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Abstract—Subjective experiments are important for developing
objective Video Quality Measures (VQMs). However, they are
time-consuming and resource-demanding. In this context, being
able to reuse existing subjective data on previous video coding
standards to train models capable of predicting the perceptual
quality of video content processed with newer codecs acquires
significant importance. This paper investigates the possibility of
generating an HEVC encoded Processed Video Sequence (PVS)
in such a way that its perceptual quality is as similar as possible
to that of an AVC encoded PVS whose quality has already been
assessed by human subjects. In this way, the perceptual quality
of the newly generated HEVC encoded PVS may be annotated
approximately with the Mean Opinion Score (MOS) of the related
AVC encoded PVS. To show the effectiveness of our approach,
we compared the performance of a simple and low complexity
but yet effective no reference hybrid model trained on the data
generated with our approach with the same model trained on
data collected in the context of a pristine subjective experiment.
In addition, we merged seven subjective experiments such that
they can be used as one aligned dataset containing either original
HEVC bitstreams or the newly generated data explained in
our proposed approach. The merging process accounts for the
differences in terms of quality scale, chosen assessment method
and context influence factors. This yields a large annotated
dataset of HEVC sequences that is made publicly available for
the design and training of no reference hybrid VQMs for HEVC
encoded content.

Index Terms—subjective experiment, data reuse, video quality,
HEVC encoded videos, hybrid model, machine learning

I. INTRODUCTION

New video codecs are being constantly proposed. In order
to develop objective video quality measures (VQMs) capable
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(http://www.hpc.polito.it).

of predicting the perceptual quality of video sequences pro-
cessed with these new codecs, researchers typically need new
subjectively annotated datasets. Unfortunately, conducting a
subjective experiment might involve a significant cost in terms
of time as well as financial resources. For this reason, this work
focuses on approaches that allow to reuse the already existing
subjectively annotated datasets for new coding standards.

The contribution of this paper is threefold and can be
summarized as follows:

1) An approach to generate an annotated dataset of HEVC
encoded video content from the existing data gathered
during subjective experiments on AVC encoded PVSs is
proposed.

2) A large-size annotated dataset of HEVC encoded se-
quences is built by merging the generated data and the
data gathered in seven subjective experiment using the
well-known Iterative Nested Least Square Algorithm
(INLSA) [1]. The dataset is made freely available to
researchers at http://media.polito.it/mmsp2021.

3) A low complexity no reference hybrid VQM is trained
on the proposed dataset to validate its effectiveness.
This VQM is meant to be used as a baseline to
compare with when using the large HEVC dataset
for designing hybrid models. Both its scores and the
code for running the trained VQM are available at
http://media.polito.it/mmsp2021.

In more details, our approach consists of generating HEVC
encoded bitstreams and decoded PVSs with an attempt to make
their perceptual qualities as similar as possible to those of
given AVC encoded PVSs whose perceptual qualities have
already been assessed during a subjective test. We have
considered three subjective datasets containing AVC encoded978-1-6654-3288-7/21/$31.00 ©2021 IEEE



sequences. For each of these datasets, the subjective quality
of the PVSs was assessed using different methods and scales.
After calculating the value of three objective metrics, i.e.
PSNR, SSIM and VIF, we implemented the INLSA to align
the three datasets on the same quality scale, i.e. the Absolute
Category Rating (ACR) scale ranging from 1 to 5. The
alignment made by the INLSA takes into account the context
influences factors of each experiment [1]. We then proposed
an approach that exploits objective measures to estimate with
which quantization parameter a source (SRC) content should
be HEVC encoded in order to obtain a PVS that has the
same perceptual quality as an AVC encoded PVS derived
from the same SRC. Proceeding in this way, we converted
the three original annotated datasets containing AVC encoded
PVSs into a single one newly annotated dataset containing
HEVC encoded PVSs. This dataset is referred to as ”generated
dataset” in the rest of this work.

