. 

The effect of the control surfaces deflection is modelled as a local variation of angle 

of attack. To solve the lift distribution numerically, the wing is discretized spanwise 

in wing elements, each of which is assumed to be subject to a uniform flow velocity 

and angle of attack. The lift generated by an individual element 𝐿(𝑦) can be 

expressed as a function of dynamical pressure and the local lift coefficient 

𝐶𝐿(𝑦, 𝛼(𝑦)): 

𝐿(𝑦) =
1

2
𝜌𝑉2(𝑐(𝑦) 𝑑𝑦)𝐶𝐿(𝑦, 𝛼(𝑦)) (4.1) 

where 𝜌 is the air density, 𝑉 the relative air speed and the local angle of attack: 

𝛼(𝑦) = 𝛼0 + 𝛼𝑔(𝑦) + 𝛼𝑐(𝑦) + 𝛼𝑖(𝑦) (4.2) 

is the sum of the global angle of attack 𝛼0, the contribution of the geometrical wing 

twist 𝛼𝑔, the contribution of the control surface deflection 𝛼𝑐, and the contribution 

of the induced speed 𝛼𝑖 = 𝑉𝑖/𝑉. Alternatively, 𝐿(𝑦) can be written as a function of 

the circulation Γ(𝑦) across the wing element: 

𝐿(𝑦) = 𝜌𝑉Γ(𝑦) ⇔ Γ(𝑦) =
𝐿(𝑦)

𝜌𝑉
 (4.3) 

Eventually, the distribution of circulation 𝛾 = 𝑑Γ/𝑑𝑦 allows computing the 

induced speed distribution across the wing span: 

𝑉𝑖(𝑦) = ∫
𝛾

2𝜋(𝑦 − 𝑠)
𝑑𝑠

𝑏/2

−𝑏/2

 (4.4) 

The numerical solution is obtained by initializing 𝑉𝑖(𝑦) to a first guess 

distribution, and iterating Equations (3.1) to (3.4) until convergence is reached. The 

net aerodynamic load on the control surfaces 𝐿𝑎 is assumed equal to the difference 

between the total lift distribution 𝐿(𝑦) and lift distribution computed without 

considering the contribution of the control surface. 

The structural load on the wing is modeled as the superposition of the lift 

distribution of the wing without the control surfaces, applied at the aerodynamic 

center of the airfoil, and the distribution of pitching moment: 

𝑀(𝑦) =
1

2
𝜌𝑉2(𝑐2(𝑦) 𝑑𝑦)𝐶𝑀(𝑦, 𝛼(𝑦)) (4.5) 

The lift on the aerodynamic surfaces is applied to the wing structure as 

concentrated loads 𝐿𝑎𝑐 at the spanwise positions corresponding to the location of 

hinges. Additionally, a concentrated torque 𝑀𝑎 = 𝐿𝑎𝑐𝑐𝑎/2, where 𝑐𝑎 is the chord 

of the control surface, is applied at the location of the actuator. This is equal to 

assume a uniform pressure distribution on the control surface, so that the resulting 

force is applied at half of its chord. Figure 4.1 shows the load distribution along the 

wing span for one particular flight condition taken as an example. A 10m span, 1m 
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Figure 4.1: Distribution of aerodynamic load along the wing span 

chord wing with a NACA 2412 airfoil has been considered, flying at 50m/s with 5° 

angle of attack, 5° aileron deflection, and 10° flap deflection. The total aerodynamic 

force is given by the superposition of contributions from the control surfaces and 

fixed wing. 

4.1.2 Structural model 

The deformation of the structure resulting from the aerodynamic loads 𝐿𝑦 

computed in Section 4.1.1 is evaluated with an ideal monocoque beam formulation. 

The cross section of the wing is modelled as a set of stringers and spar caps, bearing 

the normal stresses, and connected  by planar skin panels that transfer shear stresses. 

A schematic representation of the wing cross section is provided in Figure 4.2. The 

shear stress 𝑇𝑧, bending moment 𝑀𝑥, and torsion moment 𝑀𝑡 are computed with 

Euler’s beam theory: 

𝑇𝑧(𝑦) = ∫ 𝐿𝑦(𝑠)𝑑𝑠
𝑏/2

𝑦

 (4.6) 

𝑀𝑥(𝑦) = ∫ 𝑠𝐿𝑦(𝑦 − 𝑠)𝑑𝑠
𝑏/2

𝑦

 (4.7) 

𝑀𝑡(𝑦) = ∫ (𝑀 +𝑀𝑎)(𝑠)𝑑𝑠
𝑏/2

𝑦

 (4.8) 

where 𝑠 is an auxiliary integration variable and 𝐿𝑦 = 𝐿 + 𝐿𝑎𝑐 is given by the 

superposition of the distributed load of the wing and the concentrated load of the 
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control surface. No shear forces along the 𝑥 direction, neither bending moments 

along the 𝑧 direction are considered, as the effect of aerodynamic drag on the global 

deformation of the wing is deemed negligible. The resulting 𝑇𝑧, 𝑀𝑥 and 𝑀𝑡 for the 

example load case of Figure 4.1 is shown in Figure 4.3. 

Navier’s Equation for the stress distribution allows determining the normal 

stresses in the 𝑖-th stringer or spar cap: 

𝜎𝑖 =
𝑀𝑥𝐽𝑧

𝐽𝑥𝐽𝑧 + 𝐽𝑥𝑧2
𝑧𝑖 +

𝑀𝑧𝐽𝑥
𝐽𝑥𝐽𝑧 + 𝐽𝑥𝑧2

𝑥𝑖 (4.9) 

 

 

 

Figure 4.2: cross section of the wing in the ideal monocoque beam model. The blue contour is 

the NACA 2412 airfoil employed for this preliminary study; the black lines are the shear-bearing 

panels, the black circles are the stringer positions and the red cross is the center of gravity of the 

cross section. 

 

 

Figure 4.3: shear force, bending moment and torsion moment diagrams 
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where 𝐽𝑥, 𝐽𝑧 and 𝐽𝑥𝑧 are the moments of inertia of the wing cross section. Since in 

the considered case study 𝑀𝑧 ≈ 0, the partial derivative along 𝑦 of the normal stress 

𝜎𝑖 is: 

𝜕𝜎𝑖
𝜕𝑦

=
𝑇𝑧𝐽𝑧

𝐽𝑥𝐽𝑧 + 𝐽𝑥𝑧2
𝑧𝑖 (4.10) 

The shear stresses in the skin panels and spar web can be computed by solving 

the system of equations including the equilibrium to translation along 𝑦 of each 

stringer element and the equilibrium to rotation of the entire wing section. 

{
 
 

 
 𝐴𝑖

𝜕𝜎𝑖
𝜕𝑦

=∑𝜏𝑗𝑠𝑗
𝑗

∑𝜏𝑗𝑠𝑗𝐴𝑗
𝑗

+𝑀𝑡 = 0
 (4.11) 

where 𝐴𝑖 is the area of the cross-section of the 𝑖-th stringer, 𝑠𝑗 is the thickness of 

the 𝑗-th panel, and 𝐴𝑗 is the area described by the 𝑗-th panel with respect to the 

origin of the reference frame. The distribution of normal and shear stresses on the 

wing are shown in Figure 4.4 for the example load case of Figure 4.1; the circles 

highlight a possible location of strain sensors, suitable to determine the actuator 

load from the airframe deformation. 

4.1.3 Reconstruction of Hinge Moment from strain measurements  

A simplified, linearized algorithm for estimating the hinge moment from the 

strain measurements is proposed here as a proof of concept for the feasibility of 

such method to determine the external load on flight control actuators. 

The placement selected for strain sensors is shown in Figure 4.4. The driving 

criteria of this choice is to find locations where large variations of strain are 

 

Figure 4.4: Distribution of normal (top) and shear stresses (bottom). The black circles in the 

top graph represent the location of 12 FBG sensors. 
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experienced with varying aerodynamic forces on the control surfaces. Additionally, 

the structural elements where strain sensors are installed shall be easily accessible 

to allow a simple manufacturing process. For these reasons, the sensors are located 

on the stringers, with a spanwise position close to the hinges of each control surface. 

A more detailed analysis may benefit from the placement of sensors near the 

interfaces between the airframe and flight control actuators, since most of the stress 

distribution in these areas is likely caused by the actuator load. However, the 

actuator mounts are accounted for in the structural model only as concentrated 

torque loads: the limited resolution of the simulation does not allow to predict 

accurately local stress concentrations, and measurements taken in correspondence 

of the servoactuators could not be estimated. 

To find a relationship between the actuator load and strain measurements, a 

linear model is assumed with the formulation: 

A𝒙 = 𝜺 (4.12) 

C𝒙 = 𝑴ℎ (4.13) 

where 𝒙 = [𝑞 𝛼 𝜔𝑟  𝛿𝑓 𝛿𝑎]
⊤

 is the flight condition, 𝑞 is the dynamic pressure, 𝛼 is 

the aircraft angle of attack, 𝜔𝑟 is the roll rate, 𝛿𝑑 is the flap deflection, 𝛿𝑎 is the 

aileron deflection, 𝜺 is a vector containing the strain measured by each sensor, and 

𝑴ℎ = [𝑀𝑓 𝑀𝑎]
⊤

 is a vector containing the flap hinge moment 𝑀𝑓 and the aileron 

hinge moment 𝑀𝑎. To determine the matrices A and C, a training set of 100 

simulations with different flight conditions is collected. Then, the matrices are 

estimated to approximate in the least squares sense the known observations of the 

training set, with a process similar to that described in Section 2.4.2 for the fault 

propagation model. Given the simplified formulation proposed here, the matrices A 

and C could be computed analytically; however, in a real application scenario more 

detailed models would be required (e.g. a 3D Computational Fluid Dynamics (CFD) 

model for the aerodynamic loads and a Finite Elements Method (FEM) [126] for 

the structure), making an analytical approach infeasible. In addition, an effective 

hardware implementation of such in-flight load reconstruction techniques will need 

to account for the dynamical behavior of the wing structure [127]. 

The linear relationship described above allows to estimate the flight condition 

from the measurements 𝜺 by solving Equation (3.12); by substituting into Equation 

(3.13) the hinge moments can be determined. Figure 4.5 summarizes the result of 

this approach, tested on a validation set of 100 simulations (different from those of 

the training set). A random noise up to 5% of the signal amplitude has been added 

to the strain measurements of the validation set, in order to simulate the 

measurement errors due to vibrations and imperfect installation of sensors. Given 

the simple linearized formulation of the aerodynamic and structural models, the 

hinge moment estimate matches the actual one with good accuracy, usually within 

2% of the actual load; the main contribution to the error is due to the noise 

simulating the measurement uncertainty. 
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Figure 4.5: (a) comparison between actual and estimated hinge moment; (b) distribution of the 

relative error on the hinge moment estimate 

4.2 Strain sensors based on Fiber Bragg Gratings (FBGs) 

Several recently introduced technologies are available to employ optical fibers 

as sensors capable to measure various quantities. All these solutions rely on the 

correlation of an external quantity of interest (e.g. strain, temperature, humidity, 

concentration of chemicals) with some measurable characteristics of light 

transmitted through the sensing optical fiber (such as intensity, frequency and 

spectrum, phase, polarization). 

Among these, interference (or Fabry-Perot) sensors [128] allow to measure the 

average value of an external quantity of interest across the entire length of the 

sensitive fiber; a point measurement is not usually possible with this arrangement. 

Intensity sensors rely on the variation of attenuation of light through the fiber, e.g. 

caused by mechanical bending. This solution allows for high sensitivity, but lacks 

a reference signal: if the attenuation of the fiber varies with aging, or the intensity 

of the emitting laser changes, the measurement drifts causing an error. 
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On the other hand, sensors based on Fiber Bragg Gratings (FBGs) [129, 130] 

offer highly accurate measurements of the local value of a quantity. The sensors are 

small and easily multiplexed, so a high spatial resolution can be achieved with low 

invasivity on the monitored system. For these reasons, this technology is 

investigated in this work as a possible candidate for the estimation of actuator load 

in flight, from measurement of the airframe deformation. 

4.2.1 FBGs: Principle of operation 

An optical fiber is a thin, layered wire, usually made of glass or polymers and 

employed for signal transmission. Starting from the outside, the fiber is composed 

by three layers with different properties, as shown in Figure 4.6: 

 The coating is an external protective layer, usually made of polymeric 

materials although metals or ceramics can be used for specific applications, 

e.g. for resisting particularly harsh environmental conditions. The typical 

diameter of the coating is in the order of 250 microns. 

 The cladding is a first glass layer, usually with a standard diameter of 125 

microns. It is needed to direct and contain light inside the fiber. 

 The core is the innermost layer of the fiber, and is made of glass with a 

higher index of refraction than the cladding. This way, light is trapped inside 

the core by total internal reflection at the core-cladding interface. For 

common, single-mode fibers the core has a diameter of 8 microns. 

The refraction of light through a variation of refraction index is described by 

Snell’s law: 

𝑛1 sin 𝛼1 = 𝑛2 sin 𝛼2 (4.14) 

where 𝛼1 and 𝛼2 are the angles of the incident and refracted rays, as depicted in 

Figure 4.7, and 𝑛1 and 𝑛2 are the indexes of refraction of the two materials 

respectively. If 𝑛1 > 𝑛2, limit condition is found when the refracted ray should 

leave the interface at a right angle: 

 

 

Figure 4.6: Typical cross-section of a common optical fiber for communications, highlighting 

the core, cladding and coating. The dimensions are referred to a standard, silica glass, single-mode 

fiber. 
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Figure 4.7: Path of the refracted and reflected rays in correspondence of a variation of refraction 

index, according to Snell’s law. 

 

𝑛1
𝑛2
sin 𝛼1 = 1 (4.15) 

In this condition, the 𝛼1 angle assume the critical value 𝛼1,𝑐. If the incident ray 

gets to the interface at an angle shallower than 𝛼1,𝑐 (i.e. 𝛼1 > 𝛼1,𝑐), it is reflected 

rather than transmitted. Optical fibers leverage this phenomenon, employing for the 

core a material with a higher refraction index than the cladding; this way, light 

travelling through the fiber is confined inside the core. 

A Fiber Bragg Grating is a small section of the core (usually less than one 

millimeter in length) where the refraction index is modulated periodically [131, 

132], with a spatial pitch Λ𝑔. When an electromagnetic wave crosses the grating, 

part of it is reflected in correspondence of each variation of the refraction index. If 

the incoming light assumes a specific wavelength, the reflected waves are in phase 

and combine via constructive interference, while the intensity of the transmitted 

wave decreases while crossing each interface. For any other wavelength, the 

reflected waves are out of phase and cancel out via destructive interference, while 

the transmitted wave keeps its intensity mostly unaltered. 

