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ABSTRACT

We focus on several models of modified gravity which share the characteristic of

leading to perturbations of the Newtonian potential ∝ K2 r−2 and ∝ K3 r−3. In particu-

lar, by using existing long data records of the LAGEOS satellites, tracked on an almost

continuous basis with the Satellite Laser Ranging (SLR) technique, we set preliminary

constraints on the free parameters K2, K3 in a model-independent, phenomenological

way. We obtain |K2| . 2.1× 106 m4 s−2, − 2.5× 1012 m5 s−2
. K3 . 4.1× 1012 m5 s−2.

They are several orders of magnitude tighter than corresponding bounds existing in the

literature inferred with different techniques and in other astronomical and astrophysi-

cal scenarios. Then, we specialize them to the different parameters characterizing the

various models considered. The availability of SLR data records of increasing length

and accuracy will allow to further refine and strengthen the present results.

Subject headings: Experimental studies of gravity; Modified gravity; Lunar, planetary, and

deep-space probes
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1. Introduction

Gravitational interactions are described with great accuracy within the framework of General

Relativity (GR); as a matter of fact, the predictions of the Einstein’s theory of gravitation

were verified with great accuracy during last century (Will 2015; Debono & Smoot 2016) by

means of experimental tests and observations that, in their great majority, were performed in the

Solar System, where gravity can be adequately described by the weak-field and slow-motion

approximation. There are, however, some noteworthy exceptions providing tests of GR in the

strong gravity regime, such as those involving binary pulsars (Taylor et al. 1979; Kramer et al.

2006). Eventually, it is impossible not to mention the recent direct detection of gravitational

waves (Abbott et al. 2016, 2017; Cervantes-Cota et al. 2016), that are produced in the strong field

regime and detected, on the Earth, as very small ripples in spacetime.

There are many evidences on the current accelerated expansion of our Universe, coming from

various observations, such as the type Ia supernovae, the baryon acoustic oscillation, the cosmic

microwave background (Perlmutter et al. 1998; Riess et al. 1998; Tonry et al. 2003; Knop et al.

2003; Barris et al. 2004; Riess et al. 2004; Astier et al. 2006; Eisenstein et al. 2005; Spergel et al.

2007; Hinshaw et al. 2013). In the frame of the Standard Cosmological Model, the best picture

coming from these observations suggests that the Universe content is 76% dark energy, 20% dark

matter, 4% ordinary baryonic matter: in order to match these observations with GR, we are forced

to introduced dark entities such as matter and energy with peculiar characteristics. In particular,

the dark energy is an exotic cosmic fluid, which has not yet been detected directly, and which does

not cluster as ordinary matter; indeed, its behaviour closely resembles that of the cosmological

constant Λ, whose nature and origin are, however, difficult to explain (Peebles & Ratra 2003;

Martin 2012). Dark matter is supposed to be a cold and pressureless medium, whose distribution

is that of a spherical halo around the galaxies. Actually, besides these difficulties in describing

gravitational interactions at very large scales, there are problems with the foundations of General

Relativity (Vishwakarma 2016) which, as is, is not renormalizable and cannot be reconciled with

a quantum description (Stelle 1977; Lake 2016): hence, gravitational interactions seem to stand

apart from the Standard Model.

Taking into account these issues, there are reasonable motivations to consider extensions

of GR (see the review paper by Berti et al. (2015) for a description of various modified gravity

models). One possible way to extend GR is to modify its geometric structure, generalizing

Einstein’s approach according to which gravity is geometry: in doing so, the richer geometric

structure introduces the ingredients needed to match the observations. This is the case,

for instance, of f (R) gravity (Capozziello & De Laurentis 2011; Sotiriou & Faraoni 2010;

De Felice & Tsujikawa 2010; de Martino et al. 2015), Gauss-Bonnet (Nojiri & Odintsov 2005)

or f (G) gravity (De Felice & Tsujikawa 2009), scalar-tensor gravity (Naruko et al. 2016;

Saridakis & Tsoukalas 2016), massive gravity (de Rham 2014). Interestingly enough, GR and

f (R) gravity are subclasses of the so-called Horndeski theory (Horndeski 1974), which is the

most general scalar-tensor theory whose action has higher derivatives of the scalar field φ, but

leads to second order differential equations, thus avoiding the Ostrogradsky instability. A different
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strategy to the extension of GR can be fulfilled starting from its equivalent formulation in terms

of Teleparallel Gravity (TEGR) (Aldrovandi & Pereira 2012; Maluf 2013; Maluf 2016), thus

obtaining f (T ) gravity (Ferraro & Fiorini 2008; Linder 2010; Cai et al. 2016).

