
08 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Harmonize: a shared environment for extended immersive entertainment / Oriti, Damiano; Manuri, Federico; DE PACE,
Francesco; Sanna, Andrea. - In: VIRTUAL REALITY. - ISSN 1434-9957. - (2021). [10.1007/s10055-021-00585-4]

Original

Harmonize: a shared environment for extended immersive entertainment

Springer postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1007/s10055-021-00585-4

Terms of use:

Publisher copyright

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to
Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements,
or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s10055-021-00585-4

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2924932 since: 2021-10-08T12:10:37Z

Springer

Vol.:(0123456789)1 3

Virtual Reality
https://doi.org/10.1007/s10055-021-00585-4

S.I. : COVID-19

Harmonize: a shared environment for extended immersive
entertainment

Damiano Oriti1  · Federico Manuri1 · Francesco De Pace1 · Andrea Sanna1

Received: 15 July 2020 / Accepted: 18 September 2021
© The Author(s) 2021

Abstract
Virtual reality (VR) and augmented reality (AR) applications are very diffuse nowadays. Moreover, recent technology innova-
tions led to the diffusion of commercial head-mounted displays for immersive VR: users can enjoy entertainment activities
that fill their visual fields, experiencing the sensation of physical presence in these virtual immersive environments. Even if
AR and VR are mostly used separately, they can be effectively combined to provide a multi-user shared environment (SE),
where two or more users perform some specific tasks in a cooperative or competitive way, providing a wider set of interactions
and use cases compared to immersive VR alone. However, due to the differences between the two technologies, it is difficult
to develop SEs offering a similar experience for both AR and VR users. This paper presents Harmonize, a novel framework
to deploy applications based on SEs with a comparable experience for both AR and VR users. Moreover, the framework is
hardware-independent, and it has been designed to be as much extendable to novel hardware as possible. An immersive game
has been designed to test and to evaluate the validity of the proposed framework. The assessment of the system through the
System Usability Scale questionnaire and the Game Experience Questionnaire shows a positive evaluation.

Keywords  Augmented reality · Collaborative environments · Immersive entertainment · Immersive environments · Shared
environments · Virtual reality

1  Introduction

Augmented reality (AR) and virtual reality (VR) appli-
cations are very diffuse nowadays due to their ability to
enhance and to simplify human tasks in many fields. Mil-
gram and Kishino first defined AR, VR and their relation
in the reality–virtuality continuum in 1994 (Milgram et al.
1994). A VR environment is one in which participants are
immersed in a synthetic world, which can be either realis-
tic or fantastic. AR environments consist of virtual objects
anchored to specific positions in the real world, and they are
aimed at “augmenting natural feedback to the operator with
simulated cues” (Milgram et al. 1994).

Immersive environments (IEs) are simulations that fill
the user’s visual field, giving the sensation of physical pres-
ence (Getchell et al. 2011; Rubio-Tamayo et al. 2017). The
term immersive entertainment defines all the entertainment

activities which take place in a IE. Cave Automatic Virtual
Environments (CAVEs) are the oldest example of immer-
sive virtual environments and consist of a cube-shaped
room where projectors are directed towards 3 (up to 6)
walls (Cruz-Neira et al. 1992). VR environments allowing
the presence of more than one user at the same time for col-
laboration are called collaborative virtual environments or
shared virtual environments (SEs).

VR applications are traditionally experienced with com-
puter monitors; thus, users can get distracted by real-world
stimuli and it could be difficult for them to feel a real sense
of presence (North and North 2016). However, recent tech-
nology innovations led to commercial head-mounted dis-
plays (HMDs) for VR, such as the Oculus HMDs1 or the
HTC Vive.2The videogame industry is greatly investing
in immersive entertainment, with the gaming market size
valued at USD 11.56 billion in 2019 and expected to grow
at a compound annual growth rate of 30.2% from 2020 to
2027 (GrandViewResearch 2020). Immersive entertain-
ment can greatly benefit from SEs, by connecting people

 *	 Damiano Oriti
	 damiano.oriti@polito.it

1	 Dipartimento di Automatica e Informatica, Politecnico di
Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy

1  https://​www.​oculus.​com/.
2  https://​www.​vive.​com/​eu/.

http://orcid.org/0000-0003-4898-1525
http://crossmark.crossref.org/dialog/?doi=10.1007/s10055-021-00585-4&domain=pdf
https://www.oculus.com/
https://www.vive.com/eu/

	 Virtual Reality

1 3

who live apart and making them feel close. The ability of
sharing immersive virtual worlds with people far away con-
nected through the Internet can be a way of circumvent-
ing the movement restrictions and isolation caused by the
recent Covid-19 pandemic. Moreover, even if AR and VR
are mostly used separately, they can be effectively com-
bined together in a SE, providing a wider set of interactions
and use cases. For example, a museum guide may provide
a tour in a real museum and see remote visitors through
AR, whereas the latter enjoy the artworks in high resolution
through a detailed, immersive VR reconstruction of the site.
Performers and artists may work from their home, perceiv-
ing the presence of the audience through AR, whereas the
public experiences the show through immersive VR.

This paper presents Harmonize, a novel framework to
deploy applications based on SEs for AR and VR users. Har-
monize was built on top of Unity3D engine, in order to take
advantage of a free3 and powerful engine offering state-of-
the-art authoring tools, e.g. for animation and scene creation.
In order to test and to evaluate the validity of Harmonize,
an immersive game has been developed to offer a similar
gameplay experience to both AR and VR users.

The proposed framework has been developed and tested
with the Oculus Rift CV1 VR HMD and the Microsoft Holo-
Lens AR HMD. Although the Oculus device is relatively
affordable, the Microsoft product is rather expensive, being
oriented to business customers and researchers. The choice
of using the Microsoft HoloLens is justified by two factors:
1) its tracking accuracy is comparable to the accuracy of the
Oculus Rift CV1 tracking system, 2) it does not constraint
the user hands as handheld AR solutions do. The price of
see-through AR HMDs should significantly decrease in the
future, thus making the proposed approach commercially
viable. On the other hand, both AR and VR clients could be
implemented by a cardboard and a smartphone; this solution
would penalize the AR client as the real world is mediated
by the device camera. Another factor that affects the cost of
a AR/VR framework is the virtual reconstruction of environ-
ments, which may require many hours of work of a skilled
3D artist or the usage of expensive solutions like LiDAR.
Although the presented work is based on manual reconstruc-
tion of the real environment, an extension of this framework
using automatic deep learning-based 3D reconstruction is
being worked on.

The major contributions of the presented work are the
following: (1) a complete framework to develop multiuser
applications for AR/VR, (2) an integrated networking system
designed for fast paced games, (3) a system based on spatial
anchors to align a virtual scene to its real counterpart, and

(4) a study of a multiplayer game where both AR and VR
players share the same environment and play with the same
rules and modalities.

In the next section, the major problems in developing
frameworks for multi-user AR and VR applications and the
most relevant works known in the literature are reviewed.
The architecture of the proposed framework and its imple-
mentation are presented in Sects. 3 and 4. Section 5 provides
an overview of a generic application developed with Har-
monize. Section 6 describes the immersive game developed
to test the framework, whereas Sect. 7 describes the tests
performed and an analysis of the obtained results.

