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Abstract—Temporal Convolutional Networks (TCNs) are emerg-
ing lightweight Deep Learning models for Time Series analysis.
We introduce an automated exploration approach and a library
of optimized kernels to map TCNs on Parallel Ultra-Low Power
(PULP) microcontrollers. Our approach minimizes latency and
energy by exploiting a layer tiling optimizer to jointly find the
tiling dimensions and select among alternative implementations of
the causal and dilated 1D-convolution operations at the core of
TCNs. We benchmark our approach on a commercial PULP device,
achieving up to 103× lower latency and 20.3× lower energy than the
Cube-AI toolkit executed on the STM32L4 and from 2.9× to 26.6×
lower energy compared to commercial closed-source and academic
open-source approaches on the same hardware target.

Index Terms—Internet-of-Things, Deep-Learning, Edge-
Computing, Temporal Convolutional Network.

I. INTRODUCTION

The Internet of Things (IoT) envisions billions of interrelated
computing devices, favoring the growth of a broad spectrum
of applications, such as personalized healthcare [1], structural
health monitoring and robotics [2]. To deal with the increasing
amount of data produced by IoT systems, a promising recent
trend consists of performing part of the computation directly
within the sensing device. This relieves the network from some
pressure and results in faster and more predictable response times,
challenging to achieve with cloud-based systems. Moreover, it
also positively impacts battery life and privacy by eliminating the
need to transmit large amounts of (possibly sensitive) raw data
through energy-hungry wireless links [3].

Time-series processing using Deep Learning (DL) models is
at the core of many of the aforementioned IoT applications [1],
[2]. Therefore, researchers are putting a significant effort into
developing new methodologies and tools to enable the execu-
tion of these computationally intensive models at the edge [4].
Temporal Convolutional Networks (TCNs) [5] are a sub-class of
one-dimensional Convolutional Neural Networks (1D-CNNs) that
include features specifically tailored for time series. Recently,
impressive results in terms of accuracy and energy efficiency
have been obtained, applying TCNs to tasks such as biosignal
analysis [1], and predictive maintenance [6].

In this work, we propose an efficient and parallelized im-
plementation of the main kernels involved in TCN inference,
explicitly tailored for memory-constrained edge devices. To the
best of our knowledge, ours is the first work targeting the
minimization of latency and energy of general 1D-CNN and TCN
topologies at the edge. Our main contributions are as follows:
1) We introduce a new software library that implements multiple

alternative strategies to run the main TCN computational
kernels, tailored for optimal execution on PULP devices.

2) We build accurate execution time models of our kernels, which
are used to automatically map the layers to the most efficient
kernel implementation based on their geometrical parameters.

3) We demonstrate the effectiveness of our multi-kernel library
and selection strategy by comparing our work with state-of-
the-art NN backends targeting 1D-CNNs and TCNs. With ex-
periments on the 8-core cluster of the GAP8 processor [3], we
obtain up to 17.2 MAC/cycles, with an average performance
improvement on single layers of 9.7× with respect to the pro-
prietary backend for the same chip and up to 354× compared
to the Cube-AI toolkit on a STM32H7 microcontroller (MCU).

4) We show that our toolkit enables end-to-end real-world TCNs
to run on extreme edge devices by deploying three complete
state-of-the-art TCNs [1], [5], achieving up to 1.11 GMAC/s
and an energy efficiency of 21.79 GMAC/s/W.

Compared to the state-of-the-art, we achieve up to 103× lower
latency and 20.3× lower energy on full networks. On the gesture
recognition application of [1], this allows us to meet real-time
constraints with an end-to-end latency of 13.6ms while reducing
the energy consumption from 0.9 mJ per inference of the original
paper to 0.69 mJ at a power consumption of 51 mW.