The wavelength 𝜆𝐵 reflected by the grating is a function of its pitch Λ𝑔 and its 

effective refraction index 𝑛: 

𝜆𝐵 = 2𝑛Λ𝑔 (4.16) 

As a result, when light with a given spectrum is sent through the grating, the 

transmitted spectrum lacks the wavelength 𝜆𝐵, which is reflected back to the source 

(Figure 4.8). 
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Figure 4.8: Transmitted and reflected spectra obtained with a Fiber Bragg Grating (FBG) 

External phenomena can have an effect on the wavelength reflected by the 

FBG. Specifically, mechanical strain and temperature affect both the pitch of the 

grating (through mechanical deformation and thermal expansion respectively), and 

its refraction index. The dependency of the FBG wavelength from temperature 

variation Δ𝑇 and strain variation Δ휀 is approximately expressed by: 

Δ𝜆𝐵
𝜆𝐵

= (1 − 𝑝𝑒)Δ휀 + (𝛼𝑓 + 휁𝑓)Δ𝑇 = 𝐶𝜀Δ휀 + 𝐶𝑇Δ𝑇 (4.17) 

where 𝛼𝑓 is the thermal expansion coefficient of the fiber, 휁𝑓 is its thermo-optic 

coefficient, and: 

𝑝𝑒 = −
1

𝑛

𝜕𝑛

𝜕휀
 (4.18) 

is the photoelastic coefficient. The relationship between temperature, strain and 

wavelength can also be written in terms of a coefficient of strain 𝐶𝜀 and a coefficient 

of temperature 𝐶𝑇. As a result, the reading from an FBG sensor is a linear 

combination of the effects of strain and temperature. To obtain an accurate 

measurement of one quantity, either the other one must be controlled or its effect 

compensated in post processing. 

For example, to measure temperature, the optical fiber can be installed in a way 

that its sensitive section, including the FBG, is left free-floating and not 

mechanically loaded, as shown in the schematic representation of Figure 4.9. This 

way, the deformation Δ휀 is null, and temperature can be obtained as: 
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Δ𝑇 =
1

𝐶𝑇

Δ𝜆𝐵
𝜆𝐵

 (4.19) 

 

 

Figure 4.9: Example of FBG installation for temperature measurement. 

If the FBG temperature sensor is bonded to a different material substrate, such 

as a component which mechanical deformation is known to be null, the expression 

for temperature is modified as follows: 

Δ𝑇 =
1

𝐶𝑇
′

Δ𝜆𝐵
𝜆𝐵

 (4.20) 

where the new temperature coefficient 𝐶𝑇
′  accounts for the thermal expansion of the 

substrate 𝛼𝑚: 

𝐶𝑇
′ = 𝛼𝑚 + 휁𝑓 (4.21) 

Indeed, with this setup, we can assume the fiber stiffness to be negligible with 

respect to that of the underlying component. As a result, the expansion of the fiber 

is not free, but imposed by the thermal expansion of the substrate. 

If the FBG is employed to measure strain, the simplest setup assumes that the 

temperature is constant (i.e. Δ𝑇 = 0). This way, the expression for strain variation 

Δ휀 can be easily derived from Equation (4.17): 

Δ휀 =
1

𝐶𝜀

Δ𝜆𝐵
𝜆𝐵

 (4.22) 

However, in most practical applications, temperature cannot be assumed 

constant. A possible method to compensate the thermal component of the FBG 

wavelength variation Δ𝜆𝐵/𝜆𝐵 consists in installing a dedicated temperature sensor, 

either an additional FBG in the configuration of Figure 4.9, or a sensor based on 

other technologies, such as a thermocouple or a resistance thermometer [133]. 

Therefore, considering that temperature variation Δ𝑇 is known, and that thermal 

expansion is ruled by the substrate material rather than the fiber (so the coefficient 

𝐶𝑇
′  is to be used instead of 𝐶𝑇), Equation (4.17) yields: 

Δ휀 =
1

𝐶𝜀
[
Δ𝜆𝐵
𝜆𝐵

− 𝐶𝑇
′Δ𝑇] (4.23) 

An alternative method for thermal compensation implies to install two FBG 

sensors with different characteristics in the same measurement point, both bonded 

to the substrate, so that they are subject to the same strain and the same temperature. 

If the two sensors have different values for the strain and temperature coefficients, 

the system of equations: 
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{
 

 
Δ𝜆𝐵1
𝜆𝐵1

= 𝐶𝜀1Δ휀 + 𝐶𝑇1Δ𝑇

Δ𝜆𝐵2
𝜆𝐵2

= 𝐶𝜀2Δ휀 + 𝐶𝑇2Δ𝑇

 (4.24) 

where the subscripts 1 and 2 refers to the two FBGs, has a unique solution 

(Δ휀, Δ𝑇) allowing a combined measure of temperature and strain. Compared to the 

previous method, which required to mount one of the sensors without loading it 

while at the same time ensuring a good thermal continuity with the substrate, the 

latter strategy allows for an easier installation. On the other hand, accuracy is 

limited by the difference in thermal and temperature coefficients of available 

sensors: if the two FBGs are too similar, the system (3.24) becomes ill-conditioned 

and the solution is highly affected by uncertainty in the measurement of 

wavelength. 

During operations, the FBG sensors are connected to a transducing device, 

often referred to as the interrogator, able to measure the grating wavelength. As 

shown in Figure 4.10, the interrogator includes a narrow bandwidth, wavelength 

tunable infrared laser that produces the light required to read the sensors. Light 

generated by the laser passes through a three-way optical circulator and is sent 

through the optical fiber, to an array of FBG sensors. Light reflected back by the 

FBGs arrives to the optical circulator, and is routed to a photodetector. The 

wavelength emitted by the laser source is swept back and forth between a minimum 

and maximum value, with a given interrogation frequency. The signal from the 

photodetector is synchronized with the emitted frequency, and allows to reconstruct 

the reflection spectrum of the FBG. If a single FBG is present, the reflected 

spectrum will have a single peak centered on the grating wavelength; if multiple 

sensors are stacked on the same fiber, one peak will be detected for each FBG, 

provided that the individual gratings have different rest wavelengths. Commonly, 

if the laser power is sufficient, emitted light is split into multiple channels, each one 

with an individual photodetector, allowing to read a larger number of sensors. 

 

Figure 4.10: Block diagram of an FBG interrogator. The optical circulator is a device with 𝒏 

ports, arranged so that incoming light from the 𝒊-th port is routed to the (𝒏 + 𝟏)-th port, and 

incoming light to the last (𝒏-th) port is routed to the first port. The photodetector is a highly 

sensitivity photodiode that produces an output current proportional to the intensity of the incoming 

light. The photodetector is only sensitive to light intensity, and not to frequency, phase, or 

polarization. 
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Compared to traditional sensors for temperature and strain, FBGs offer several 

advantages, some of which are briefly listed below. 

 Minimal invasivity of installation: sensors based on Bragg Gratings are 

much smaller than equivalent technologies. The sensor itself is only 

125 𝜇𝑚 in diameter and less than a millimeter in length. Additionally, the 

sensors do not require individual wiring. Then, they can be installed where 

the poor accessibility would prevent the use of other sensing technologies 

[134]. 

 FBGs are totally insensitive to electromagnetic disturbance, since they 

operate in the infrared band: usually, their rest wavelength is in the range of 

1400 to 1500 nm. Additionally, the characteristics of glass give FBGs a 

good robustness to aggressive chemicals [135]. This allows for the 

installation in harsh environments, [136, 137] near equipment that would 

usually jam the operation of traditional electrical sensors: for example, high 

resolution temperature measurements inside electrical machines can be 

performed using FBGs for health monitoring purposes. 

 Multiple sensors can be easily stacked on a single optical fiber. Since an 

individual FBG reflects a specific wavelength and is transparent to the rest 

of the incoming spectrum, if several sensors are installed on the same fiber 

they can operate without interfering with each other, provided that their rest 

wavelengths are different and sufficiently spaced. The maximum number of 

sensors that can be stacked is determined by the wavelength range of the 

equipment used to acquire the measurements, and by the minimum spacing 

between the rest wavelength of each sensor, to avoid overlapping of the 

reflected waves through the whole measurement range. Usually, several 

tenths of sensors can be successfully employed on a single fiber, allowing 

to perform measurements characterized by high spatial resolution. 

 Heterogeneous measurements can be performed by multiple sensors 

installed on the same optical fiber. For example, some of the sensors can be 

dedicated to strain measurement, while the rest is employed for thermal 

compensation. Additionally, several other quantities can be measured if 

converted to a mechanical deformation, such as acceleration, position, 

humidity, concentration of chemicals, vibrations. 

 The low attenuation of light through the fiber allows to place the sensors in 

a remote location with respect to the single transducing equipment. Usually, 

a passive optical fiber can accurately transmit the signal with acceptable 

losses up to a distance of tenths of kilometers. 

 FBGs provide high accuracy and repeatability both in temperature and strain 

measurements, compared to alternative technologies. The limiting factors 

are usually the installation and the resolution of the transducing equipment; 

currently accuracy up to 10−6 for strain and up to 0.1°𝐶 for temperature are 

easily achieved, while performances of cutting-edge equipment are 

constantly improving, as discussed by Hirayama and Sano [138] and Jung 

et al. [139]. 

 Due to their small dimensions, FBGs have a negligible heat capacity. This 

allows to obtain an almost instantaneous response as temperature sensors, 



 

74 

 

much faster than other technologies, as highlighted by Zhang et al. [140]. 

This characteristic is particularly useful when measuring the temperature of 

a flowing fluid. 

Fiber Bragg Gratings also bring some disadvantages compared to traditional 

sensors. 

 For strain measurements, the stiffness of bonding to the substrate is critical. 

FBGs have a much smaller surface area than traditional strain gages, so 

achieving a good adhesion with the material of the substrate may be difficult 

[141]. 

 Optical fibers are usually made of glass, so they are fragile and prone to 

accidental damages during manufacturing and installation. 

 The path of the fiber carrying the sensors must be accurately planned to 

avoid sharp curves. The minimum radius of curvature to limit optical losses 

is in the order of some centimeters, while breaking of the fiber usually 

occurs for a curvature smaller than a centimeter. 

 Thermal compensation is required to obtain accurate measures since, in 

most practical application, dependency of the FBG wavelength from 

temperature cannot be neglected. 

 The technology has been introduced relatively recently, so the required 

equipment is still expensive compared to alternative sensors. Although, this 

situation may improve with time thanks to economies of scale 

The next Sections describe the experimental activity carried out to validate the 

FBG technology for measurement of quantities of interest for diagnostic and 

prognostic analyses, specifically strain and temperature distributions. Some of the 

outcomes of these activities were presented in [142] and [143]. 

4.2.2 Calibration for strain measurement 

A first experimental campaign was intended to determine the accuracy of an 

FBG-based system for measurement of strain. The next paragraphs describe the 

calibration of the sensors in presence of axial strain and bending, respectively. 

4.2.3 Axial strain tests 

A first activity consisted in calibrating FBG sensors for strain measurement, 

assessing their linearity and repeatability in combination with several alternative 

methods for securing the sensor to the measured component. 

The setup shown in Figure 4.11 was employed to apply a controlled strain on 

the sensors. A section of optical fiber, including the FBG, was installed between 

two clamping blocks secured to a stainless steel breadboard. The considered part of 

fiber is characterized by uniform cross-section and uniform elastic behavior. The 

rest length of the fiber, measured inside the clamping blocks, is 𝑙0. One of the 

clamping blocks includes a micrometric linear stage with a resolution of 10 𝜇𝑚;  
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Figure 4.11: Setup for strain calibration and comparison of installation methods. 

since the linear stage is manually operated and the positioning is achieved by 

rotating a knob against a dial, the actual repeatability may be higher than that. The 

displacement of the linear stage is defined as Δ𝑙. To exclude the effects of thermal 

expansion and thermo-optic behavior of the FBG, the experiment was conducted in 

a constant temperature environment. 

The FBGs were connected to a Smart Scan interrogator, with a range of 40 nm 

(form 1528 nm to 1568 nm), a repeatability lower than 1pm, and a maximum 

frequency of 2.5 kHz (up to 25 kHz for a range reduced to 4nm). Data were sent to 

a laptop PC through an Ethernet connection, and logged to a text file. 

The setup allowed applying a precise strain Δ휀 = Δ𝑙/𝑙0 to the FBG. The 

achievable resolution depends on the actual rest length of the fiber: a longer section 

allows obtaining smaller strain variations with the same linear displacement. As a 

baseline, an 𝑙0 of 100mm results in a strain resolution of 10−4, or 100𝜇휀.  

With the experimental setup of Figure 4.11 several methods for the installation 

of FBGs were tested and compared. 

 Mechanical clamping (with a protective rubber layer) 

 Gluing (epoxy resin) 

The main uncertainty in the measures is related to the behavior of the structure-

to-fiber joint. The rest length 𝑙0 is defined as in Figure 4.11, assuming that the 

deformation of the section of fiber laying on the clamping blocks is null. Actually, 

the structure-to-fiber joint has a finite stiffness, and is compliant to the deformation; 

so the actual rest length is slightly larger than 𝑙0 and the measured strain will be 

lower than the expected value. 

Figure 4.12 shows the results obtained for installation of FBGs via mechanical 

clamping. The clamping force is a compromise between the needs of avoiding to 

damage the fiber and preventing it to slip under load. The top graph compares the 

measured and expected strain time histories; at first, the FBG reading follows the 

imposed strain, although with an error due to the limited stiffness of the protective 
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rubber layer employed to transfer loads between the supports and optical fiber. As 

the strain increases (and so the force needed to deform the fiber), the clamping starts 

to slip; this behavior is visible starting from 100 seconds into the test. The rubber is 

permanently damaged after the slipping has occurred. The bottom graph of Figure 

4.12 summarizes the relationship between the imposed and measured strain, with a 

first linear section and a plateau at about 800 microstrains (for the considered 

experimental setup). Clearly, this method of installation is not suitable for reliable 

strain measures, as high strain induces slipping and hysteresis in the response. 

Much better results are obtained via gluing the optical fiber to the support with 

epoxy resin, as shown in Figure 4.13. Thanks to the stiffness of the glue being much 

higher than that of the rubber, the measured strain follows closely the imposed one, 

with a small relative error within 1%, up to high strain values. The good linearity 

of the response is highlighted in the bottom graph of Figure 4.13. A small viscous-

elastic subsidence of the glue is shown in the detail of Figure 4.13 (top). This effect 

must be accounted for if very precise strain measurements are needed. 

 

 

Figure 4.12: Results for mechanical clamping. (top) measured and imposed strains time history; 

(bottom) comparison between measured and imposed strains. 
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Figure 4.13: Results for gluing with epoxy resin. (top) measured and imposed strains time 

history; (bottom) comparison between measured and imposed strains. 

4.2.4 Bending tests 

Following the calibration, another experiment was carried out in order to 

compare different techniques for gluing the FBGs on structural components, with 

an arrangement closer to the final application than that employed previously.  

