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Abstract: In this paper, we propose an optimal design procedure for magnetically shielded rooms.
Focusing on multi-layer ferromagnetic structures, where inner layers operate at very low magnetic
field, we propose an identification method of the magnetic material characteristic in the Rayleigh
region. A numerical model to simulate the shielding efficiency of a multi-layer ferromagnetic
structure is presented and experimentally tested on different geometries and layer configurations.
The fixed point iterative method is adopted to handle the nonlinearity of the magnetic material. In
conclusion, the optimization of the design parameters of a MSR is discussed, using the Vector Immune
System algorithm to minimize the magnetic field inside the room and the cost of the structure. The
results highlight that a linear magnetic characteristic for the material is sufficient to identify the
suitable geometry of the shield, but the nonlinear model in the Rayleigh region is of fundamental
importance to determine a realistic shielding factor.

Keywords: magnetic shielding; electromagnetic compatibility; multi-objective optimization; Rayleigh region

1. Introduction

Magnetically Shielded Rooms (MSRs) are closed spaces employed for the magnetic
field mitigation in environments where sensitive electronic equipment is used (e.g., elec-
tronic microscopes and medical imaging devices) [1–5]. Figure 1a represents a commercial
MSR. An effective design strategy for a MSR is the adoption of multiple closed ferromag-
netic layers, not in contact with each other. The inner layer shields the residual field passing
through the outer ones. A qualitative representation of the flux lines obtained using one
layer and three layers is shown in Figure 1b,c, respectively. The aim is to minimize the
magnetic field in a target region that often coincides with the center of the room [6,7].

(a) (b) (c)

Figure 1. Example of a commercial Magnetically Shielded Room (MSR) (a). Qualitative representa-
tions of the flux lines in a one-layered and a three-layered cylindrical shield (b,c).

Bearing all this in mind, it is apparent that the outermost layer is subject to the external
magnetic field value, whereas the innermost layer is subject to a very low residual field.
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Therefore, the shielding material of some layers could operate in the Rayleigh region of the
magnetic characteristic, where the permeability is a nonlinear function of the applied field,
with values of the equivalent magnetic permeability considerably lower than those in the
linear region. Developing the design of MSRs using the data provided by manufacturers,
referred to the permeability measured in the linear region, could lead to a considerable
overestimation of the shielding efficiency. To overcome this issue, some authors adopt
a preliminary design procedure based on analytical expressions, provided for simple
geometries as cylinders and spheres, experimentally verifying the final design [7,8]. Other
authors propose to measure the B(H) curve at very low applied field and identify an
equivalent permeability used to solve the field problem under linear assumption. [9–11].

This paper aims to define an identification procedure for the B(H) curve of the
shielding material in the Rayleigh region, to define a design strategy based on a numerical
simulation of the ferromagnetic shield able to handle the nonlinearity of the material, and
to evaluate the design parameters of a MSR through a multi-objective optimization strategy,
based on the Vector Immune System algorithm [12].

2. Material Modeling

The numerical simulation of a MSR involves a large volume, thin thickness of the
shield layer, and air gap between layers. This is a multi-scale problem that can be hardly
handled by classical formulations based on volume discretization like finite elements
(Figure 2).

(a) (b)

Figure 2. Three-layered MSR mesh (a). Detail of the layer surface discretization (b).

In this paper, the thin shell approximation is adopted to model the thin ferromagnetic
shield [13–15], therefore the metallic material is modeled and discretized as a surface. A
magnetostatic integral formulation in terms of the magnetic field H and the magnetization
M in the shell elements is used both for the linear and the nonlinear case. The fixed point
iterative method is adopted to handle the nonlinear behavior of the material in the Rayleigh
region [16].

2.1. Numerical Model of Ferromagnetic Shields

It is well known that the magnetic field ~H at an arbitrary point of the space can
be expressed as the sum of the external magnetic field ~H0 and the contribution of the
magnetized bodies ~Hm [17]:

~H = ~H0 + ~Hm. (1)

The external magnetic field ~H0 is generated from the sources, i.e., source currents. The
term ~Hm can be related to the reduced scalar potential ψ by knowing that, in a source free
region, the relation ∇× ~Hm = 0 holds true. Therefore, ~Hm = −∇ψ.
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With reference to Figure 3, the reduced scalar potential can be computed by applying
(2) and the field Hm is obtained as its gradient as shown in (3) [18–22].

