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Abstract

Digital mobility assessment using wearable sensor systems has the potential to capture

walking performance in a patient’s natural environment. It enables monitoring of health sta-

tus and disease progression and evaluation of interventions in real-world situations. In con-

trast to laboratory settings, real-world walking occurs in non-conventional environments and

under unconstrained and uncontrolled conditions. Despite the general understanding, there

is a lack of agreed definitions about what constitutes real-world walking, impeding the com-

parison and interpretation of the acquired data across systems and studies. The goal of this

study was to obtain expert-based consensus on specific aspects of real-world walking and

to provide respective definitions in a common terminological framework. An adapted Delphi

method was used to obtain agreed definitions related to real-world walking. In an online sur-

vey, 162 participants from a panel of academic, clinical and industrial experts with experi-

ence in the field of gait analysis were asked for agreement on previously specified

definitions. Descriptive statistics was used to evaluate whether consent (> 75% agreement

as defined a priori) was reached. Of 162 experts invited to participate, 51 completed all

rounds (31.5% response rate). We obtained consensus on all definitions (“Walking” > 90%,

“Purposeful” > 75%, “Real-world” > 90%, “Walking bout” > 80%, “Walking speed” > 75%,

“Turning” > 90% agreement) after two rounds. The identification of a consented set of real-

world walking definitions has important implications for the development of assessment and

analysis protocols, as well as for the reporting and comparison of digital mobility outcomes

across studies and systems. The definitions will serve as a common framework for
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implementing digital and mobile technologies for gait assessment and are an important link

for the transition from supervised to unsupervised gait assessment.

Introduction

Mobility, or specifically gait, can be influenced by a variety of chronic health conditions, span-

ning from neurological, respiratory, and cardiac to musculoskeletal disorders. Such conditions

may include multiple sclerosis (MS), Parkinson’s disease (PD), chronic obstructive pulmonary

disease (COPD), congestive heart failure (CHF), or proximal femoral fracture (PFF) [1–6].

Related functional mobility impairments present a great burden to patients, severely limiting

quality of life [7–9], alongside an increased fall risk [10–12], and mortality [13, 14].

Changes in various gait measures such as cadence, gait speed, and stride length amongst

others may characterize those mobility impairments. The use of digital mobility outcomes

(DMOs), which we refer to as digital measures acquired using digital health technology [15]

has already been studied in clinical settings using brief, standardized tests in a range of diseases

[2, 4, 16, 17]. However, a single observation may not be reliable for clinical characterization

especially when mobility related disease symptoms fluctuate over acute periods of time. There-

fore, the objective assessment of gait calls for valid and reliable methods to sensitively capture

changes in gait function more frequently [18]. As it is not feasible to increase patient visits to

the clinic, more continuous monitoring outside laboratory or clinical environments is desired

[19]. Thus, the continuous assessment of real-world digital measures is essential and opens the

opportunity for frequent and long-term remote monitoring [18, 20–22]. In the past years, real-

world gait analysis has been technologically enabled by the development of lightweight and

easy to use sensor-based systems that can be worn unobtrusively. Although DMOs quantified

from real-world data are able to discriminate and detect gait impairments in various diseases

[20, 23–26], accepted and routinely used tools are not applied in practice yet [27].

Whilst real-world measurement of mobility holds promise, one fundamental reason for the

lack of adoption is the difficulty of comparing DMOs across studies due to the inconsistent use

of terminology. As an example, a broad variety of terms describing the real-world context

exist, including real-life, daily-life, everyday-life, and free-living [19, 20, 28, 29]. These terms

are used interchangeably with ambiguous definitions, leading to different test paradigms being

considered and impeding comparability across measurements, systems, and studies. Further-

more, observed DMO variations may not only be caused by disease symptoms but also envi-

ronmental factors and measurement protocols, which affect the reliability of DMO

assessment. Therefore, agreed definitions of relevant DMOs and the context of measurement

are necessary to guarantee clinical meaningfulness. As a further example, the term walking

bout has been used in the context of real-world gait analysis and refers to the quantification of

continuous periods of free-living walking [30]. However, walking bout definitions are incon-

sistent and may include different walking bout durations and number of strides [10, 12, 28,