A sample beam element with rectangular cross-section was installed between a 

fixed clamping block and a movable loading device, as shown in Figure 4.14. The 

loading device consists in a linear stage coupled to a geared DC servomotor, and 

allows to impose a displacement at the tip of the sample beam. As the beam has a 

constant section, the approximated displacement field 𝑤(𝑥) is easily obtained with 

Euler’s beam theory: 

𝑤(𝑥) =
𝐹𝑙3

6𝐸𝐼
(3 (

𝑥

𝑙
)
2

− (
𝑥

𝑙
)
3

) (4.25) 

where 𝑙 is the length of the beam, 𝐸𝐼 its flexural rigidity, and 𝐹 is the force 

applied by the load actuator. With the experimental setup employed for the 

measurement, 𝐹 is not measured; additionally, although 𝐸𝐼 can be estimated from 

the nominal cross section of the beam and the material properties, it may be affected 

by a large uncertainty due to manufacturing tolerances. Conversely, the tip 

displacement is known, as it is generated by the load servoactuator; according to 

Equation (3.25), it can be expressed as: 
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𝑤(𝑙) =
𝐹𝑙3

6𝐸𝐼
 (4.26) 

and then, Equation (3.25) can be rewritten as: 

𝑤(𝑥) =
𝑤(𝑙)

2
(3 (

𝑥

𝑙
)
2

− (
𝑥

𝑙
)
3

) (4.27) 

The employed samples are aluminum and composite beams, with a 2mm by 

20mm rectangular cross-section and a 300mm length. The FBGs are installed on 

the surface of the beam via gluing with epoxy resin. Several techniques were tested 

for the installation, including: gluing with and without vacuum curing, and with or 

without peel-ply. The FBGs are placed to measure the axial strain on the surface of 

the sample; this can be compared with the expected value estimated by Euler’s 

theory: 

휀𝑥 = −𝑧
𝜕2𝑤

𝜕𝑥2
= −

3ℎ 𝑤(𝑙)

2𝑙2
(1 −

𝑥

𝑙
) (4.28) 

where 𝑧 = ℎ/2 is the distance from the elastic axis of the beam, equivalent to the 

half-thickness of the beam. Additionally, traditional resistive strain gages were 

installed near the FBGs to further validate the measurements. 

The first sample involved sensors installed without vacuum curing. The fiber 

was subject to a controlled pre-tensioning achieved through a micrometric linear 

actuator, and then bonded on the test sample with epoxy resin. The FBG 

measurements can be considered reliable only with positive strain (i.e. in 

extension); the pre-tensioning is necessary for the FBG to measure strain both in 

compression. Figure 4.15 shows the results for this test sample. The measurement 

of the FBG overestimates the expected surface strain computed with Equation 

(3.28): this behavior can be explained considering that, in the employed setup, the 

combined thickness of the FBG and glue layer is not negligible with respect to the 

beam thickness. The measured strain lies within the tolerance band set by the 

maximum height of the glue, and the uncertainty is related to the actual position of 

the FBG within the glue layer (see Figure 4.16). 

 

 

 

Figure 4.14: Experimental setup for the bending tests. 
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Figure 4.15: Response of the FBG sensors installed without vacuum curing. The blue line is 

the strain estimated by Equation (3.28) on the surface of the beam; the red line is the maximum 

strain possibly experienced by the sensors, accounting for the thickness of the glue layer. 

 

 

Figure 4.16: Uncertainty associated to the actual position of the FBG within the glue layer. 

This uncertainty is inherently related to the strain measurement of a thin beam 

subject to bending deformation. A similar issue can be found with resistive strain 

gages, and the error is reduced when the measurement is performed on larger 

components, with smaller strain gradients. 

In order to reduce the uncertainty associated with the glue layer height, a second 

sample was manufactured by vacuum curing the glue after the installation of the 

fiber. After pre-tensioning and gluing the FBG, a peel ply was set on the glue layer. 

Then, the sample was placed in a vacuum bag to obtain a uniform and thin glue 

layer, ensuring that the optical fiber is in contact with the surface of the sample. 

Figure 4.17 shows the results for this test; the surface strain is estimated with a 

smaller uncertainty and a better repeatability than what observed for the gluing 

without vacuum curing 
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Figure 4.17: Results for the fiber with peel ply 

A visual inspection of the sample highlighted how the peel ply removed most 

of the protective glue layer from above the optical fiber. To improve the robustness 

of the installed sensors to handling during manufacturing and assembly operations, 

a vacuum curing without peel ply was considered for a third sample; as shown in 

Figure 4.18, the performance is similar to the previous test; however, the process 

left a continuous glue layer above the optical fiber, resulting in a better protection 

from accidental damages. 

 

 

Figure 4.18: Results for the fiber without peel ply 
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4.2.5 Temperature measurement 

The experiments described in the previous Sections were carried out in a 

constant temperature environment. A subsequent analysis was aimed at verifying 

the performance of FBGs as temperature sensors, and validating methods for 

thermal compensation. 

To determine the behavior of the sensors in presence of temperature variations, 

an experimental setup was developed with the layout shown in Figure 4.19. A 

Peltier Cell provided a heat source with closed loop control, employing a PT100 

resistance thermometer as feedback. Two fibers were installed side by side, each 

equipped with a single FBG: one fiber was left free-floating, so that mechanical 

load is null; the other was tensioned between two clamping blocks, with a setup 

similar to the axial strain tests described in Section 4.2.2. In order to guarantee that 

the three sensors (the PT100 and the two FBGs) remain at the same temperature, 

they were installed in a small container filled with water, with the heating element 

on the bottom. The convective heat transfer through the water ensures that, in steady 

state condition, the whole system is approximately at a common temperature. 

Figure 4.20 shows the results of the experiment; the circles are the measured 

data points, while the continuous lines correspond to the theoretical wavelength-

temperature relationship of Equation (4.17). The measures of the floating fiber are 

reported in Figure 4.20 (a); the slope of the curve is compatible with the predicted 

curve, while a small uncertainty may be ascribed to the local temperature gradients 

between the FBG and the PT100 resistance thermometer. The results for the 

pretensioned sensor, shown in Figure 4.20 (b), are obtained by applying a fixed 

strain to the fiber with the micrometric actuator. The measurements are in close 

accordance with the predicted behavior of the FBGs. A variation of temperature by 

10°C produces a similar effect to a variation of 90 microstrains. Hence, a precise 

measurement of strain cannot neglect to employ some kind of thermal 

compensation. 

 

 

Figure 4.19: Experimental setup for temperature measurement and thermal compensation. 
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Figure 4.20: (a) Wavelength vs temperature characteristic for a free-floating FBG; (b) 

Wavelength vs temperature characteristic for a pretensioned FBG. In both cases, the circles are the 

measured data points, while the continuous lines represent the theoretical relationship of Equation 

(4.17). 

 

4.2.6 Aging of the glue and compensation of temperature and 

humidity 

In order to assess the long-term accuracy and reliability of measurements 

employing FBG sensors, an experimental campaign intended to determine the effect 

of environmental conditions and glue aging was run. 

The test setup is shown in Figure 4.21. An optical fiber sample is glued and 

pretensioned between a fixed support and a translating one, which allows to apply 

a controlled and repeatable displacement. An DHT11 resistive temperature and 

humidity probe is placed close to the FBG sensor, and a PET enclosure covers both 

the FBG and resistive probe; this way, we can assume the two sensors to be subject 

to the same environmental conditions. Two glues were tested, specifically an epoxy 

resin and a cyanoacrylate. 
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Figure 4.21: Experimental setup for characterization of glue aging 

The test had the duration of approximately one month, in order to determine 

the repeatability associated to the strain measurement with a fixed displacement. 

Figure 4.22 shows the time evolution of the wavelength reflected by the FBGs, 

alongside with the ambient temperature and humidity recorded by the DTH11 

probes during the experimental campaign. Figure 4.23 highlights a strong 

correlation between wavelength and environment temperature; the slope of the 

linear fit is compatible with the thermal expansion of the aluminum support of the 

fiber. In the considered experimental setup, as highlighted by Equation (4.20), the 

thermal dilation of the fiber itself has no effect on the FBG, since it is completely 

compensated by the displacement imposed by the supporting structure. 

 

 

Figure 4.22: (a) Measured wavelength of the FBG; (b) ambient temperature; (c) ambient 

humidity. 
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Figure 4.23: FBG wavelength vs ambient temperature 

The variation of strain caused by temperature fluctuations can be compensated 

with Equation (3.17). The compensated wavelength is plotted against ambient 

humidity in Figure 4.24. The correlation of the two variables is small and not easily 

repeatable; a variation of the fiber axial strain associated with humidity fluctuations 

could be ascribed to a hygroscopic deformation of the epoxy glue employed to bond 

the fiber on the supporting structure. However, an accurate mathematical model of 

this behavior is difficult to derive analytically, and only a fitting curve can be 

employed to compensate for any effect of humidity. 

 

Figure 4.24: Temperature-compensated FBG wavelength vs ambient humidity 
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Figure 4.25: Temperature and humidity compensated FBG wavelength highlighting the 

viscous-elastic settling experienced during the aging of the glue bonding 

 

The time-history of the temperature and humidity compensated FBG 

wavelength is shown in Figure 4.25. A decay of the measured wavelength of 1.8% 

and 2.8% of the initial pretensioning is observed for the epoxy resin and 

cyanoacrylate bonding respectively. The settling of the epoxy glue is completed 

after approximately one week, after which the measurements are stable. 

The same experimental campaign was repeated with a better time resolution of 

the measures, by automating the acquisitions, and replacing the DHT11 temperature 

and humidity sensors with SHT85 ones, characterized by a higher accuracy and 

repeatability. Indeed, Figure 4.23 and Figure 4.24 reveal a significant uncertainty 

associated with the wavelength-temperature and wavelength-humidity 

relationships. At the same time, the deviations from the steady-state measurement 

reported in Figure 4.25 appear correlated for the two samples, suggesting a common 

disturbance to the temperature measurements. 

Figure 4.26 shows the temperature and humidity trends for two additional 

sample FBGs. The time sampling was increased from once a day to once every 10 

minutes; the SHT85 sensors allowed a measurement of temperature with a 

resolution down to 0.01°C, employing a moving average filtering. 
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Figure 4.26: (a) Measured wavelength of the FBG for the second experimental campaign; (b) 

ambient temperature; (c) ambient humidity. 

 

The wavelength-temperature correlation is shown in Figure 4.27; the slope of 

the fitting curve is consistent with the previous results and with the thermal 

expansion of the aluminum FBG support. A small but visible hysteresis is observed 

for the first sample, which is subject to larger and faster temperature variations. 

Figure 4.28 illustrates the correlation to humidity for the same two samples, 

similarly to Figure 4.24. For the second sample, a dependency of the FBG reading 

from ambient humidity is observed, compatibly with the previous results. However, 

this behavior is not repeatable for the first sample, which shows a large dispersion 

of the data and no noticeable correlation, and suggests that this behavior is due to 

the hygroscopic properties of the glue employed to bond the sensor to the structure, 

rather than those of the fiber’s coating. Indeed, this effect appears highly dependent 

on the bonding, and hardly repeatable without a strict control of the process. 
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Figure 4.27: FBG wavelength vs ambient temperature for the second experimental campaign. 

 

 

Figure 4.28: Temperature-compensated FBG wavelength vs relative humidity for the second 

experimental campaign. 

  



 

88 

 

4.2.7 Flight testing 

A flight-testing campaign on a radio-controlled UAV was run to assess the 

feasibility and the impact at vehicle level of an FBG sensors network for evaluation 

of aerodynamic loads on flight control actuators [144]. The aircraft, provided by 

the ICARUS PoliTO students team and shown in Figure 4.29, featured electric 

propulsion, 20kg Maximum Take-Off Weight (MTOW), and 4m wingspan. The 

UAV was designed to participate to the 2017 edition of the Air Cargo Challenge 

organized by the University of Zagreb, and to carry an 8kg payload. It features a 

Carbon Fiber Reinforced Polymer (CFRP) composite modular structure; this allows 

to embed FBG sensor during the lamination of the airframe sections. The payload 

capability of this airborne platform is compatible with the installation of the sensors 

and acquisition systems, without the need to employ weight optimized equipment. 

The FBG-based system for measurement of the airframe strain is similar to the 

Fiber Optic Strain Sensing (FOSS) system implemented on NASA’s Odissey UAV, 

that has been employed in studies on active compensation of flutter oscillations 

[145]. The acquisition and telemetry system included a SmartScan FBG 

interrogator reading the measures of a network of sensors installed on the composite 

airframe. A Raspberry Pi board was connected to the interrogator with an Ethernet 

bus to log the data onto an SD card and send it to the ground control station. 

Additionally, the board was connected to the Inertial Measurement Unit (IMU) of 

the aircraft, in order to log the load factor experienced by the airframe. The 

interrogator requires a power supply of 1.0A at 9 to 36V; this was provided by a 

6000mAh, 3S LiPo (11.1V) battery. The Raspberry Pi was powered by a 

20000mAh USB power bank. The dedicated power supply for the system, 

independent from the aircraft propulsion, is able to provide an endurance in excess 

of 6 hours, significantly longer than the flight endurance of the aircraft. The 

oversizing has a twofold reason: on one hand, the battery is employed as a ballast 

to compensate to the aft displacement of the center of gravity caused by the 

installation of the interrogator; on the other hand, the LiPo battery employed for the 

interrogator was available as a spare of the main battery of the propulsion system. 

 

 

Figure 4.29: (a) Render of the UAV platform employed for flight testing; (b) picture of the 

aircraft. 
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For future flight tests, the USB power bank for the Raspberry Pi will be replaced 

with a DC-DC step-down converter, to use a single battery for the whole system 

and achieve a weight reduction of approximately 300g. 

The weight budget of the onboard sensor acquisition and telemetry system is 

broken down in Table 4.1. The weight of the fiber and FBG sensors is negligible, 

lying in the range from 30g to 50g per kilometer of fiber. The interrogator is the 

heaviest component of the system: the specific model employed is not optimized 

for weight reduction and features a heavy stainless steel casing. Additionally, a 

significant mass saving can be achieved by downsizing the battery, or employing a 

power supply common with the propulsion system. The whole system adds up to a 

weight of 1955g: although significant for the weight budget of a small scale UAV, 

this is by no means demanding for the installation on larger platforms. 

 

Table 4.1: Weight budget of the FBG acquisition system 

Component Weight [g] 

SmartScan FBG interrogator 1100 

Raspberry Pi 45 

Interrogator Battery 419 

USB power bank 360 

FBG sensors <1 

Wiring and connectors 30 

Total 1955 

 

The FBG sensors were installed on the tail beam and wing of the aircraft; both 

sections of the airframe underwent static loading tests to verify the correct operation 

of the system. The tail beam was tested under actual flight conditions to determine 

the quality of the system, as well as the noise caused by aerodynamic turbulence 

and mechanical vibrations. The schedule of the flight test did not allow to fly the 

instrumented wing, as its manufacturing was still in progress; we are currently 

planning a flight acquiring the strain both from the tail and wing. 

Figure 4.30 (a) and (b) show the placement of FBG sensors on the tail beam 

and wing respectively. The tail beam has 16 sensors divided in 4 channels; 11 

sensors in 2 channels were placed on the main right wing spar (8 sensors between 

the upper skin and spar cap, and 3 sensors between the lower skin and spar cap). 

We planned to install 5 additional sensors on the lower spar cap, but an issue during 

the manufactured process prevented to connect their optical line to the interrogator. 

The sensors on the wing were equally spaced with a 200mm pitch, starting from the 

aircraft centerline. As the wing construction is modular and can be disassembled 

for transport, optical connectors were installed between the individual airframe 

sections. Out of the five sections of the wing, section 3 (the inboard one) and section 

4 (the middle right one) were selected for FBG installation. Placing additional 

sensors on the lightly loaded section 5 (outboard right) would have resulted in a 

significant increase in complexity, as additional optical connectors would be 



 

90 

 

needed, while providing minimal useful data, since section 5 accounts for a small 

fraction of the total wingspan. 

