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Abstract —Graphics Processing Units (GPUs) have gained 

importance in several domains where a high computational effort 

is required (e.g., where Artificial Intelligence is used). At the same 

time, their adoption extended to domains (e.g., automotive, 

robotics, aerospace) where the effects of possible hardware faults 

can be extremely serious. Hence, it is crucial to identify methods 

allowing to quickly detect the occurrence of faults in a GPU while 

it works in the operational phase. In this paper we propose a 

method based on the adoption of hardware performance 

counters. We show that the method is able to detect permanent 

faults occurring in some critical modules, thus allowing to 

increase the overall reliability of the system. The method does not 

involve significant costs, since performance counters already exist 

in all real GPUs, e.g., to support silicon debug, and can be easily 

accessed in software. 

Keywords—Hardware Performance Counters, Graphics 

Processing Units, In-field test, Reliability, Safety. 

I. INTRODUCTION 

The GPUs have grown in importance in recent years in 
highly intensive computation applications such as multimedia, 
multi-signal analysis, high-performance computing, and 
Artificial Intelligence. Moreover, the use of these devices has 
been adopted and extended to other domains with important 
requirements in terms of reliability and functional safety (i.e., 
automotive, robotics, and aerospace). 

The current cutting-edge technologies using in the 
manufacturing of GPUs allow improving their performance and 
reducing their power consumption. However, these 
semiconductor technologies are susceptible to permanent faults 
arising during the device’s operational life, e.g., by wear-out or 
aging [1].  These faults may change the functionality of the 
device and seriously affect the reliability of the system. 
Accordingly, testing the device periodically for fault detection 
before producing a catastrophic effect is mandatory. 

The in-field test of a GPU involves using specialized 
hardware structures or mechanisms to guarantee the 
requirements of safety-critical applications in terms of 
reliability and operational constraints. Design for Testability 
(DfT) mechanisms, such as Memory and Logic BIST, can be 
activated during the power on or in the idle times when the 
timing constraints are less restricted. Other solutions use 
software routines to test the functionality of each target module 
in the GPU [2] [3]. All the above solutions require stopping the 
application or using their idle time to launch the test.  

In this paper, we present a solution for the in-field test of 
GPUs using the hardware performance counters (PfCs). 
Although these counters are resources available in the GPUs 

devoted mainly to silicon debugging and design validation 
purposes, they can be employed for testing purposes of some 
critical components inside GPUs. The method allows the quick 
and inexpensive detection of faults in some critical modules 
within a GPU (such as the warp scheduler and the divergence 
management unit) by monitoring the values produced by these 
counters. Hence, using the proposed solution some faults can be 
detected resorting to a true concurrent on-line testing, without 
stopping the application.  

The proposed usage of PfCs involves two stages. In a 
preliminary stage, the target application is run on the device, 
and the values of some PfCs is gathered to build an invariant 
fault-free profile. The choice of the PfCs to build the profile 
depends on the evaluated hardware module of the GPU we 
consider. Once the expected values of the PfCs for the target 
application have been calculated, the second stage consists in 
monitoring whether, during the system operational phase, the 
application forces the selected PfCs to produce values coherent 
with the expected ones. In the negative case, the system may 
force the execution of a detailed test procedure.  

In this paper we considered an open-source model of a GPU 
(named FlexGripPlus) mimicking an NVIDIA GPU, where 
some PfCs are available. Our experiments demonstrate that 
monitoring the values of PfCs inexpensively allows to detect 
some critical faults in a few control modules. 

II. BACKGROUND  

A. GPU organization1  
Graphic Processing Units (GPUs) are devices composed of 
scalable arrays of parallel execution units known as Streaming 
Multiprocessors (SMs). Each SM in a GPU uses the Single-
Instruction Multiple-Tread (SIMT) execution model, where a 
single instruction executes multiple independent threads 
concurrently. The execution of one instruction in the SM uses 
five stages of pipeline (fetch, decode, read, execution/control 
flow, and writeback).  

A scheduler unit controls the execution of one SIMT 
instruction, fetching, decoding, and distributing the workloads 
to be executed in the parallel processing cores called Streaming 
Processors (SPs) of the SM. One SM can contain between 8 
and 128 SPs depending on the GPU model and the number of 
parallel threads to be processed concurrently. Additionally, the 
read and write pipeline stages contain the special controllers 

 
1 This subsection summarizes the architecture and behavior 

of NVIDIA GPUs, although the method proposed in the paper 
easily extends to GPUs of other vendors. 