30–32]. The duration of resting periods between walking bouts [33], and whether turning is

considered as part of walking [34, 35] are treated differently as well. However, a clear definition

of a walking bout is critical, since it directly affects digital measures [28, 36]. Additionally,

turning needs to be considered as a main constituent of walking, as an average of more than 60

turns per hour has been reported for real-world walking [34]. Due to their high occurence,

turnings are likely to break sequences of straight walking into smaller walking bouts. There-

fore, the specific definition of a turn directly influences the distribution of walking bouts with

regard to their duration. Furthermore, spatio-temporal parameters during straight walking

and turning differ [37], such that real-world DMOs based on averages of those parameters
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strongly depend on whether turning is included in their estimation. Currently, different opera-

tional approaches exist for the detection of turning. As an example, turning characteristics

may be based on stride to stride angular parameters using foot rotation [38] or on angular

changes related to the trunk rotation [34]. This diversity highlights the need for defining turn-

ing in a framework of DMO assessment, which will anable a more specific operationalization

of real-world DMOs.

While the above terms are ambiguously used in previous research, there is no integrative

taxonomy regarding real-world walking yet. Thus, there lacks a guiding framework that can be

used for further implementation of DMOs in real-world settings. Accordingly, the aim of this

study was to build a terminological framework in order to drive the development and assess-

ment of DMOs for real-world monitoring (Fig 1). We aimed to reach agreement upon a set of

narrative definitions within the scope of the Mobilise-D project [15], which is a five-year EU-

funded IMI consortium that will build a technically and clinically-valid system for real-world

digital mobility assessment across multiple populations with the goal to improve healthcare.

In this study, we used an objective and systematic consensus process based on an adapted

Delphi method [39]. Our results will enable operational definitions to implement mobility

assessment algorithms, foster comparability across studies, and serve as a common communi-

cation framework for the scientific community. Perspectively, consensus on such a termino-

logical framework is a prerequisite for the adoption of validated digital biomarkers

characterizing mobility impairments in various diseases [15, 27].

Materials and methods

Our approach of defining a terminological framework consisted of the following steps: First,

relevant domains and key terms related to real-world walking for the consensus process were

identified. Six terms related to four domains of real-world walking needing group consensus

were selected (Table 1). For some terms, different aspects were regarded. We proposed a physi-

ological definition of walking and highlighted its relationship to walking bouts. For the defini-

tion of real-world, we defined fundamental characteristics, how it is discriminated from

standardized measurements and which test paradigms in the clinical context may be regarded

Fig 1. Real-world walking assessment. Monitoring of real-world mobility using wearable sensors requires the definition of essential components of unsupervised

purposeful walking, such as walking bouts and turnings. The aggregated walking bouts at different speed levels yield digital mobility outcomes which can characterize

clinically relevant changes in mobility impairments.

https://doi.org/10.1371/journal.pone.0256541.g001
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as real-world assessment. The walking speed definition was based on physical considerations.

Additionally, we identified the need to consider different granularities when calculating aggre-

gated speed measures and proposed that real-world walking speed needs to be inherently con-

nected to walking bouts. We proposed initial definitions for those eleven aspects based on the

study team’s expert knowledge and literature. Iterative feedback was included to improve

structure and content of the definitions (for the questionnaire with the initial definitions, see

S1 File). We used these definitions as starting point for the subsequent consensus process.

We adopted an objective consensus building process based on the Delphi methodology

[39]. In contrast to quantitative methods such as systematic reviews or meta-analyses, which

are based on available literature and studies, the Delphi process allows to obtain consensus

among experts by determining the level of agreement on a given topic [39]. Specifically, the

Delphi method is characterized by anonymity to avoid dominance of single experts, multiple

iterations, and feedback to the group. As such, a basic Delphi technique can contain any type

of self-administered questionnaire with no meetings [40], which is the approach that was used

in this explorative study to quantitatively assess the agreement on the initial definitions.