However, it is manifest that any model of modified gravity should be in agreement with

the known tests of GR, in particular in the Solar System: every extended theory of gravity

is expected to reproduce GR in a suitable weak-field limit. As a consequence, modified

gravity models must have correct Newtonian and post-Newtonian limits and, up to intermediate

scales, the deviations from the GR predictions can be considered as perturbations; in other

words, these theories should have spherically symmetric solutions with gravitational Newtonian

potential UN = −GM/r to which they add specific model-dependent perturbations, whose

parameters, on the other hand, can be constrained by Solar System tests. For instance, this

has been done for scalar-tensor theories and, more in general, Horndeski theory (Clifton et al.

2012; Bhattacharya & Chakraborty 2017), f (R) (Berry & Gair 2011; Capozziello et al. 2007,

2006; Capone & Ruggiero 2010; Allemandi & Ruggiero 2007; Ruggiero & Iorio 2007),

f (T ) (Iorio & Saridakis 2012; Farrugia et al. 2016; Lin et al. 2017). In Iorio et al. (2016)

the Schwarzschild-de Sitter solution arising in various models of modified gravity has been

constrained by Solar System data.

In this paper, we aim at setting preliminary constraints of some models of modified gravity by

means of the Earth’s geodetic satellites of LAGEOS family tracked on an almost continuous basis

with the Satellite Laser Ranging (SLR) technique (Combrinck 2010) to a ≃ cm accuracy level.

In particular, we are going to focus on those whose perturbations with respect to the Newtonian

potential fall off as the square or the cube of the distance from the central mass M.

The paper is organized as follows. After briefly reviewing the origin of these models in

Section 2, in Section 3 we deal with a r−2 extra-potential, while Section 4 is devoted to the r−3

case. In Section 5, we summarize our findings and offer our conclusions including the constraints

on the models’ parameters inferred with laser data from geodetic Earth’s satellites. Basic notations

and definitions used throughout the text are collected in Section A. The analytical calculational

approach adopted is detailed in Section B. Section C contains tables and figures.

2. Spherically symmetric solutions for modified gravity models

In this Section, we are going to review the weak-field solutions that, in some models of

modified gravity, can be used to describe the dynamics in the Solar System. In doing so, we

assume that the generic time-time component of the spacetime metric is in the form

g00 ≃ 1 + h00, (1)

where h00 is a small perturbation of the Minkowski spacetime. The gravitational potential

U =
c2h00

2
(2)
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consists of the sum of two contributions

U = UN + ∆Un, n = 2, 3, (3)

i.e. the Newtonian potential UN = −
GM

r
and the additional term ∆Un, which is an extra-potential

peculiar to the modified gravity model considered. We assume that |∆Un| ≪ |UN |, so that it can be

treated as a perturbation. Furthermore, we use the following notation

∆U2 =
K2

r2
, [K2] = L4 T−2 (4)

for extra-potentials falling off as ∼ 1

r2
and

∆U3 =
K3

r3
, [K3] = L5 T−2 (5)

for those falling off as ∼ 1

r3
.

2.1. The r−2 extra-potentials

Here, we focus on some models of modified gravity leading to an additional term proportional

to r−2. To begin with, we remember that, in classical GR, the Reissner-Nordström metric (Wald

2010), which describes the gravitational field of charged, non-rotating spherically symmetric

body, has just an r−2 term related to the charge Q of the source. In this case, we may write

∆U2 =
GQ2

8πε0c2r2
, (6)

and

K2 =
GQ2

8πε0c2
. (7)

Constraints on the net electric charge Q of astronomical and astrophysical objects have been set

by Iorio (2012); in particular, the constraint for the Earth charge is |Q| . 4 × 1013 C, obtained by

studying the GRACE mission (Tapley et al. 2004) around the Earth.