We then considered the data from seven other subjective ex-
periments but this time conducted directly on HEVC encoded
PVSs. Although this data was already publicly available, they
could not easily be jointly used for the training of VQMs
for the quality assessment of HEVC encoded PVSs. This is
because the subjective data of each dataset were collected
in different contexts, while deploying different methods and
reported on different scales. With these seven datasets we
also created a single INLSA aligned dataset, which we will
call ”real dataset” in the paper, which takes into account the
context influence factors of each experiment and reports all
the subjective annotations on the ACR scale. The ”generated
dataset” and the ”real dataset” were then merged together to
propose a large annotated dataset of HEVC encoded PVSs,
which we call the ”GR-HEVC datatset”, i.e. Generated and
Real annotated HEVC data. It can be readily used by re-
searchers to train, validate and evaluate the performance of
VQMs.

To assess our proposal’s effectiveness, we show that when
the ”generated dataset” derived from our approach is used as
a training set, it is possible to train a model for the prediction
of the perceptual quality of HEVC encoded PVSs that has an
accuracy similar to that which would be obtained if the model
would be instead trained on the ”real dataset”. To train the
model, we extracted three simple and low complexity features
from each PVS. The first two are widely used in no-reference
models: the Quantization Parameter (QP) and Coding Unit size
(CU), which are obtained from the bitstream information [2],
while the last one, named Residual Energy (RE), is computed
from the video pixel values. The RE is used in this work as a
feature that accounts for the video temporal complexity. More
details are provided in Section IV. The three features were then
regressed to the quality scale using a shallow neural network.
In many different testing conditions the model trained on the
”generated dataset” shows performance comparable with those
trained on the ”real dataset”. Finally, we observe that by jointly
using the ”generated dataset” and the ”real dataset”, as well
as the three simple and low complexity features mentioned
above, i.e. the QP, CU and RE, a no reference hybrid model

can be derived. Its performance outperforms that of two well-
known and widely used full reference metrics, i.e. SSIM and
VIF in many testing conditions.

The remainder of the paper is organized as follows. In
Section II the related work is briefly reviewed. Section III
provides a detailed presentation of the proposed approach to
generate data for new coding standards by deploying existing
annotated datasets. In Section IV, a description of the feature
extraction process for training the simple model used to
validate our approach is presented. Section V is devoted to
the results presentation and discussion, finally conclusions are
drawn in Section VI.

II. RELATED WORK

Several objective VQMs have been proposed in the last
decades [3]. Along with these VQMs, many subjectively
annotated datasets have been published. However, two major
obstacles hinder the effective use of these datasets. On the
one hand, due to the fact that subjective experiments are time
consuming and resources demanding, individual subjectively
annotated datasets publicly available are generally not large in
terms of size. On the other hand, since there is no consensus on
the fact that a certain methodology for conducting subjective
experiments is better than all the others, the existing datasets
contain subjective scores in different formats. This makes the
joint use of existing datasets for training supervised machine
learning based VQMs difficult. Many papers have proposed
solutions to address these two problems.

Regarding the first issue, i.e. the limitation in terms of
size of subjectively annotated datasets, some authors used
approaches that would allow them not to overfit the training
set, e.g. transfer learning and shallow neural networks, to
propose machine learning (ML) based VQMs [4] and other
tools useful for modeling the diversity of end-users opinions
[5]. The resulting quality estimators are mainly restricted only
to the use-cases included in the dataset used for their training.
Since the datasets are usually small in size, these metrics
generally have limited application scopes. For this reason,
other authors have instead chosen to enlarge the datasets
by adding other PVSs whose quality is annotated using full
reference VQMs. They thus obtain a training set in which
one part of the PVSs has been subjectively evaluated and the
subjective MOS is available, while the other part has been
only objectively evaluated with full reference metrics and the
related scores were mapped to the MOS scale. For instance,
in [6] the authors used the score of the SSIMplus [7], as
labels instead of the MOS to enlarge the training set. In many
other works [8]–[10], the authors did not use any subjective
annotations, they have proposed to predict the scores of some
full reference VQMs, i.e. PSNR. SSIM, and VIF, by deploying
no reference features. In this way, very large datasets can be
created as the labels are provided by an algorithm, i.e. the
chosen full reference VQMs.