ψ = − 1
4π

∫
Ω

∇ · ~M(~r′)
|~r−~r′| dΩ +

1
4π

∫
S

~M(~r′) ·~n
|~r−~r′| dS, (2)

~Hm =
1

4π
∇

∫
Ω

∇ · ~M(~r′)
|~r−~r′| dΩ− 1

4π
∇

∫
S

~M(~r′) ·~n
|~r−~r′| dS, (3)

where ~M is the magnetization.

Figure 3. Integration domain for the computation of Hm.

By assuming a finite and homogeneous magnetic permeability, the term∇ · ~M(~r′) van-
ishes [21]. Therefore, considering that ∇(1/|~r−~r′|) = −(~r−~r′)/(|~r−~r′|3), the following
relation between ~Hm and ~M is obtained:

~Hm =
1

4π

∫
S
~M(~r′) ·~n ~r−~r′

|~r−~r′|3 dS. (4)

The term ~M(~r′) ·~n is a scalar quantity called surface magnetic charge density and,
when the shell approximation can be applied, some simplifications can be discussed. For a
thin metallic sheet it is possible to assume that the magnetization lays on the same plane of
the sheet [13,14,23], this behavior is also called shape anisotropy [24,25]. Figure 4 shows
a shell element with its magnetization that is assumed to be uniform inside the volume.
From the analysis of the 3D representation, it is apparent that the surface magnetic charge
density vanishes on the top and bottom surfaces. Therefore, the integral in (4) can be
computed only on the lateral surfaces. Moreover, considering the 2D shell element, the
surface integral can be simplified in a line integral multiplied by the thickness t [14].

Figure 4. From volume element to shell element representation when t << {l1, l2}.
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By introducing the magnetic susceptibility χ, the total magnetic field can be related to
the magnetization ~M = χ~H, therefore, the substitution of (4) in (1) leads to

~M
χ
− 1

4π

∫
S
~M(~r′) ·~n ~r−~r′

|~r−~r′|3 dS = ~H0. (5)

If the metallic layer is discretized in several rectangular of triangular elements, by
applying a collocation method to the barycenter of each element, (5) leads to a linear system
with the magnetization as unknown [13–15]:

KM = H0. (6)

Solving (6) the magnetization at each element of the shield is obtained. Afterward,
the magnetic field in air can be computed as the sum of the source field and the one of
the magnetized shield. The latter is computed using the equivalent surface charge density
associated to each magnetized element according to (4) [14]. This approach can be used
to surface meshes made of rectangular or triangular patches. In the first case, significant
speed-up can be obtained exploiting the properties of the fast Fourier transform [15].

As explained earlier, the MSR is made of multiple layers that operate at different
values of external magnetic fields. Some of the layers can operate in the Rayleigh region.
Therefore, a nonlinear relation holds between the magnitudes of the magnetization and the
magnetic field:

M = g(H). (7)

The nonlinearity can be handled with different iteration schemes. It is well known
that the Newton–Raphson technique is usually fast, but some difficulties can arise in the
case of magnetic characteristics presenting inflections. In contrast, the fixed point method
is always convergent but its convergence rate can be slow compared to the Newton–
Raphson technique [26,27]. In this paper, the fixed point technique is adopted to handle the
nonlinearity. This method allows to split the nonlinearity in a linear term and a residual
term [16,28]:

H = g−1(M) =
M

χFP
+ HRES, (8)

where χFP is a constant value and HRES is a residual term that describes the nonlinear
dependence on H. Discretizing (8) at the barycentre of each element, and introducing the
iterative procedure the following linear system can be obtained:

KFPMk+1 = H0 −Hk
RES. (9)

The residual term at the first iteration is set to zero, and the value is updated after
each step with the following equation:

Hk+1
RES = H0 −KFPMk+1. (10)

The iterative process is terminated when the residual term reaches a constant value
up to a given tolerance. The convergence of the presented numerical method is ensured
for any initial value of residual field. However, the constant term χFP must be selected
carefully [26,27]. In literature, the recommended value is

χFP =
χmin + χmax

2
, (11)

where χmin and χmax are the minimum and maximum slopes of the M(H)
relation, respectively.
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2.2. Identification of the B(H) Curve

The MSR considered in this paper is made of grain-oriented (GO) electrical steel.
To take it into account in the simulations, its magnetic properties must be identified
because, commonly, the manufacturers do not provide the magnetic characteristic in the
Rayleigh region.

