The Series contains volumes of the proceedings of the annual conferences of the Scientific Society UID – Unione Italiana per il Disegno and the results of international meetings, research and symposia organised as part of the activities promoted or patronised by UID. The topics concern the Scientific Disciplinary Sector ICAR/17 Drawing with interdisciplinary research areas. The texts are in Italian or in the author’s mother tongue (French, English, Portuguese, Spanish, German) and/or in English. The international Scientific Committee includes members of the UID Scientific Technical Committee and numerous other foreign scholars who are experts in the field of Representation.

The volumes of the series can be published either in print or in open access and all the authors’ contributions are subject to double blind peer review according to the currently standard scientific evaluation criteria.

Scientific Committee

Giuseppe Amoruso Politecnico di Milano
Paolo Belardi Università degli Studi di Perugia
Stefano Bertocchi Università degli Studi di Firenze
Mario Centofanti Università degli Studi dell’Aquila
Enrico Cicalò Università degli Studi di Sassari
Antonio Conte Università degli Studi della Basilicata
Mario Doci Sapienza Università di Roma
Edoardo Dotto Università degli Studi di Catania
Maria Linda Falcidieno Università degli Studi di Genova
Francesca Fatta Università degli Studi Mediterranea di Reggio Calabria
Fabrizio Gay Università IUV di Venezia
Andrea Giordano Università degli Studi di Pavia
Elena Ippoliti Sapienza Università di Roma
Francesco Maggio Università degli Studi di Palermo
Anna Osello Politecnico di Torino
Caterina Palestini Università degli Studi “G. d’Annunzio” di Chieti-Pescara
Lia Maria Papa Università degli Studi di Napoli “Federico II”
Rossella Salerno Politecnico di Milano
Alberto Sdegno Università degli Studi di Udine
Rossella Salerno Politecnico di Milano
Chiara Vernizzi Università degli Studi di Parma
Ornella Zerlenga Università degli Studi della Campania “Luigi Vanvitelli”

Members of foreign structures

Caroline Astrid Bruzelius Duke University - USA
Pilar Chías Universidad de Alcalá - Spagna
Frank Ching University of Washington - USA
Livio De Luca UMR CNRS/MCC MAP Marseille - Francia
Roberto Ferraris Universidad Nacional de Córdoba - Argentina
Glaucia Augusto Fonseca Universidade Federal do Rio de Janeiro - Brasile
Pedro Antonio Janeiro Universidade de Lisboa - Portugal
Jacques Laubscher Tshwane University of Technology - Sudáfrica
Cornelie Leopold Technische Universität Kaiserslautern - Alemania
Juan José Fernández Martín Universidad de Valladolid - Spagna
Carlos Montes Serrano Universidad de Valladolid - Spagna
César Otero Universidad de Cantabria - Spagna
Guillermo Peris Fajarmes Universitat Politècnica de València - Spagna
José Antonio Franco Taboada Universidade da Coruña - Spagna
Michael John Kirk Walsh Nanyang Technological University - Singapore
This volume is published in open access format, i.e. the file of the entire work can be freely downloaded from the FrancoAngeli Open Access platform (http://bit.ly/francoangeli-oa). On the FrancoAngeli Open Access platform, it is possible to publish articles and monographs, according to ethical and quality standards while ensuring open access to the content itself. It guarantees the preservation in the major international OA archives and repositories. Through the integration with its entire catalog of publications and series, FrancoAngeli also maximizes visibility, user accessibility and impact for the author.