A consensus process may consist of multiple rounds until agreement on the definitions is

reached. Based on a 5-point Likert scale (see S1 File for the initial definitions including the

used scale), agreement was quantitatively assessed among the participants [41]. A neutral state-

ment (“No opinion”) was included. In our study, agreement to a given definition was defined

a-priori as more than 75% of the answers belonging to the categories “Somewhat agree” or

“Strongly agree” [40–42]. In the first round, the participants were asked to independently rate

all eleven statements across the six key terms “Walking”, “Purposeful”, “Real-world”, “Walking

bout”, “Walking speed”, and “Turning”. Additionally, participants were asked to provide free-

text comments for each item in order to capture input for the improvement of definitions [41].

In subsequent rounds, we presented modified definitions that previously did not reach agree-

ment and reassessed the agreement.

The consensus process was performed among members of the Mobilise-D consortium. The

project includes technical, clinical, and industrial expertise of 34 partners from Europe and the

USA. All 162 members of the consortium were asked for participation via email. Participants

who did not respond in the first round were not invited to participate in the second round. We

did not define any exclusion criteria. Data on participants’ technical or clinical background,

gait expertise, free-living expertise, and expertise with patients were collected in the first round

to analyse the panel’s background.

Table 1. Identified domains and terms needing consensus.

Domain Term Aspect

What are you doing? Walking Physiological

Relation to walking bouts

Why are you doing it? Purposeful Characteristics

Where are you doing it? Real-world Characteristics

Clinical environment

Standardized measurement

How are you doing it? Walking bout Characteristics

Walking speed Physical definition

Granularity

Relation to walking bouts

Turning Characteristics

https://doi.org/10.1371/journal.pone.0256541.t001
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The consensus process was implemented as a series of questionnaires based on the “Survey”

feature of the ILIAS e-Learning platform (version 5.4.5, ILIAS open source e-Learning e.V.). It

allowed the anonymous acquisition of responses. The participants’ email addresses were linked

to access codes, which were provided to start the questionnaire. The use of access codes

allowed sending reminders to the participants and preventing double participation. The acqui-

sition and analysis of the data was anonymous. Descriptive statistics was used to investigate

participants’ background information and agreement responses in each round.

Analyses were conducted using R version 4.0.3 [43]. The code is available on https://doi.

org/10.5281/zenodo.4316739. The datasets generated and analysed in the study are available

on https://doi.org/10.5281/zenodo.4316564.

Ethical approval for this study was granted by the ethics committee of the University Hospi-

tal Erlangen (Re.-No. 241_19 Bc). All participants provided written informed consent before

inclusion in the study. Participation in this study was voluntary. All data were handled in

accordance with European data protection regulations.

Results

Consensus process

In total, the consensus process required two rounds until agreement on all definitions was

reached. 162 members of the Mobilise-D consortium were asked to participate in the first

round of the consensus process. Of those, 79 individuals started the questionnaire. Eight indi-

viduals did not sign the participation or data usage agreement and five participants did not

complete the questionnaire. Hence, their data was discarded. Data from the remaining 66 par-

ticipants (40.7% response rate in the first round) were analysed. Of the participants who com-

pleted the first round, 55 individuals started the second round. One individual did not sign the

participation agreement and three individuals did not complete the questionnaire. We ana-

lysed the data of the remaining 51 participants (continuation response rate of 77.3%). The

overall response rate was 31.5%. The professional background of the panel was diverse but

homogenously distributed across clinical and technical disciplines (Table 2). Only 12.1 stated

to have no experience in gait analysis. Two thirds of all individuals had expertise in real-world

mobility. Most participants (88.7%) stated to have expertise with patients. As answering the

background questions was not obligatory, the total number differs from the total number of

individuals who participated in round one of the process.

Agreement on definitions

In round one, the definitions of purposeful and walking speed (relation to walking bouts) did

not reach agreement (Table 3) and were subject to modification based on participants’ feed-

back. Although the definition of a walking bout reached agreement, there was inclarity regard-

ing its inherent connection to the walking speed definition. The walking speed definition

initially assumed a different number of strides required to assess average walking speed (for

the initial definitions, see S1 File). Therefore, we decided to harmonize the walking bout and

walking speed (relation to walking bouts) definitions, which were both put to vote again in the

second round. Full consensus for all definitions was reached in round two (Table 3) resulting

in a final set of definitions for real-world gait analysis (Table 4).