Ruggiero & Radicella (2015), in the framework of f (T ) gravity, studied weak-field

spherically symmetric solutions for Lagrangians in the form f (T ) = T + αT n, where α is a small

constant, whose dimensions are [α] = L2, parametrizing the departure of these theories from

GR, and |n| , 1. Among their results, the case with n = 2, corresponding to the Lagrangian

f (T ) = T + αT 2, is interesting since every general Lagrangian reduces to this form, in first

approximation. Cosmological constraints on these models of modified gravity have ben set by
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Nunes et al. (2016); Xu et al. (2018) showing that they are consistent with the observations. The

corresponding extra-potential turns out to be ∆U2 = −
16αc2

r2
, and K2 = −16αc2. A quadratic

Lagrangian in f (T ) gravity was considered also by Iorio & Saridakis (2012), using a different

approach, to obtain a weak-field spherically symmetric solution for the gravitational field in the

Solar System. This lead to a slightly different parameterization: K2 = −3αc2.

In Einstein-Gauss-Bonnet gravity, the Maeda-Dadhich solution (Maeda & Dadhich 2007;

Bhattacharya & Chakraborty 2017) has an extra potential in the form ∆U2 =
2G2M2q̃

c2r2
, where q̃

is a dimensionless parameter, whose best constraint |q̃| . 0.024 has been obtained by perihelion

precession (Bhattacharya & Chakraborty 2017); in this case K2 =
2G2M2q̃

c2
.

Ali & Khalil (2016) obtained a quantum corrected Schwarzschild metric, starting from a

quantum Raychaudhuri equation (QRE) (see also Jusufi (2017)); in this context, the extra potential

is ∆U2 =
~Gη

2cr2
, where η is a dimensionless constant; in this case K2 =

~Gη

2c
.

2.2. The r−3 extra-potentials

Here, we focus on some modified gravity models whose extra-potential is proportional to r−3.

Bonanno & Reuter (2000), using the renormalization group approach, obtained a modification

of the Schwarzschild metric whose asymptotical behaviour contains a perturbation ∆U3 =
G2Mω

c3r3
.

In this model the parameter ω =
167~

30π
is a constant which encodes the quantum effects (Jusufi

2017); actually, there are no free parameters in this model, so it cannot be constrained by

observations.

The Sotiriou-Zhou solution (Sotiriou & Zhou 2014) is obtained starting from the coupling

of a scalar field φ with the Gauss-Bonnet invariant; however, it is important to emphasize

(Bhattacharya & Chakraborty 2017) that, in this case, such a solution is valid for black hole or

may describe wormholes (Kanti et al. 2011, 2012), so it not suitable for properly describing the

spacetime around, say, a star like the Sun. Nonetheless, because of its interest in describing the

dynamics around, e.g., the galactic black hole, we mention it here. Now, the perturbation is

∆U3 =
GMP2

12r3
, where P is a constant whose dimensions are [P] = L2. It represents the charge

associated to the scalar field. Indeed, in what follows we will not constrain this model, since

our analysis is based on the motion of the Earth’s geodetic satellites. It is interesting to point

out that, as shown by Antoniou et al. (2018a,b), the Sotiriou-Zhou solution is a special case of

linear coupling between the scalar field with the Gauss-Bonnet invariant; the more general case is

considered in the aforementioned papers.
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In the framework of string theory, there are closed string excitations leading to a second rank

antisymmetric tensor field, known as the Kalb-Ramond field which, from a certain viewpoint,

generalizes the electromagnetic potential (Chakraborty & SenGupta 2017). It has been suggested

that this field may have an impact on the four dimensional spacetime: in particular (see

Chakraborty & SenGupta (2017) and references therein) if the Kalb-Ramond field is present in

four spacetime dimension, there is the extra-potential ∆U3 = −
GMb

3r3
. Here, b is the Kalb-Ramond

parameter with dimensions [b] = L2; accordingly, we have K3 = −
GMb

3
.

For the sake of completeness, we mention here that similar extra-potentials propor-

tional to r−3 have been obtained also in different models of modified gravity, which are

however effective at the particle physics scales (Fischbach et al. 2001; Adelberger et al.