The identification is performed using a laboratory setup made of a single layer of GO
electrical steel with thickness 0.35 mm. The shape of the shield is a parallelepiped of size
200 mm× 200 mm× 1000 mm such as the one represented in Figure 5a. The material is
placed in a pair of circular Helmholtz coils used to generate a homogeneous magnetic field
at the frequency of 5 Hz (in order to exclude the influence of the earth magnetic field). The
radius of the two coils is 630 mm and the same value corresponds to the coil-to-coil axial
distance. This geometry allows to maximize the homogeneity of the generated magnetic
field. Figure 5b,c shows the calculated homogeneity volume considering a tolerance of 5%.
The tolerance is defined as the deviation of magnetic field value compared to the target
value at the center of the system.

The magnetic flux density is measured at the center of the system under different
values of the applied external fields. The dimension of the magnetic field probe used to
perform the measurement is small enough to be completely included in this homogene-
ity volume.

(a)

(b) (c)

Figure 5. Shield used in the identification procedure (a). Shield immersed in the magnetic field
created by the Helmholtz coils. The surface represents the homogeneity volume considering 5% of
tolerance (b,c).
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The same test conditions are reproduced using the numerical method presented above.
The B(H) curve in the Rayleigh region adopted in the simulations is described by [29]

B = µ0µrH + ηH2. (12)

The relative permeability µr and the coefficient of the irreversible part of the magnetic
flux density η are the targets of the identification procedure [5]. An optimization of the two
variables is performed, defining the objective function to be minimized as the mean square
error between measured and simulated magnetic flux density values at the center of the
shield. The optimal solution is obtained for µr = 10.97 and η = 6.05× 10−3 H/A. With
these values, the B(H) relationship represented in Figure 6a is obtained, whereas Figure 6b
highlights the very good agreement between measured and simulated data.

(a) (b)

Figure 6. B(H) curve in the Rayleigh region obtained with the identification procedure (a). Compari-
son of measured and simulated magnetic flux density at the center of the shield for different external
field values (b).

2.3. Robustness of the Identification

To test the robustness of the identified material properties, other experimental tests are
carried out. The aim is to understand if the B(H) relationship obtained earlier is still reliable
considering a multi-layered shield (instead of a single layer) with a different geometry
(cylindrical instead of parallelepiped). Therefore, a new shield is developed and tested
with the same Helmholtz coils described above. The shield is made of three cylindrical
layers with thickness of 0.3 mm, the values of the radii are 150 mm, 100 mm, and 50 mm.
The complete shield structure is shown in Figure 7a. Six configurations are tested: (1) only
the larger cylinder, (2) only the medium cylinder, (3) only the smaller cylinder, (4) larger
and medium cylinders, (5) medium and smaller cylinders, and (6) shield with all cylinders.
For the six configurations, the magnetic flux density at the center of the system is measured
for different values of the applied magnetic field generated by the Helmholtz coils. The
results are shown in Figure 7b. At the top of the figure, the values of the applied fields (B1,
B2, B3, and B4) are summarized, then the figure is divided into six frames corresponding to
the shield configurations. Configurations from 1 to 6 are presented from the leftmost to the
rightmost frame. Moreover, the inset in each frame makes it possible to easily understand
the configuration under test. In particular, the inset represents the cross section of the
shield where a dashed line is used to show the layers not considered in both measurements
and simulations.
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(a)

(b)

Figure 7. Shield configuration adopted to test the identification robustness (a). Comparison of
measured and simulated magnetic flux density at the center of the shield for different external field
values and layer configurations (b).

The analysis of Figure 7b shows that measurements and simulation are in good
agreement for all the configurations and for all the applied fields, proving the robustness
of the identification procedure and the effectiveness of the numerical formulation.

3. Design of a MSR

This section proposes a methodology for the design of a magnetically shielded room
considering real dimensions and highlighting the importance of nonlinear B(H) relations.

3.1. Optimization Method

The main objective is to minimize the magnetic flux density inside the room. Usually,
the edge effects due to a local increase of the magnetic flux density close to the edges of the
shield have to be taken into account in the design [30]. For this reason, it is a good approach
to discretize the region of interest and minimize the average magnetic flux density rather
than minimize the value at a single point or the maximum value [31]. However, in the
case of a MSR, it is sufficient to focus on the center of the room because, as the volume
is completely surrounded by the metallic material, common edge effects of flat and open
shields are avoided. Therefore, in this paper, the first goal of the design is the minimization
of the magnetic field at the center of the room. The second objective is to minimize the cost
of the MSR, that is equivalent to minimize the volume of material used.