II. BACKGROUND AND RELATED WORKS

A. Temporal Convolutional Networks
The fundamental building blocks of TCNs are 1D convolutional

layers [5], [7]. With respect to standard 1D-CNNs, however, TCN
layers include two fundamental elements: causality, which im-
plies that each convolution output yt is only a function of inputs
xt̃ with t̃ ≤ t and dilation, a fixed step d introduced between
inputs to increase the receptive field of the layer on the time axis
without requiring more parameters. Thus, a convolutional layer
in a TCN implements the following function:

ym
t = Conv (x) =

K−1∑
i=0

Cin−1∑
l=0

xl
t−d i ·W

l,m
i (1)

where x is the input feature map, y the output feature map, t
the time index, W the filter weights, Cin the number of input
channels, m the output channel, d the dilation factor, and K
the filter size. In the original paper [5], TCNs were proposed
as fully-convolutional architectures. Modern embodiments also
include other common layers such as pooling and linear ones [6],
[1], which are analogous to those present in 1D-CNNs. However,
as for standard CNNs, most of the computational complexity
of TCNs comes from convolutional layers [1]; therefore, the
peculiarities of these kernels have a fundamental impact on
inference optimization.



B. IoT end-nodes
Modern IoT end-nodes are increasingly based on Parallel Ultra-

Low-Power (PULP) Systems-on-Chip (SoC), often composed of
a single control MCU coupled with one or more Digital Signal
Processing (DSP)-oriented processors. For instance, STM [8] and
NXP [9] have recently introduced dual-core SoCs combining an
ARM Cortex-M0 and an ARM Cortex-M4, where the former
mainly deals with I/O and the latter has DSP-specific func-
tionalities such as single-cycle Multiply-and-ACcumulate (MAC)
instructions and Single-Instruction Multiple Data (SIMD) ca-
pabilities. Similarly, GreenWaves Technologies’ GAP8 SoC [3]
features one I/O core and an 8-core cluster with a RISC-V
Instruction Set Architecture (ISA) extension for enhanced DSP.
With the introduction of these more advanced computing engines,
also the memory hierarchy shows an increased complexity. All
these end-nodes include at least a small, but fast L1 memory for
fast accesses and a wider L2 for data storage. A data management
infrastructure is usually also included to explicitly manage these
memories, allowing for the creation of hand-crafted software
caching mechanism. For example, GAP-8 includes a general-
purpose Direct Memory Access (DMA) controller to move data
between memories, reducing the memory access bottleneck.

C. Software backends for DNN inference at the edge
Although custom accelerators enable the execution of NN

inference at the edge with the highest efficiency, these dedicated
hardware devices are only economically affordable in high-end
systems [10]. Therefore, academia and industry have started to
investigate software backends that maximize NN inference effi-
ciency on general purpose edge devices such as those mentioned
in Sec. II-B [11], [12], [13], [14], leveraging their DSP-oriented
capabilities [15]. To cope with the tight memory constraints of
edge devices, these libraries focus on quantized kernel implemen-
tations, in which weights (W) and feature maps (x/y) are stored
using low-precision integers, typically on 8-bits [12].

CMSIS-NN [12] and PULP-NN [11] are among the most
relevant state-of-the-art open-source libraries for the execution
of quantized kernels on ARM and RISC-V cores, respectively.
Both focus on standard CNN kernels and leverage a smart data
organization (both in terms of static layout and input reorder-
ing at runtime) to convert 2D convolutions into Matrix-Matrix
multiplications (MatMul), which are then processed with SIMD
operations to maximize performance. Moreover, both libraries
optimize the MatMul phase by partially unrolling the inner loop
so that 16–32 MACs are computed in each iteration (e.g., using
the sdotp vector operation in [11]), and data reuse is maximized.
There are also other backends for NN inference at the edge, but
they either focus on a limited set of kernels, e.g. handling only
fully-connected layers [13], or are closed source [14].