2003; Randall & Sundrum 1999; Adelberger et al. 2007; Mostepanenko & Sokolov 1987;

Ferrer & Grifols 1998; Ferrer & Nowakowski 1999; Dobrescu & Mocioiu 2006; Adelberger et al.

2009) and, hence, cannot be constrained using our approach.

3. The constraints on the r−2 extra-potential

From Equation (4), the perturbing radial acceleration

A2 = −2
K2

r3
(8)

arises.

According to Figure 2 of Appleby et al. (2016), the range residuals δρ(t) of LAGEOS

obtained by fitting a complete set of dynamical and measurement models of several standard

gravitational and non-gravitational effects to precise ranging measurements collected from 1993

to 2014 by some Earth-based SLR stations are at the ≃ 2 − 5 cm level. More precisely, the

directly observable quantities with the SLR technique are the measurements of the two-way

time-of-flight of the electromagnetic radiation bounced back by the retroreflectors which entirely

cover the LAGEOS surface. They are then corrected for additional delays due to the atmosphere,

satellite centre-of-mass, the Shapiro delay, etc. As an outcome, a time series of station-satellite

range measurements ρO(t) performed at various epochs is obtained; it is dubbed with “O”, which

stands for “Observable”. The next step consists of an accurate mathematical modeling of the

entire range measurement process, including the satellite’s dynamics, the propagation of the

laser pulses and the instruments’ functioning and measurement procedure; as a consequence, a

time series “C” of station-satellite ranges ρC(t), calculated at the same epochs of the measured

ones, is produced, usually with numerical techniques. At this stage, it should be kept in mind

that the models used in this step are, in general, inaccurate because of a number of reasons: the

mathematical form of some of their parts can be partly or totally wrong, the physical parameters

entering them are known with unavoidably limited accuracy, some more or less fundamental
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pieces of Nature, like, e.g., this or that dynamical accelerations affecting the satellite’s motion, are

not modeled at all. Then, the time series ρC(t) is fit to ρO(t) in a least-square way by estimating a

huge number of solve-for parameters
{

p
}

. Usually they include, among others, also quantities in

terms of which the gravitational environment is expressed like, e.g., the primary’s mass, multipole

moments, etc. Finally, ρC(t) is re-calculated at the same epochs of the measurements of ρO(t)

by means of the previously estimated parameters
{

p
}

. Thus, a post-fit time series ρ
pf

C

(

t;
{

p
})

is generated and subtracted from ρO(t) in order to obtain the time series of the post-fit range

residuals δρ(t) = ρ
pf

C

(

t;
{

p
}) − ρO(t). If the whole data reduction went smooth and the models

were adequate, the temporal pattern of δρ(t) should look like a rather uniform band, without any

discernable peculiar feature like, say, a secular trend or a harmonic signature. The mean value

of δρ(t) is smaller than its standard deviation or of any other statistical measure of its scatter

which should not excess too much the size of the measurement errors; the ultimate goal of an

accurate modeling is, indeed, to push the accuracy of the post-fit residuals down to the level of the

measurement errors themselves. In principle, the post-fit residuals account, among other things,

also for any unmodeled or mismodeled feature of motion, and can be used to put constraints on

it by setting the largest admissible value compatible with the actual width of the range residuals.

By straightforwardly comparing our Figure 1, which depicts a numerically produced time series

of the range perturbation induced by Equation (8) on the distance from the Yarragadee station to

LAGEOS, with Figure 2 of Appleby et al. (2016), it is possible to preliminarily infer

|K2| . 2.1 × 106 m4 s−2 (9)

in the sense that larger values of |K2| would generate a simulated signature with an amplitude ∆ρ

exceeding the ≃ 2 − 5 cm level of Figure 2 in Appleby et al. (2016). In other words, if |K2| were

larger than Equation (9), the theoretical time series of its range perturbation would not stay within

the margins of the experimental post-fit residuals of Figure 2 in Appleby et al. (2016) which, in

principle, fully account also for it since no unconventional dynamics was modeled at all. In the

parameterization of Iorio & Saridakis (2012); Xie & Deng (2013)

K2 → −3c2α, (10)

the bound of Equation (9) corresponds to

|α| . 7.79 × 10−12 m2, (11)

while, from (Ruggiero & Radicella 2015; Iorio et al. 2015)