Read more:
http://www.francoangeli.it/come_pubblicare/pubblicare_19.asp

Readers who wish to find out about the books and periodicals published by us can visit our website www.francoangeli.it and subscribe to our “Informatemi” (notify me) service to receive e-mail notifications.
Scientific Committee
Salvatore Barba
Università di Salerno
Marco Giorgio Bevilacqua
Università di Pisa
Stefano Brusaporci
Università dell’Aquila
Francesca Fatta
Università Mediterranea di Reggio Calabria
Andrea Giordano
Università di Padova
Alessandro Luigini
Libera Università di Bolzano
Michele Russo
Sapienza Università di Roma
Cettina Santagati
Università di Catania
Alberto Sdegno
Università di Udine
Roberta Spallone
Politecnico di Torino

Peer Reviewers
Marinella Arena
Università Mediterranea di Reggio Calabria
Salvatore Barba
Università di Salerno
Marco Giorgio Bevilacqua
Università di Pisa
Cecilia Bolognesi
Politecnico di Milano
Stefano Brusaporci
Università dell’Aquila
Francesca Fatta
Università Mediterranea di Reggio Calabria
Andrea Giordano
Università di Padova
Massimo Leserri
Università di Napoli “Federico II”
Stefania Landi
Università di Pisa
Massimiliano Lo Turco
Politecnico di Torino
Alessandro Luigini
Libera Università di Bolzano
Pamela Maiezza
Università dell’Aquila
Domenico Meda
Università Mediterranea di Reggio Calabria
Cosimo Monteleone
Università di Padova
Michele Russo
Sapienza Università di Roma
Cettina Santagati
Università di Catania
Alberto Sdegno
Università di Udine
Roberta Spallone
Politecnico di Torino
Marco Vitali
Politecnico di Torino

Copyright © 2021 by FrancoAngeli s.r.l., Milano, Italy.

This work, and each part thereof, is protected by copyright law and is published in this digital version under the license Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0).

By downloading this work, the User accepts all the conditions of the license agreement for the work as stated and set out on the website https://creativecommons.org/licenses/by-nc-nd/4.0.

Cover image: Michele Russo

The texts as well as all published images have been provided by the authors for publication with copyright and scientific responsibility towards third parties. The revision and editing is by the editors of the book.

AR&AI theoretical concepts

23
Francesco Bergamo
The Role of Drawing in Data Analysis and Data Representation

29
Giorgio Bunetti, Sara Corte, Michele Rossi
Artificial Intelligence, Big Data and Cultural Heritage

35
Marco Ferrara, Lodovica Valetti
Virtual Tours and Representations of Cultural Heritage: Ethical Issues

41
Claudio Marchese, Antonino Nastasi
The Magnificent AI & AR Combinations: Limits! Gorgeous Imperfections!

47
Valerio Patna
Data, Models and Computer Vision: Three Hands-on Projects

53
Alberto Sdegno
Drawing Automata

59
Marco Vitali, Giulia Bertola, Fabrizio Natta, Francesca Ronco

AR&AI virtual reconstruction

67
Alessio Bortot
Physical and Digital Pop-Ups. An AR Application in the Treatises on Stereometry

73
Maurizio Marco Bocconcino, Mariapaola Vozzola
The Value of a Dynamic Memory: from Heritage Conservation in Turin

79
Antonio Calandrelli
Augmented Reality and the Enhancement of Cultural Heritage: the Case of Palazzo Mocenigo in Padua

85
Casina Càndita, Andrea Quartara, Alessandro Meloni
The Appearance of Keplerian Polyhedra in an Illusory Architecture

91
Marco Grazia Curci, Daniela Cola, Sara Calzecchi, Francesca Pia Mandelli
Digital Tools at the Service of Public Administrations

97
Riccardo flora, Raffaello Cutugno, Teresa della Corte, Veronica Marina
Studies for the Virtual Reconstruction of the Terme del Foro of Cumae

103
Maurizio Perticarini, Chiara Calegari
Making the Invisible Visible: Virtual/Interactive Itineraries in Roman Padua

AR&AI heritage routes

111
Marianna Arena, Giuseppe Lax
Saint Nicholas of Myra. Cataloguing, Identification, and Recognition Through AI

117
Stefano Brusaporci, Pamela Maresca, Alessandra Tata, Fabio Graziosi, Fabio Franchi
Prosthetic Visualizations for a Smart Heritage