The experimental setup for the static test on the tail beam is shown in Figure 

4.31. The front frame of the structure was clamped to the test stand, while a static 

load was applied at the connection interfaces with the empennages via a set of 

calibrated weights; a pure bending load or a combination of bending and torsion 

load could be applied, depending on the position of the weights with respect to the 

fuselage centerline. The measures of the FBGs were compared to the strain 

estimated by a Finite Elements (FE) analysis and to the readings of four Strain 

Gages (SGs) temporarily installed on the top skin of the airframe for further 

validation. Those were necessary to calibrate the FEM model to the actual 

 

 

Figure 4.30: (a) Placement of FBG sensors on the tail beam; (b) placement of FBG sensors on 

the wing. 
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Figure 4.31: Experimental setup for the static loading test on the tail beam 

mechanical properties of the materials, which are subject to uncertainties in the 

production process and not known accurately. The SGs were removed for the actual 

flight testing as their conditioning circuitry and acquisition equipment is too large 

and heavy to fit in the payload bay of the UAV. 

Figure 4.32 shows the results of the static test on the tail beam. Most of the 

FBG measures match the SGs and the FE estimates. The FE analysis predicts a 

smooth strain distribution in the middle of the tail beam; due to the abrupt variations 

in the geometry, boundary conditions and load distribution, the forward and aft 

sections of the structure experience a more irregular strain distribution. The FBGs 

and SGs mostly match the prediction of the FE model with a small error, the only 

exception being the strain gage at the 476mm coordinate, which has a 13% error 

with respect to the FE estimate. This anomaly is probably due to either to a local 

manufacturing defect or to an imperfect SG bonding that fails to transfer the 

deformation from the structure to the transducer properly.  
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Figure 4.32: Results of static loading test on the tail beam 

A similar test allowed to assess the operation of the sensor network installed on 

the wing. Figure 4.33 shows the experimental setup. The wing is clamped to the test 

stand by the root section, via a support simulating the wing-fuselage connection. 

The wing is installed upside down, so that the calibrated weights applied near the 

wing tip simulate a load in the same direction of lift. 

The results of the test are shown in Figure 4.34; the FBG measures are 

compared with an FE analysis, while the mechanical properties of the material are 

now known from the test on the tail beam and no SGs are installed on the structure. 

The continuous curve on Figure 4.34 represents the axial strain on the top and 

bottom spar caps estimated by the FE model; the discontinuity corresponding to the 

junction between wing sections 3 and 4 is visible. As for the tail beam static test, 

the FBG measures mostly match the FE predictions; the largest discrepancy is 

found for the transducers installed near the wing-fuselage connection. This 

inaccuracy may be caused by the FE model considering the clamping perfectly stiff, 

while the real experimental setup can experience local deformations due to the 

flexibility of the support. 
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Figure 4.33: Experimental setup for the static loading test on the wing 

 

 

Figure 4.34: Results of static loading test on the wing 

The flight test of the tail beam allowed to determine the quality of the 

measurements acquired on-field and to quantify the disturbances caused by external 

factors such as mechanical vibration and aerodynamic turbulence. Figure 4.35 and 

Figure 4.36 compare the load factor measured by the Inertial Measurement Unit 

(IMU) to the strains measured by the four FBG channels. The data are filtered with 

a 100ms moving average to smooth out the vibration caused by the propulsion 

system. A correlation between the strain measurement and load factor is visible, 

although the FBG signals are affected by a significant amount of noise and by a 

drift due to temperature variations. A first cut attempt to compensate for these 

effects is to compute an averaged measurement of the sensors installed at the same 

axial coordinate (Figure 4.37); specifically, the averaged strain 휀𝑎𝑣𝑔 is computed 

as: 
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휀𝑎𝑣𝑔 =
휀1 + 휀2
2

−
휀3 + 휀4
2

 (4.29) 

where the subscripts 1 and 2 denote the sensors installed on the top skin, and the 3 

and 4 subscripts denote those installed on the bottom skin. This way, 휀𝑎𝑣𝑔 is an 

approximation of the strain component caused by bending loads on the tail. 

The tail beam is very stiff and does not flex significantly under normal flight 

loads. As a result, the strain produced by vibrations and thermal expansion is not a 

small component of the total strain field experienced during the flight test. From 

the comparison between Figure 4.32 and Figure 4.34, the wing experiences strains 

up to one order of magnitude larger than the tail; this may allow for a more accurate 

measurement with lower relative errors. 

 

 

Figure 4.35: Load factor and angular rates measured by the Inertial Measurement Unit (IMU). 
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Figure 4.36: Strain measured by the four FBG channels 

 

 

Figure 4.37: Averaged FBG measurements and load factor 
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Chapter 5 

Validation of Physics-Based models 

A test bench was designed to provide an experimental validation to the physics-

based EMA models employed in this work and described in Section 3. The test 

bench aims to reproduce the behavior of an electromechanical actuator in different 

operating conditions, while featuring an open architecture to ease future 

modifications of the hardware and integration of additional sensors. 

The layout of the test bench is shown in Figure 5.1. It reflects that of a common 

rotary EMA, including a PMSM with its power electronics module, a planetary 

gearbox to match speed and torque of the motor to the load, and a control unit to 

provide closed-loop position and speed control.  

Off-the-shelf components, intended for industrial automation applications, 

were chosen for the electronics and PMSM. These share the same technology of 

aerospace EMAs, but are much cheaper and easier to source. The behavior for 

ground tests is assumed to be close enough to aerospace hardware for validation of 

the models. 

The planetary gearbox is a custom design, intended to simulate a possible 

configuration suitable for primary and secondary flight controls, adapted for the 

integration of sensors, and featuring an adjustable backlash for the output shaft 

position sensor. Additionally, a custom assembly for the simulation of external 

loads on the motor was designed and manufactured. 

5.1 Components of the EMA test bench 

The following sections detail the main electromechanical components 

employed to set up the EMA test bench employed to validate the simulation models. 

In particular, Section 5.1.1 describes the motor and power electronics, Section 5.1.2 

the mechanical transmission, and Section 5.1.3 the load simulation unit. 

5.1.1 Motor 

A commercial solution was employed for the motor and power electronics. 

Specifically, a PMSM and its driver supplied by Siemens and intended for 

applications in industrial automation were selected. The motor is a three-phase, star-

connected permanent magnet synchronous machine and features four pole pairs. 

The driver is powered by the 400V three-phase industrial line for the power module, 

and by a 24VDC line for the logic section. An absolute encoder integral to the motor 

provides a position feedback for the motor shaft. This information is employed to 

synchronize the phase commutation and to close the velocity control loop within 
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the control unit. An industrial PC, running a simulated PLC, closes the position loop 

and manages the generation of the position setpoint. Additionally, the system 

provides a log of several variables, including phase voltages and currents, speeds, 

and positions. A basic datasheet for the motor is provided in Table 5.1. 

 

 

Figure 5.1: (a) Block diagram of the EMA test bench; (b) picture of the employed hardware. 
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Table 5.1: Datasheet of the motor 

Quantity Unit Value 

Torque gain Nm/A 1.91 

Phase resistance ohm 2.75 

Phase inductance mH 30.5 

Number of poles -- 8 

Max current A 10.7 

Max voltage V 380 

Inertia Kgcm2 7.7 

5.1.2 Gearbox 

The test bench employs a compound planetary gearbox as a transmission 

between the motor and user shaft. The particular architecture designed for this 

application allows a high gear ratio within a limited size and with few moving parts, 

thus it is suitable for weight and size constrained aerospace actuation tasks [146]. 

Figure 5.2 (a) shows the general layout of the gearbox. The input shaft M carries 

the sun gear of the first stage reducer. The planet gears S1 engage with the sun gear 

and a fixed ring gear F. The satellite gears S2 are locked on a common shaft with 

S1, and engage with the output ring gear U. Since the transmission ratio between 

S1 and F is slightly different from that between S2 and U, the output shaft is dragged 

at a low speed as the satellites move. The first stage, including the sun gear M, 

satellites S1 and the fixed ring gear F, is mirrored on the other side of the output 

ring gear U. This way, the forces on each satellite are completely balanced, wear is 

reduced, and robustness to shock loads is improved. Additionally, the gearbox uses 

helical gears for the input stage (with opposed helix angles on the two sides), and 

herringbone gears for the output stage (including satellites S2 and output ring gear 

U): as a result, both the satellites and the output ring gear are completely supported 

by the helical teeth in the axial direction, and no planet carrier is needed. 

Figure 5.2 (b) shows the distribution of velocity on the gears, and allows to 

compute the transmission ratio. The peripheral speed of the sun gear M is: 

𝑉𝐹 = 𝜔𝐹𝑟𝐹 (5.1) 

and that of the output gear U: 

𝑉𝑈 = 𝜔𝑈𝑟𝑈 = 𝑉𝑀
𝑟𝑆1 − 𝑟𝑆2
2𝑟𝑆1

 (5.2) 

where 𝜔 denotes an angular velocity and 𝑟 denotes a radius. As a result, the 

transmission ratio is: 

𝑖 =
𝑟𝑈
𝑟𝑀
  

2𝑟𝑆1
𝑟𝑆1 − 𝑟𝑆2

 (5.3) 

The geometrical compatibility of the planetary gearing requires that: 

(𝑧𝐹 − 𝑧𝑆1)𝑚1 = (𝑧𝑈 − 𝑧𝑆2)𝑚2 (5.4) 

𝑧𝐹 = 𝑧𝑀 + 2𝑧𝑆1 (5.5) 
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where 𝑚1 and 𝑚2 are the moduli of the input and output stages respectively. Then, 

if 𝑚1 = 𝑚2 the transmission ratio can be written as: 

𝑖 =
𝑧𝑈
𝑧𝑀
  

2𝑧𝑆1
𝑧𝑆1 − 𝑧𝑆2

 (5.6) 

Otherwise, by substituting Equations (5.4) and (5.5) into the (5.3) and 

considering that 𝑟 = 𝑧𝑚: 

𝑖 =

𝑧𝐹
𝑧𝑀

+ 1

1 +
𝑧𝐹𝑧𝑆2
𝑧𝑈𝑧𝑆1

 (5.7) 

For the particular application of the test bench, the number of teeth reported in 

Table 5.2 were chosen, to achieve a gear ratio of 124. 

 

Table 5.2: Numbers of teeth employed for the gearbox 

zM 21 

zS1 21 

zF 63 

zS2 20 

zU 62 

 

The gearbox was built through Fused Deposition Modelling (FDM) additive 

manufacturing, employing a Poly-Lactic Acid polymer. This allowed to keep down 

the costs and time associated to manufacturing; the design phase was simplified as 

well accounting for the capability of additive manufacturing to deal with individual 

parts characterized by complex geometries. 

 

 

Figure 5.2: (a) Layout of the compound planetary drive. (b) Velocity distribution. 
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The use of FDM required to design each component accounting for the loose 

tolerances reachable by the process. A compromise was selected to minimize 

backlash while reducing interference between the meshing teeth. The rough surface 

finish resulting by 3D printing however resulted in a significant friction, which 

drove the sizing of the motor. At the same time, the strength of the material 

employed for manufacturing is limited, and did not allow to reach the stall load of 

the motor through the transmission. In order to measure the behavior of the motor 

under load, the braking unit described in Section 5.1.3 was developed. 

A similar gearbox can be produced via traditional machining processes, 

achieving much higher strength and tolerances. However, the associated costs 

would be significantly higher, as geometries should be adapted to allow for 

clearances for tools and some individual parts would require a redesign: as an 

example, the internal herringbone teeth of the output ring gear would be difficult to 

obtain from a single part via subtractive manufacturing. 

5.1.3 Brake unit 

The gearbox is composed by low strength polymeric materials; its maximum 

allowable torque is a small fraction of the stall torque of the motor. Indeed, the 

motor is oversized in terms of stall torque to match the required inertia and to 

overcome the static friction of the transmission. As a result, external loads on the 

actuator cannot be simulated by applying a torque directly on the output shaft of the 

gearbox, as a torque large enough to produce visible effects on the motor operation 

would likely break the transmission. To simulate aerodynamic loads acting on the 

actuator, a braking unit is connected to the motor shaft through a roller chain, in 

parallel to the planetary gearbox. 

The brake unit is shown in Figure 5.3: the chain drives a shaft parallel to the 

motor axis, on which a disc brake is mounted. The calliper is installed on a plate 

supported by two bearings on the shaft: this way, the whole assembly is free to 

rotate about the axis of the brake unit. This degree of freedom of the calliper is 

locked by a loadcell. The forces needed to keep the calliper assembly are measured 

by the cell, thus the braking torque can be determined accurately. 

The brake is controlled in closed loop to follow a torque setpoint; an AT328P 

microcontroller reads the loadcell and commands a small servomotor to actuate the 

calliper until the desired torque is applied. At the same time, the microcontroller 

logs the measured torque to a PC. 
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Figure 5.3: Brake unit of the test bench. 

5.2 Characterization of components 

Although most data regarding the motor and other commercial components 

employed for the test bench is available from the documentation, some parameters 

are not provided and require a direct measurement. Specifically, the following 

Sections discuss the measurement of the friction characteristics of the motor, 

gearbox and braking unit respectively. 

5.2.1 Friction characteristic of the motor 

A preliminary experiment was set up to measure the friction characteristic of 

the motor. The hardware employed for the test is shown in the block diagram of 

Figure 5.4. The PMSM is connected to a smaller DC gearmotor to drive it while 

unpowered. The gearmotor is supported by the input shaft of the motor: as a result, 

the stator has a single degree of freedom corresponding to the rotation around the 

rotor axis. This degree of freedom is locked by a load cell, installed offset from the 

motor axis by a lever with the arrangement shown in Figure 5.5. This way, the force 

sensed by the load cell is a proportional to the motor torque. The motor was driven 

by two L298N H-bridges, connected in parallel to deliver a sufficient current, and 

commanded by an AT328P microcontroller; the same controller provided a log of 

the load cell. 

The speed of the motor is measured by its absolute encoder and logged by the 

control unit. Only the resolver is connected to the control unit; the stator coils are 

disconnected to prevent current from flowing through the motor phases, and 

guarantee that the motor does not draw any torque working as a generator. Even 

then, some torque may be lost due to parasite current in the iron of the stator. This 

loss is likely small since the involved speed is low; additionally it is present during 
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the normal motor operation as well, and can be assimilated into the viscous friction 

losses computed by the EMA models. 

 

 

Figure 5.4: Block diagram of the experimental setup for measurement of motor friction 

characteristic. 

 

 

Figure 5.5: Arrangement of the load cell for the measurement of motor torque. The gearmotor 

is supported by the input shaft of the motor: as a result, its stator has a single degree of freedom 

corresponding to the rotation around the rotor axis. This degree of freedom is locked by a load cell, 

offset from the motor axis by a lever. This way, the force sensed by the load cell is a measure of the 

motor torque. 