K2 → −16c2α, (12)

one gets

|α| . 1.46 × 10−12 m2. (13)

It must be noted that Equation (11) is about 16 − 14 orders of magnitude better than the bounds

previously obtained in Iorio & Saridakis (2012); Xie & Deng (2013), while Equation (13)
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improve the results in Ruggiero & Radicella (2015); Iorio et al. (2015) by about 14 − 11 orders of

magnitude. It is interesting to note that Equation (13) is even smaller than the lower bound

|α|min = 8.07 × 10−9 m2 (14)

reported in Farrugia et al. (2016) by about 4 orders of magnitude. In order to obtain their tightest

constraints, both Iorio & Saridakis (2012); Xie & Deng (2013) and Ruggiero & Radicella (2015);

Iorio et al. (2015); Farrugia et al. (2016) used as observables the most recent observational

constraints available at that times on the secular perihelion precessions of some inner planets

in the field of the Sun by comparing them with the theoretical predictions for the anomalous

pericenter precessions due to Equation (8).

As for the other models of modified gravity, for the charge in the Reissner-Nordström

metric we obtain |Q| . 7.93 × 1011 C which is about two orders of magnitude better than the

bounds obtained in by Iorio (2012). Our bound on the Maeda-Dadhich solution parameter is

|q̃| . 5.94 × 10−7, which is about six orders of magnitude better than the previous best constraint

obtained by Bhattacharya & Chakraborty (2017). Eventually, for the Ali & Khalil (2016)

parameter, we obtain |η| . 1.79 × 1059: we remember that this model is determined by quantum

corrections, hence the scale where these corrections are supposed to be effective is quite different

than the one we are testing here.

We remark that Appleby et al. (2016) did not explicitly model any modified model of gravity.

Thus, Equation (8), if really existent in Nature, may have been partially absorbed in the usual

parametric estimation of the standard data reduction procedure and, at least to a certain extent,

removed from the time series displayed in Figure 2 of Appleby et al. (2016). As a consequence,

the bound of Equation (9) may turn out to be somewhat optimistic, i.e. too tight. Anyway, it

is not possible to a-priori quantify such a putative partial removal just on speculative grounds.

Only a dedicated re-analysis of the same data set used in Appleby et al. (2016) by explicitly

modeling Equation (8) and estimating K2 along with the other usual solve-for parameters

could, perhaps, effectively assess the impact of using straightforwardly our Figure 1 in a direct

comparison with Figure 2 of Appleby et al. (2016). On the other hand, it must also be noted

that Equation (9) was conservatively inferred by assuming that range residuals by Appleby et al.

(2016) were entirely due to Equation (8) itself. If, instead, they were to be partly attributed to

other unmodelled/mismodelled conventional physical effects, the remaining putative contribution

of Equation (8) to Figure 2 of Appleby et al. (2016) would yield a bound on K2 even smaller than

Equation (9) itself. Moreover, it is also possible that, even by explicitly modeling and solving for

K2 in a dedicated re-analysis of the SLR observations, the resulting constraints on it may still be

affected by any other possible unmodeled/mismodeled acceleration, both of standard and exotic

nature. Indeed, in standard practice, it is not possible to determine everything; a selection of the

dynamical effects to be modeled and of their parameters which can be practically estimated is

always unavoidably made in real data reductions. Thus, the effect of any sort of “Russell teapots”

may well still creep into the desired solved-for values of K2 estimated in a full covariance analysis.

Furthermore, it cannot be kept silent that the present approach has been-and is-largely adopted in

the current literature (e.g. by Iorio & Saridakis (2012); Xie & Deng (2013); Ruggiero & Radicella



– 10 –

(2015); Iorio et al. (2015)) to infer bounds on any sort of non-standard modified models of gravity

by using completely different kinds of data ranging from planetary observations to pulsar timing

previously processed by other teams who modelled only standard physics inasmuch the same way

as we did here. In any case, even if the bounds of Equation (9) and Equations (11) to (13) were

to be up to one order of magnitude weaker, nonetheless they would represent a quite remarkable

improvement with respect to the planetary ones.