123
Gerardo Maria Cennamo
Advanced Practices of Augmented Reality: the Open Air Museum Systems for the Valorisation and Dissemination of Cultural Heritage

129
Serena Fumera, Benedetta Frezzati
The Use of AR Illustration in the Promotion of Heritage Sites

135
Alessandro Luigi, Stefano Brusaporci, Alessandro Bassi, Pamela Maresca
The Sanctuary BVMA in Pescara: AR Fruition of the Pre-Conciliar Layout

141
Alessandra Ragliano, Greta Attalea, Anna Lisa Pecora
Phytosarchaeology for the Phlegraean Fields

147
Andrea Rolando, Domenico D’Uva, Alessandro Scandiffi
A Technique to Measure the Spatial Quality of Slow Routes in Fragile Territories Using Image Segmentation

153
Giorgio Verdiani, Vincenzo Ceccio, Massimiliano Masullo, Andrea Pascale, Luigi Matti
When the Real Really Means: VR and AR Experiences in Real Environments

159
Donella Zerlenga, Vincenzo Ceccio, Massimiliano Masullo, Andrea Pascale, Luigi Matti
Drawing, Visualization and Augmented Reality of the 1791 Celebration in Naples

AR&AI classification and 3D analysis

167
Marco Giorgio Bevilacqua, Anthony Fedeli, Federico Capriotti, Antonella Gidi, Cosimo Monteleone, Andrea Piemonte
Immersive Technologies for the Museum of the Chartreuse of Calci

173
Massimiliano Campi, Valerio Cera, Francesco Cutugna, Antonello Di Luga, Domenico Iovane, Antonio Orsiek
CHROME Project: Representation and Survey for AI Development

179
Paolo Cinelli, Roberto Piericchi, Romano Quattrini, Emmanuele Fantoni, Romano Nesi
Deep Learning for Point Clouds Classification in the Ducal Palace at Urbino

185
Pierpaolo D’Alessandro, Federico Minelli
Automated Modelling of Masonry Walls: a ML and AR Approach

191
Elisabetta Caterino Giovannini
Data Modelling in Architecture: Digital Architectural Representations
AR&AI urban enhancement

223
Giuseppe Amorosa, Polina Mironenko, Valentina Demarchi
Rebuilding Amatrice: Representation, Experience, and Digital Arctifice

229
Paolo Belardi, Valeria Menciotti, Giovanni Remascini, Margherita Mario Ristaini, Carolina Sanguigni
AR+AI = Augmented (Retail + Identity) for Historical Retail Heritage

235
Fabio Bianconi, Marco Filippucci, Marco Secconari
New Interpretive Models for the Study of Urban Space

241
Marco Cencini, Giovanna Spinoffano, Mauro Saccare, Antonio Caramora
Augmented Reality as a Research Tool, for the Knowledge and Enhancement of Cultural Heritage

247
Alessandra Pagliano
Augmenting Angri: Murals in AR for Urban Regeneration and Historical Memory

253
Caterina Palestini, Alessandro Basso
Evolutionary Time Lines, Hypothesis of an AI+AR–Based Virtual Museum

259
Daniele Russo, Federica O. Oppedisano
Marche in Tavola. Augmented Board Game for Enogastronomic Promotion

AR&AI museum heritage

267
Massimo Banina, Daniele Calzada
An Immersive Room Between Scylla and Charybdis

273
Francesco Banini, Isabella Fina, Ludovica Gireazzu, Cosme Montecine, Elena Sivakur New Digital Interfaces on the Gallerie dell’Accademia in Venice