 

 

 

 



 

103 

 

 

Figure 5.6: Friction torque versus speed characteristic of the motor 

 

The gearmotor-PMSM assembly is driven at constant speed, so that the inertial 

torques are null. Several data points are measured at different velocities. Figure 5.6 

shows the friction torque – speed characteristic of the motor. The blue data points 

are the measurements; the uncertainty is represented by the errorbars, set at three 

standard deviations from the average value. The points fit accurately with a square 

root curve (in red in Figure 5.6). This characteristic, slightly different from a linear 

damping, is in accordance with models for rolling friction available in literature 

[147]: in [148] a similar behavior is explained by local heating and displacement of 

the lubricant. 

 

5.2.2 Efficiency and friction of the gearbox 

A similar test allowed to measure the efficiency and preload friction of the 

gearbox. The test setup is shown in Figure 5.7, while Figure 5.8 provides a 

functional block diagram of the hardware components. 
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Figure 5.7: Arrangement of the test bench for gearbox characterization. 

 

 

Figure 5.8: Block diagram of the experimental setup for the measurement of gearbox efficiency. 

 

The gearbox was powered by the same DC gearmotor employed for the 

previous measurement. The load was provided by two elastic cables, with one end 

rolled around the output ring gear and the other clamped on the frame of the test 

bench. Three load cells were installed to measure the torque acting on the input and 

output shafts of the planetary drive. Specifically, two load cells, each with a 20kgf 

range, were placed in series with the load cords to measure the force applied to the 

ring gear; the third load cell was employed to measure the motor torque, with the 

arrangement of Section 5.2.1. Additionally, a position signal is provided by the 

output shaft encoder installed on the planetary drive. An AT328P microcontroller 

commanded the two L298N H-bridges driving the gearmotor, provided serial 

communication to a laptop PC, and acted as a data logger for the position and force 
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sensors. Table 5.3 summarizes the technical data of the hardware for this 

experimental campaign. 

Table 5.3: datasheet of the hardware for gearbox characterization 

Quantity Unit Value 

Motor voltage V 6 

Motor max current A 4 

Max torque Nm 2 

Internal transmission ratio -- 85.184 

Encoder resolution ppr 80000 

 ° 0.0045 

Full-scale of output shaft load cell N 200 

Accuracy of output shaft load cell N 0.01 

Full-scale of input shaft load cell N 10 

Accuracy of input shaft load cell N 0.001 

Transmission ratio -- 124 

External radius of ring gear mm 81 

Offset of motor load cell mm 80 

 

The motor was controlled in closed loop with a constant speed command. As 

the output ring gear turned, the tension of the elastic cord increased and so the load 

torque opposing to the motion of the planetary drive. When the peak load was 

reached, the rotation was stopped and reversed; as a result, the elastic cords acted 

as an aiding load: this allowed to completely characterize the behavior of the 

gearbox and to measure both its direct and inverse efficiencies. An additional test 

was carried out without external load, in order to determine the preload friction of 

the reduction drive. 

Figure 5.9 shows the log of the measures acquired during a single test. The 

input torque 𝑇𝑚 is computed starting from the reading of the motor load cell 𝐹𝑙𝑐1: 

𝑇𝑚 = 𝐹𝑙𝑐1𝑟𝑚 (5.8) 

where 𝑟𝑚 is the offset of the motor load cell with respect to the motor axis. 

Similarly, the load torque 𝑇𝑢 is computed from the measurements 𝐹𝑙𝑐2 and 𝐹𝑙𝑐3 of 

the two output shaft load cells: 

𝑇𝑢 = (𝐹𝑙𝑐2 + 𝐹𝑙𝑐3) 𝑟𝑢 (5.9) 

where 𝑟𝑢 is the external radius of the output ring gear. As shown in Figure 5.9, load 

torque increases nonlinearly with position: indeed, the elastic cords that provide 

load torque are characterized by a strongly nonlinear and hysteretic behavior. Input 

torque can be interpreted as the sum of a constant offset and a component 

proportional to load torque. 

The efficiency of the gearbox is defined as the ratio between output and input 

power, excluding the friction torque caused by preload, that is, torque needed to 

spin the reducer with no load; the model shown in Figure 5.10 is taken as reference. 

According to Figure 5.10 (a) The efficiency in opposing load condition is: 
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휂𝐷 =
𝜔𝑢𝑇𝑢

𝜔𝑚(𝑇𝑚 − 𝑇𝑓)
=

𝑇𝑢
𝑖(𝑇𝑚 − 𝑇𝑓)

 (5.10) 

where 𝑇𝑓 is the preload friction, defined as the average input shaft torque needed to 

spin the gearbox without any loads applied to the output shaft; only the measures 

associated to a speed opposed to the load direction are considered (i.e. those taken 

while loading the elastic cords). Similarly, the aiding load efficiency is computed 

as (Figure 5.10 (b)): 

휂𝐼 =
𝜔𝑚(𝑇𝑚 + 𝑇𝑓)

𝜔𝑢𝑇𝑢
=
𝑖(𝑇𝑚 + 𝑇𝑓)

𝑇𝑢
 (5.11) 

where the only measures considered are those associated to a speed in the same 

direction of the load (i.e. while offloading the elastic cords). 

 

 

Figure 5.9: Log of measured user position (top), user torque (middle) and motor torque (bottom) 

for characterisation of the gearbox. 
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Figure 5.10: Model for computation of transmission efficiency. (a) Opposing load condition; 

(b) aiding load condition. 

Figure 5.11 shows the motor torque as a function of the load torque. The black 

dashed line is the ideal case for unit efficiency, expressed by the equation 𝑇𝑢 = 𝑖𝑇𝑚. 

The points above this curve are associated to a positive speed, and correspond to 

the opposing load condition. The points below the unit efficiency curve are referred 

to a negative speed, i.e. to the aiding load operation. The efficiency in the two cases 

is related to the slope of the fitting line for the points of the graph. Specifically, for 

opposing load, starting from Equations (5.10) and (5.11), considering that 𝑇𝑓 is a 

constant offset and that the motor and user torques are proportional (neglecting 

preload friction): 

휂𝐷 =
1

𝑖

𝜕𝑇𝑢
𝜕𝑇𝑚

 (5.12) 

and for aiding load: 

휂𝐼 = 𝑖
𝜕𝑇𝑚
𝜕𝑇𝑢

 (5.13) 
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Figure 5.11: Motor torque vs user torque. 

The red lines of Figure 5.11 represent the prediction of the efficiency model for 

67% opposing load efficiency and 51% aiding load efficiency. The model fits 

accurately with most of the measured data points; the experimental values at the 

left end of the aiding friction curve are higher than the expected values: these 

measurements are acquired near the inversion of direction, when a non-negligible 

inertial torque is present. Similar considerations hold for the points at the rightmost 

end of the graph, obtained when the user torque is null and only the preload friction 

is observed. 

The values obtained from this characterization for 𝑇𝑓, 휂𝐷 and 휂𝐼 are 

summarized in Table 5.4. These are well in accordance with the estimate described 

in [149, 150] and will be used in the HF and LF models. 

 

Table 5.4: Measured efficiencies of the planetary gearbox. 

Quantity Unit Value Standard Deviation 

Preload friction Nm 0.045 0.002 

Opposing load efficiency -- 67% 0.024 

Aiding load efficiency -- 51% 0.132 

5.2.3 Friction characteristic of the brake unit 

The brake unit includes a roller chain driven by the motor shaft, a brake shaft 

supported by two self-aligning bearings, and a disc brake whose caliper is mounted 

on a floating plate, supported by a pair of bearings at one end and by a loadcell at 

the other end. As this assembly is a custom design, no datasheet is available 

regarding its friction characteristic and inertia. The moment of inertia is estimated 
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from the detailed CAD model of the unit, and reduced to the motor shaft according 

to the transmission ratio of each component. The friction characteristic is measured 

directly with a procedure similar to that employed for the motor (Section 5.2.1) and 

planetary drive (Section 5.2.2). As the sprocket of the roller chain is supported by 

the motor shaft, and its installation interferes with the adapter for the DC gearmotor 

and loadcell, the PMSM of the test bench is employed directly to move the 

assembly; its quadrature current 𝑖𝑞, reduced by the current drawn by the motor alone 

𝑖𝑞0, gives a measured of the required torque 𝑇: 

𝑇𝑚 =
𝑖𝑞 − 𝑖𝑞0

𝑘𝑣
 (5.14) 

where 𝑘𝑣 is the torque gain of the motor. Figure 5.12 shows the measured torque-

speed characteristic, reduced at the motor shaft, with the brake completely released. 

The blue circles are the averaged measures, while the errorbars are set three 

standard deviations away from the average values. The large uncertainty associated 

with the low speed measurements is due to the periodic fluctuations in torque 

produced by a small misalignment of the bearings supporting the brake shaft. The 

measured friction characteristic fits with a linear viscous friction, combined with a 

Stribeck effect which is evident at low speeds and can be modelled with a Gaussian 

curve. The global fitting curve 𝑇𝑓𝑏 is: 

𝑇𝑓𝑏 = 𝑇𝑓0 + 𝐶𝑏𝜔 + 𝑎1𝑒
−
𝑥2

𝑏1
2
 

(5.15) 

with 𝑇𝑓0 = 0.1843𝑁𝑚, 𝐶𝑏 = 1.0685 ∙ 10
−3𝑁𝑚𝑠/𝑟𝑎𝑑, 𝑎1 = 0.0425𝑁𝑚, and 

𝑏1 = 5.995𝑟𝑎𝑑/𝑠. 

The load torque seen by the motor can be ascribed almost completely to the 

four bearings installed on the brake shaft. However, the torque due to the two 

bearings of the caliper plate is read by the loadcell, and contributes to the total load 

signal fed to the Simulink models. Therefore, this contribution should not be 

considered in the friction characteristic of the brake assembly. As the four bearings 

 

Figure 5.12: Motor speed vs brake shaft torque, brake released. 
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are equal, the friction characteristic translated into the EMA numerical models is 

that due to the two fixed bearings, assumed to be half of the curve shown in Figure 

5.12. 

5.3 Response to a step command 

The test bench was initially compared to the high fidelity EMA numerical 

model (Section 3.1) as regards the response to step commands, both in speed control 

mode and in position control mode. This activity allowed to calibrate the model in 

order to reproduce as accurately as possible the output of the physical actuator. 

5.3.1 Speed control mode 

A step command of 300 rpm amplitude is given to the actuator in speed control 

mode. Figure 5.13 compares the speed setpoint and actual speed of the HF model 

(dashed lines) and the physical test bench (continuous lines). The commanded 

speed is the same for both systems. As shown by the red curves of Figure 5.13, the 

numerical model is able to accurately follow the dynamical response of the actuator. 

Figure 5.14 shows the commanded and actual quadrature currents for the two 

systems. A small discrepancy is present before the start of the actuation, while the 

numerical model commands a null current while the physical bench has a small 

nonzero current, probably due to the interaction with static friction. The two 

systems are in accordance for the remaining part of the actuation, with the actual 

currents following their setpoints with a delay in the order of the electric 

characteristic time of the motor (equivalent to about 11ms). 

 

 

Figure 5.13: Speed setpoint vs measured speed, step command in speed control mode 
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Figure 5.14: Quadrature current setpoint vs measured quadrature current, step command in 

speed control mode. 

 

The measured direct currents are reported in Figure 5.15. The setpoint for both 

systems is zero, and both observe direct currents that are at least two orders of 

magnitude smaller than the respective quadrature components. In this case 

however, the model is not able to predict accurately the behaviour of the physical 

system: only the overall amplitude is reproduced correctly. This result is expected, 

since, the current control loop is slightly different between the two models: while 

the test bench employs a full d-q control with a dedicated PI regulator, the HF model 

has a simpler hysteresis controller on each of the three motor phases. 

 

 

Figure 5.15: Direct current, step command in speed control mode. 
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Figure 5.16: Quadrature voltage, step command in speed control mode. 

Similar considerations hold for the quadrature voltage (Figure 5.16): the 

general shape of the waveform and the steady-state response are captured correctly, 

while the transient response has a higher deviation. Specifically, the d-q control of 

the test bench is faster to reach the steady-state value, with a slightly larger 

overshoot. 

 

5.3.2 Position control mode 

A similar test has been performed in position control mode, with a step 

command of 60° amplitude on the user shaft. Figure 5.17 shows the commanded 

position and the response of the two actuators. The position setpoint is not an ideal 

step, since this command would trigger the overcurrent protection of the physical 

actuator. The step setpoint is at first filtered by a speed and acceleration limiter, 

resulting in the blue curves of Figure 5.17. Both systems follow the command with 

a delay of approximately 60ms, and the two responses are almost indistinguishable. 

 

 

Figure 5.17: Position setpoint vs measured position, step command in position control mode. 
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Figure 5.18: Speed setpoint vs measured speed, step command in position control mode. 

A similar position error yields a similar speed setpoint for both systems, visible 

in Figure 5.18, as they share the same control logic. The triangular shape of the 

velocity curves reflects the operation of the acceleration limiter, set at 2000 rpm/s. 

Again, both systems are able to follow closely the commanded speed, with a very 

similar response. 

Figure 5.19 compares the commanded and measured current components in the 

quadrature direction. The model follows the physical system with some errors; 

specifically, the low frequency components of the response are predicted 

accurately, while the high frequency ones are attenuated. The source of this 

discrepancy has been determined to lie in the hardware employed to acquire the 

external load on the physical actuator, and feed it in input to the numerical model. 

The sampling frequency of this system is limited to 80Hz, which is not sufficient to 

capture accurately the high frequency fluctuations in load, due for example to the 

alignment imperfections of the bearings of the brake shaft. 

 

 

Figure 5.19: Quadrature current setpoint vs measured quadrature current, step command in 

position control mode. 
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Figure 5.20: Direct current, step command in position control mode. 

 

Figure 5.21: Quadrature voltage, step command in position control mode. 

The current component along the direct axis is shown in Figure 5.20, while 

Figure 5.21 reports the voltage in the quadrature direction. For these quantities, the 

same considerations exposed for the speed control mode hold true. The systems 

feature a different control logic as regard the management of the direct current 

component and a different activation of the MOSFET switches inside the inverter, 

so a discrepancy in behaviour as regards these signals is expected. 

 

5.4 Open-loop Bode plot 

As a further validation of the HF model, the open-loop Bode diagram is 

computed for the model and compared to the response obtained experimentally. 