On top of these libraries, full-stack solutions that automatically
deploy a pre-trained neural network to a target device have been
proposed, such as Cube-AI [16] from STMicroelectronics, GWT
NN-Tool [14], or the open-source DORY [17]. These tools ingest
a NN dataflow description from popular training frameworks (e.g.
TensorFlow or PyTorch) and produce a complete C application
for the target edge processor. To deal with large layers that do not
entirely fit the memory level closest to the core (L1), these tools
exploit tiling mechanisms to divide them into chunks with a lower

memory footprint. Besides memory occupation, optimal tiling
parameters are determined also considering the corresponding
backend’s implementation details, e.g. avoiding tiles that would
not permit to exploit unrolled/SIMD computations fully.

We can divide the aforementioned tools and libraries into two
groups. Some, e.g. PULP-NN and CMSIS-NN, do not support
causality and dilation in their convolution kernels, i.e., the two
fundamental properties of TCNs, whose effect can only be repro-
duced by inserting zeros in the filters weights, negatively affecting
performance and memory. Instead, the backends of GWT NN-
Tool and Cube-AI claim to support dilated convolutions (although
the latter does not support quantization for dilated layers) but are
not optimized to execute 1D kernels. At the time of writing, we
are not aware of any dedicated and optimized implementation of
TCNs on memory-limited, low-power IoT end-nodes.

III. TCN KERNEL TOOLKIT

In this section, we introduce the main design choices on which
our TCN library is based, our kernel implementations and how
they are plugged into an optimizer [17] for code generation. As a
representative of single and multi-core IoT-oriented computing
platform, we target the open-source RISC-V RV32IMC ISA,
extended with domain-specific extensions (XpulpV2 [15]) for
efficient digital signal processing such as load/store with address
post-increment and SIMD MAC down to 8-bit vector operands.
Here, we focus on TCN-specific layers – we implemented other
layers (pooling, linear, etc.) similarly to [11].

A. Design Choices
1) Data Layout: Kernel libraries for 2D convolution organize

input and output data either as Channel-Height-Width (CHW), i.e.
with the spatial dimension as the innermost one, or HWC. We call
the equivalent layouts in the case of 1D convolutions CT (channel-
time) and TC (time-channel). We observe that using a TC layout,
the 1D convolution inputs of all channels of a single time-step (i.e.
those required by the innermost summation of Eq. 1) are stored
contiguously in memory. Inputs relative to subsequent time-steps
are separated by (d− 1)×Cin elements. In particular, for d = 1,
all convolution inputs are stored contiguously. Given the presence
in many DSP-oriented ISAs of single-cycle loads with pointer
increment (e.g., p.lw in XpulpV2), we select the TC layout. The
chosen data organization is shown in the “x buffer” of Fig. 1.

2) Data Gathering: Conceptually, the convolution kernels in
our library operate in two phases, which we call input data gath-
ering and MatMul loop respectively, similarly to [11], [12]. In the
first phase, dedicated buffers in each core are used to prepare the
input data needed for the convolution. Differently from CMSIS-
NN and PULP-NN, we use both explicit im2col buffers [12] and
indirect buffers [18] in this phase. This design choice is motivated
by the fact that the two buffers exploit different trade-offs in terms
of memory occupation and performance. For instance, the indirect
buffers allows to strongly reduce memory occupation on layers
with a large Cin, allowing them to fit in small on-chip memories.
Note that in non-dilated 1D-CNN convolutional layers (d = 1),

input data is already contiguous, and this phase can be bypassed.
3) MatMul Loop: After data gathering, convolution reduces to

a series of MatMul, as depicted in Fig. 2. We use a 4×2 unrolled
MatMul (i.e. the product of 4 sets of weights with 2 sets of inputs)



Fig. 1. Three different input data gathering options used in the proposed kernels.

Fig. 2. MatMul loop, Quantization and Batch Normalization in the proposed
toolkit. Parallelization over multiple cores is represented by lighter colors.

as our atomic operation. This is motivated by the result of [11],
where the authors found that 4×2 unrolling maximizes data reuse
in a RISC-V register file with 32 registers. Since 4×2 unrolling
requires two sets of inputs, we allocate two im2col/indirect buffers
in each core (see Fig. 1). Each of the unrolled MatMuls is further
vectorized using the pv.sdotsp.b instruction of the XpulpV2
ISA, which computes the dot product of 4 contiguously stored
8-bit inputs in parallel.