Discussion

To the best of the authors’ knowledge, this has been the first study to engage clinicians, aca-

demic researchers, and industry stakeholders working in the field of digital gait and mobility
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measures development to identify and agree upon a framework of narrative definitions for the

assessment of DMOs acquired in real-world conditions. An adapted Delphi consensus process

allowed to achieve consensus on eleven statements related to six key terms of real-world

walking.

A broad definition of walking may include various displacements of the body in space (e.g.,

for-, back-, or sideward walking). However, we defined walking to be only associated with for-

ward displacement using both legs in order to assure reliability of DMO assessment in various

contexts. Stepping on the spot, side stepping, and backward walking have thus been excluded

from this definition. Walking is also not defined in terms of a specific speed. The use of walk-

ing aids has been included into the definition as they may be an essential requirement for safe

locomotion of people with gait impairments. Otherwise, certain patients and elderly individu-

als might be excluded from the DMO assessment. We acknowledged steps and strides as basic

elements of walking as previously suggested [49]. Furthermore, the definitions include that

walking is always made up of walking bouts, where it was agreed that walking bouts represent

sequences containing at least two full consecutive strides of both feet without a break (e.g.,

R-L-R-L-R-L or L-R-L-R-L-R, with R/L being the contacts of the right/left foot with the ground,

respectively). The start and end of a walking bout are determined by a break that can either

consist of a resting period, turning, or any other non-walking real-world activity. More specifi-

cally, the start is always defined by an initial step of a walking bout following a non-walking

period, while the final step precedes the next non-walking period. Walking bouts are thus an

important building block in the terminology framework for the assessment of DMOs acquired

in real-world conditions. Furthermore, this definition can equally be used in the context of

supervised clinical and functional assessment, which currently is the clinical reference for

mobility assessment.

Walking speed has been referred to as sixth vital sign, as a slower walking speed has been

associated with morbidity, cognitive decline, and fall risk amongst others [13, 50]. Despite this,

there is still no accepted common measure of mobility that serves across multiple conditions,

Table 2. Participant background assessed in the first round.

Professional background (n = 64)

Both technical and clinical background 25.0%

Clinical background 40.6%

Technical background 34.4%

Expertise in gait analysis (n = 66)

None 12.1%

0–5 years 50.0%

5–10 years 12.1%

10–15 years 7.6%

15–20 years 4.6%

> 20 years 13.6%

Free-living expertise (n = 65)

No 35.4%

Yes 64.6%

Clinical expertise (n = 62)

Patients and healthy participants 71.0%

Healthy participants 11.3%

Patients 17.7%

https://doi.org/10.1371/journal.pone.0256541.t002
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which is underlined by a wide range of inconsistent testing procedures. With an operative defi-

nition of walking speed and a proposition of respective aggregation levels at which it is mea-

sured, we aim to provide a common framework to be used across clinical conditions. The

physical definition of walking speed reached high consensus, where the panel also agreed that

walking speed will be assessed based on a minimal number of consecutive strides. According

to clinical questions, walking speed needs to be assessed with regard to different aggregation

levels (hourly, daily, weekly, etc.). This definition is in line with the walking bout definition.

On the one hand, this specification yields a unified approach of assessing speed in our frame-

work, but requires a stride-wise analysis of walking, which might not be feasible in all analysis

cases, for example when the extraction of single strides is not possible. The definition also sug-

gests that walking speed derived from strides that are not part of walking bouts (i.e., short

strides, shuffling, turning, etc.) should not be considered for the estimation of real-world walk-

ing speed.

Daily mobility does not only contain straight walking but also curved walking and turns.

Therefore, we included a definition of turning in the framework to guide the implementation

of walking bouts and the related DMO assessment. Turning can be regarded as being a decel-

eration of the forward motion, rotating the body as a whole, and stepping out toward the new

direction [48]. It results in a change of walking direction and change in angular orientation

including a rotational movement of the body around the longitudinal axis. As an example, a

threshold on the rotation angle (e.g.,> 45˚) at a certain turn duration (e.g., between 0.5s and

10s) can be used to detect a turn [34]. This definition does not include all the required aspects

for quantitative ambulatory mobility measurement. For example, further discussion will be

necessary to define specific angular thresholds between straight and non-straight (i.e., curvilin-

ear) walking. However, those operational definitions are not part of the narrative framework

considered in this study and will be evaluated based on real-world data from different clinical

populations in future work.