Some approaches have also been proposed to tackle the
second issue, i.e. how to deal with the differences in terms of



quality scale and context influence factors in order to jointly
exploit existing subjectively annotated datasets. In particular,
in [1] the authors proposed the INLSA. It is an algorithm
that is meant to allow a fusion of many different subjectively
annotated datasets to produce a single one in which the
subjective scores are reported on the same quality scale. The
INLSA algorithm was designed to account for the potential
bias due to the way the participants used the quality scale in
the individual experiments following the instructions provided
in the training phase. Therefore, it accounts for the context
influence factors of each experiment up to a certain extent.
The authors in [11] proposed an approach to train a neural
network based VQM by jointly using subjective data gathered
in different contexts and with different quality scales. The
authors of [12] proposed an approach to map the results of
experiments conducted in the form of pair comparison to a
continuous quality scale.

The papers mentioned so far propose approaches to effec-
tively use existing subjectively annotated datasets containing
PVSs generated by a certain video coding standard in order to
develop VQMs capable of predicting the perceptual quality
of video content processed by the same coding standard.
This work, instead, aims to evaluate the possibility of using
existing data on previous video coding standards to generate
useful data for a training of VQMs able to face challenges
introduced by newer codecs. We focus in particular on how
to use existing subjectively annotated datasets involving AVC
encoded content to generate useful data for a training of VQMs
able to predict the perceptual quality of HEVC encoded video
content. More precisely, given an AVC encoded PVS for which
a subjective evaluation is available, we search for the optimal
QP that should be used by an HEVC encoder to compress the
source of that PVS in order to generate an HEVC encoded
sequence that is expected to have the same perceptual quality
as the AVC encoded PVS. In a recent journal paper [13], we
have shown the effectiveness of this approach on still images.

After showing the effectiveness of the ”generated dataset”,
we performed some analysis to merge it with seven subjec-
tively annotated datasets involving HEVC encoded content.
We showed that the obtained dataset is a suitable asset for
the research community as a very simple no reference hybrid
model trained on it outperformed full reference metrics in
many test conditions. Hybrid models for HEVC encoded
content are still of high interest [14].

III. GENERATING ANNOTATED DATASETS FOR NEW
VIDEO CODING STANDARDS

This section presents our approach to generate an annotated
dataset of HEVC encoded PVSs using existing subjective data
of AVC encoded PVSs.

Given a H.264/AVC encoded PVS, we first computed its
PSNR, SSIM and VIF quality predictions. Afterward, from the
SRC of that PVS we generated 52 HEVC encoded sequences
by means of the HM reference software [15] choosing the
QP ranging from 0 to 51, then we computed also the PSNR,
SSIM and VIF quality predictions for all those 52 newly

created sequences. We identified, among the 52 sequences, the
one whose PSNR value is closest to that of the H.264/AVC
encoded PVS. This encoded sequence has a given QP that
we denote as QP PSNR. Analogously, we determined the
values of QP SSIM and QP VIF. Then, we considered the
median of these three QP values as an estimation of the
QP to be used with the HEVC encoder in order to obtain
a PVS whose perceptual quality is similar to that of the initial
H.264/AVC encoded PVS. The quality attributed to the newly
created HEVC encoded PVS is therefore assumed to be equal
to the MOS of the related H.264/AVC encoded PVS. We
experimentally found that the median of the three QP values
was the best choice. In fact, by using it, the ”generated dataset”
allowed us to train a model whose accuracy is very close
to that obtained by using data gathered in a subjective test.
The Algorithm 1 summarizes the steps implemented by the
proposed approach.
Algorithm 1: Data generation algorithm
Input: PVSAV C , SRC;
diffPSNR = ∞, diffSSIM = ∞, diffV IF = ∞;
PSNRAV C = computePSNR(PVSAV C , SRC);
SSIMAV C = computeSSIM(PVSAV C , SRC);
VIFAV C = computeVIF(PVSAV C , SRC);
for QP = 0,1,. . . ,51 do