The HF model cannot be linearized without losing significant characteristics of its 

response; at the same time, the output signal from the test bench is sampled with a 

constant frequency. Therefore, analytical expressions for the model and bench 

outputs are not available, nor are they exact sine waves. To compute the gain and 

phase of the output 𝑦 with respect to the input 𝑥 for a given frequency 𝑓 = 𝜔/2𝜋, 

the Fourier coefficients for 𝑥 and 𝑦 are integrated numerically: 
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𝑅𝑒(𝑥) =
2

𝑡𝑠
∫ 𝑥 sin𝜔𝑡 𝑑𝑡
𝑡𝑠

0

 (5.16) 

𝐼𝑚(𝑥) =
2

𝑡𝑠
∫ 𝑥 cos𝜔𝑡 𝑑𝑡
𝑡𝑠

0

 (5.17) 

𝑅𝑒(𝑦) =
2

𝑡𝑠
∫ 𝑦 sin𝜔𝑡 𝑑𝑡
𝑡𝑠

0

 (5.18) 

𝐼𝑚(𝑦) =
2

𝑡𝑠
∫ 𝑦 cos𝜔𝑡 𝑑𝑡
𝑡𝑠

0

 (5.19) 

The amplitudes of the input and output signals are respectively: 

𝐴𝑖𝑛 = √𝑅𝑒(𝑥)2 + 𝐼𝑚(𝑥)2 (5.20) 

𝐴𝑜𝑢𝑡 = √𝑅𝑒(𝑦)2 + 𝐼𝑚(𝑦)2 (5.21) 

and their phases can be written as: 

𝜙𝑖𝑛 = atan
𝐼𝑚(𝑥)

𝑅𝑒(𝑥)
 (5.22) 

𝜙𝑜𝑢𝑡 = atan
𝐼𝑚(𝑦)

𝑅𝑒(𝑦)
 (5.23) 

The gain is obtained as the ratio between the output and input amplitudes, expressed 

in decibels: 

𝐺𝑑𝐵 = 20 log10
𝐴𝑜𝑢𝑡
𝐴𝑖𝑛

 (5.24) 

and the phase is the difference between the output and input phases: 

𝜙 = 𝜙𝑜𝑢𝑡 − 𝜙𝑖𝑛 (5.25) 

Figure 5.22 shows the open-loop Bode plot of the actuator. The continuous line 

is obtained through the HF model, while the points are the measures from the 

physical test bench. 

As the system is strongly nonlinear, its behavior is dependent on the input 

amplitude. Therefore, three curves have been evaluated, for input amplitude of 

0.01rad, 0.05rad and 0.2rad respectively, measured on the slow shaft. The 

dynamical response of the system is evaluated for frequencies from 0.1Hz to 

100Hz; this range is limited by the capability of the hardware installed on the test 

bench, and specifically by the bandwidth available for communication between the 

actuator control unit and the host PC. 

Clearly, the numerical simulations match correctly with the experimental data 

on most of the observed range in frequency and amplitude. The experimental curve 

corresponding to the highest amplitude (0.2 radians on the output shaft) is limited 

to a maximum frequency of about 10Hz. Above this value, the overcurrent 

protection of the test bench is triggered, while the HF model can be evaluated 

regardless of this limitation. A significant discrepancy between the model and  

 



 

116 

 

 

Figure 5.22: Open-loop Bode plot of the system 

experimental results appears for frequencies above 30Hz: while the response of the 

numerical model evolves regularly, the physical test bench produces an 

unpredictable and noisy curve. This behavior can be ascribed to the different 

sampling frequencies of the two systems. The physical actuator is limited to a 

250Hz sampling, while the model can record its output with a frequency as high as 

the integration frequency, set at 1MHz for numerical stability. Therefore, according 

to the Nyquist-Shannon theorem, significant aliasing phenomena may start to occur 

at one tenth of the sampling frequency, that is, 25Hz for the test bench.  

 

The system is controlled in open-loop for position, and in closed-loop for 

velocity. As a result, at low frequency the system acts as an integrator. This is 

visible in the Bode plot, as the gain shows a slope of -20dB/dec while the phase is 

constant at -90°. 

At around 10Hz the gain slope increases to -60dB/dec, while the phase gets to 

-270°. This is the result of the superposition of two contributions: a linear one, 

related to the closed-loop transfer function of the speed loop, and a nonlinear one, 

emerging from the combination of the speed and acceleration limits of the system. 
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Figure 5.23: Simplified open-loop block diagram of the actuator 

 

 

Figure 5.24: Bode plot of the current loop. 

Figure 5.23 shows a simplified block diagram of the open-loop system. The 

transfer function of the current loop cannot be derived analytically, as its hysteresis 

control cannot be linearized. The bode plot of this block is obtained numerically 

and shown in Figure 5.24; in the considered frequency range (0.1Hz to 100Hz) the 

current loop can be assumed as instantaneous, since it shows a unit gain and zero 

phase. 

The linearized transfer function of the speed loop can be then computed as: 

𝑦

𝑥
=

𝐺𝑃2𝑠 + 𝐺𝐼
𝐽𝑠2 + (𝐶 + 𝐺𝑃)𝑠 + 𝐺𝐼

 (5.26) 

where 𝐺𝑃2 and 𝐺𝐼2 are the proportional and integral gains of the speed controller. 

With the parameters employed in the test bench, the numerator has a zero at 𝜔 =

100𝑟𝑎𝑑/𝑠 = 15.9Hz, while the denominator is a second order model with natural 

frequency 𝜎𝑛 = 93,65 𝑟𝑎𝑑/𝑠 = 14.9Hz and damping 휁 = 0.47. Its Bode plot is 

reported in Figure 5.25: the response is close to that of a first order system with 

cutoff frequency around 15Hz.  
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Figure 5.25: Bode plot of the speed loop. 

The open-loop transfer function of the whole system is the product of the 

proportional gain of the position controller, the transfer function of the reference 

speed and acceleration limiter, the transfer function of the speed loop, and the 

integrator that converts the output speed into the output position. 

The reference speed and acceleration limits have a nonlinear behavior that 

cannot be dealt with analytically. Their transfer function can however be computed 

numerically, similarly to that of the current control loop. The Bode plot for this 

block is shown in Figure 5.26. The behavior of this subsystem approximates that of 

a linear first order system whose cutoff frequency and static gain depend on the 

input amplitude. For the operating conditions found in the actuator, the cutoff 

frequency is in the order of 10Hz. This behavior is expected as for low frequency 

the acceleration limit is not active. For very high frequency, the output is a 

triangular wave whose amplitude is inversely proportional to the frequency, hence 

the slope of -20dB/dec. 

By comparing the experimental Bode plot of the whole system (Figure 5.22) 

with those of its building blocks (Figure 5.24 to Figure 5.26), obtained either 

numerically or analytically, the measured response of the actuator can be explained 

as the superposition of the individual subsystems. 
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Figure 5.26: Bode plot of the reference speed and acceleration limiter. 
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Chapter 6 

Validation of Machine Learning 

models 

The following Sections discuss the preliminary results obtained offline and 

related to the validation of the machine learning models employed to speed up the 

computations online. Specifically, Section 6.1 motivates the choice of the Back-

EMF coefficient as a monitored quantity of interest; Section 6.2 details the 

acquisition of the training and validation datasets for the surrogate models; Section 

6.3 presents the preliminary results related to the Signal Acquisition and 

Compression task; Section 6.4 shows the preliminary results of the Fault Detection 

and Identification (FDI) task; Section 6.5 discusses the validation of the Support 

Vector Machine employed as a surrogate assessment function. 

6.1 Choice of monitored signal 

The choice of suitable monitored features is a key step of any diagnostic and 

prognostic methodology. The observed signals shall be sensitive to the considered 

fault modes, and only marginally affected (not affected at all, ideally) by externally 

induced variations in the system’s operating conditions. In this study, the selection 

of the monitored signals is based on Expert Knowledge. This approach relies on 

legacy information on the technology family and improves the interpretability of 

the method; conversely, systematic feature selection algorithms may significantly 

ease the application of the prognostic framework to other systems. 

A possible choice for a map of the system behavior to be monitored for FDI is 

the back-Electromotive Force (back-EMF) coefficient as a function of the rotor 

position. The employ of this quantity for detecting electrical faults was initially 

proposed in [151] and the feasibility of the method was demonstrated, in 

combination with machine learning, in [67]. 

The back-EMF coefficient map of a BLDC or PMSM machine can be estimated 

from available measurements, without adding dedicated sensors. Specifically: 

 Phase currents are typically measured as a feedback signal to close the 

current-torque control loop 

 Phase voltages are known without dedicated sensors, as they are a fraction 

of the supply voltage equal to the PWM duty cycle applied to each phase 

 Rotor position is measured by Hall sensors, a rotary encoder or a resolver 

to synchronize the phase commutation sequence with the rotor position. In 
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some systems, this signal is employed for speed or position closed-loop 

control 

 Rotor speed can be estimated as the time-derivative of rotor position, or 

measured by separated speed sensor. 

The back-EMF coefficient 𝑘(휃) is reconstructed starting from the governing 

equation of the RL circuit that models the stator: 

𝑉(𝑡) − 𝑘(휃(𝑡))
𝑑휃(𝑡)

𝑑𝑡
= 𝑅𝑖(𝑡) + 𝐿

𝑑𝑖(𝑡)

𝑑𝑡
 (6.1) 

where 𝑉(𝑡) is the voltage applied to the motor, 휃(𝑡) is the rotor position, 𝑖(𝑡) is the 

motor current, and 𝑅 and 𝐿 are the motor nominal resistance and nominal 

inductance, respectively. Equation (6.1) can be rearranged as follows to estimate 

the back-EMF coefficient: 

𝑘(휃(𝑡)) =
𝑉(𝑡) − 𝑅𝑖(𝑡) − 𝐿

𝑑𝑖(𝑡)
𝑑𝑡

𝑑휃(𝑡)
𝑑𝑡

 (6.2) 

The output of this step is the back-EMF coefficient 𝑘(휃(𝑡)) sampled in time, 

with the acquisition frequency of the sensors. A resampling of the signal allows 

producing the map of back-EMF coefficient versus rotor position. To do so, a set 

of uniformly spaced values 휃𝑖 for the rotor angle 휃 is determined. Then, the points 

of 𝑘(𝑡) corresponding to a 휃(𝑡) ∈ [휃𝑖 − 𝛿, 휃𝑖 + 𝛿] are selected, and their average 

is assigned to 𝑘(휃𝑖), for each 휃𝑖. For the collection of the training and validation 

datasets, this process required about 1 second of computational time for 2 seconds 

of simulation time. 

Although this resampling is quite computationally intensive, once an 

informative acquisition mask is determined as per Section 2.2 the acquisition of the 

sensors and the reconstruction of 𝑘 can be performed in real time only for the 

informative points, triggered by the current rotor position. 

Figure 6.1 shows the reconstructed back-EMF coefficient for varying electrical 

faults, commands, and external loads. As highlighted by Figure 6.1 (a), electrical 

fault modes have a significant and characteristic effect on the back-EMF coefficient 

map, which can be leveraged for FDI. On the contrary, the signal is insensitive to 

the operating conditions in terms of command time history and external load profile 

on the actuator: then, it is a suitable candidate for real-time health monitoring in 

actual flight conditions. 
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Figure 6.1: (a) Reconstructed map of the back-EMF coefficient 𝒌 versus rotor angle 𝜽 for 

different electrical faults. (b) Back-EMF coefficient reconstructed for different commands and 

loads: the resulting signal is mostly independent from the particular operating condition experienced 

by the actuation system. 

The effect of mechanical faults on the signal is negligible and comparable to 

that of the external load. As a result, other quantities of interest need to be measured 

to detect these damages for a complete system health monitoring routine. 

6.2 Acquisition of a training dataset 

A training set and two validation sets are collected for the assessment of the 

machine learning models used for the PHM process. The datasets are computed 

with the physics-based models described in Section 3, and include the fault 

condition 𝒌 and the corresponding curve of back-EMF coefficient versus rotor 

position, employed as the informative behavior map 𝒚(𝒌). 

The fault vector 𝒌 = [𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5] is a five-element vector encoding the 

health condition of the system. Each element of 𝒌 is normalized between 0 and 1. 

Two electrical fault modes are considered: 

 A partial short circuit of the stator windings. This information is contained 

in the first three elements of the fault vector. The fault parameters 𝑘1, 𝑘2, 

𝑘3 express the fraction of healthy windings of each phase of the motor: 𝑘1 =

1 − 𝑁𝑎, 𝑘2 = 1 − 𝑁𝑏, 𝑘3 = 1 − 𝑁𝑐, where 𝑁𝑎, 𝑁𝑏, 𝑁𝑐 are the healthy 

windings of each phase. 

 An eccentricity of the rotation axis of the rotor with respect to the axis of 

symmetry of the stator. This fault is expressed by the last two elements of 

𝒌, which are a function of the eccentricity amplitude 휁 and phase 𝜙. 

Specifically, the eccentricity is converted in Cartesian coordinates and  

normalized between 0 and 1: 𝑘4 = (1 + 휁 cos𝜙)/2 and 𝑘5 = (1 +
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휁 sin𝜙)/2. The switch to Cartesian coordinates permits to avoid a 

singularity in the nominal condition (휁 = 0) where the phase is 

undetermined and can affect the accuracy and repeatability of fault 

detection. 

The training set includes 𝑛𝑠 = 1000 fault conditions sampled with the 

technique described in Section 2.1, and the associated back-EMF coefficient curves, 

computed with the LF model (Section 3.2). This number of training points was 

found in a previous study to be sufficiently representative of the system behavior. 

A first validation set includes 100 fault conditions and the associated back-EMF 

coefficient curves, computed with the LF model. A second validation set includes 

100 fault conditions and the associated back-EMF coefficient curves, computed 

with the HF model (Section 3.1).  

The use of the LF model for the training set permits to allocate a reasonable 

computational time for the collection of the datasets. The HF model is employed 

for validation: the relationship between HF and LF models simulates that between 

the physical system and its physics-based digital twin. Indeed, in a field application, 

a sufficient amount of data for training cannot be collected with experiments alone, 

and some training points need to be computed with physics-based simulations. The 

use of a model with a different fidelity for validation permits then to determine the 

robustness of the proposed methodology to the structured and unstructured 

uncertainties in the simulations. 

On the other hand, the first validation set is computed with the same LF model, 

to evaluate the behavior of the proposed methodology regardless the discrepancy 

between the HF and LF models. 

6.3 Signal Acquisition, Feature extraction and 

Compression 

At first, Proper Orthogonal Decomposition (POD) is applied to the back-EMF 

coefficient maps of the training set, as per Section 2.2.  POD extracts the dominant 

modes that describe the variance of the data; the amount of dispersion explained by 

each POD mode is related to the respective eigenvalues. Errore. L'origine 

riferimento non è stata trovata. (a) shows the ordered eigenvalues 𝜆𝑖 in 

logarithmic scale, and Errore. L'origine riferimento non è stata trovata. (b) 

shows their cumulative sum ∑ 𝜆𝑗
𝑛𝑚
𝑗=1 /∑ 𝜆𝑗

𝑛𝑠
𝑗=1 : clearly, the decay of eigenvalues is 

quite fast, and the first 11 modes are able to explain 99.9% of the training set 

information. 
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Figure 6.2: (a) Decay of the POD eigenvalues for the training set; (b) cumulative sum of the 

eigenvalues. 

The second step of signal compression leveraged the training of Self Organized 

Maps on the first 𝑛𝑚 modes, for 1 ≤ 𝑛𝑚 ≤ 12. Figure 6.3 shows the placement of 

the compression mask onto the first 12 POD modes. The mask obtained by training 

a SOM with the first 𝑛𝑚 modes is plotted onto the 𝑛𝑚-th mode. The points of the 

masks tend to be placed near the local maxima and minima of the modes, which 

usually correspond to the most informative locations for measurement; this is 

particularly evident for a low number of retained POD modes. By increasing 𝑛𝑚, 

the mask gets closer to a uniform sampling, since the location of its points is a 

compromise between the optimization for each individual mode: this behavior may 

lead to the inclusion of misleading information in the acquisition and reduce the 

accuracy of FDI if an excessive number of POD modes are retained, as shown in 

[152]. 