The environmental context of walking greatly influences DMOs. Thus, it was deemed nec-

essary to specify inclusion and exclusion criteria of what is considered real-world. The

Table 3. Proportion of agreement and disagreement [%] of definitions. In round two, only those definitions were evaluated, which did not reach agreement in the first

round. The lower limit of agreement was a priori defined as 75%.

Term Aspect Disagreement No opinion Agreement Consensus

Round one

Walking Physiological 6.1 3.0 90.9 yes

Relation to walking bouts 0.0 3.0 97.0 yes

Purposeful Characteristics 10.6 21.2 68.2 no

Real-world Characteristics 4.6 1.5 93.9 yes

Clinical environment 4.6 1.5 93.9 yes

Standardized measurement 4.6 3.0 92.4 yes

Walking bout Characteristics 15.1 6.1 78.8 yes

Walking speed Physical definition 1.5 1.5 97.0 yes

Granularity 1.5 6.1 92.4 yes

Relation to walking bouts 15.2 24.2 60.6 no

Turning Characteristics 3.0 3.0 94.0 yes

Round two

Purposeful Characteristics 15.7 5.9 78.4 yes

Walking bout Characteristics 11.8 5.9 82.3 yes

Walking speed Relation to walking bouts 15.7 7.8 76.5 yes

https://doi.org/10.1371/journal.pone.0256541.t003
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Table 4. Agreed definitions of terms related to real-world walking.

Term Aspect Definition

Walking Physiological Human walking is a method of locomotion and is defined as initiating and maintaining a forward displacement of the centre

of mass in an intended direction involving the use of the two legs, which provide both support and propulsion. The feet are

repetitively and reciprocally lifted and set down whereby at least one foot is in contact with the ground at all times [44, 45].

Walking with walking aids is included in this definition.

A step is the interval between the initial contacts of the ipsi- and contralateral foot [44] and corresponds to the forward

displacement of the foot together with a forward displacement of the trunk [46].

A stride is the interval between two successive initial contacts of the same foot. As such, a stride is equivalent to the gait cycle

and every stride contains two steps [44].

Relation to walking

bouts

Walking is made up of walking bouts and is equivalent to taking steps/stepping forward (thus stepping in place does not

constitute walking) and is defined as starting from initial contact for the initial step until ending with full floor contact of the

foot making the last step [46].

Purposeful Characteristics Purposeful walking includes an intentional component of the movement (e.g., getting to the bathroom, catching the bus,

going to the grocery store, going for a walk in the park, etc.).

Purposeful walking may constitute certain characteristics (e.g., more constant walking velocity, lower variability of gait

characteristics, straighter direction of locomotion than non-purposeful walking, specific context, etc.). Those gait

characteristics are quantified based on discrete walking bouts.

Real-world Characteristics Real-world relates to the context in which walking takes place—that is free-living, unsupervised, uncontrolled and non-

standardised. As such, it is unscripted as there are no instructions to the subject who does not need to interact with the

wearable device(s).

Real-world actions occur in non-simulated everyday situations in unconstrained environments with minimal consciousness

of being tested. It is equivalent to actions at home or in the community over continuous periods of time [28].

Synonymous terms are (environment of) daily living, or relating to daily-life. Home environment is used synonymously to

real-world and daily-life without a separation of indoor and outdoor environment [11].

Real-world is distinct from laboratory-based [47], supervised (= fully controlled and observed), and semi-controlled

(walking‘freely’ but with supervision) tests. It also is different from scripted/instructed walking, which can take place in the

home or lab (such as walking tests like the 4x10m test, 6-minute walk test (6MWT) and timed up and go (TUG)).

Clinical environment Free walking in hospitals is part of the real-world definition, but standardized supervised tests in a hospital are not. This

excludes instructed actions, e.g., by medical professionals.