By applying the computational scheme outlined in Section B to the perturbing radial

acceleration of Equation (8), it is possible to obtain the corresponding radial, transverse and

normal orbital perturbations over an integer number j of revolutions; they turn out to be

∆R = 0, (15)

∆T = − j2πK2

µ (1 + e cos f0)
, j ∈ N+, j ≥ 1 (16)

∆N = 0. (17)

The results of Equations (15) to (17) are exact in e since no a-priori simplifying approximations

were adopted in deriving them. Furthermore, Equations (15) to (17) can be used to infer

other independent bounds on K2 by comparing them with the time series of the residuals

δR(t), δT (t), δN(t) of the LAGEOS and LAGEOS II spacecraft covering ∆t = 13 yr produced

by Coulot et al. (2008) and displayed in their Figure 2 and Figure 12. The resulting preliminary

constraints turn out to be about one-two orders of magnitude weaker than that of Equation (9).

Indeed, since in the case treated in Coulot et al. (2008), it is

j ≃ 30, 731 (18)

and the RMS of the transverse orbital components of the two LAGEOS satellites are of the order

of a few cm, as per Table 5 and Table 7 of Coulot et al. (2008), Equation (16) returns

|K2| . (3.4 − 9.1) × 107 m4 s−2. (19)

Since also Coulot et al. (2008) modeled just standard physics, the same caveat previously

described for Equation (9) holds to the bounds of Equation (19) as well.

4. The constraints on the r−3 extra-potential

From Equation (5), the extra-acceleration

A3 = −3
K3

r4
(20)
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arises.

By proceeding as in Section 3, a straightforward comparison of the range residuals δρ(t) of

LAGEOS produced by Appleby et al. (2016) with the numerically computed time series of the

range perturbation ∆ρ(t) due to Equation (20), displayed in Figure 2, allows to preliminarily infer

−2.5 × 1012 m5 s−2
. K3 . 4.1 × 1012 m5 s−2. (21)

On using these bounds, we obtain the following constraints on the Kalb-Ramond parameter:

|b| . 0.038 m2.

The bounds in Equation (21) are about four orders magnitude tighter than those released in

Iorio (2012) referring to the Earth’s field. The radial, transverse and normal orbital shifts after j

orbital revolutions are

∆R = 0, (22)

∆T = − j6πK3

µa
(

1 − e2
)

(1 + e cos f0)
, j ∈ N+, j ≥ 1 (23)

∆N = 0. (24)

By using Equation (23) and the RMS of the transverse residuals δT (t) of LAGEOS and LAGEOS

II published in Coulot et al. (2008), it can be obtained

|K3| . (1.4 − 3.7) × 1014 m5 s−2; (25)

such figures are about two orders of magnitude weaker than the bounds of Equation (21).

5. Summary and conclusions

We exploited existing accurate time series of station-spacecraft range residuals of the

geodetic satellites of the LAGEOS family to preliminary put constraints in the field of Earth

on some modified models of gravity falling as r−n, n = 2, 3. After having constrained their

phenomenological parameters K2, K3 without making any assumptions on the theoretical

frameworks giving rise to them, we translated such bounds in terms of the parameters of some

specific models yielding r−n, n = 2, 3 extra-potentials. Our results are summarized in Table 2.

Although necessarily preliminary because the modified models considered here are not explicitly

modeled in all the currently available SLR data reductions, the resulting constraints turn out to be

much tighter than other ones existing in the literature, especially in those cases in which K2, K3

are independent of the source of the gravity field. Thus, they show the great potential of the

approach proposed here. To this aim, it is important to stress that the lifetime of the LAGEOS
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satellites, which are tracked on an almost continuous basis since decades in view of their great

importance in several geodetic studies, is of the order of ≈ 105 yr. The availability of data records

of ever increasing length should allow to further improve and make more robust the present

constraints in a foreseeable future.