 



 

125 

 

 

Figure 6.3: Placement of the sampling points of the compression mask on the first 12 POD 

modes. The mask obtained by training a SOM with the first 𝒏𝒎 modes is plotted onto the 𝒏𝒎-th 

mode. 

 

Figure 6.4 shows the error associated with the recovery of the information of 

the full back-EMF curve via Gappy POD. Specifically, the boxplot of Figure 6.4 

(a) shows the Normalized Root Mean Squared Error (NRMSE) on reconstruction 

of the back-EMF coefficient: 

𝑒𝑟𝑟𝑦 =

√
1
𝑛𝑒
∑ (𝑦𝑒,𝑖

2 − 𝑦𝑜,𝑖
2 )

𝑛𝑒
𝑖=1

max(𝒚𝑜) − min (𝒚𝑜)
 

(6.3) 

where 𝒚𝑜 is the original back-EMF curve, in the form of an 𝑛𝑒-dimensional vector, 

and 𝑦𝑒 is the one estimated by Gappy POD. The NRMSE on the POD coefficients 

is reported in Figure 6.4 (b): 

𝑒𝑟𝑟𝛼 =

√
1
𝑛𝑚

∑ (𝛼𝑒,𝑖
2 − 𝛼𝑜,𝑖

2 )
𝑛𝑚
𝑖=1

max(𝜶𝑜) − min (𝜶𝑜)
 

(6.4) 

where 𝜶𝑒 are the POD coefficients estimated via Gappy POD, and 𝜶𝑜 are those 

estimated starting from the full-dimensional back-EMF curve. A suitable number 

of modes for the subsequent steps must be identified as a trade-off between the 

errors in signal reconstruction – that is a measure of the retained information – and 
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the error on POD coefficients – that is a measure of the accuracy of Gappy POD. 

The first POD coefficient is easily estimated, as the associated mode explains most 

of the variance of the signal; however, a single mode does not contain sufficient 

information to provide a good approximation of the signal, as observed through a 

high value of 𝑒𝑟𝑟𝑦. Increasing the number of modes, at first the error on signal 

reconstruction decreases, as the original curve can be approximated with higher 

precision. However, when the number of retained POD modes gets too large, the 

dispersion of the error increases, as misleading information starts to be included in 

the process. This behavior is visible in the last two boxplots of Figure 6.4 (a), 

corresponding to 10 and 11 POD modes. The error on POD coefficient estimation 

has a slightly different behavior, in that a low number of modes results in a small 

error, although often associated to a large dispersion. Indeed, in these conditions, 

Gappy POD is estimating the coefficients of the retained modes; the error on these 

coefficients, compared to the same quantities estimated starting from the whole 

signal, can be small in some cases. The dispersion lowers for a larger number of 

POD modes, and increases back when misleading information starts to be included 

in the reconstruction (a similar behavior to that of the error on signal 

reconstruction). A stable behavior is found, for the considered case study, for 7 to 

9 POD modes. 

 

Figure 6.4: (a) Error on curve reconstruction via Gappy POD. (b) error on POD coefficients. 
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Figure 6.5 shows the U-matrix of the trained SOM in the case of 𝑛𝑚 = 9 

retained POD modes and 𝑛𝜔 = 30 neurons, arranged in a 5-by-6 hexagonal 

topology. Figure 6.6 represents the component planes of the network. In this case 

study, the first input of the SOM is the angular coordinate 휃𝑚, corresponding to the 

rotor angle of the BLDC motor. The SOM is not employed in this work as a proper 

clustering algorithm: after the training is complete, only the first component of the 

weight vector of each neuron is taken as an informative location where the signals 

are acquired and processed online. Since the initial sampling (Sections 2.1 and 6.2) 

included combination of different fault modes as well as single faults, the SOM 

does not identify completely distinct clusters, but rather a continuous set of partially 

overlapping ones. 

 

Figure 6.5: U-Matrix of the trained SOM for 𝒏𝒎 = 𝟗. The neurons are labelled according to 

the coordinate of the associated sampling points. 
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Figure 6.6: Component plane matrices of the trained SOM for 𝒏𝒎 = 𝟗. 

Figure 6.7 shows the reconstruction of a back-EMF coefficient curve of the 

second validation set (i.e. computed by the HF model) with an increasing number 

of POD modes. Increasing the number of modes, the curve is reconstructed more 

accurately, but the additional modes may include information that is misleading for 

the subsequent FDI. 

 

 

Figure 6.7: reconstruction of the back-EMF coefficient map with an increasing number of POD 

modes. A random fault combination of the validation set is considered, corresponding to 𝑵𝒂 =
𝟎. 𝟔𝟒𝟎, 𝑵𝒃 = 𝟎. 𝟎𝟓𝟓, 𝑵𝒄 = 𝟎. 𝟗𝟕𝟐, 𝚭 = 𝟎. 𝟎𝟏𝟓, 𝝓 = −𝟐. 𝟔𝟑°. 
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6.4 Fault Detection and Identification (FDI) through 

Multi-Layer Perceptron (MLP) 

Fault Detection is performed, as per Section 2.3 by a Multi-Layer Perceptron 

(MLP). The neural network accepts in input the coefficients of the POD modes 

associated with the compressed signal and estimated by Gappy POD, and returns in 

output an estimate for the system health condition. 

Two studies were performed to determine a suitable number of retained POD 

modes and a number of neurons for the hidden layer of the MLP. In both cases, the 

nets were trained on the training set described in Section 2.1, using the POD 

coefficients (determined as per Section 2.2) as the inputs, and the fault parameters 

as the targets. Both validation sets were employed to assess the performance of the 

networks: the first, computed by the same LF model as the training set, verifies that 

the training is adequately representative of the behavior of the system; the second, 

computed by the HF model, assesses the robustness of the FDI process against 

uncertainties in the models. 

The first study employed a network with a fixed number of neurons and a 

number of inputs varying from 1 to 11 (i.e. from using only the coefficient of the 

first POD mode to the first 11 modes, corresponding to 99.9% of the original 

information). The networks have 5 output neurons, determined by the 

dimensionality of the output, and 15 neurons in the single hidden layer. Figure 6.8 

summarizes the outcome of this study. In Figure 6.8 (a) and (b) the RMSE in fault 

detection are reported: 

𝑒𝑟𝑟𝑘 = √
1

𝑛𝑘
∑(𝑘𝑒,𝑖

2 − 𝑘𝑜,𝑖
2 )

𝑛𝑘

𝑖=1

 (6.5) 

where 𝒌 = [𝑘1, … , 𝑘𝑛𝑘] is the vector of fault parameters, the 𝑒 subscript denotes 

the estimate performed resulting from FDI, and the 𝑜 subscript denotes the target 

value. The error is not normalized, since the individual fault parameters are already 

normalized and allowed to range between 0 and 1. Predictably, the RMSE is lower 

for the first test set (Figure 6.8 (a)), in which the uncertainty associated to the 

physics-based models of the system has no effect. In this case, the test set is 

generated by the same model employed to compute the training set. The FDI error 

stabilizes in the order of 1% with a very small dispersion when considering 6 or 

more POD modes. As expected, retaining less than 5 modes leads to a large FDI 

error: the neural network is estimating 5 fault parameters independent from each 

other, and the problem becomes underconstrained if the dimensionality of the MLP 

input is 4 or less. The inclusion of up to 11 POD modes does not result in significant 

accuracy variations. The use of the second test set (Figure 6.8 (b)), computed by the 

High Fidelity model, results to a generally higher FDI error: here the discrepancy 

between the HF and LF models contributes to the overall accuracy of the fault 

estimation process. The FDI error in the range from 5% to 10% for 5 to 9 modes; 4 

POD modes or less results in an underconstrained problem and a worse accuracy, 
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as in the previous case. Additionally, misleading information is included and the 

error increases when retaining 10 or more modes. 

Figure 6.8 (c) shows the computational time in training for the MLP: being the 

number of neurons constant, training time is not affected significantly by the 

number of inputs. Figure 6.8 (d) reports the evaluation time, discriminating between 

the Gappy POD step and the MLP step: as expected, the computational time for 

Gappy POD increases with the number of retained modes, while the evaluation of 

the MLP is consistently between 5 and 10 milliseconds, being affected mainly by 

the number of neurons. 

The second parametric study aims to determine a suitable number of neurons 

for the hidden layer of the network. The results are summarized in Figure 6.9. The 

number of POD modes is fixed at 9, as the previous studies assessed that this allows 

a good compromise between accuracy and computational time. Specifically, the 

study on the number of modes (Figure 6.8) showed that a good performance is 

obtained for 5 or 9 modes, while the preliminary assessment on the signal 

acquisition and compression (Figure 6.4, Section 6.3) highlights that the best 

representation of the system behavior is obtained for 7 to 9 modes. 

 

 

Figure 6.8: Study on the number of retained modes for FDI. (a) RMSE in fault identification, 

first validation set; (b) RMSE in fault identification, second validation set; (c) computational time 

in training; (d) computational time in evaluation. 
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Figure 6.9 (a) and (b) show the accuracy of the networks in terms of RMSE on 

the identified fault parameters. As in the previous case, the second test set (with the 

HF model) is associated to a larger, but still acceptable, error in identification. In 

both cases, a small number of neurons is not able to approximate correctly the 

behavior of the training data, and produces a large FDI error. The use of 8 or more 

neurons results in a consistently low average error, in the order of 1% for the LF 

test set, and usually below 10% for the HF test set. Increasing the hidden layer of 

the MLP does not lead to a significant overfitting up to 40 neurons, although the 

number and dispersion of the outliers starts to rise with more than 16 hidden layer 

neurons.  

Figure 6.9 (c) and (d) report the computational time in training and in 

evaluation, respectively. An increasing number of neurons leads to a longer 

training, while the evaluation time is mostly unaffected: indeed, the upper limit for 

the number of neurons is quite low, and most of the evaluation time (in the order of 

milliseconds) is taken up by the overhead for calling the network. The 

dimensionality of the internal variables affects the global computational burden 

only marginally. Therefore, 14 neurons for the hidden layer are chosen as a good 

compromise between accuracy, overfitting and computational time. 

 

Figure 6.9: Study on the number of neurons in the hidden layer for FDI. (a) RMSE in fault 

identification, first validation set; (b) RMSE in fault identification, second validation set; (c) 

computational time in training; (d) computational time in evaluation. 
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The boxplot of Figure 6.10 shows the performance of the MLP with respect to 

the different considered failure modes. The short circuits on the three motor phases 

– encoded in 𝑘1, 𝑘2 and 𝑘3 – are recovered with a median error lower than 1%; the 

dispersion is small, and only a few outliers have an error higher than 2%. As regards 

the eccentricity fault, represented by 𝑘4 and 𝑘5, the error associated with FDI has a 

slightly higher median, a smaller interquartile range and more numerous and spread 

out outliers, reaching values up to 7% in some cases. This behavior reflects the 

response of the physics-based models and the sensitivity of the considered features 

to the different fault modes. The effect of partial short circuit has a regular behavior 

and is relatively simple to model: this results in a stable and repeatable performance 

of the MLP. By contrast, the eccentricity fault produces a more irregular and 

nonlinear ripple on the back-EMF coefficient; this is more challenging to model 

with an MLP, and yields a larger number of outliers. 

 

Figure 6.10: FDI error associated to each fault mode 

6.5 Surrogate assessment function for RUL estimation 

The Assessment Function 𝜙𝑎 described in Section 3.4 is replaced by a Support 

Vector Machine (SVM) to speed up online computations and to allow the real-time 

evaluation of the RUL estimation procedure described in Section 2.4.2. This 

strategy was initially proposed in [29, 30], while a parametric study on the SVM 

settings was discussed in [37]. 

The SVM is trained on the dataset described in Section 6.2; specifically, the 

fault combinations are employed in combination with the associated values of the 

full, model-based Assessment function. The validation set includes an additional 

100 fault combinations and assessment function values, employed to determine the 

accuracy of the surrogate model. A parametric study was carried out to determine 

acceptable settings for the SVM training: most machine learning algorithm depend 

on a multitude of hyperparameters that affect the performance in training and 

evaluation; those parameters are strongly problem-dependent, and shall be 

calibrated for each specific application. For the SVM implementation discussed in 

this work, the most influential hyperparameter is usually the Kernel Scale 𝑘𝑠. This 

is a multiplier applied to the SVM input before feeding it to the kernel function; its 

value effectively determines a threshold to discriminate between the local variance 

of the function to approximate from the global shape of the training data. As a result, 
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the calibration of 𝑘𝑠 provides a handle to tradeoff between the accuracy and 

generalization properties of the surrogate function. 

Figure 6.11 shows the results of the parametric study in terms of accuracy. The 

100 health conditions of the validation set include ℎ𝑡 = 29 "healthy" training 

points and 𝑓𝑡 = 71 "faulty" training points. For each tested SVM, the global 

accuracy was evaluated as the ratio between correct classifications and the number 

of test cases: 

𝐴 = 1 −
ℎ𝑓 + 𝑓𝑓

ℎ𝑡 + 𝑓𝑡
 (6.6) 

where ℎ𝑓 is the number of missed detections (i.e. the full Assessment Function 

returned "faulty" while the surrogate returned "healthy"), and 𝑓𝑓 is the number of 

false positives (i.e. the full Assessment Function returned "healthy" while the 

surrogate returned "faulty"). In addition, the ratio between missed detection and 

true positives was determined, that is equivalent to the fraction of misidentified 

"faulty" conditions: 

𝑀𝐷 =
ℎ𝑓

𝑓𝑡
 (6.7) 

 

 

Figure 6.11: (top) accuracy of the SVM as a function of the kernel scale; (middle) fraction of 

missed detections; (bottom) fraction of false positives. 
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Similarly, the ratio between false positives and true negatives was computed: 

𝐹𝑃 =
𝑓𝑓

ℎ𝑡
 (6.8) 

that is, the fraction of misidentified “healthy” conditions. Referring to Figure 6.11, 

a relatively stable performance emerges for values of 𝑘𝑠 in a range from 10−1 to 

5 ∙ 101. This outcome suggests a good robustness of the SVM with respect to the 

particular choice of the training data and settings. The best performance is achieved 

for 𝑘𝑠 = 0.4735, with an overall accuracy 𝐴 = 96%, two false positives (i.e. 𝐹𝑃 =

6.90%) and two missed detections (i.e. 𝑀𝐷 = 2.82%). 

Figure 6.12 reports the computational time required by the SVMs in evaluation, 

for varying 𝑘𝑠. In most cases, the computational time is stable between 0.8 and 1.2  

milliseconds; a higher dispersion is found for the 𝑘𝑠 values where the accuracy has 

a large gradient (i.e. at the edges of the higher accuracy zone, for 𝑘𝑠 ≈ 10
−1 and 

for 𝑘𝑠 ≈ 5 ∙ 10
0). The improvement with respect to the full Assessment Function is 

of more than 4 orders of magnitude: the model-based approach required a 

computational time of about 40s (see Section 3.4). As a result, this surrogate 

modelling approach can be exploited to achieve real-time RUL estimation without 

requiring prohibitively high performing hardware resources. 