2 � Previous works

In order to develop a multi-user application tailored for both
AR and VR users, developers have to usually deal with the
specific libraries and software development kits (SDKs) of
the target devices they want to support. In fact, while with
mice and keyboards it is not necessary to program for a spe-
cific brand of device, in order to support AR and VR devices
it is common to have to deal with proprietary SDKs. Moreo-
ver, when applications have some kind of sharing feature
using the network infrastructure, it might be necessary to
cope with network libraries as well. Finally, in order to sup-
port full distributed immersive worlds, developers have to
address some general problems that were identified by Broll
(1997): (1) keeping shared worlds consistent, (2) the network
protocol must scale to (large) number of users, (3) consid-
eration of reliability issues versus interactivity, (4) support
of cooperation rather than coexistence, (5) heterogeneous
network connections and 6) composition of large-scaled
subdivided worlds.

DIVERSE is a modular VR framework proposed by
Kelso et al. (2002) and based on existing software packages.
Although it was designed to facilitate the creation of device-
independent virtual environments, it was not designed with
AR in mind.

VHD++ (Ponder et al. 2003), MORGAN (Ohlenburg
et al. 2004) and Instantreality (Behr and Fellner 2011)
are modular and extensible frameworks for AR and VR.
VHD++ comprises a runtime engine, some plugable com-
ponents called services, and a hierarchy of data objects for
both system and simulation states. MORGAN presents a
component-based architecture and uses well-known software
patterns such as the publisher-subscriber pattern for man-
aging different devices, and the factory method pattern for
component creation and instantiation. It also supports SEs
and concurrent manipulation of the scene by multiple users.
Instantreality, designed for industrial applications, achieves
tracking through marker-less computer vision techniques
such as feature tracking and inertial sensors. Although

3  Unity3D can be used free of charge for non-commercial academic
research.

Virtual Reality	

1 3

VHD++, MORGAN and Instantreality are quite powerful
frameworks, they are difficult to maintain due to their com-
plexity and they do not provide integrated and easy to use
tools for scene creation and management.

Developed by Anthes and Volkert (2006), inVRs is a
framework for networked VR applications written in C++
and offering a modular design, allowing its different mod-
ules to be used as separate libraries. CalVR (Schulze et al.
2013) is an open-source VR middleware based on Open-
SceneGraph4 and offering collaborative session support.
Thanks to its modular architecture, CalVR allows compil-
ing new modules separately from the main code using a
plugin system. CocoVerse (Scott et al. 2017) is a shared
immersive environment in which users can interact with
each other and collaborate to create virtual objects using a
set of predefined tools. The application employs the HTC
Vive and related motion controllers, making it possible to
track the user motion in a room-scale volume. CalVR, inVRs
and CocoVerse were designed for VR; thus, they are not
tailored towards SEs mixing AR and VR users.

ARTiFICe (Mossel et al. 2012) is one of the most recent
frameworks. Since ARTiFICe is based on the Unity3D
engine, it leverages its multiplatform support, its native sup-
port of common device types and the integrated authoring
tools for scene creation. To the best of the authors knowl-
edge, ARTiFICe does not support modern devices such as
HoloLens and it does not offer a uniform experience regard-
less of the hardware of choice.

VREX (Blonna et al. 2018) is a VR game framework
based on Unity3D and the HTC Vive, a popular VR HMD,
providing tools for managing the player interactions, “crea-
ture” creation and movement, and game objectives. VREX
does not support AR devices.

Casarin et al. (2018) propose an implementation of
UMI3D (Casarin et al. 2017), a unified model for inter-
action in 3D environment, based on the popular Unity3D
engine. They introduce a toolbox that helps to develop AR
or VR applications designed for cooperative work. The pro-
posed tools allow the developers to manage interactions,
synchronisation and graphics, but they lack embodiments
(i.e. avatars).

ARCalVR (Zhang et al. 2019) is an extension of CalVR
aimed at supporting Android smartphones as AR devices.
The main additions to the original VR framework are new
tracking and environment understanding features and an
improved user-interaction interface, which has been adapted
in order to support finger controls in place of mouse clicks
for 3D dragging and rotations.

Bozzelli et al. (2019) design an integrated AR/VR
framework tailored for user-centric experiences of cultural

heritage. The framework is used to develop two different
applications as part of a project called ArkaeVision, one
for AR (ArkaeVision Art) and one for VR (ArkaeVision
Archeo). The developed experiences have different goals,
visualisations and interaction modalities.

Albeit the described frameworks offer several function-
alities and support extensibility, even the most recent ones
present two relevant problems: firstly, most of them are not
designed to support a shared environment with both AR and
VR users at the same time; secondly, even if some of them
could be theoretically modified to provide this support, they
are not designed to offer a comparable experience regardless
of the hardware of choice, either AR or VR. Thus, a frame-
work supporting modern AR and VR devices and aimed at
creating SEs that could be experienced evenly with both AR
and VR devices at the same time is still missing. The pur-
pose of this research is to develop a novel framework, Har-
monize, to bridge that gap. Moreover, it has been designed
to facilitate the creation of shared immersive experiences
for entertainment, removing the burden of managing com-
mon low level tasks related to the application lifetime from
application developers.

3 � Architecture and design choices

After an analysis of the existing frameworks and applica-
tions, it was possible to define the requirements for the pro-
posed framework. First, developers should be able to eas-
ily add both the rules defining the scope of the intended
application, and new entity classes. Moreover, the frame-
work should handle autonomously all the other factors of
a networked application, such as connections, distributed
computation and synchronisation. In order to develop and
test the overall system more efficiently and effectively, the
framework was designed in a modular fashion (see Fig. 1).
For every major functionality, such as networking and entity
management, an independent module has been developed
and all the modules are administrated and coordinated by
an application controller.

3.1 � User input management

Modern AR and VR SDKs and frameworks assure the
forward-compatibility of the application in terms of input,
which means that applications developed with these tool-
kits will be compatible with future devices. This is obtained
virtualising raw inputs in terms of application logic, which
is based on actions that can be triggered by inputs. When
a new device comes out on the market and the toolkit is
updated, the upgraded runtime will provide the proper input
mapping, thus avoiding extensive code-rewriting to make
the application compliant with the new device. The idea of 4  http://​www.​opens​ceneg​raph.​org/.

http://www.openscenegraph.org/

	 Virtual Reality

1 3

abstracting actions from raw inputs has been adopted by the
Mixed Reality Toolkit (MRTK), the SteamVR 2 SDK and
OpenXR, the open standard by the Khronos group. Thus,
Harmonize takes advantage of the decoupling of the applica-
tion logic from the actual hardware to guarantee compatibil-
ity with future devices. Moreover, the proposed framework
has been designed to automatically detect the user device
type and to allow users to choose the preferred interaction
paradigm among those supported by the selected hardware.

3.2 � The shared world structure

Some requirements have to be satisfied in order to guarantee
an even experience when AR and VR users share the same
environment. One of such requirements dictates that the vir-
tual environment should be constructed as topologically sim-
ilar to the real play spaces as possible. Two design choices
have been considered: (1) reconstructing on the fly a 3D rep-
resentation of the actual location of the AR users and then
sending the 3D reconstruction to VR users; (2) modelling,
beforehand, a specific location with traditional 3D modelling
techniques and then including it in the application asset data-
base. Reconstruction methods such as KinectFusion (Izadi
et al. 2011) are very computationally intensive; thus, they
are too demanding for current AR hardware; moreover, the
reconstruction quality is not detailed enough to be satisfying
for a VR experience. For these reasons, the current version
of Harmonize supports traditionally generated environments.