A. Notations and definitions

Here, some basic notations and definitions used in the text are presented

G : Newtonian constant of gravitation

c : speed of light in vacuum

M : mass of the primary

µ � GM : gravitational parameter of the primary

r : position vector of the satellite

r : distance of the satellite to the primary

a : semimajor axis

nb �

√

µa−3 : Keplerian mean motion

Pb = 2πn−1
b

: Keplerian orbital period

e : eccentricity

p � a(1 − e2) : semilatus rectum

I : inclination of the orbital plane

Ω : longitude of the ascending node

ω : argument of pericenter

tp : time of pericenter passage

t0 : reference epoch

M � nb

(

t − tp

)

: mean anomaly

η � nb

(

t0 − tp

)

: mean anomaly at epoch

f : true anomaly
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f0 : true anomaly at epoch

∆U : extra-potential of the modified model of gravity

A : disturbing acceleration

AR : radial component of A

AT : transverse component of A

AN : normal component of A

B. Computational scheme

If the motion of a test particle about its primary is affected by some relatively small

post-Keplerian (pK) acceleration A of arbitrary origin, the impact of the latter on the otherwise

Keplerian trajectory of the orbiter can be calculated perturbatively as follows. Casotto

(1993), working in the RT N frame, analytically calculated the instantaneous perturbations

∆R ( f ) , ∆T ( f ) , ∆N ( f ) of the radial, transverse and normal components R, T, N of the position

vector r induced by a generic disturbing acceleration A: they are

∆R ( f ) =
r ( f )

a
∆a ( f ) − a cos f∆e ( f ) +

ae sin f
√

1 − e2
∆M ( f ) , (B1)

∆T ( f ) = a sin f

[

1 +
r ( f )

p

]

∆e ( f ) + r ( f )
[

cos I∆Ω ( f ) + ∆ω ( f )
]

+
a2

r ( f )

√
1 − e2∆M ( f ) , (B2)

∆N ( f ) = r ( f )
[

sin u ∆I ( f ) − sin I cos u ∆Ω ( f )
]

. (B3)

In Equations (B1) to (B3), the instantaneous changes ∆a ( f ) , ∆e ( f ) , ∆I ( f ) , ∆Ω ( f ) , ∆ω ( f )

must be worked out as

∆κ ( f ) =

∫ f

f0

dκ

dt

dt

d f
′ d f

′
, κ = a, e, I, Ω, ω, (B4)
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where the time derivatives dκ/dt of the osculating Keplerian orbital elements κ are to be taken

from the right-hand-sides of the Gauss equations

da

dt
=

2

nb

√
1 − e2

[

eAR sin f + AT

(

p

r

)]

, (B5)

de

dt
=

√
1 − e2

nba

{

AR sin f + AT

[

cos f +
1

e

(

1 − r

a

)

]}

, (B6)

dI

dt
=

1

nba
√

1 − e2
AN

(

r

a

)

cos u, (B7)

dΩ

dt
=

1

nba sin I
√

1 − e2
AN

(

r

a

)

sin u, (B8)

dω

dt
= − cos I

dΩ

dt
+

√
1 − e2

nbae

[

−AR cos f + AT

(

1 +
r

p

)

sin f

]

, (B9)

evaluated onto the Keplerian ellipse

r =
p

1 + e cos f
(B10)

as unperturbed reference trajectory; the same holds also for

dt

d f
=

r2

√
µp
=

(

1 − e2
)3/2

nb (1 + e cos f )2
(B11)

entering Equation (B4). The case of the mean anomalyM is subtler; it requires more care. Indeed,

if the mean motion nb is time-dependent because of some physical phenomena, it can be written

as1 (Milani et al. 1987; Brumberg 1991; Bertotti et al. 2003)

M (t) = η +

∫ t

t0

nb

(

t
′)

dt
′
; (B12)

the Gauss equation for the variation of the mean anomaly at epoch is (Milani et al. 1987;

Brumberg 1991; Bertotti et al. 2003)

dη

dt
= − 2

nba
AR

(

r

a

)

−

(

1 − e2
)

nbae

[

−AR cos f + AT

(

1 +
r

p

)

sin f

]

. (B13)

1The mean anomaly at epoch is denoted as η by Milani et al. (1987), l0 by Brumberg (1991),

and ǫ
′

by Bertotti et al. (2003). It is a “slow” variable in the sense that its time derivative vanishes

in the limit A→ 0; cfr. with Equation (B13).
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If nb is constant, as in the Keplerian case, Equation (B12) reduces to the usual form

M (t) = η + nb (t − t0) . (B14)

In general, when a disturbing acceleration is present, the semimajor axis a varies according to