4) Normalization and Quantization: We “fuse” the quantization
and normalization pointwise operations, essential for quantized
inference [17], together with our convolution kernels. In contrast,
using separate kernels for these operations would result in addi-
tional data movement and worsen performance.

5) Parallelization: We split the convolution workload on mul-
tiple cores over the time dimension, i.e., each core computes the
output features of all channels for an assigned range of time-
steps. We select time-wise over channel-wise parallelization since
it allows cores to produce outputs of their assigned time-steps
without exchanging partial data with other cores, and to store
results on a separate, contiguous memory’s area. The workload
subdivision among cores is shown on the right of Fig. 2.

B. 1D Convolutional Kernels
The three convolution kernels implemented in our library differ

mainly in the data gathering phase, as shown in Figure 1.
1) No-im2col Kernel: As explained in Section III-A-1, due to

the sequential nature of 1D data and the TC layout, data gathering
can be bypassed when d = 1. Removing this buffering phase has
a positive effect on both memory usage and performance. On

the other hand, for kernels with d > 1, performing the MatMul
loop without data gathering would require interleaving the weight
vectors with zeros, to eliminate the contribution of input time-
steps that have to be skipped. The resulting memory occupation
increase and performance loss makes the No-im2col approach
feasible only for non-dilated convolutions, where, however, it is
optimal for both memory and performance.

2) Im2col kernel: To efficiently handle dilation rates higher
than 1, data gathering becomes necessary. One approach is to use
an im2col buffer [12] (bottom-center of Figure 1). This is a linear
array in which all inputs required to produce a given convolution
output are copied contiguously (in Eq. 1, these are the Cin input
features relative to the K d-spaced time-steps preceding step
t). When the convolution stride is smaller than K, data will be
replicated in multiple im2col buffers, causing a memory overhead.
However, the linear im2col output yields maximal exploitation of
the hardware facilities to optimize the MatMul performance (e.g.
SIMD operations, single cycle pointer increment, etc.). Notice
that, by means of asynchronous DMA transfers, a double im2col
buffering scheme could be used to mask the overhead of data
gathering entirely. However, we discarded this approach since we
found that, when combined with the tiling mechanism described
in Sec. III-C, the larger memory required by double buffering
increases the number of tiles needed for a given layer, hence
worsening the performance instead of improving it.

3) Indirect kernel: To minimize the memory footprint of
convolution, the im2col buffer can be replaced with an indirect
buffer for data gathering. Instead of copying all convolution inputs
in contiguous memory, this buffer only stores the pointers to the
first input relative to each time-step involved in the convolution
(bottom-right of Fig. 1). Indirect convolution reduces by a factor
Cin the memory overhead for data gathering but requires an
additional loop to cycle through the buffer’s addresses in the
MatMul section, negatively impacting performance. To the best of
our knowledge, ours is the first edge-oriented backend to include
both im2col and indirect convolution kernels.

C. Kernel modeling and selection
AI-oriented IoT endnodes often employ hierarchies of scratch-

pad memories instead of caches, to minimize power consumption
and optimize data reuse patterns. These devices often use small
(32–128 KiB) memories with high-bandwidth at L1 and larger,
lower-bandwidth ones at L2 and require explicit data tiling and
DMA transfers to be used optimally. In this work, we employed
the DORY optimizer [17] as a baseline tool to automatically
manage memory hierarchy, tiling layers in such a way that they
can be executed over a small L1 and moving data between L1
and L2 with asynchronous DMA transfers.