PVSHEV C,QP = HEVC encode(SRC, QP);
PSNRQP = computePSNR(PVSHEV C,QP , SRC);
SSIMQP = computeSSIM(PVSHEV C,QP , SRC);
VIFQP = computeVIF(PVSHEV C,QP , SRC);
if | PSNRAV C − PSNRQP | < diffPSNR then

QPPSNR = QP;
diffPSNR = | PSNRAV C − PSNRQP |;

end
if | SSIMAV C − SSIMQP | < diffSSIM then

QPSSIM = QP;
diffSSIM = | SSIMAV C − SSIMQP |;

end
if | VIFAV C − VIFQP | < diffV IF then

QPV IF = QP;
diffV IF = | VIFAV C − VIFQP |;

end
end
QPHEV C = median(QPPSNR, QPSSIM , QPV IF );
PVSHEV C = HEVC encode(SRC, QPHEV C);
Return: PVSHEV C

The motivation for this algorithm is as follows. While
subjective experiments remain the gold standard for obtain-
ing annotated datasets with MOS, the proposed algorithm is
expected to perform better than a simple annotation involving
objective measurement algorithm. The performance of VQMs
is known to depend strongly on the video content. It has
been shown in various publications that the same coding
algorithm, also called Hypothetical Reference Circuit (HRC),
with different parameters, such as bitrate, leads to a high
correlation between VQM and MOS when using the same
SRC but to a low correlation when correlating across SRC
[16], [17]. Our approach has the advantage that it is comparing



two HRCs, namely AVC and HEVC video coding, which cause
perceptually similar artifacts, mostly blockiness and blurriness.
The VQMs involved in our case are therefore used in their
optimal application scenario, i.e. not comparing across SRC
and judging the quality of similar HRCs. Although in this
work we relied only on three well know VQMs with different
characteristics, Algorithm 1 can be implemented by using
more than three VQMs.

We have applied the Algorithm 1 to the H.264/AVC en-
coded PVSs used in three subjective experiments, i.e. VQEG
HDTV [18], LIVE mobile [19] and IVP [20], to generate
HEVC encoded PVSs whose perceptual quality is annotated
with MOS values already available in the three aforementioned
datasets. We then implemented an instance of the INLSA to
align the MOS values accounting for the context influence
factors of each experiments. This results in the ”generated
dataset” containing 118 HEVC encoded PVSs with their
perceptual quality scores reported on the five point ACR scale.

We then combined the ”generated dataset” with the results
of seven subjective experiments on HEVC encoded video
content in order to generate a large annotated dataset of
HEVC encoded content. More precisely, we collected the
results of seven subjective experiments, i.e. BVI-HD [21],
BVI-VCE [22], BVI-Texture [23], SJTU-UHD [24], SJTU-
FHD [24], UV5G [25] and BC [26], during which subjects
were asked to evaluate the quality of HEVC encoded se-
quences. These experiments were not conducted using similar
methods and quality scales. We also aligned the MOS values
using the INLSA to create the ”real dataset”. Aligning the
”real dataset” with the ”generated dataset” yielded the GR-
HEVC dataset that contains a total of 429 HEVC encoded
PVSs associated with the aligned MOS values expressed on
the ACR scale ranging from 1 to 5.