3.3 � The VR locomotion method

There exist several locomotion methods (Boletsis 2017;
Bozgeyikli et al. 2016; Nabiyouni et al. 2015) designed to
allow users to walk in the virtual world, some of which are
better than others at preventing motion sickness (McCau-
ley and Sharkey 1992). The most common ones are natural
walking, teleportation and stick walking: (1) natural walking
is the best in terms of motion sickness and intuitiveness, but

it requires that the space where users walk is large enough
for the given application, and the VR system is untethered
and portable; (2) teleportation is also good to limit motion
sickness, but it is less intuitive than natural walking and
sometimes not suitable for particular applications; (3) stick
walking is the worst as far as motion sickness is concerned,
because it creates a clear disconnection between what the
vestibular system tells the user (that he/she is not moving)
and what he/she sees. Harmonize requires that the VR sys-
tem matches the AR system in terms of walking capabili-
ties in large areas; however, to support the widest range of
VR devices, it should be compatible with tethered systems
such as the Oculus Rift. Moreover, teleportation was an
unfeasible option to guarantee a similar experience. Since
natural walking was not doable, Harmonize employs a ver-
sion of stick walking based on an existing library named
ArmSwinger.5 This locomotion method allows users to vir-
tually walk by swinging their arms as if they were actually
walking, as shown in Fig. 2.

3.4 � World state synchronisation and network model

The most common case of multi-user application is that of
distributed model, where users are remotely connected and
the computation is not centralised but distributed among
multiple machines. In such a case, it is necessary to design
the overall system so that it supports two basic mechanisms:
(1) network communication among hosts and (2) application
state synchronisation. Harmonize adopts a client–server net-
work architecture to facilitate the synchronisation process:
clients send inputs to the server, which processes them and
then sends back the updated state of the world to each client.
The advantages of this choice are multiple: (1) it is scalable
with respect to the number of clients, because in order to
have more clients it is required that only the server has more

Fig. 1   The framework architecture with application controller and
modules. The application logic refers to the application mode, which
is defined by a set of rules. The network management module handles

connections and network messages. The real and virtual world align-
ment module is needed to support AR systems

5  https://​github.​com/​Elect​ricNi​ghtOwl/​ArmSw​inger.

https://github.com/ElectricNightOwl/ArmSwinger

Virtual Reality	

1 3

bandwidth; (2) some wearable devices may offer limited
computational power, thus performing some of the applica-
tion logic processing at the server side (e.g. for the physics
simulation task) allows to unburden low-performance cli-
ents; (3) it is easier to implement a client–server architecture
compared to a peer-to-peer one for applications that may
involve more than two users.

4 � Implementation

In order to support the widest set of devices and platforms,
Harmonize is based on the popular Unity3D game engine.
Unity3D is flexible and supports a large set of VR and AR
devices and libraries, either natively or through third-party
plugins. One of such plugins is the Mixed Reality Toolkit

(MRTK), developed as an open-source project by Micro-
soft. The MRTK supports Windows Mixed Reality devices
and OpenVR devices, such as Oculus Rift and HTC Vive.
Moreover, the MRTK is highly modular and flexible, and
each one of its modules can be replaced with a custom one.
Figure 3 shows the software implementation of the proposed
framework and how it is tied to Unity3D and MRTK, as
well as other third-party libraries such as netcode.io and
ArmSwinger, which will be discussed later on in Sects. 4.1
and 4.11.

4.1 � The communication protocol

In the context of networked solutions, two variables are par-
ticularly important: lag and jitter. The lag (or latency) is the
time it takes for a packet to travel from the sender to the
receiver; the jitter is the variation in the delay of received
packets. Due to network congestion, improper queuing, or
configuration errors, the delay between each packet can vary
instead of remaining constant. In multi-user, interactive
applications, especially if they involve AR and VR, visual
imperfections and inconsistencies caused by both lag and jit-

ter are easily recognised by the users (Beznosyk et al. 2011).
Reliable transport protocols such as TCP adopt policies to
guarantee the order and integrity of each exchanged packet,
at the cost of introducing a perceivable delay in interactive
applications. A fast, although unreliable, transmission pro-
tocol such as UDP is more suitable for this type of applica-
tions (Claypool et al. 2003; Ratti et al. 2010), and this is
the reason why UDP is the favoured protocol in fast-paced
multiplayer games such as First-Person Shooters (FPSs), and
it has been chosen for Harmonize.

Unlike TCP, UDP is a connectionless protocol, so it lacks
some basic functionalities, such as checking if a remote host
is still reachable and can communicate with the local host.
In order to have these functionalities in the system, the pro-
posed framework uses a third-party library and protocol

Fig. 2   ArmSwinger allows users to walk or run in the virtual space
by swinging their arms. The walking speed is determined by the
swinging frequency, whereas the direction is controlled by hand rota-
tion

Fig. 3   Arrows show the data-flow between the software layer and hardware devices

	 Virtual Reality

1 3

called netcode.io6, a connection-oriented protocol built on
top of UDP and designed for high-performance and low-
latency videogames.

4.2 � World synchronisation issues and solutions

Distributed architectures for multi-user applications intro-
duce some issues caused not only by the network latency
and jitter, but also by the distributed computation of the
application logic. In order to mitigate the latency and to
improve the perceived fluidity of the virtual scene, Harmo-
nize uses a number of techniques which are typically used in
existing fast-paced games. Figure 4 illustrates the negative
effect of network delay on the data exchange among server
and clients.

If the lag is greater than ≈ 50 ms, not only users will start
noticing it, but also the application may become unusable
(Raaen and Kjellmo 2015). One of the techniques adopted
to prevent this problem is called client-side prediction, and
it consists in computing the result of the user’s input on
the client instead of waiting for the server’s response. An
example of this is the user using a virtual fire weapon; when
they click the fire button, the weapon fires immediately, so
the user can see and hear the shot.

Client-side prediction enables the user to perceive the
application response as immediate, but the response com-
puted by the server might differ from the one computed by
the client. To solve this problem, each client corrects its state
so that it is coherent to the one computed by the server that
has authority over all the clients. This procedure is called
server reconciliation. Client-side prediction and server rec-
onciliation are implemented by separating each user com-
mand in primary and secondary effects (see Algorithm 1):
primary effects are those effects that affect the state of the

world, whereas secondary effects are just visual or sound
effects that have no impact on the world, and only make the
experience more interesting, usable and/or entertaining (e.g.
the sound of a fire weapon).