279
Laura Cartautis, Marco Fasolo, Flavio Camagna
Wood Inlays and AR: Considerations Regarding Perspective

285
Giuseppe D’Acutino
Augmented Reality and Museum Exhibition. The Case of the Tribuna of Palazzo Grimani in Venice

291
Giuseppe Di Gregorio
The Rock Church of San Nicolabio of the Pantalica Site and 3DLAB VR/AR–Project

297
Elena Ippoliti
Understanding to Enhance, Between the Technical and Humanist Approaches

303
Gabriella Iovino, Massimiliano Caramichella Illusory Scene and Immersive Space in Tintoretto’s Theatre

309
Flora Pampolin, Diana Papi, Antonio Gambina
Media Touch, Feel, Think: Survey, Catalog and Sensory Limitations

AR&AI education and shape representation

321
Valeria Raspato, Nicola Scoi, Carlo, Andrea Moir, Matteo Monteghini
AR+AI in the Didactics of the Representation Disciplines

327
Alberto Tona, Meher Shashwat Nigam, Sastya Federica, Amira Ahsan
Limitations and Review of Geometric Deep Learning Algorithms for Monocular 3D Reconstruction in Architecture
Abstract

The links between representation and artificial intelligence (AI) invade many fields of architectural research, recording continuous and significant advances: they require, on the one hand, a constant update of the state of the art and, on the other hand, careful consideration of the role of Representation in interdisciplinary research in this field. The present contribution intends to investigate these intertwining in some of the most frequented research fields in recent years: the valorization and communication of Cultural Heritage and cultural tourism, the experiences in the museum field, the research on the role of the prototype within the processes of artificial intelligence applied to architecture.

Keywords
cultural heritage, museum, digital fabrication, artificial intelligence, augmented reality.
Introduction (MV)

The intertwining of representation – in particular in its manifestations in the field of augmented reality (AR) – with artificial intelligence (AI) spans many fields of architectural research and registers in the contemporary world continuous and significant advances that require, on the one hand, a constant updating of the state of the art and, on the other hand, careful considerations on the role of Representation in interdisciplinary research in this field. The present contribution intends to investigate these connections in some of the most frequented fields in architectural research in recent years: research on the enhancement and communication of Cultural Heritage and cultural tourism, research on the most recent and innovative experiences in the museum field, research on the role of the prototype within the processes of artificial intelligence applied to architecture.

According to the most recent experiences conducted on the valorization and communication of Cultural Heritage, the most used tools to ensure its success range from the creation of cognitive maps to the development of AI technologies for the automatic digitization of cultural heritage, or the use of Deep Learning for the recognition of monuments and the construction of mobile apps.

In the museum field, artificial intelligence is increasingly used to develop different tools such as robots, chatbots, and websites, which allow analyzing data related to visitors and collections, where the contribution of representation disciplines is nowadays mainly connected to the possible outputs of Object recognition operations and the applications of this technology. The link between plastic model, AI, and AR is articulated in several aspects based on the ‘human–model’ interaction and is articulated in some prevalent research strands, such as studies on computational design methods developed for 3D printing and component evaluation, or the work on Responsive Architecture, in which the physical model is the medium through which to experiment and communicate the design of dynamic and adaptive buildings.

AI (and AR) in Cultural Heritage (FN)

According to the most recent experiences with the valorization and communication of Cultural Heritage (CH), they should be the result of a balanced synergy between interaction, experience, and representation.

The current scenario offers research methodologies investigating Cultural Heritage through Artificial Intelligence (AI) tools to increasingly democratize the access of CH, the development of AI technologies for automatic digitization, or the use of Deep Learning (DL) for monument recognition and the development of mobile apps. As an example, the study by Pisoni et al. (2021) proposes the use of AI to support the accessible design of CH. One of the points of greatest research interest is now on eXplainable AI (XAI) techniques, “a suite of machine learning techniques that produces more explainable models while maintaining a high level of learning performance (e.g., prediction accuracy), and enable humans to understand”[Barredo et al. 2020, p. 2]. The tools offered by these developments in technology can enable museums and CH sites to modify their knowledge transmission. By opening up informal learning opportunities to the general public, based on experience and personal interaction with CH, gaps in Natural Language Processing (NLP) and Computer Vision (CV) can be assessed.