IV. TRAINING A SIMPLE MODEL FOR VERIFYING OUR
APPROACH

As done in our previous work [13] on still images, the
best way to assess the effectiveness of the ”generated dataset”
derived by our approach would be to show the generated
HEVC encoded sequences to a set of subjects and see if the
obtained MOS is the same as the MOS of the AVC encoded
PVSs, which we used as quality labels. Unfortunately, this
approach is time consuming and expensive. For this reason, as
a preliminary solution to evaluate the effectiveness of the our
approach, we show that the ”generated dataset” deployed as a
training set performs similar to the ”real dataset” used in the
same context. Therefore we trained a ML based no reference
hybrid model, first using only the ”generated dataset”, and
then the ”real dataset”. We then compared the performance of
the obtained models.

For each PVS, we extracted three features. The QP and CU
size were directly extracted from the bitstream information.
For each frame of each PVS, the RE, which represents a pixel
based feature, was computed as follows:

REf =
1

I · J

I∑
i=1

J∑
j=1

(Pf (i, j)− Pf−1(i, j))
2 (1)

where I and J are the height and width of each frame,
respectively. f is an index of the frame and Pf (i, j) is a pixel
value of the frame f positioned on row i and column j.

Note that the RE allows to capture the complexity of
the PVS in terms of how fast the frame content is varying.
Therefore, it considers up to certain extent the objects motion
or scene changes that are well known to cause a temporal
masking effect, which has a direct impact on the human’s
evaluation of the perceived visual quality. In most of the video
encoder implementations, the CU size is strongly correlated to
the average amount of spatial details within a given image area
as larger CU sizes are used for flat regions for rate/distortion
optimization. Taking into account the amount of spatial details
while assessing the quality objectively yields predictions with
a higher accuracy [4]. Finally, through the QP, we aimed at
taking into account the impairment of the visual quality due to
quantization artifacts. A higher QP usually results in blocking
artifacts but, in the case of HEVC it may also lead to blurring
artifacts because of a stronger impact of the in-loop filter. The
QP thus focuses on modeling of the impact of the HRC, while
the RE and CU focus on the SRC.

We computed the mentioned features for each frame of the
examined PVS. To get only three parameters per PVS, we
experimentally found that the best pooling strategies are as
follows: for the QP and CU distribution, the average value
over the frames, while for the RE, the 80% quantile of the
sample of the frame values, i.e. RE = quantile80%{REf f =
1, 2, . . . , F}, where F is the total number of frames of the
PVS. To obtain our validation model, we regressed the three
aforementioned features to the MOS scale using ML based
models.

Please note that our primary aim is not to train a VQM
that is better than the state-of-the-art models but rather to
demonstrate that both the ”generated dataset” and the GR-
HEVC dataset proposed in this paper represent valid annotated
datasets for a training and validation of VQMs for HEVC
encoded content. For this reason we used only the three simple
features mentioned above.

V. RESULTS

We have conducted numerical experiments to assess the ef-
fectiveness of the algorithm 1 and the GR-HEVC dataset. The
results are discussed in more detail in upcoming subsections.

A. Effectiveness of the proposed data generation algorithm

To validate the effectiveness of Algorithm 1, we showed
that the dataset it generated competes very well with the
”real dataset” when used as training set. We have trained a
no reference hybrid model by regressing the three features
described in Section III to the quality scale with an artificial
Neural Network (NN). The model was first trained using only
the ”generated dataset” as a training set and tested on the seven



TABLE I
COMPARING THE PERFORMANCE OF THE ”GENERATED DATASET” TO

THAT OF THE ”REAL DATASET” AS TRAINING SETS. THE LETTER T
STANDS FOR ”TRAINING”.

