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Figure S1. Emission spectra of the lamp used to provide UV radiation (UVP XX-15L 
Longwave, peak at 365 nm). The different colours correspond to the measurements 
performed in the different days. AU: arbitrary units 
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Figure S2. Emission spectra of the fluorescent lamp used for the Non-UV exposure. 
AU: arbitrary units 
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Figure S3. Pareto front of the list of suitable fitting functions f identified by the symbolic 

regressor: (a) the R2 of the function tends to increase with more complex equations, 

whereas the (b) Mean Absolute Error (MAE) to decrease. Clearly, the most complex 

fitting equation tends to be the most accurate one, while the elbow of Pareto front can be 

considered as the best compromise between fitting accuracy and complexity of the 

equation. The following scores for the formula building-blocks are assigned (by default) 

by the Eureqa symbolic regressor to define the complexity index: 1 for constant, addition, 

subtraction, multiplication; 2 for division; 4 for exponential, natural logarithm, and square 

root. 

Example of model fitting by the symbolic regression algorithm in one step of the pruning 

process: evolution of the (c) R2 and (d) MAE of the best fitting equation during the 

generations (i.e., iterations) of the genetic algorithm driving the symbolic regressor. 

The results depicted in this figure refer to one repetition of the 2nd pruning round of 

experiments exposed to UV.
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Figure S4. Spearman’s correlation coefficient between each pair of TiO2 toxicity 

variables (experiments without exposure to UV). The figure reports the 105 variables 

remaining after the dataset cleaning. The whiter colour tones indicate uncorrelation 

between each pair of variables, the blue ones indicate correlation. Notice that – given the 

definition of Spearman’s correlation coefficient – the matrix is symmetrical.
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Figure S5. Spearman’s correlation coefficient between each pair of TiO2 toxicity 

variables (experiments exposed to UV). The figure reports the 105 variables remaining 

after the dataset cleaning. The whiter colour tones indicate uncorrelation between each 

pair of variables, the blue ones indicate correlation. Notice that – given the definition of 

Spearman’s correlation coefficient – the matrix is symmetrical.
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Figure S6. Spearman’s correlation coefficient between each pair of variables within the 

39 clusters identified by the hierarchical clustering algorithm for experiments without 

exposure to UV (see Table S2). The whiter colour tones indicate less correlation between 

each pair of variables, the blue ones more. Note that the black colour simply represents 

the background of the figure. Clearly, the Spearman’s correlation coefficient cannot be 

computed in clusters made of a sole variable (e.g., cluster #6).
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Figure S7. Spearman’s correlation coefficient between each pair of variables within the 

40 clusters identified by the hierarchical clustering algorithm for experiments exposed to 

UV (see Table S3). The whiter colour tones indicate less correlation between each pair of 

variables, the blue ones more. Note that the black colour simply represents the 

background of the figure. Clearly, the Spearman’s correlation coefficient cannot be 

computed in clusters made of a sole variable (e.g., cluster #6).
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Figure S8. Results of variables pruning. Normalized occurrences of variables xi in the 

fitting functions f identified by the symbolic regressor for experiments (a) without and 

(b) with UV exposure. The definitions of the reported variables x1, …, x39 are reported in 

the Tables S4 (no exposure to UV) and S5 (exposure to UV). Several rounds of pruning 

are carried out, in which only the best ranked 40% of variables in terms of occurrence are 

kept, while the remaining ones pruned. This process is repeated until one of the chosen 

stopping criteria (based on either a decrease in the coefficient of determination – R2 or on 

an increase in the Mean Squared Error – MSE) is met. This is achieved (c) at the 7th round 

for the experiments without UV exposure, (d) at the 6th round for the experiments with 

UV exposure. Notice that, for the UV exposure case, round #5 considers 6 variables (5th 

pruning iteration, stopping criteria not met), round #6 considers 4 variables (6th pruning 

iteration, stopping criteria met) and round #6b considers 5 variables (repetition of the 6th 

pruning iteration with more variables, stopping criteria not met). The symbolic regressor 

identifies a Pareto front of suitable f fitting functions, that is the best compromise between 

complexity and fitting accuracy of f. Here, the error metrics for the most accurate fitting 

equation (“best”, which also has the highest complexity) and the one at the elbow of the 

Pareto front (“elbow”, which shows the best compromise between fitting accuracy and 

complexity) are reported.
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Figure S9. Representative pictures of E. crypticus exposed to 100 mg/L of TiO2 NPs, in 

ISO water, for 5 days. 

Supplementary Movie S1. Bar chart race of the normalized occurrence of variables xi in 

the fitting functions f identified by the symbolic regressor for experiments without 

exposure to UV, per each pruning step. The definition of the reported variables x1, …, x39 

and their classification are reported in the Table S4. This movie has been made by 

Flourish.

Supplementary Movie S2. Bar chart race of the normalized occurrence of variables xi in 

the fitting functions f identified by the symbolic regressor for experiments exposed to UV, 

per each pruning step. The definition of the reported variables x1, …, x39 and their 

classification are reported in the Table S5. This movie has been made by Flourish.