Method Entity::UpdateClient(self , deltaT ime):
actionList = self.ComputeActions();
foreach action in actionList do

/* Play secondary effects such as
/*xfv,sdnuos

self.ExecuteActionSecondaryEffects(action,
deltaT ime);

end
;
Method Entity::UpdateServer(self , deltaT ime):

actionList = self.ComputeActions();
foreach action in actionList do

self.ExecuteActionPrimaryEffects(action,
deltaT ime);

/* Play secondary effects such as
/*xfv,sdnuos

self.ExecuteActionSecondaryEffects(action,
deltaT ime);

end
;
Function MainLoop(app, entityList, deltaT ime):

while app.isRunning do
foreach entity in entityList do

if app.isClient then
if entity.isUserControlled then

entity.userCommands =
app.userCommandQueue;

end
entity.UpdateClient(deltaT ime);

else
entity.UpdateServer(deltaT ime);

end
end

end
Algorithm 1: For each frame, entities are updated
by first computing the required actions to be ex-
ecuted. Then, the actions (e.g., move, shoot, etc.)
are executed by playing only visual or sound effects
on the client, or both secondary and primary effects
(e.g., computing who was hit by a bullet and de-
creasing its health) on the server

Another problem which may impact on the sense of flu-
idity is related to the methodology adopted by the server
to process inputs: since it receives inputs from the clients
at high frequency, instead of processing one command at a
time, which would be CPU-demanding, the server batches
the inputs in a buffer and processes them all at once at rela-
tively low frequency (e.g. 10–20 times per second). This
would add up to the network packet travel latency, result-
ing in an even greater perceived delay. This problem is
addressed by allowing clients to use the past entity states in

Fig. 4   The network delay can be very high, thus negatively affecting
the user experience. When a client sends a packet to the server (e.g. a
user command), the server has to first receive it, then it can process
it and finally it can send the result back to the client. A user might
receive a feedback only after several milliseconds

6  https://​github.​com/​netwo​rkpro​tocol/​netco​de.​io.

https://github.com/networkprotocol/netcode.io

Virtual Reality	

1 3

order to smoothly interpolate the position and orientation of
each entity between the last received states. This technique
is called entity interpolation.

With entity interpolation users would always see the past
state instead of the current one, introducing logical incon-
sistencies, e.g. when two users interact on the same object at
the same time. To solve this problem, since the server itself
has the same information as the clients and can perform the
same entity interpolation, it computes the results of user
actions considering the status at the client side (e.g. what the
user sees). As an example, this technique allows players in
first person shooter videogames to continuously move and
to be able to shoot each other.

4.3 � VR and AR in server‑authoritative models

The server reconciliation technique previously described is a
major concern when dealing with AR or VR technologies. In
fact, let us consider what would happen if players penetrate
a virtual wall with their heads and the server tries to control
their positions. The server would determine that there is an
obstacle, so it would push back the users accordingly. Since
the users have physically moved their heads, they would
feel the movement forward, but they would see the virtual
scene move backwards, thus inducing motion sickness. In
order to mitigate this problem, a mixed approach has been
adopted: all the inputs related to the physical movement of
the player are validated by the client, whereas all the other
inputs are validated by the server. The VR client has to con-
sider collisions of the user with the virtual environment, in
order to avoid that virtual characters penetrate walls or other
obstacles; this is implemented by taking advantage of the
physics engine provided by Unity3D, which allows to define
colliders which can be assigned to the world and to enti-
ties. Each client computes the new position and orientation
independently for each frame, and then, it sends the updated
user pose to the server, which broadcasts the user poses to
all clients without changing them.

4.4 � Application controller and module classes

The client and the server are very similar in terms of mod-
ules, both rely on Unity3D and use the netcode.io library for
network communications. Modules are C# class developed
to handle different tasks. The module class implementation
can be the same and shared across client and server, or there
can be two different implementations for client and server.
However, there are modules dedicated to solely the client
or the server. The modularity allows easy adaptation and
upgrade of the existing codebase with respect to different
devices. The application controller has the role of coordina-
tor, handling the modules and enabling them to exchange
data.

4.5 � The network manager

This module, built on top of netcode.io (see Sect. 4.1), is
addressed every time the system needs to establish a con-
nection between a client and the server or one of them need
to send or to receive a message. A dedicated thread manages
both events and messages. The network manager provides
dedicated methods to start or end a connection and to send
messages. When required, the network manager can deal
with message fragmentation. Moreover, since UDP is unreli-
able, the network manager extends it with a reliability layer
for all those cases where it is strictly necessary.

4.6 � Virtual and real world alignment

In virtual reality, the user is tracked in the space relative to
the external sensors, or relative to the starting position by
sensors mounted on the VR device itself (Pinz et al. 2002).
Since the user is immersed in a virtual world typically unre-
lated with the real place, this is sufficient to make the system
work. However, AR devices such as the Microsoft HoloLens
set the world centre in correspondence with the device posi-
tion. Since it is not possible to predict nor it is advisable to
enforce where the user will start the application, the scene
containing the virtual objects will not be, most of the time,
correctly aligned with the real world. Since Harmonize pro-
vides a shared environment for both AR and VR users, it
is necessary to guarantee the consistency of the AR users’
position and rotation respect to the virtual world, despite the
different coordinate systems. To solve this problem, anchors
(Langlotz et al. 2011) have been used to memorise some
absolute locations in the real-world environment. An anchor
captures some colour or form features of a given location in
order to recognise it later on when the device camera frames
it again. For each anchor, its corresponding position and
orientation is marked within the 3D virtual world. Once the
AR device locates an anchor in the real world, it uses that as
a reference point to compute a transformation that will be
adopted to correctly align the detected anchor with its virtual
location in the scene, effectively aligning the virtual world
with the real play area. If more than one anchor is simulta-
neously located by the tracking device, the system uses the
closest ones to compute the alignment transformation.

4.7 � The application mode

The application mode is a C# abstract class designed to
allow application developers to define what goals the users
have to pursue and what actions they can execute in the
environment to reach those objectives. The mechanism to
evaluate user (or rather entity) actions and update the appli-
cation state is based on the message programming pattern:
(1) at startup time, the application mode is set as listener for

	 Virtual Reality

1 3

the entity messages; (2) when an entity executes a mean-
ingful action, it sends a message to whichever is registered
as listener; (3) the application mode receives the message
and updates the state according to the previous state and the
new input. Since the application mode is one of the modules
used to determine the shared application state, this module
is server-side only.

4.8 � Entities

Entities are human-controlled or computer-controlled actors
and objects implementing specific functions and behaviours.
In Harmonize an entity is both a class based on MonoBe-
haviour and a prefab; in Unity3D, MonoBehaviour is the
base class for scripting, whereas prefabs are GameObjects
with specific children and behaviours. The Entity class pro-
vides some methods which are called during the lifetime of
the application, to allow developers to define its behaviour.
Since the computation concerning the application rules is
handled by the server, Harmonize provides some mecha-
nisms to differentiate the logic among hosts, such as having
some specific methods to be called solely from the server
but not from the clients, and C# attributes to mark a specific
method to be executed only by clients.

4.9 � World state synchronisation

The current state of an entity is determined by its variables
(e.g. in videogames, a variable may store the health of the
player), whereas the sequence of its executed methods rep-
resents its dynamics. In a shared application, it is required
to synchronise both the entity state and the dynamics. The
proposed framework implements a mechanism to automati-
cally send the values of the class variables and the sequence
of executed methods through the network. This mechanism
is based on C# language reflection ability to introspect and
examine a class structure. In order to synchronise entities
across the server and clients, developers can use specially
designed attributes to mark which variables have to be syn-
chronised across all hosts. Moreover, in order to execute a
method both locally and remotely, the framework provides
an entity class method through which the method to be syn-
chronised can be executed.