Dataset T on ”real dataset” T on ”generated dataset”
PLCC SROCC RMSE PLCC SROCC RMSE

BVI-HD 0.86 0.85 0.40 0.86 0.85 0.41
BVI-Texture 0.85 0.85 0.27 0.78 0.76 0.32
BVI-VCE 0.65 0.60 0.29 0.86 0.88 0.20
SJTU-FHD 0.84 0.82 0.27 0.88 0.89 0.28
SJTU-UHD 0.85 0.81 0.18 0.83 0.78 0.26
UVG 0.72 0.51 0.27 0.64 0.40 0.29
BC 0.97 0.96 0.04 0.98 0.98 0.05

Fig. 1. Performance of the released HEVC VQI on the GR-HEVC dataset

datasets that were merged to form the ”real dataset”. Then,
seven similar models were trained using the ”real dataset”. To
train each of these seven models, we used as a training set, six
datasets out of the seven datasets that form the ”real dataset”.
The resulting model was then tested on the dataset left out of
the training process.

The results presented in Table I compare the performance
of the model trained only on the ”generated dataset” and
that of the seven models trained on the ”real dataset”. As it
can be noticed, the model trained with the data generated by
algorithm 1, i.e. the ”generated dataset”, compares very well
with the seven models trained on the data gathered during
the pristine subjective tests. There are testing conditions for
which the model that learned from the ”generated dataset”
outperformed the one trained on the ”real dataset” and vice
versa. This shows that the proposed approach is able to
generate valid annotated datasets to be prospectively used for
the training of VQMs for HEVC encoded content.

B. Effectiveness of the GR-HEVC dataset

We proved the effectiveness of the GR-HEVC dataset by
showing that it can be used to train a low complexity no
reference hybrid VQM that competes very well with two
well-known and widely used full reference VQMs. We tested
the performance of three different ML regression models.
More precisely, we mapped the three features, i.e. the QP,
the CU and the RE, to the MOS by training a regression tree
(RT), support vector regression (SVR) model using the radial
basis function as the kernel and finally shallow NN having
a single hidden layer with three neurons. We call HEVC
Video Quality Index (HEVC VQI) any VQM obtained by
regressing the three aforementioned features to the MOS scale.
The performance of the three considered ML models in terms
of Pearson Linear Correlation Coefficient (PLCC), Spearman
Rank Order Correlation Coefficient (SROCC) and Root Mean
Square Error (RMSE) can be seen respectively in Table II, III,

TABLE II
THE PROPOSED GR-HEVC DATASET ALLOWED TO TRAIN A NO

REFERENCE METRIC (HEVC VQI) THAT COMPARES WELL WITH TWO FULL
REFERENCE ONES IN TERMS OF PLCC.

Dataset Full ref VQMs HEVC VQI
SSIM VIF RT SVR NN

BC 0.95 0.93 0.18 0.99 0.97
BVI-HD 0.61 0.81 0.79 0.87 0.87
BVI-Texture 0.49 0.79 0.79 0.82 0.86
BVI-VCE 0.78 0.93 0.74 0.88 0.94
IVP 0.56 0.86 0.77 0.86 0.87
LIVE-mobile 0.59 0.91 0.65 0.89 0.94
SJTU-FHD 0.84 0.81 0.78 0.87 0.83
SJTU-UHD 0.76 0.81 0.76 0.80 0.84
UVG 0.65 0.69 0.56 0.75 0.72
VQEG-HDTV5 0.50 0.75 0.68 0.78 0.84

TABLE III
THE PROPOSED GR-HEVC DATASET ALLOWED TO TRAIN A NO

REFERENCE METRIC (HEVC VQI) THAT COMPARES WELL WITH TWO FULL
REFERENCE ONES IN TERMS OF SROCC.