We modified the baseline optimizer so that not only it finds
appropriate tiling solutions, but it also selects the optimal 1D
convolution implementation for a given layer and tiling via an
additional kernel selection step. Specifically, for convolutional
layers, the optimizer first determines the best tiling scheme for
each of the three alternative implementations using the Constraint
Programming (CP) solver of [17]. The tiling scheme is selected
taking into account the different memory occupation of the no-
im2col, im2col and indirect kernel implementations. Once tiling
options are selected, the total execution cycles (proportional to



Fig. 3. Modeling of our three kernels versus various layer parameters.

both latency and energy) of the three layer implementations are
extracted using a detailed model of the kernel, and the version
with the highest performance is selected.

As an example, to model the performance of the im2col kernel,
we denote the total number of convolutions performed by each
core as Core Iter = T

2Ncores
, where T is the total number of time-

steps in the input sequence and the factor 2 comes from the fact
that all cores manage 2 time-steps simultaneously. We also call
MM Iter = Cout

4 the number of iterations on the output channel
dimension performed within each convolution, where the factor 4
comes from the 4x2 MatMul loop that simultaneously generates
4 Cout elements (Sec. III-A).

We then compute the execution cycles for the two main phases
(data gathering and MatMul) and for the entire kernel as:

Gather Cyc = max (2×K × α, 2×K × Cin × β) (2)

MM Cyc = (γ + δ × Cin × K/4) (3)

Cyc = Core Iter×(ε+Gather Cyc+MM Iter×MM Cyc). (4)

where α, β, γ, δ, ε are hardware-dependent constants correspond-
ing to the cost in execution cycles for load/store, pointer updates,
and arithmetic operations.

The first equation derives from the use of asynchronous DMA
transfers for data gathering. It computes the maximum between
the DMA control overhead (first term, dependent on the 2 ×K
DMA invocations needed to build the two im2col buffers) and the
cycles required for the actual transfer (second term, dependent on
the size of the actual transmitted data). The MM Cyc equation
computes the cycles of the MatMul loop, as a function of the layer
parameters, where the division by 4 comes from the use of SIMD
operations processing 4 8-bit elements per instruction. Here, the
constants also account for batch normalization and quantization.

Models for the other two convolution kernels are built with
similar reasoning and are not reported here for the sake of space.
For the same reason, the reported equations do not consider corner
cases (e.g. a number of time-steps not divisible by the number of
cores), which are taken into account by the actual models.

Figure 3 shows the modeled vs. real performance of all
kernels for different parameter sweeps. Although there is an offset
between real execution cycles and predicted ones, due to stalls
and memory contentions, this gap is almost constant over all the
parameters and kernels, hence not changing the ranking between
different kernels’ for a given set of parameters.

TABLE I
PERFORMANCE OF OUR TOOLKIT USING DIFFERENT OPTIMIZATION CRITERIA

FOR TILING PARAMETERS AND KERNEL SELECTION.
layer

(Cin × T × Cout)
MACs/cycle

model heuristic memory best kernel
64× 256× 64,
d = 1, K = 3 15.98 15.47 12.50 no-im2col

256× 16× 256,
d = 2, K = 3 14.92 14.92 4.14 im2col

1024× 16× 1024,
d = 2, K = 3 13.31 8.94 10.42 indirect

Table I shows the performance achieved combining our archi-
tectural models with the optimizer described at the beginning
of this section. Results are reported for three different layer
topologies. The table compares the results obtained with our
cycles models with those obtained with other objective functions
for the same tiling optimizer, namely the tiles’ pure memory
occupation and the simplified model used in [17] (column “heuris-
tic”). As shown, our models achieve 1.3×/3.6× speed-up for
complete layers with different geometries. This is mostly due to
an accurate assessment of the execution time of border tiles, for
which the computation loop might be under-utilized depending on
the amount of data remaining to be computed. Further, we note
that all three kernel variants are useful: each topology uses a
different variant in its own optimal case. The column best kernel
shows the kernel which is selected by the tiling optimizer as
the most efficient. We confirmed by exhaustive search that the
selected implementation is indeed the best for those parameters.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
We benchmark our toolkit on GAP-8 [3], a commercial PULP