From simple and qualitative considerations, it is possible to conclude that the two
objectives are conflicting and therefore a multi-objective optimization approach has to be
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adopted. In this paper, the Vector Immune System algorithm is used. All details can be
found in [12] and the code is freely available at https://github.com/giaccone/VIS.

The optimization problem analyses a MSR with imposed external dimensions of 5 m.
The five parameters of the optimization are represented in Figure 8:

• the thickness of each layer: th1, th2, th3;
• the gap between layers: gap1, gap2.

Figure 8. Geometrical parameters of the optimization problem.

Finally, we recall that in a multi-objective optimization with conflicting objectives the
output is not a single solution. The result is a set of trade-off solutions called Pareto optimal
solutions or Pareto front [12].

3.2. Optimization Results

As a first attempt, the optimization is performed considering a linear B(H) character-
istic of the shielding material. For the GO electrical steel, a relative permeability value of
30,000 is selected according to the literature [32]. In a second attempt, the B(H) relationship
identified in previous sections is considered.

In both cases the geometrical parameters can be adjusted by the VIS algorithm in the
following ranges:

• Fixed external dimensions: 5× 5× 5 m3.
• Gap between layers values: [0.1÷ 0.5] m.
• Layer thickness values: [0.1÷ 1] mm.

The Pareto fronts obtained in the linear and nonlinear case are represented in Figure 9.
The x-axis represents the magnetic flux density at the center of the room and the y-axis the
volume of the shield. As both objectives have to be minimized the utopia point corresponds
to the origin of the axes.

The shapes of the two Pareto fronts are similar, however, it is apparent that with the
linear assumption the magnetic flux density at the center of the room is much lower than
the values obtained with the nonlinear material. By considering the shielding factor (SF;
i.e., the ratio between the magnetic field without and with the shield) at the point of the
Pareto front that minimizes the B-field, the linear assumption leads to 900 whereas the
nonlinear assumption to 7. The significant variation of the SF highlights the important role
of the correct identification of the magnetic characteristic.

https://github.com/giaccone/VIS
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Figure 9. Comparison of the Pareto front obtained from linear and nonlinear assumption. The
shielding factors computed at the Bmin points of each Pareto front are highlighted.

To better understand differences and similarities of the two Pareto fronts, more details
about the geometry are given in the following. First of all, it is observed that for each
solution in the Pareto front the values of gap1 and gap2 (distances between layers) is always
very close to 0.5 m, with a deviation lower than 5%. Further considerations can be done on
the thicknesses. To this aim, let us consider Figure 10 where a qualitative Pareto front is
represented. It is composed by all the solutions that can be observed moving from the point
(Bmin, Volmax) to the point (Bmax, Volmin), as shown by the orange arrow. For each solution,
it is possible to see the thickness values th1, th2, and th3, as presented in the plot. In the
x-axis the solutions from (Bmin, Volmax) to (Bmax, Volmin) are listed and, for each solution
6 points can be read in the y-axis: th1, th2, and th3 with linear assumption, and th1, th2,
and th3 with the nonlinear assumption. It is possible to observe that the thickness values
obtained in the linear case are very similar to the ones obtained in the nonlinear case.
From the analysis of the optimization results it is possible to conclude the following.

• The gap between layers is always maximized.
• A linear approximation seems to be sufficient to estimate the geometry of the MSR.
• After finding the optimal geometry, it is important to consider the nonlinear behavior

of the material to estimate the real SF of the MSR.
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Figure 10. Thickness values of the three layers obtained from linear and nonlinear assumption,
corresponding to the Pareto front solutions, listed in the x-axis from the point (Bmin, Volmax) to the
point (Bmax, Volmin), as shown by the orange arrow.

4. Conclusions

The paper evaluates the optimal design of a multi-layer MSR, focusing on the modeling
of ferromagnetic sheets at very low applied fields. An effective design procedure requires
the accurate evaluation of the material characteristic in the Rayleigh region of the B(H)
curve. To this end, an identification procedure of the magnetic characteristic is proposed,
and the results are used within a numerical model able to simulate the shielding effect
of metallic layers taking into account the nonlinearity of the material. The robustness of
the identification procedure and the numerical model is tested through the simulation
of different experimental setups. A multi-objective optimization is proposed to define
the optimal choice of the thickness and the distance between shielding layers of a MSR,
minimizing the magnetic field at the center of the room and the volume of magnetic
material. The results highlight that a linear model of the magnetic characteristic is sufficient
to identify the optimal geometry of the shield, but the nonlinear model of the Rayleigh
region is required to evaluate the effective shielding factor of the MSR.

Author Contributions: All authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.
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