Equation (B5); thus, also the mean motion nb experiences a change2

nb → nb + ∆nb (t) (B15)

which can be calculated in terms of the true anomaly f as

∆nb ( f ) =
∂nb

∂a
∆a ( f ) = −3

2

nb

a

∫ f

f0

da

dt

dt

d f
′ d f

′
(B16)

by means of Equation (B5) and Equation (B11). Depending on the specific perturbation

considered, Equation (B16) does not generally vanish. Thus, the total change experienced by the

mean anomalyM due to the disturbing acceleration A can be obtained as

∆M ( f ) = ∆η ( f ) +

∫ t

t0

∆nb

(

t
′)

dt
′
, (B17)

where

∆η ( f ) =

∫ f

f0

dη

dt

dt

d f
′ d f

′
, (B18)

∫ t

t0

∆nb

(

t
′)

dt
′
= −3

2

nb

a

∫ f

f0

∆a
(

f
′) dt

d f
′ d f

′
. (B19)

It should be stressed that, depending on the specific perturbing acceleration A at hand, the

calculation of Equation (B19) may turn out to be rather cumbersome.

C. Tables and Figures

2We neglect the case µ (t).
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Table 1: Relevant orbital parameters of the existing geodetic satellites of the LAGEOS family.

a (km) e Pb (hr)

LAGEOS 12270 0.0045 3.7573

LAGEOS II 12163 0.0135 3.7085

LARES 7828 0.0008 1.9146

Model Parameter Constraint

Reissner-Nordström (Wald 2010) |Q| = 2c

√

2πε0K2

G
. 7.93 × 1011 C, from Equation (7)

(Iorio & Saridakis 2012) f (T ) |α| = |K2 |
3c2 . 7.79 × 10−12 m2, from Equation (11)

(Ruggiero & Radicella 2015) f (T ) |α| = |K2 |
16c2 . 1.46 × 10−12 m2, from Equation (13)

(Maeda & Dadhich 2007) Einstein-Gauss-Bonnet |q̃| = c2 |K2 |
2µ2 . 5.94 × 10−7, from Equation (9)

(Ali & Khalil 2016) |η| = 2c|K2 |
~G

. 1.79 × 1059, from Equation (9)

(Chakraborty & SenGupta 2017) Kalb-Ramond |b| = 3|K3 |
µ

. 0.038 m2, from Equation (21)

Table 2: Constraints on the parameters of the various models treated in Sections 3 to 4 in terms of

the phenomenological ones on K2, K3 inferred from the SLR data of the LAGEOS satellites.

Fig. 1.— Numerically produced time series of the perturbation ∆ρ(t) of the range ρ be-

tween the Earth-based SLR station 7090 (Yarragadee, Australia) and the LAGEOS satel-

lite due to Equation (4) for K2 = ∓2.1 × 106 m4 s−2 as the difference of two nu-

merical integrations of the satellites’s equations of motion in rectangular Cartesian co-

ordinates with and without Equation (8) over the same time span 21 yr long (1993-

2014) of Figure 2 of Appleby et al. (2016). The station coordinates were retrieved from

https://ilrs.cddis.eosdis.nasa.gov/network/stations/active/YARL general.html, while the HORI-

ZONS Web-interface by NASA JPL (https://ssd.jpl.nasa.gov/horizons.cgi) was used to retrieve

the initial state vector of LAGEOS.
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Fig. 2.— Numerically produced time series of the perturbation ∆ρ(t) of the range ρ between

the Earth-based SLR station 7090 (Yarragadee, Australia) and the LAGEOS satellite due to

Equation (5) for K3 = −2.5 × 1012 m5 s−2 (left panel), K3 = 4.1 × 1012 m5 s−2 (right panel)

as the difference of two numerical integrations of the satellites’s equations of motion in rect-

angular Cartesian coordinates with and without Equation (20) over the same time span 21

yr long (1993-2014) of Figure 2 of Appleby et al. (2016). The station coordinates were re-

trieved from https://ilrs.cddis.eosdis.nasa.gov/network/stations/active/YARL general.html, while

the HORIZONS Web-interface by NASA JPL (https://ssd.jpl.nasa.gov/horizons.cgi) was used to

retrieve the initial state vector of LAGEOS.
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