SoC including a control RISC-V processor (fabric controller)
and a cluster of 8 additional RISC-V cores. The cores within
the cluster are 4-stage in-order single-issue pipelines called
RI5CY [15], which uses the RV32IMCXpulpV2 ISA mentioned
in Section III. The cluster’s 8 cores share a 64 kB multi-banked
L1 memory Tightly-Coupled Data Memory (TCDM), accessed
through a high-bandwidth single-cycle-latency logarithmic inter-
connect. We compare our work with two state-of-the-art CNN
backends for the same hardware target (PULP-NN [11] and GWT
NN-Tool, on the GAP SDK v3.6 [14]), and with the Cube-
AI toolchain (v5.1.2) [16] executed on the STM32H7, and the
STM32L4 MCUs. All experiments refer to int8 quantized layers.
Full networks are trained in a quantization-aware manner, with
negligible accuracy loss compared to float versions. We set GAP8,
STM32H7, and STM32L4 frequencies at 100 MHz, 480 MHz,
and 80 MHz, with a corresponding power consumption of 51 mW,
234 mW, and 10 mW, respectively. We measured energies on the
real devices. We use GMAC/s, GMAC/s/W, and MACs/cycle as
comparison metrics. Note that while the first two are platform-
dependent and thus most significant for back-ends on the same
hardware (e.g., our toolkit, PULP-NN, and GWT NN-Tool), the
latter is platform-independent and not linked to the frequency or
power consumption of the specific platforms.

A. Kernels Comparison
Fig. 4 and Fig. 5 show a detailed analysis of our three 1D

convolution implementations for a 64×256×32 layer (i.e., Cin =
64, T = 256, Cout = 32) with K = 3. Fig. 4 reports the execution
cycles for the data gathering and MatMul loop phases, and the



Fig. 4. Execution cycles of our three 1D convolution kernels on a 64×256×32
layer. The three kernels achieve 15.1, 13.7 and 12.0 MACs/cycle, respectively.
With d = 2, the No-im2col degradates to 9.7 MACs/cycle.

Fig. 5. Memory occupation of the kernels of Fig. 4.

additional cycles due to stalls and memory contentions, whereas
Fig. 5 breaks down the memory occupation. The graphs report
the results for both d = 1 and d = 2, where the difference is
only sizeable for the No-im2col kernel (diagonal red lines). We
select these layer parameters for the comparison so that the layer
entirely fits into the 64KB L1 memory of GAP-8, and the effect
of tiling does not alter the results. Note that this structure could
also be considered one tile of e.g., a wider 64× 256× 64 layer.

For d = 1, the No-im2col kernel obtains both the minimum
number of cycles and the smallest memory occupation, since it
does not require the creation of an additional gathering buffer
(im2col or indirect). However, for d > 1, the same kernel has
significant overheads in operations and memory due to the added
zeros in the weight buffer. For d = 2, we see 62% more operations
and an additional 5 KB of memory, making the No-Im2col kernel
the worst of the three. These overheads increase with larger d.

The Im2col kernel uses fewer instructions in the MatMul loop
than the Indirect one while paying more time to create its gather
buffer. In this example, the trade-off results in an overall lower
number of cycles for Im2col. However, note that the gathering
overhead is much higher for layers with a larger Cin (see Eq. 2),
so the ranking among the two depends on the layer topology.
Further, the Indirect kernel benefits from a nearly null additional
memory, often improving the performance when considering the
effect of tiling on large layers. These aspects will be better
discussed in Section IV-C.

B. Comparison with State-of-the-art NN backends
Figure 6 shows a complete comparison between our toolkit and

state-of-the-art backends. The figure reports the performance (in
MAC/cycle) for layers with dilation d ∈ (1, 2, 4, 16). For each
value of d, the box plots aggregate the results of multiple layers
with different shapes. We used T ∈ (16, 64), K ∈ (3, 5, 7), and
Cin = Cout ∈ (32, 64, 128, 256).