Since the network communication is based on netcode.io,
which in turn is based on the unreliable transport layer pro-
tocol UDP, there is no guarantee that messages will arrive
in-order or, for that matter, will arrive at all. In order to
circumvent this limitation without sacrificing the network
communication speed, Harmonize implements a mecha-
nism for no-data-loss communication by exploiting the fact
that, unlike generic network solutions, an interactive VR/
AR application expects that both the clients and the server
exchange data at high frequency. Therefore, instead of

sending a dedicated ack message to acknowledge the recep-
tion of a message, the proposed solution leverages the fact
that both the server and clients continually send each other
new data messages by including some information about
the last received states and inputs. Since it is possible that
the same world state or user inputs are received twice, the
system is also able to discard already processed informa-
tion. The structure of the network message and the main
application messages sent by the clients and the server are
shown in Fig. 5.

4.10 � Time synchronisation

Since for physical and technological reasons network com-
munication cannot be instantaneous, interactive applica-
tions relying on the network infrastructure must include
all necessary mechanisms to mitigate problems associated
with communication delays. One of such problems is time
synchronisation, which Harmonize solves by employing a
straightforward mechanism: (1) periodically, each client
receives a world state message, with a timestamp relative

(a)

(b)

(c)

Fig. 5   a The network message has some fields which allow to support
reliability and fragmentation. b The client presentation message is
sent from a client when it first connects to a server, whereas the client
ready and playtime info messages are set just before a session starts
and throughout the session, respectively. c The start session info mes-
sage is sent by the server before a session starts and it contains the
dictionary of the users that will participate in the session, whereas the
snapshot is sent periodically throughout the session in order to update
the world state on the clients’ side

Virtual Reality	

1 3

to the server clock; (2) each client computes the jitter as the
deviation from the supposed periodicity (which is known
because of the fixed communication period established at
startup) and the real one, which is the difference between the
instant it receives the message and the time it was supposed
to arrive; (3) instead of updating the clock value with the one
received by the server, each client computes the average over
a fixed number of previously computed jitter values and uses
this value to update its clock. In this way, the lag is averaged
over multiple samples leading to less drastic visual spikes,
while the system is still able to adapt to lag variability.

4.11 � ArmSwinger

ArmSwinger enables users to walk by swinging their arms.
Users can control the direction and speed of walking by
rotating their hands and by varying the swinging frequency.
To prevent users from bumping against or penetrating virtual
walls and other obstacles during walking, the proposed solu-
tion includes a method to detect obstacles in front of users
and to automatically slow down the motion to a stop when
needed. In order to reduce the chance of motion sickness,
the walking speed of virtual characters has been limited to
the walking speed of an average person. As shown in Sect. 7,
nobody experienced motion sickness.

Since this library was initially implemented with HTC
Vive and SteamVR 1.0 in mind, it binds directly to the inputs
from the Vive Controllers. Since Harmonize does not utilise
SteamVR, ArmSwinger was further developed to make it
SDK-independent, by removing the references to SteamVR
and modifying its public interface so that it is abstract and
can be properly implemented for a given SDK with minimal
code changes.

4.12 � Interaction methods

Nowadays, VR systems use tracked controllers for interaction
with the environment, even though recently some device pro-
ducers have started experimenting with hand tracking. The
most advanced industry-grade and consumer AR devices such
as the Microsoft HoloLens have been using hand tracking
and hand gesture recognition as a mean for interaction. The
proposed framework implements a very common interaction
metaphor requiring the user to virtually touch the objects to
interact with them. Since having a motion controller per hand
is very common in VR applications, Harmonize allows users
to select their dominant hand at the start of the application.
Hand gestures are automatically recognised by the HoloLens,
and they are translated into input actions by the MRTK. Since
the HoloLens 1 used for testing is not able to fully track the
hands, but only recognise two basic gestures, Harmonize uses
a metaphor requiring users to specify the desired action to be
executed by looking at a specific class of object, then using the

hand gesture to perform the action. VR systems also support
the gaze-based interaction method described above. Figure 6
shows the interaction methods.

4.13 � AR and VR avatars

In order to increase the sense of presence and improve the
application usability, Harmonize includes an existing third-
party package for Unity3D developed by RootMotion and
named Final IK. One of the scripts included in the package
is aimed at VR systems and it is able to simulate the entire
human animation skeleton using the tracked position and
orientation of human limbs (e.g. the hands and the head) by
means of inverse kinematics. Harmonize is able to load the IK
avatar when needed; for example, AR users would not need
to see an avatar of each other, since they can see the real bod-
ies. Moreover, the proposed framework takes into account the
height of the user, so that the avatar is correctly scaled to fit the
real person. The user enters their height in the client applica-
tion in the configuration stage, and then, this value is sent to
the server in a presentation message (see Fig. 5b) in order to
broadcast this information to all clients. The avatar model is
then scaled in order to match the real user’s height. Figure 7
shows an avatar as seen by a VR user.

(a) (b)

Fig. 6   a The AR interaction method is based on gaze; the user looks
at the object to be selected and then clicks the HoloLens clicker. b
The VR interaction method is based on touch; the user has to virtu-
ally touch an object by moving their virtual hand close to the object,
then they can click on a specific button in the Oculus Touch control-
ler in order to interact with the object

	 Virtual Reality

1 3

5 � The application lifetime

5.1 � The server

In the starting state of the server, named configuration, the
user is asked to specify some parameters: (1) the map where
the play sessions will take place; (2) the network update
frequencies for server-to-client and client-to-server message
exchange; (3) the application mode, if the developers have
included more than one mode for the given application (e.g.
shooter games may have a deathmatch mode, a capture the
flag mode, etc.). Once the configuration is confirmed, the
server enters the waiting for connections state and it listens
to connection requests by clients. When all the connected
clients vote to start the play session, the server enters the ses-
sion preparation state and it initialises all the objects’ data
necessary for the given application mode and connected cli-
ents. Afterwards, the server enters the session update state,
as it continually updates the application loop by processing
the inputs received from clients. When the termination crite-
ria for the given mode are met, the server enters the session
end state and it sends termination messages containing the
session results to all clients. After terminating the session,
the server enters the waiting for connections state and it is
again available to start a new session. The state machine
representing the application lifetime is showed in Fig. 8.

5.2 � Clients

The client program can be executed on a VR or AR system,
and it will automatically detect which one it is running

on. At the start, users are asked to configure the client by
inserting their height and dominant hand. Users are also
able to select the desired interaction method among those
available for the selected device. Once a user confirms the
configuration, its client looks for an available server and
it connects to it. When users are ready, they can vote to
start the session, then the server sends them the starting
message containing the initial state of the world. During
the session, each client synchronises with the server while
updating its own loop. When the session ends, users are
shown the session results and they are able to start a new
play session.

6 � A use case

The proposed system was tested with the Microsoft Holo-
Lens 1 and the Facebook Oculus Rift CV1 with Touch
Controllers. The HoloLens is a standalone AR HMD sup-
porting SLAM-based tracking and hand gesture recogni-
tion for intuitive interactions with virtual objects. The
Oculus Rift CV1 is a VR HMD supporting a camera-based
6DOF tracking in a small space around the external cam-
eras. The Oculus Touch is the official motion controller
for the Oculus Rift, and it is designed for sub-millimetre
tracking of the user hands, thus allowing natural and intui-
tive interaction with the virtual environment.