Dataset Full ref VQMs HEVC VQI
SSIM VIF RT SVR NN

BC 0.95 0.81 0.31 0.96 0.96
BVI-HD 0.71 0.78 0.80 0.87 0.88
BVI-Texture 0.56 0.80 0.79 0.82 0.85
BVI-VCE 0.73 0.91 0.66 0.85 0.94
IVP 0.70 0.88 0.76 0.82 0.83
LIVE-mobile 0.73 0.92 0.61 0.90 0.97
SJTU-FHD 0.78 0.82 0.79 0.83 0.82
SJTU-UHD 0.69 0.78 0.79 0.81 0.82
UVG 0.51 0.50 0.49 0.59 0.57
VQEG-HDTV5 0.74 0.81 0.61 0.69 0.76

IV. The models were trained using samples coming from nine
datasets out of the 10 that form the GR-HEVC dataset, and
tested on the one left out during the training process, i.e. the
one reported in the table. In light of the results in Table II, III,
IV, it is clear that the NN based model performed in general
better than other ML regression methods. Therefore, the final
no reference hybrid HEVC VQI that we are releasing was
obtained by training a NN using all the data available in the
GR-HEVC dataset. Figure 1 shows the performance of the
released VQM on the GR-HEVC dataset, i.e. its training set.

We compared the performance of the trained models, (one
for each regression method) to that of two full reference
VQMs, i.e. the SSIM and VIF. The results are summarized in
Table II, III, IV that present, respectively, the PLCC, SROCC
and RMSE of each VQM with respect to the MOS. Despite the
fact that the proposed HEVC VQI is a no reference metric,
it shows quite competitive performance when compared to
the full reference metrics as demonstrated by the results. For
instance, the HEVC VQI outperformed both full reference
metrics in terms of the PLCC on all the 10 datasets that
form the GR-HEVC dataset. We also note that the HEVC VQI
indeed yielded a significantly higher prediction accuracy than
that of the SSIM for many testing conditions. These results
highlights the suitability of the proposed GR-HEVC dataset
as a valid set of data for prospective training of VQMs for
HEVC encoded video content.

We would like to recommend that future research using the
GR-HEVC dataset not only reports performance indicators
such as PLCC, SROCC, and RMSE but also checks for
statistical significance of improvements when comparing to



TABLE IV
THE PROPOSED GR-HEVC DATASET ALLOWED TO TRAIN A NO

REFERENCE METRIC (HEVC VQI) THAT COMPARES WELL WITH TWO FULL
REFERENCE ONES IN TERMS OF RMSE.

Dataset Full ref VQMs HEVC VQI
SSIM VIF RT SVR NN

BC 0.22 0.16 0.37 0.23 0.06
BVI-HD 0.72 0.47 0.58 0.58 0.39
BVI-Texture 0.48 0.33 0.35 0.30 0.27
BVI-VCE 0.39 0.15 0.36 0.19 0.13
IVP 0.33 0.19 0.35 0.24 0.17
LIVE-mobile 0.46 0.22 0.48 0.28 0.14
SJTU-FHD 0.37 0.36 0.39 0.25 0.34
SJTU-UHD 0.39 0.28 0.34 0.44 0.21
UVG 0.49 0.29 0.35 0.27 0.27
VQEG-HDTV5 0.42 0.20 0.28 0.20 0.17

the appropriate algorithm class, i.e. SSIM and VIF for Full
Reference and HEVC VQI for Hybrid Models.

VI. CONCLUSION

In this work we have proposed an approach to generate an
annotated dataset of HEVC encoded video content deploying
existing subjective data of AVC encoded PVSs. The proposed
approach extends to the more generic case of using existing
data on previous coding standards to address the challenges
introduced by new codecs instead of designing and running
new subjective experiments, which are both time consuming
and resources demanding. We have shown that the data gener-
ated with our approach represents a training set that performs
comparable to that containing subjective data obtained for
the corresponding new video coding standard, i.e. HEVC.
Moreover, we put together the generated data coming from
three datasets representing the previous coding standard and
the HEVC data collected during seven subjective experiments
while accounting for the effect of each experiment’s context
influence factors to propose a larger dataset to be prospectively
used for training of VQMs for HEVC encoded content. This
dataset may be considered as a valuable asset for the research
community, since the very simple no reference VQMs trained
on it have a good performance compared to two full reference
VQMs for many test conditions.
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