Another research approach is that by Traviglia and Del Bue (whose study focuses on the development of AI technologies for the automatic digitization of CH: the different nature of the CH assets does not facilitate the creation of common standards and protocols going in this direction. The main idea of the approach is to incrementally build a 3D reconstruction that is not metric (i.e. where positions are measurable with a metric reference) but rather in the space of projective geometry. In this way, the digitization is made user–independent making total automation of the scanning process possible [Traviglia, Del Bue 2019].

A line of research to be highlighted is that developed by Valerio Palma. He introduces a project aimed at studying the techniques of convolutional neural networks (CNN) in the field of architectural heritage, which workflow has still to be developed. The first steps and results in the development of mobile applications for monument recognition are discussed:
while AI is just beginning to interact with the built environment through mobile devices, heritage technologies have long produced and explored digital models and spatial archives. The interaction between DL algorithms and state–of–art information modeling is addressed as an opportunity both to exploit heritage collections and to optimize new object recognition techniques [Palma 2019, pp. 551-556].

The developments that these research can bring are almost all aimed at enriching the databases, which are still quantitatively limited and refer much towards two–dimensional objects that are “easier” to read in ML algorithms. Another challenge related to AI relates to the use of personal data. The implementations that augmented CH experiences can provide necessarily involve reading and constantly updating regulations and ethical guides for the responsible use of this powerful tool.

The Digital Transformation in Museums: AI and AR as Tools to Engage Visitors (FR)

Within museum institutions, artificial intelligence is increasingly used to develop different tools such as robots, chatbots, and websites, which allow analyzing data related to visitors and collections [Styx, 2020]. The network ‘Museums + Artificial Intelligence’ (n.d), founded in 2019 by Oonagh Murphy and Elena Villaespesa is proof of this growing interest in AI tools applied in this field. At the same time, VR and AR have become a popular trend worldwide for the dissemination, communication, and enhancement of cultural heritage [Bekele et al. 2018].

The contribution of representation disciplines in the AR field is quite evident: just think of the use of 3D virtual models, holograms, graphics for specific apps, and gaming, up to True AR technology [Sandor 2015]. The group coordinated by Geronikolakis (2020) proposes an interesting application in the field of cultural heritage conservation to improve the experience of visitors, involved in the construction and restoration of archaeological sites.

In the field of AI, the representation disciplines could mainly be involved in the outputs of Object Recognition operations. The applications of this technology involve the user also outside the museum, as in the project ‘Recognition’, winner in 2016 of the IK award [Styx, 2020] or the application ‘Art Selfie’. Several museums base the exploration of their collections on Object Recognition: on color similarities, [Cooper Hewitt Smithsonian Design Museum, n.d; Dallas Art Museum, n.d.; the application ‘Art Selfie’. Several museums base the exploration of their collections on Object Recognition: on color similarities, [Cooper Hewitt Smithsonian Design Museum, n.d; Dallas Art Museum, n.d.], formal, line direction, or space and light [Barnes Foundation, n.d].

Fig. 1a. Exhibition Mont Saint–Michel. Digital Perspectives on the Model (photo by Microsoft, source: https://iciseattle.com/en/mont-saint-michel-in-mohai/); Fig. 1b. The system of ICAR–CNR group experienced in art and tech exhibitions [Caggianese et al., 2020].
In recent years, technologies have made considerable progress in the creation of content tailored to the needs and interests of different types of users, with a democratic and human–centered approach. However, there are still few examples where AI has been used to foster accessibility and inclusion in the field of museums and cultural heritage [Pisoni et al., 2021]. The AI context is certainly characterized by a high level of multidisciplinarity. The mixed–use of AI/AR/VR technologies represents an important field of investigation to meet the needs of an increasingly wide audience, from an inclusive perspective.