The test system consisted of a desktop PC with Micro-
soft Windows 10 used both for the server and the VR cli-
ent. The HoloLens acted as AR client, and a dedicated
router was used to connect the server and the two clients
in a local-area network using Wi-Fi. The test sessions were
held in a dedicated area of the Department of Control and

Fig. 7   The avatar used to represent AR/VR users. The HoloLens
model or the Oculus Rift model is added to the avatar based on the
real device used

Fig. 8   A simplified representation of the application state machine,
showing the major states and transitions in the application lifetime

Virtual Reality	

1 3

Computer Engineering of Politecnico di Torino, compris-
ing a corridor, an office room and a meeting room. The
test area was reconstructed in 3D using the Rhino7 and
Blender8 software. (Figure 9a shows the rendered model.
Figure 9b, c shows the VR and AR views, respectively.)
The anchors for virtual world alignment were placed once
before the tests took place. In order to ease the anchor
placement process, anchors were placed in several wall
corners of the play area.

An immersive game was developed with two modes:
(1) in the Deathmatch mode players have to shoot and kill
each other to gain points; (2) in the Horde mode players are
expected to kill virtual enemies that are spawned in groups
in predefined sectors of the play area. In order to make the
experience richer and, therefore more interesting, some sec-
ondary tasks were added such as using virtual medical kits to
recharge the avatar health level and ammunition to recharge
the virtual firearm. Moreover, enemies are also able to shoot
and they can move in random directions around the spawn-
ing point. With each new horde, enemies become faster and
can travel greater distances. Since the Deathmatch mode is a
subset of the Horde mode from a functional standpoint, only
the latter mode was tested.

7 � Tests and results

Tests were aimed at evaluating different aspects of the pro-
posed framework as a whole, including usability, engage-
ment, graphical fidelity and fun. Since most of those aspects
cannot be quantitatively measured, standard questionnaires
such as the System Usability Scale (SUS) (Brooke 1996)
and the Game Experience Questionnaire (GEQ) (IJsselsteijn
et al. 2013) were used. The SUS is commonly used to meas-
ure, in a scale from 0 to 100, effectiveness, efficiency, sim-
plicity and coherence of a given system. The GEQ tries to
evaluate the game experience (fun, difficulty, involvement
in the story), the social presence and post-game feelings
(fatigue, shame or guilt). Quantitative data related to net-
work and tracking system were also collected. Network
data are useful because the AR system was connected to
the server using Wi-Fi, while the VR system was directly
tethered to it, resulting in less overall latency. On the other
hand, the tracking data are useful because, contrarily to the
Oculus Rift tracking system, which is quite reliable in prox-
imity to the external sensors, the HoloLens tracking trades
in robustness for large tracking volumes. Data were collected
regarding both how many times the HoloLens suffered track-
ing loss and the delay to recover its position in space.

The tests involved 20 people in total (4 females and 16
males), who participated in groups of 2 people per test

(a) Rendering of the 3D model of
DAUIN

(b) In-game view of DAUIN from the
VR user perspective

(c) In-game view of DAUIN from the
AR user perspective

Fig. 9   The area of the Department of Control and Computer Engi-
neering (DAUIN) of Politecnico di Torino where the tests to evalu-
ate Harmonize were conducted. a 3D model of DAUIN rendered by

Blender; b, c same perspective of the conference room entrance as
seen by the VR and AR users, respectively

Table 1   The game experience
core module outcomes

Competence Sensory Flow Tension Challenge Negative affect Positive affect

AVG AR 2.31 2.625 2.23 0.65 1.69 0.362 3.06
SD AR 0.17 0.45 0.83 0.05 0.8 0.27 0.2
AVG VR 2.76 2.667 3.07 0.383 1.93 0.337 3.3
SD VR 0.04 0.32 0.49 0.38 1.11 0.28 0.1
Wilcoxon 0.042 0.527 0.042 0.102 0.593 1 0.042
Effect size 0.45 0.14 0.45 0.36 0.12 0 0.45

7  https://​www.​rhino​3d.​com.
8  https://​www.​blend​er.​org.

https://www.rhino3d.com
https://www.blender.org

	 Virtual Reality

1 3

session. Most of the participants were knowledgeable about
VR, AR or both. The age ranged from 19 to 30. Half of the
users stated they use VR at least once per week, whereas
the 20% of users stated they use AR once per week. Before
using the test system, users were explained how to use VR
and AR devices, the objective of the immersive game they
were going to play, and the extension of the playing area
for AR players. After the first session, the participants were
asked to fill in the section of the questionnaires pertaining
the used system (AR or VR). Then, they switched devices
for the second part of the test session and finally they com-
pleted the questionnaires.

Following IJsselsteijn et al. (2013), the GEQ outcomes
have been clusterised in the game experience core mod-
ule, social presence module and post-game module. As can
be inferred from Table 1, the AR interface obtained lower
scores than the VR one but it has been possible to detect
statistically significant differences only for the competence,
flow and positive affect sections. Referring to the social pres-
ence module (Table 2), both interfaces obtained relative low
results and it has been possible to detect statistically signifi-
cant differences only for the behavioural involvement cate-
gory. Finally, the post-game module outcomes show that the
VR interface generally obtained higher scores with respect
to the AR one (Table 3). Specifically, it seems the users
spent a much more positive experience with the VR interface
than the AR one. The result is also confirmed by the post hoc
test that shows statistically significant differences.

Referring to the statistically significant outcomes of
Tables 1, 2 and 3, the post hoc analysis shows small effect
sizes d for the related categories (the effect size is a meas-
ure of the “strength” of the differences among the average
values (Cohen 2013)), thus suggesting that the VR and AR
interfaces do not provide substantially different experiences.9

Overall, the experience was positively received by the
participants for both VR and AR, although the social pres-
ence score was significantly lower than the other scores.
This is believed to be due to at least three reasons: 1) the
users could not communicate during the play session, 2)
the virtual scene was not realistic enough and 3) the user
avatars were not realistic. All these issues will be examined
in order to evaluate their impact on the social presence in
future work.

In order to improve the user engagement, the game should
be designed to allow a tighter cooperation among players, for
example by including ways to combine users abilities to exe-
cute new attack or defence moves that cannot be executed by
a single player. The post-game score could be improved by
considering breaks during the game sessions, e.g. by design-
ing the game modes so that to alternate frenetic moments
with a lot of action and more relaxed times.

The participants were also asked to optionally remark
which aspects they considered improvable. The most fre-
quent remarks were: (1) lower field of view of the HoloLens
compared to the Oculus Rift, making it hard to see the vir-
tual objects, (2) a less intuitive gaze-based targeting system
for the AR user compared to the more natural VR system
gun-style, (3) inability to communicate by voice, (4) virtual
signs and indicators not always well visible.

Concerning the SUS results (Fig. 10), the AR and VR
interfaces obtained a similar positive score and they were

Table 2   The social presence module outcomes

Empathy Negative feelings Behavioural
involvement

AVG AR 1.475 0.84 1.47
SD AR 0.49 0.19 0.39
AVG VR 1.56 1.02 1.64
SD VR 0.64 0.45 0.37
Wilcoxon 0.248 0.223 0.027
Effect size 0.25 0.27 0.49

Table 3   The post-game module outcomes

Positive Exp. Negative Exp. Tiredness Return-
ing to
reality

AVG AR 1.92 0.29 0.25 0.67
SD AR 0.41 0.27 0.07 0.56
AVG VR 2.33 0.28 0.5 1.2
SD VR 0.44 0.31 0.14 0.69
Wilcoxon 0.026 1 0.18 0.109
Effect size 0.5 0 0.31 0.36

Fig. 10   Correlation between the SUS score and adjective ratings
(Bangor et al. 2009). The score of the proposed system is shown in
figure separately for VR and AR

9  The effect sizes have been computed as d =
Z

√

N
 , refer to (Tomczak

and Tomczak 2014).