Standardized

measurement

Home-based tests, which are semi-standardized measurements performed in the home environment in a controlled or semi-

controlled environment (such as short walk tests), are thus not regarded as being part of real-world. Home-based tests can

nevertheless be an alternative to clinical tests and might be easier to conduct operationally and analyse than continuous

monitoring (assuming standardized instructions).

Walking

bout

Characteristics A walking bout (WB) is a walking sequence containing at least two consecutive strides of both feet (e.g., R-L-R-L-R-L or

L-R-L-R-L-R).

Start and end of a walking bout are determined by a resting period or any other activity (non-walking period). The initial

step of a WB follows a non-walking period and the final step precedes the next non-walking period.

Walking

speed

Physical definition Walking speed (WS) is the distance covered by the whole body within a certain time interval / per unit time of walking. It is

measured in meters per second and is the magnitude of the velocity vector (velocity includes direction and magnitude of

walking) [45].

Granularity Walking speed can be estimated at different granularities:

• Instantaneous WS varies from one instant to another during the walking cycle [45]

• Step-wise WS is the ratio between step distance (length) and step time [28]

• Stride-wise WS [33]

• Averaged over WBs

• Averaged over other time intervals (hourly, daily, weekly) based on multiple WBs

The granularity by which the WS is assessed should be related to clinical parameters for each population separately.

Relation to walking

bouts

Walking speed will be assessed with regard to walking bouts. Thus, the minimal length of one walking bout required to

assess average walking speed is based on a sequence of 2 consecutive strides (e.g., R-L-R-L-R-L or L-R-L-R-L-R).

Turning Characteristics The process of turning consists of decelerating the forward motion, rotating the body as a whole, and stepping out toward

the new direction [48]. Thus, turning includes a change of walking direction and change in angular orientation including a

rotational movement of the body around the longitudinal axis. Turning, curvilinear walking, and straight walking involve

different neuromotor strategies and need to be discriminated.

https://doi.org/10.1371/journal.pone.0256541.t004
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participants agreed on different aspects of the terminology: real-world is conceptualized as

free-living, unsupervised, uncontrolled, and non-standardized. In the real-world context, the

measurement of DMOs should not interfere with daily activities of the participant. The mea-

surement process of real-world DMOs should thus be as non-obtrusive as possible. Accord-

ingly, this definition is distinct from laboratory-based [47], supervised (fully controlled and

observed), and semi-controlled (walking freely but with supervision) environments, in which

observer and instruction effects might occur and influence DMOs. For example, walking hap-

pens in non-simulated real-world situations in unconstrained environments equivalent to

actions at home or in the community over continuous periods of time [28]. Daily-living,

including the home and clinical environment are equivalent to real-world as long as the walk-

ing happens unsupervised. Scripted walking capacity tests such as 4x10 m walking conducted

at home are excluded from the definition, as significant differences between DMOs derived

from those tests and DMOs acquired during unscripted real-world walking are expected [51].

However, relationships between standardized tests and real-world assessments still need to be

evaluated in future research studies.

The participants agreed to the definition of purposeful as a consistent term for the assess-

ment of DMOs acquired in real-world conditions. Purposeful walking includes an intentional

component of the movement. We assume that unsupervised walking is per se purposeful and

that the intentional aspect occurs especially for long walking bouts and needs to be evaluated

taking for example contextual aspects of walking into account. Differences between purpose-

ful, self-initiated movements, and movements performed in a supervised (and thus not real-

world setting) are discussed in detail in [52], and should be further investigated with the con-

sented real-world walking definitions.

The definitions agreed upon in this study build a framework in order to capture gait analy-

sis characteristics and properties in the real-world environment. The goal to have working def-

initions for various clinical populations has resulted in a rather broad definition of walking

(e.g., inclusion of walking aids). However, clarity on specific parts of the definition (e.g., that

walking only includes forward locomotion) will allow to implement very specific digital mobil-

ity measures without restricting the application cases.