Our toolkit consistently outperforms the state-of-the-art across
different layer shapes and dilation values. In particular, we
observe a dramatically higher performance than GWT NN-Tool,

Fig. 6. Comparison with state-of-the-art CNN backends for edge devices.

i.e., 9.7× on average. This is due to the CHW format used in its
convolutions, which converts to a strongly sub-optimal CT layout
for 1D kernels (see Sec. III-A for details). With respect to PULP-
NN, we observe a slightly higher performance for d = 1 (1.2×),
thanks to the elimination of unnecessary im2col buffers and to
the optimization of the internal MatMul loop execution for 1D
data. The benefit increases significantly for larger dilation factors
(e.g. 28.9× for d = 16) since, as mentioned, PULP-NN kernels
do not support this fundamental 1D-convolution propriety, which
has to be reproduced interleaving weights with 0s, increasing the
filter dimension from K to (K − 1)× d+1 and inserting a large
number of useless MAC operations. With respect to Cube-AI,
we obtain a speed-up between 34.7× (for d = 1) to 354× (for
d = 16). The higher speedup for higher d has the same motivation
discussed for PULP-NN. Comparing both of them during single-
core execution, our toolkit still demonstrates 4.7×, 7.0×, 13.0×,
and 47.6× higher MACs/cycle. Considering the energy efficiency
in GMAC/s/W, the improvement over PULP-NN and GWT NN-
Tool is proportional to the speedup, given that the execution
platform is the same. Compared to Cube-AI, instead, considering
the best energy configuration for both STM32H7 and GAP8,
we obtain 33.1×, 50.0×, 92.3× and 338.4× higher efficiency
on average for d = 1, 2, 4, 16. Importantly, notice that d = 1
corresponds to a standard 1D CNN layer; hence, the first set of
box plots show that our tool is outperforming the state-of-the-art
not just on dilated TCNs, but also on classical 1D-CNNs.

C. Complete use cases
In this section, we use our toolkit and the comparison baselines

to implement three complete TCN architectures of different size.
Table II reports a complete comparison on three networks, TEM-
PONet [1] for gesture recognition, and two ResTCNs from [5],
for sound generation and language modeling, respectively. While
the number of layers of the 3 networks is similar (9, 8, and 10),
the number of filters per layer, hence the number of parameters
and MACs, is increasingly high. Specifically, TEMPONet has a
modular structure that progressively shrinks the time dimension
while increasing the number of channels up to 128 [1], while
the other two TCNs maintain a constant T (16 and 50) with
respectively 150 and 450 channels per layer.

We draw two main observations from these experiments. First,
integrating our kernel models and kernel selection in the tiling
optimizer leads to up to 4.0× speed-up compared to always using
a single kernel implementation. While mapping all the layers of
TEMPONet to the Im2col kernel leads to a near-optimal imple-
mentation, the same strategy applied to the language-modeling



TABLE II
END-TO-END COMPARISON ON THREE TCNS ARCHITECTURES FOR DIFFERENT TASKS. ABBREVIATIONS: OOM: OUT OF MEMORY.