Virtual Reality	

1 3

both considered equally suitable to interact in the proposed
environment (the Wilcoxon signed rank test showed a p = 1
with effect size d = 0).

Regarding the quantitative data, measurements showed
that the HoloLens would lose tracking approximately 1.35
times per session, and that it was able to recover from that
in 5 ± 2.3 s. The measured network round-trip time of about
200 ms and the packet loss of 1% did not affect the experi-
ence, as respondents did not remark any issue related to that.

8 � Conclusions and future works

This paper presents Harmonize, a novel framework to deploy
applications based on shared environments for VR and AR
users. The most relevant novelties of the proposed frame-
work are two: 1) the framework enables developers to create
shared environments offering a similar experience to both
VR and AR users in a multi-user context; 2) the framework
is hardware-independent and it has been designed to be
extendable to novel hardware. The proposed framework has
been tested on a use case based on see-through AR displays
and VR head-mounted displays (HMD) with motion control-
lers. In order to test and to evaluate the validity of Harmo-
nize, an immersive game has been implemented. The assess-
ment of the system by the System Usability Scale (SUS)
questionnaire and the Game Experience Questionnaire
(GEQ) shows a positive evaluation towards the proposed
framework. Despite that the VR interface has been gener-
ally preferred by the users, only few statistically significant
outcomes have been detect with small effect sizes; thus, it is
not possible to conclude that the users spent different experi-
ences using the AR and VR devices. Future works will be
focused on investigating novel interaction paradigms allow-
ing users immersed in different reality of the reality–vir-
tuality continuum to collaborate together. The Harmonize
framework will be useful to further research how users in
one reality can visualise or be made aware of what is hap-
pening in other realities, how users can express interaction
intents that originate in one reality but affect another and
how to evaluate the feeling of social presence across reali-
ties. Other research topics strictly related to the Harmonize
framework include: supporting other paradigms for recreat-
ing the virtual environment, such as fast 3D reconstruction
by deep learning classification algorithms; investigating the
creation of novel user interfaces to overcome the hardware
limitation of current AR glasses (limited field of view and
low contrast); researching novel interaction metaphors to
guarantee homogeneous experiences despite diversity in
input devices.

Funding  Open access funding provided by Politecnico di Torino within
the CRUI-CARE Agreement.

Declarations 

Conflict of interest  The authors declare that they have no conflict of
interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Anthes C, Volkert J (2006) invrs—a framework for building interactive
networked virtual reality systems 4208:894–904

Bangor A, Kortum P, Miller J (2009) Determining what individual
sus scores mean: adding an adjective rating scale. J Usabil Stud
4:114–123

Behr J, Fellner D (2011) Instantreality—a framework for industrial
augmented and virtual reality applications, 91–99

Beznosyk A, Quax P, Coninx K, Lamotte W (2011) Influence of net-
work delay and jitter on cooperation in multiplayer games. In:
Proceedings of the 10th international conference on virtual reality
continuum and its applications in industry—VRCAI 11. ACM
Press. https://​doi.​org/​10.​1145/​20877​56.​20878​12

Blonna R, Tan MS, Tan V, Mora AP, Atienza R (2018) Vrex: a frame-
work for immersive virtual reality experiences. In: 2018 IEEE
region ten symposium (Tensymp), pp 118–123. https://​doi.​org/​
10.​1109/​TENCO​NSpri​ng.​2018.​86920​18

Boletsis C (2017) The new era of virtual reality locomotion: a sys-
tematic literature review of techniques and a proposed typology.
Multimodal Technol Interact 1:24. https://​doi.​org/​10.​3390/​mti10​
40024

Bozgeyikli E, Raij A, Katkoori S, Dubey R (2016) Point & teleport
locomotion technique for virtual reality. pp 205–216. https://​doi.​
org/​10.​1145/​29679​34.​29681​05

Bozzelli G, Raia A, Ricciardi S, De Nino M, Barile N, Perrella M,
Tramontano M, Pagano A, Palombini A (2019) An integrated vr/
ar framework for user-centric interactive experience of cultural
heritage: the arkaevision project. Digit Appl Archaeol Cult Herit-
age 15:e00124. https://​doi.​org/​10.​1016/j.​daach.​2019.​e00124

Broll W (1997) Distributed virtual reality for everyone—a framework
for networked vr on the internet. pp 121–128, 217. https://​doi.​org/​
10.​1109/​VRAIS.​1997.​583053

Brooke J (1996) SUS-A quick and dirty usability scale. Usability evalu-
ation in industry. CRC Press. https://​www.​crcpr​ess.​com/​produ​ct/​
isbn/​97807​48404​605, iSBN: 9780748404605

Casarin J, Bechmann D, Keller M (2017) A unified model for interac-
tion in 3d environment. In: Proceedings of the 23rd ACM Sympo-
sium on Virtual Reality Software and Technology, Association for

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/2087756.2087812
https://doi.org/10.1109/TENCONSpring.2018.8692018
https://doi.org/10.1109/TENCONSpring.2018.8692018
https://doi.org/10.3390/mti1040024
https://doi.org/10.3390/mti1040024
https://doi.org/10.1145/2967934.2968105
https://doi.org/10.1145/2967934.2968105
https://doi.org/10.1016/j.daach.2019.e00124
https://doi.org/10.1109/VRAIS.1997.583053
https://doi.org/10.1109/VRAIS.1997.583053
https://www.crcpress.com/product/isbn/9780748404605
https://www.crcpress.com/product/isbn/9780748404605

	 Virtual Reality

1 3

Computing Machinery, New York, NY, USA, VRST ’17. https://​
doi.​org/​10.​1145/​31391​31.​31391​40

Casarin J, Pacqueriaud N, Bechmann D (2018) Umi3d: A unity3d
toolbox to support cscw systems properties in generic 3d user
interfaces. Proc ACM Hum-Comput Interact 2(CSCW), https://​
doi.​org/​10.​1145/​32742​98

Claypool M, LaPoint D, Winslow J (2003) Network analysis of coun-
ter-strike and starcraft. In: Conference Proceedings of the 2003
IEEE International Performance, Computing, and Communica-
tions Conference, 2003., pp 261–268. https://​doi.​org/​10.​1109/​
PCCC.​2003.​12037​07

Cohen J (2013) Statistical power analysis for the behavioral sciences.
Academic Press, Cambridge

Cruz-Neira C, Sandin DJ, DeFanti TA, Kenyon RV, Hart JC (1992)
The cave: audio visual experience automatic virtual environment.
Commun ACM 35(6):64–73

Getchell K, Miller A, Nicoll R, Sweetman R, Allison C (2011) Games
methodologies and immersive environments for virtual fieldwork.
IEEE Trans Learn Technol 3:281–293. https://​doi.​org/​10.​1109/​
TLT.​2010.​25

GrandViewResearch (2020) Virtual reality in gaming market size,
share & trends analysis report by component, by device, by user
(commercial space, individual), by region, and segment forecasts,
2020–2027. https://​www.​grand​viewr​esear​ch.​com/​indus​try-​analy​
sis/​virtu​al-​reali​ty-​in-​gaming-​market