While the Delphi approach is commonly used to obtain broad consensus among experts by

determining the level of agreement on a given topic [39], there is always a certain bias. We

used purposive sampling under the assumption that members of the Mobilise-D consortium

represented experts in the field of real-world gait research. Although we acknowledge that the

choice of participants limits generalizability of the results, the consortium includes a large

group of experts on gait analysis from Europe and the USA. The participants were homo-

geneously distributed regarding technical and clinical background, where their views were

gathered from a wide range of clinical and academic disciplines to equally represent a breadth

of expertise. Some participants stated no experience with gait analysis before. However, most

of the participants explicitly mentioned having worked in the field of real-world gait analysis.

Moreover, the larger proportion of the participants already had experience in clinical gait anal-

ysis. Nevertheless, further work is needed to validate the results of our study in light of an even

broader international group of gait experts. For example, the survey could be opened to a

wider panel to validate and refine the findings. Furthermore, the framework needs to be evalu-

ated with regard to clinical interpretability of the acquired DMOs based on actual real-world

data. Overall, given the geographical spread, the Delphi consensus method conducted online

was an appropriate tool for gathering the different viewpoints as compared to physical discus-

sion rounds. One challenge in group decision making is finding an optimal consensus thresh-

old. In our study, we used an a-priori threshold of 75 for assessing the agreement to a given

definition which is similar to thresholds previously used [40–42]. Furthermore, we evaluated
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consensus based on the proportion of agreement within a range (more than 75 of the answers

belonging to the categories “Somewhat agree” or “Strongly agree”). Other definitions of con-

sensus exist and may be taken into account in future studies [42].

The low response rates observed in this study, especially in the first round, are typical for

consensus processes and have previously been reported [41]. Especially with large sample

sizes, low response rates are considered to be a drawback [53]. Specifically to this study, we

invited all members of the Mobilise-D consortium to take part in the study, if they could com-

ment on the topic. Some of the participants invited might not have had a real-world gait analy-

sis background or interest and did therefore not participate in the process. As discussed, the

analysis of the participants’ professional background showed that the included participants

had relevant experience in the field of interest. Furthermore, the final sample size of 51 partici-

pants was higher than the lower threshold of 12, which has been regarded as minimal number

to ensure reliability of results in a consensus process [54].

Only group feedback in the questionnaires were provided, as individual feedback was not

possible due to anonymity. However, the participants were sent an email with their individual

responses and comments after completion of a round. This allowed them to reflect on their

own ratings in the subsequent round.

One limitation of this study is that the definitions are only of narrative nature. While the

obtained definitions have been objectively derived, some may need refinement according to

the practical needs to directly guide algorithm implementation (e.g., thresholds on differentiat-

ing turning from curvilinear or straight walking need to be derived from further consensus or

based on real-world data). Whilst extracting and analysing DMOs, more detailed definitions

need to be derived from the initial framework to enlarge the scope and ensure applicability

across different technologies and solutions for real-world gait assessment.

This work was conducted as part of the Mobilise-D project [15] with the aim to guide the

data analysis process regarding real-world walking analysis with a focus on the assessment of

real-world walking speed. It has to be noted, that different ways of assessing real-world mobil-

ity exist, such as analyzing daily activity patterns (e.g., daily step count, physical activity, energy

expenditure amongst others). Related digital measures are of high interest for some diseases

and might benefit from similar terminological frameworks.

Up to now, a taxonomy of terms to support future research related to digital mobility

assessments has still been missing. In our study, we obtained consensus on narrative defini-

tions for the assessment of gait related DMOs acquired in real-world conditions based on an

adapted Delphi process. The results of this study have important implications for the develop-

ment of analysis protocols, as well as for the reporting and comparison of DMOs. Overall, the

definitions will allow a more precise use of those terms in future studies, enabling a stronger

congruence of clinical, technical, and regulatory activities in this field. Future work within the

community includes the refinement of the definitions with respect to concrete study protocols.

While supervised gait assessment is currently the reference standard against which future digi-

tal mobility measures acquired in the real world will be compared to, validation studies are

needed to assess the applicability of the proposed real-world walking definitions. Creating a

strong link between supervised and unsupervised gait assessment will ultimatively push for-

ward real-world DMO assessment as valid gait and mobility research paradigm.

Supporting information

S1 File. Questionnaire with initially proposed definitions of terms related to real-world

walking assessed in round one.

(PDF)
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