The exhibition “Mont Saint–Michel – Digital Perspectives on the Model” (fig. 1a), held in late 2019 at MOHAI (Museum of History and Industry) in Seattle, represents an example of the application of mixed techniques [Ici Seattle, 2019]. Visitors were immersed in the history of Mont–Saint–Michel by framing a real scale historical model of the site with a mixed reality device (Microsoft HoloLens 2).

Another example in this frame is the work conducted by ICAR–CNR [Caggianese et al., 2020] related to the display of Leonardo da Vinci’s machines (fig. 1b). This presents the combined use of cutting–edge technologies, such as holograms, with artificial intelligence (AI) to offer the visitor an augmented space involving new forms of interaction (visualization, manipulation, and conversation).

AI in Digital Fabrication Experiences on Architecture (GB)

The link between real model, virtual reality and augmented reality is articulated on two main lines of research. The first one is based on the construction of informative real models, the second one on the interaction ‘human–material’ through the practices of ‘augmented craftsmanship’ and ‘design by making’. Regarding the first, many studies are now focused on the creation of prototypes aimed at the transmission of knowledge and information of architectural heritage. In the last years, this has happened both through the realization of static models on which to apply immersive technologies, and with more complex dynamic systems in which physical and digital models have come to overlap to the point of almost confusing.

With regard to the application of immersive technologies, reference can be made to the experience carried out for the Basilica of Loreto [Rossi et al. 2017, pp. 239-255]. A project that involved the setting up of a space consisting of a multimedia table with a 3D printed physical model, conceived as a ‘wunderkammer’ equipped with a series of technological devices referable to different applications characterized by different levels of interactivity and immersiveness. In recent years, however, rapid advances in technology have begun to challenge even those aspects that go beyond the mere static and physical representation of architecture. An example is the interactive model of InFORM [Follmer et al. 2013, pp. 417-426] a dynamic shape display proposed by the Massachusetts Institute of Technology (MIT), that suggests different ways of physical interaction in real time between users, physical model and digital data. Regarding the ‘human–material’ interaction, the main fields of investigation concern the application of biological principles on architectural construction and the study of innovative structural morphologies through digital fabrication methods. In particular, the ICD/ITKE Research Pavilions are a series of full–scale prototypes realized through the integration of computational engineering, advanced analytical techniques and digital fabrication aimed at investigating the architectural potential of fiber composites [Doerstelmann et al. 2015].

Regarding the same themes, in London there are also the Protohouse project and the Flow-
Morph project [Hahm et al. 2019, pp. 553-562] (fig. 2), that proposes an unconventional method of fabrication using Mixed Reality to materialize highly complex geometries that could not be realized manually or by robotic fabrication alone.

The practices of digitally augmented craftsmanship open to a series of reflections on the theme of interactive digital simulations and their link with traditional craft practices. Mario Carpo, within his book The Second Digital Turn [Carpo, 2017], emphasizes the value of such simulations as they allow today’s artisans to learn intuitively, through mistakes, trial and attempts, by making and unmaking as many test samples as possible.

References


Rossi Daniele, Meschini Alessandra, Fenirotti Ramona, Oliveri Alessandro (2017), Cose dell’altr mondo. La realtà virtuale immersa per il patrimonio culturale. In Lugini Alessandro, Pancirolli Chiara (eds.), Ambienti digitali per l’educazione all’arte e al patrimonio. Milano, FrancoAngeli Open Access, pp. 239-255.


Authors

Marco Vitali, Dept. of Architecture and Design, Politecnico di Torino, marcovitali@polito.it

Giulio Bertoldi, Dept. of Architecture and Design, Politecnico di Torino, giulia.bertoldi@polito.it

Fabrizio Natta, Dept. of Architecture and Design, Politecnico di Torino, fabrizio.natta@polito.it

Francesca Ronco, Dept. of Architecture and Design, Politecnico di Torino, francesca.ronco@polito.it

Copyright © 2021 by FrancoAngeli s.r.l. Milano, Italy

ISBN 9788835125280