 

 

Figure 6.12: Computational time in evaluation for the SVM as a function of the kernel scale.  
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Chapter 7 

Results 

A validation set was collected to demonstrate the performance of the proposed 

methodology for failure prognosis. The dataset contains a total of 100 simulated 

runs to failure of the considered actuator. The time-history of the health condition 

is computed by integrating a model in the form: 

�̇�(𝑡) = A(𝑡)𝒌(𝑡) + B𝒖(𝑡) +𝒩(0, 𝜎) (7.1) 

where A(𝑡) is a state matrix, the term B𝒖(𝑡) simulates the effect of operating and 

environmental conditions on damage growth rate, and 𝒩(0, 𝜎) is an independent 

identically distributed Gaussian noise to represent the uncertainty inherently 

associated to fault propagation as a result of manufacturing defect and variability 

of operating conditions experienced by the equipment. 

Within the validation set, 50 simulations are computed with a constant A(𝑡), 

while in the others the state matrix is piece-wise constant in time. The variations of 

A(𝑡) happen at random times and with random magnitude; however, the fault 

propagation rate is forced to be non-decreasing in time, as this is the most critical 

scenario possibly faced by a RUL estimation algorithm. 

An example of propagation of faults, from a nominal condition to a complete 

failure, is shown in Figure 7.1. The interaction of the state-space model with the 

uncertainty term produces large deviations from the exponential growth of a purely 

linear model. The black vertical line represents the failure: a threshold is not 

represented as it is set by the requirements on the performance parameters, and not 

on the individual faults. 

 

 

Figure 7.1: Example of simulation of a run to failure. 
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For each timestep of each simulation, an additive error is added to the 

instantaneous health condition of the system, sampled from the error distribution 

associated with the real-time FDI process. This error distribution is shown in Figure 

7.2, highlighting the uncertainty associated with each component of the fault vector.  

The uncertainty in FDI arises from two main sources: the additive white noise 

acting on the output of the dynamical model of the EMA (simulating the error in 

measurements) and the error associated to the evaluation of the MLP model.  

The partial short circuits are characterized by smaller errors, while larger ones 

are recorded for rotor eccentricity. This behaviour mirrors the sensitivity of the 

specific monitored signal to each fault mode. An alternative solution would have 

evaluated the HF model to compute the response of the actuator for each timestep, 

and then ran the online FDI process to identify the faults; however, this way the 

creation of the validation set would have required an impractical amount of time, 

since the HF model would have been evaluated a large number of times. 

Additionally, both the online FDI and RUL estimation algorithms are completely 

deterministic: for a given run of the HF model, the RUL estimate is completely 

determined; its uncertainty is uniquely associated with the propagation of the 

disturbances in the system output, to the FDI, to the failure prognosis. As a result, 

an uncertainty distribution associated to the RUL estimate could not have been 

computed. 

 
 

 

Figure 7.2: Normalized FDI error associated with each fault parameter. 
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Figure 7.3 Comparison between actual and estimated RUL, with a time-invariant damage 

propagation model. The RUL is estimated every 200 hours, considering the FDI observations of the 

last 200 operating hours. 

Figure 7.3 shows the evolution of the RUL estimate when the damage 

propagation model is constant in time, that is 𝑑A(𝑡)/𝑑𝑡 = 0   ∀𝑡. At the beginning, 

the algorithm overestimates the system RUL: indeed, the state and control matrices 

of Equation 2.26 are initialized to zero, and the estimated RUL is infinite.  

The early estimates have a very large dispersion, as both the model of damage 

propagation and the measurement of the initial condition are affected by 

uncertainty. When the health of the system is close to nominal, a large contribution 

to the fault estimate produced by the FDI algorithm is due to the additive noise on 

damage propagation 𝒩(0, 𝜎). Additionally, the FDI error is large compared to the 

actual faults.  

The assimilation of additional observations of the fault propagation history 

allows to filter out errors inevitably affecting FDI, and to obtain less disperse and 

more robust predictions of the system life. As time runs, approaching to the right of 

Figure 7.3, the estimate of the remaining useful life improves in accuracy thanks to 

the efficient assimilation from real-time measurements. At first, only a rough value 

is available, but the expected failure is still far ahead, and a precise information is 

not needed yet. As the failure approaches, the estimate becomes more accurate, 

when it is required to plan corrective actions. 

The 𝛼 − 𝜆 metric [153] is employed to assess the RUL prediction algorithm by 

comparing the estimates to the specified 𝛼-bounds: 

𝛼 − 𝜆 Accuracy = {
1, if    𝜋 [

𝑅𝑈𝐿𝑒
𝑅𝑈𝐿𝑎

]
−𝛼

+α

≥ 𝛽

0, otherwise

 (7.1) 

where 𝑅𝑈𝐿𝑒 is the RUL estimate, 𝑅𝑈𝐿𝑎 is the actual RUL, and 𝛽 is a minimum 

acceptable probability. The dashed-dotted line of Figure 7.3 represents the tolerance 

bounds around the actual RUL for 𝛼 = 0.25. The 𝛽-criterion is satisfied for 𝛽 =

0.5. at 𝜆 = 0.23, that is for an actual RUL of 3450h. For many applications, this is 

a more than suitable advance to schedule corrective interventions in an effective 

manner. 
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Figure 7.4: Comparison between actual and estimated RUL with a time-varying model. The 

reference damage propagation rate increases at 𝑹𝑼𝑳 ≈ 𝟏𝟖𝟎𝟎𝒉 

Figure 7.4 shows the evolution of the RUL estimate for a test case where the 

damage propagates at a variable (increasing) rate, that is 𝑑A(𝑡)/𝑑𝑡 > 0   ∃𝑡. 

At the beginning, the actual RUL of the system is overestimated, since the 

current damage propagation rate is predicted to the complete failure. When the RUL 

is approximately 1800h, the fault growth rate rises: this event may simulate either 

an uncertainty in the model (e.g. a given component starts wearing faster after a 

critical threshold is reached, such as a hardened external layer is completely worn 

out) or an unpredictable change in the external conditions that affects the wear rate 

(such as, the lubricant of a sealed transmission may get contaminated and lose its 

properties). 

The RUL estimation algorithm reacts to this change by adapting its prediction 

to the new observed time history of health conditions. As shown in the second part 

of Figure 7.4, shortly after the change in damage growth rate the dispersion on the 

estimation shrinks and the median RUL estimate moves closer to the actual one. 

The 𝛽-criterion for a minim probability 𝛽 = 0.5 and a tolerance band defined by a 

relative uncertainty 𝛼 = 0.25 is satisfied at 𝑅𝑈𝐿 = 1310h, equivalent to 𝜆 = 0.35. 

This happens soon after the fault propagation rate has changed, with a small delay 

required to assimilate sufficient information and update the prediction. The result 

demonstrates that the proposed failure prognosis algorithm is able to adapt in real-

time to variations in the behaviour of the monitored system. 

Table 7.1 summarizes the error associated with the RUL prediction in the two 

test cases of Figure 7.3 and Figure 7.4. The early estimates are characterized by a 

large uncertainty, particularly in the case of a time-varying damage growth rate. As 

the actual RUL decreases, the algorithm is able to get the prediction within ±20% 

of the exact value. This error is coherent with most approaches available in 

literature, and is mainly due to the inherent variability associated to the fault growth. 

The advantage introduced with the proposed approach is that the algorithm 

efficiently learns in real-time to compute predictions of the Remaining Useful Life, 

without relying on a priori physics-based knowledge about the rate of propagation 

of damages. 
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The whole online process runs in the Matlab environment, on a laptop PC with 

an i7-6500U processor and 8GB of memory. The computational time required for 

each FDI and RUL estimate ranges between 0.1s and 1s, which makes it suitable 

for on-board, nearly real-time execution. 

Table 7.0.1: Median relative error in RUL estimate 

actual RUL [h] time-invariant fault growth time-varying fault growth 

3000 23.90% 243,64% 

1500 -18,85% 50,11% 

500 -17,04% 18,95% 
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Chapter 8 

Conclusions 

A comprehensive computational framework for fault detection and failure 

prognosis of dynamical assemblies was presented and discussed. The proposed 

methodology combines machine learning and reduced order modelling with 

physics-based numerical models to obtain compressed yet accurate representations 

of the behaviour of the system. 

The entire process can be executed in real-time, dealing with the hardware 

constraint that are characteristic of on-board computations. Nevertheless, the 

proposed algorithm can learn a model of the damage evolution by assimilating 

online the observation of the instantaneous health status of the monitored system. 

As a result, the overall accuracy of the RUL prediction process is comparable to 

most approaches available in literature. The strength of the proposed methodology 

is its ability to predict the RUL in real-time, without requiring any prior knowledge 

about the physics of the phenomena affecting the actual propagation of faults, while 

at the same time retaining a suitable accuracy. 

An experimental validation of the physical models employed as a case study 

was provided, limited for now to the nominal conditions. In addition, novel sensor 

technologies were considered and assessed experimentally; these will provide 

additional, useful information for the health monitoring algorithms without 

prohibitive increases in weight, complexity and costs of the aerospace vehicle. 

Future developments on this research will include the experimental validation 

of the numerical models in faulty conditions, the integration of the additional 

information provided by optical sensors in the prognostic process, and the test of 

the entire real-time process in-flight. In addition, the potentiality to include a real-

time estimation of the RUL prediction uncertainty is currently under investigation. 
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Appendix A 

Experimental validation of gearbox 

efficiency models 

The Simulink models of the electromechanical actuator described in Section 3 

include a computation of the mechanical transmission efficiency according to Berri 

et al. [150]. The validation of these simplified formulations against higher fidelity 

models is available in literature [149]; the experimental data gathered in this work 

allowed an experimental verification of their results: a preliminary discussion is 

presented in Section 5.2.2 that compares the measured efficiency of the EMA test 

bench transmission to the values predicted by the models. This appendix provides 

additional data confirming the previous results. 

A.1 Experimental setup 

A simple, dedicated test set was developed for the purpose of validating the 

gearbox efficiency model. A schematic layout of the experimental setup is shown 

in Figure A.1 (a), while Figure A.1 (b) is a picture of the test bench. 

The same gearmotor employed for the characterization of the main EMA test 

bench subassemblies, as described in Section 5, was used to drive the tested gearbox 

at a constant speed, while measuring the required torque with a loadcell. A known 

load torque was provided by a pair of calibrated weights hanging to a winch 

 

 

Figure A.1: (a) layout of the experimental setup for the gearbox characterization; (b) picture of 

the dedicated test bench 
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connected to the output of the gearbox; the load could be varied by changing the 

calibrated weights, while the speed was controlled through the voltage fed to the 

motor. A high resolution incremental encoder provided position and speed 

measurements on the output shaft of the gearbox. 

Three off-the-shelf planetary gearboxes were tested, whose characteristics are 

summarized in Table A.1. All these gearings differ from each other by the number 

of stages, while sharing the same number of teeth and modulus. Specifically, the 

sun gear has 17 teeth, the ring gear 46, and the three satellites of each stage 14. 

Table A.1: Main characteristics of the three tested gearboxes 

 Gearbox 1 Gearbox 2 Gearbox 3 

Gear ratio 3.71:1 13.73:1 50.89:1 

Number of stages 1 2 3 

 

The gearbox was driven at an approximately constant speed, to reduce the 

inertial components of the motor torque. The speed was changed by steps in order 

to acquire different data points. Each measurement consisted in two time series, 

containing the log of the encoder position and loadcell reading, respectively. The 

user torque is known, since it results from the calibrated weight times the radius of 

the winch. 

The input shaft bearing of the tested gearbox supports the gearmotor. The 

loadcell constrains the gearmotor case with respect to the rotation about the rotor 

axis. As a result, the motor torque 𝑇𝑚 can be computed from the loadcell reading 

𝐹𝐿𝐶 as: 

𝑇𝑚 = 𝑏𝐹𝐿𝐶 
 

(A.1) 

where 𝑏 is the distance from the motor axis to the loadcell. 

A.2 Results 

The three gearboxes were tested with different loads and speeds. The use of a 

winch as a user allowed to explore both the aiding load (i.e. while lowering the 

calibrated weights) and opposing load (i.e. while lifting the weights) operating 

conditions of the mechanical transmission. As a results, the maps of Figure A.2 to 

Figure A.4 were obtained.  

The measured motor torque 𝑇𝑚 is plotted against user torque 𝑇𝑙 for the opposing 

load (blue data points) and aiding load condition (red data points). The black dashed 

line represents the ideal case of unit efficiency, where the user torque is equal to the 

motor torque times the gear ratio 𝜏. The measurements are offset from this ideal 

condition by a constant quantity, that is the friction caused by pre-loads, plus a 

contribution linear with respect to the load torque. This latter contribution is a 

measure of the gearbox efficiency. 
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The blue solid line fits the opposing load data points. Its slope 𝑑𝑇𝑚/𝑑𝑇𝑙 permits 

to estimate the gearbox efficiency in this condition 휂𝐷, as: 

휂𝐷 = (𝜏
𝑑𝑇𝑚
𝑑𝑇𝑙

)
−1

 

 

(A.2) 

since in this condition the user torque can be written as 𝑇𝑙 = (𝑇𝑚 − 𝐹)𝜏휂𝐷. The 

model described by [150] offers an estimation of the aiding load efficiency 휂𝐼 as a 

function of the opposing load one 휂𝐷 and the gear ratio: 

휂𝐼 =
2휂𝐷𝜏 − 𝜏 + 1

휂𝐷𝜏 − 휂𝐷 + 2
 

 

(A.3) 

The red solid line of Figure A.2 to Figure A.4 describes the relationship 

between motor and load torques in opposing load conditions: 

𝑇𝑚 =
𝑇𝑙
𝜏
휂𝐼 − 𝐹 (A.4) 

The model is able to predict the observations with good accuracy; the measured 

motor torque in aiding load condition matches the model within the measurement 

uncertainty. This is particularly visible for the 2-stage gearbox (Figure A.3). For the 

3-stage transmission (Figure A.4), the measurement uncertainty is higher because 

of the difficulty in measuring very low motor torques with high precision. In the 

single stage gearbox (Figure A.2), the measurement accuracy is limited by the high 

speed of the user shaft, which completes the stroke of the calibrated weights in a 

short time and allows acquiring fewer data points. 

Table A.2 summarizes the efficiencies of the three tested gearboxes. As 

expected, the efficiency in opposing load is close to the single-stage efficiency, 

raised to the power of the number of stages. The aiding load efficiency decreases 

faster, as the number of stages increases and the transmission approaches to an 

irreversible condition. The error between the measured aiding load efficiency and 

that estimated by the model is below 5% for all the tested gearboxes. 

Table A.2: Observed efficiencies of the three tested gearboxes 

 
Opposing load 

efficiency - 

experimental 

Aiding load 

efficiency - 

model 

Aiding load 

efficiency - 

experimental 

Error 

Gearbox 1 91.31% 90.85% 92.63% -1.92% 

Gearbox 2 79.16% 74.58% 72.85% 2.37% 

Gearbox 3 68.76% 55.35% 58.24% -4.95% 
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Figure A.2:  Measured and predicted efficiency maps of the Gearbox 1 (3.71:1 gear ratio). 

 

Figure A.3:  Measured and predicted efficiency maps of the Gearbox 2 (13.73:1 gear ratio). 
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Figure A.4:  Measured and predicted efficiency maps of the Gearbox 3 (50.89:1 gear ratio). 
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