Our Work PULP-NN NN-Tool Cube-AIIndirect No-Im2col Im2col Optimizer
Platforms [MCU] GAP8, 1xRISC-V + 8xRISC-V STM32H7, 1xCortexM7 STM32L4, 1xCortexM4
Power [mW] / Freq. [MHz] 51 mW / 100 MHz 234 mW / 480 MHz 10 mW / 80MHz
TEMPONet - Gesture Recognition - Parameters: 86.5k - MACs: 15.1M
Time/Inference [ms] 17.18 29.79 13.94 13.60 38.78 103.10 138.29 1408.16
Energy[mJ] 0.88 1.52 0.71 0.69 1.98 5.26 32.36 14.08
MACs/cycle 8.80 5.07 10.84 11.11 3.90 1.47 0.23 0.13
Throughput [GMAC/s] 0.88 0.51 1.08 1.11 0.39 0.15 0.11 0.01
En.Efficiency [GMACs/s/W] 17.25 9.95 21.26 21.79 7.64 2.87 0.47 1.07
ResTCN - Sound Generation - Parameters: 1.13M - MACs: 18.1M
Time/Inference [ms] 23.91 OOM 24.66 23.45 OOM 568.25 215.79 OOM
Energy[mJ] 1.22 OOM 1.26 1.20 OOM 28.98 50.49 OOM
MACs/cycle 7.57 OOM 7.34 7.72 OOM 0.32 0.17 OOM
Throughput [GMAC/s] 0.76 OOM 0.73 0.77 OOM 0.03 0.08 OOM
En.Efficiency [GMACs/s/W] 14.84 OOM 14.39 15.13 OOM 0.62 0.36 OOM
ResTCN - Language Modeling - Parameters: 2.7M - MACs: 135M
Time/Inference [ms] 171.00 OOM 665.91 168.51 OOM 4490.00 2315.25 OOM
Energy[mJ] 8.72 OOM 33.96 8.59 OOM 228.99 541.77 OOM
MACs/cycle 7.89 OOM 2.03 8.01 OOM 0.30 0.12 OOM
Throughput [GMAC/s] 0.79 OOM 0.20 0.80 OOM 0.03 0.06 OOM
En.Efficiency [GMACs/s/W] 15.48 OOM 3.98 15.71 OOM 0.59 0.25 OOM

TCN yields 4× lower performance than a per-layer selection.
Similarly, considering solely the Indirect kernel results in 1.3×
lower performance on TEMPONet. Therefore, choosing the ap-
propriate kernel for each layer is key to maximize performance.
In general, for layers with d = 1, No-im2col reaches the highest
performance, while Im2col and Indirect are optimal for layers
with d > 1 with a low/high number of channels, respectively.

We also compare our best performance with state-of-the-art
full-stack tools, including their back-end and, when available,
their tiling mechanism. We see a minimum speed-up of 2.9×
compared to the DORY+PULP-NN stack for the 3 networks.
However, 2 out of 3 cannot be implemented using this tool
given the high memory overhead of the Im2col support buffer,
which does not fit L1 memory, preventing any form of tiling (i.e.,
even a single convolution cannot be computed entirely from L1
data). Directly storing the whole networks in the slow GAP-8 L2
memory (512KB) leads to a slowdown of more than 4×. When
we compare to Cube-AI and GWT NN-Tool on all the networks,
we observe speed-ups of 7.6× to 103×, with at least 20.3×
lower energy. With respect to the original TEMPONet deployment
of [1], which uses a customized version of PULP-NN, we achieve
11.53 vs. 7.73 MAC/cycles, i.e. 49% better performance. This
corresponds to an end-to-end latency of 13.6ms per inference,
i.e. below the real-time constraint of 15ms indicated in [1],
obtained consuming 0.69mJ, with GAP-8 running at 100MHz
and 51 mW, compatible with battery powered edge applications.
In the same conditions, an inference with the other two TCNs
completes in 23.45 / 168.5ms and consumes 1.2 / 8.59mJ for
sound/language processing respectively. Noteworthy, the ResTCN
for both sound generation and language modeling does not fit
the memory constraint nor on STM32L4 neither in GAP8 when
PULP-NN baseline.

V. CONCLUSION
The efficient processing of time-series is a key element for

many DL-based IoT applications. To fill the gap between new
NN topologies and their efficient execution, we have proposed
a software toolkit to optimize the performance of TCNs on
smart edge-nodes. We have shown that thanks to multiple kernel

implementations, we can maintain top performance on different
real-world networks for various use-cases, reaching 3× to 103×
speed-up and up to 63.0× higher energy-efficiency compared to
other software back-ends on multi- and single- core edge-nodes.
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