IJsselsteijn WA, de Kort YA, Poels K (2013) The game experience
questionnaire. Eindhoven: Technische Universiteit Eindhoven
46(1)

Izadi S, Kim D, Hilliges O, Molyneaux D, Newcombe R, Kohli P,
Shotton J, Hodges S, Freeman D, Davison A, Fitzgibbon A (2011)
Kinectfusion: Real-time 3d reconstruction and interaction using a
moving depth camera. pp 559–568. https://​doi.​org/​10.​1145/​20471​
96.​20472​70

Kelso J, Arsenault L, Satterfield S, Kriz R (2002) Diverse: A frame-
work for building extensible and reconfigurable device independ-
ent virtual environments. pp 183–190. https://​doi.​org/​10.​1109/​VR.​
2002.​996521

Langlotz T, Degendorfer C, Mulloni A, Schall G, Reitmayr G, Schmal-
stieg D (2011) Robust detection and tracking of annotations for
outdoor augmented reality browsing. Comput Graph 35:831–840.
https://​doi.​org/​10.​1016/j.​cag.​2011.​04.​004

McCauley M, Sharkey T (1992) Cybersickness: perception of self-
motion in virtual environment. Presence 1:311–318. https://​doi.​
org/​10.​1162/​pres.​1992.1.​3.​311

Milgram P, Takemura H, Utsumi A, Kishino F (1994) Augmented
reality: a class of displays on the reality-virtuality continuum.
Telemanipulator Telepresence Technol. https://​doi.​org/​10.​1117/​
12.​197321

Mossel A, Schönauer C, Gerstweiler G, Kaufmann H (2012) Artifice—
augmented reality framework for distributed collaboration. Int J

Virtual Real 11:1–7. https://​doi.​org/​10.​20870/​IJVR.​2012.​11.3.​
2845

Nabiyouni M, Saktheeswaran A, Bowman D, Karanth A (2015) Com-
paring the performance of natural, semi-natural, and non-natural
locomotion techniques in virtual reality. https://​doi.​org/​10.​1109/​
3DUI.​2015.​71317​17

North M, North S (2016) A comparative study of sense of presence
of virtual reality and immersive environments. Aust J Inf Syst.
https://​doi.​org/​10.​3127/​ajis.​v20i0.​1168

Ohlenburg J, Herbst I, Lindt I, Fröhlich T, Broll W (2004) The morgan
framework: enabling dynamic multi-user ar and vr projects. pp
166–169. https://​doi.​org/​10.​1145/​10775​34.​10775​68

Pinz A, Brandner M, Ganster H, Kusej A, Lang P, Ribo M (2002)
Hybrid tracking for augmented reality. ÖGAI Journal 21

Ponder M, Papagiannakis G, Molet T, Thalmann N, Thalmann D
(2003) Vhd++ development framework: towards extendible, com-
ponent based vr/ar simulation engine featuring advanced virtual
character technologies. vol 2003, pp 96–104. https://​doi.​org/​10.​
1109/​CGI.​2003.​12144​53

Raaen K, Kjellmo I (2015) Measuring latency in virtual reality sys-
tems. pp 457–462

Ratti S, Hariri B, Shirmohammadi S (2010) A survey of first-person
shooter gaming traffic on the internet. IEEE Intern Comput
14(5):60–69. https://​doi.​org/​10.​1109/​MIC.​2010.​57

Rubio-Tamayo JL, Gértrudix M, García F (2017) Immersive environ-
ments and virtual reality: Systematic review and advances in com-
munication, interaction and simulation. Multimodal Technologies
and Interaction 1. https://​doi.​org/​10.​3390/​mti10​40021

Schulze JP, Prudhomme A, Weber P, DeFanti TA (2013) CalVR: an
advanced open source virtual reality software framework. In:
Dolinsky M, McDowall IE (eds) The engineering reality of virtual
reality 2013. International Society for Optics and Photonics, SPIE,
vol 8649, pp 1–8. https://​doi.​org/​10.​1117/​12.​20052​41

Scott, Greewald W, Corning P, Maes (2017) Multi-user framework for
collaboration and co-creation in virtual reality. Fluid Interfaces

Tomczak M, Tomczak E (2014) The need to report effect size estimates
revisited. an overview of some recommended measures of effect
size. Trends Sport Sci 21(1)

Zhang M, Lucknavalai K, Liu W, Alipour K, Schulze JP (2019)
Arcalvr: augmented reality playground on mobile devices. In:
ACM SIGGRAPH 2019 Appy Hour, Association for Computing
Machinery, New York, NY, USA, SIGGRAPH ’19, https://​doi.​
org/​10.​1145/​33053​65.​33297​32

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1145/3139131.3139140
https://doi.org/10.1145/3139131.3139140
https://doi.org/10.1145/3274298
https://doi.org/10.1145/3274298
https://doi.org/10.1109/PCCC.2003.1203707
https://doi.org/10.1109/PCCC.2003.1203707
https://doi.org/10.1109/TLT.2010.25
https://doi.org/10.1109/TLT.2010.25
https://www.grandviewresearch.com/industry-analysis/virtual-reality-in-gaming-market
https://www.grandviewresearch.com/industry-analysis/virtual-reality-in-gaming-market
https://doi.org/10.1145/2047196.2047270
https://doi.org/10.1145/2047196.2047270
https://doi.org/10.1109/VR.2002.996521
https://doi.org/10.1109/VR.2002.996521
https://doi.org/10.1016/j.cag.2011.04.004
https://doi.org/10.1162/pres.1992.1.3.311
https://doi.org/10.1162/pres.1992.1.3.311
https://doi.org/10.1117/12.197321
https://doi.org/10.1117/12.197321
https://doi.org/10.20870/IJVR.2012.11.3.2845
https://doi.org/10.20870/IJVR.2012.11.3.2845
https://doi.org/10.1109/3DUI.2015.7131717
https://doi.org/10.1109/3DUI.2015.7131717
https://doi.org/10.3127/ajis.v20i0.1168
https://doi.org/10.1145/1077534.1077568
https://doi.org/10.1109/CGI.2003.1214453
https://doi.org/10.1109/CGI.2003.1214453
https://doi.org/10.1109/MIC.2010.57
https://doi.org/10.3390/mti1040021
https://doi.org/10.1117/12.2005241
https://doi.org/10.1145/3305365.3329732
https://doi.org/10.1145/3305365.3329732

	Harmonize: a shared environment for extended immersive entertainment
	Abstract
	1 Introduction
	2 Previous works
	3 Architecture and design choices
	3.1 User input management
	3.2 The shared world structure
	3.3 The VR locomotion method
	3.4 World state synchronisation and network model

	4 Implementation
	4.1 The communication protocol
	4.2 World synchronisation issues and solutions
	4.3 VR and AR in server-authoritative models
	4.4 Application controller and module classes
	4.5 The network manager
	4.6 Virtual and real world alignment
	4.7 The application mode
	4.8 Entities
	4.9 World state synchronisation
	4.10 Time synchronisation
	4.11 ArmSwinger
	4.12 Interaction methods
	4.13 AR and VR avatars

	5 The application lifetime
	5.1 The server
	5.2 Clients

	6 A use case
	7 Tests and results
	8 Conclusions and future works
	References