 



 

and necessary logic to load and store data into the storage units 
(General Purpose Registers File (GPRF), Shared Memory 
(SMem), Global Memory (GMem), and Constant Memory 
(CMem)). GPRF, SMem, and CMem reside inside the SM, and 
GMem is external to the device.  

B. Hardware performance counters  

The hardware PfCs are mainly used to evaluate the 
performance, the occupied resources, the debugging, or the 
application’s optimization [4]–[6]. In addition, several works 
have explored the PfCs usage for other purposes like power 
consumption monitoring [7], [8], or detecting malicious attacks 
[9]–[11]. Moreover, PfCs can be employed to detect anomalies 
or errors caused by faults (transient or permanent) during the 
execution of any safety-critical application.  

Until now, the usage of PfCs for reliability purposes has 
been evaluated mainly for CPU-based systems, in which the 
PfCs are employed to characterize microprocessor-based 
systems for reliability monitoring [12]. Additionally, The PfCs 
can be exploited to create statistical modeling for online testing 
and fault tolerance [13] and for Cyber-Physical Systems 
reliability and security attacks mitigation [14]. Other works use 
PfCs for the test programs development [15] or to detect control 
flow errors caused by faults [16].  

In GPUs, several PfCs are available as in most advanced 
microprocessors. Modern GPUs offer between 100 to 200 PfCs 
[4] grouped into five general categories: memory, instruction, 
multiprocessor, cache, and texture  [10]. We can find their use 
in different areas, such as power consumption measurement [7], 
[17], kernel characterization for optimization [5], [18], and 
security attacks detection and mitigation  [10]. 

Accessing the GPU PfCs requires incorporating software 
libraries (APIs and Performance Tools) interacting with the 
low-level software interfaces to access and collect the PfCs' 
information. AMD has the GPUPerfAPI performance API and 
NVIDIA offers several performance tools supporting different 
features of its devices, such as CUPTI and NVIDIA PerfKit.  

The NVIDIA profiling APIs and tools access PfCs using a 
low-level software interface of the GPU. That interface 
comprises several assembly instructions (SASS) especially 
developed to configure a performance counter and capture the 
counting value into a general-purpose register. The counters are 
available to the GPU itself, or to the Host where the profiler 
tool analyzes the results. In NVIDIA GPUs [19], the SASS 
pmevent instruction triggers one or more performance monitor 
events. The PfCs are visible as special read-only registers and 
accessed using the mov or cvt instructions.  

III. EXPERIMENTAL SETUP AND RESULTS 

For the purpose of this work, the FlexGripPlus GPU model 
was employed to evaluate the effectiveness of PfCs in the 
detection of some critical faults in two GPU modules during the 
execution of a selected application. The selected modules are i) 
the WU and ii) the control flow unit. These units are critical for 
the normal execution flow of any application in the GPU, since 
faults affecting them are very likely to seriously impact the 
behavior of the whole GPU. Therefore, the detection of any 
fault in these modules before they cause a fatal failure is 
mandatory. 

A. FlexGrip architecture 

FlexGipPlus is an open-source soft-core GPU compliant 
with the NVIDIA G80 architecture [20]. FlexGripPlus is 
compatible with the CUDA programming flow and implements 
52 assembly instructions. The internal organization of the 
FlexGripPlus GPU is composed of a scalable array of 
Streaming Multiprocessors (SMs) and one block scheduler in 
charge of dispatching the tasks to each SM. Inside each SM, the 
warp scheduler assigns the warps to the Scalar Processors 
(SPs).  

1) The Warp Unit  
According to the NVIDIA specifications, the threads 

assigned to an SM are launched in small groups called warps. A 
warp is composed of 32 or 64 threads that execute the same 
instruction in parallel using independent data (SIMT). In 
FlexGripPlus, the Warp Unit (WU) is in charge of managing 
the execution of threads in each SM.  

The WU comprises six functional units that interact 
between them. These functional units are the warp generator, 
warp scheduler, warp checker, fence registers, and two 
memories used to store the information about the execution and 
status of each thread per warp. The warp pool memory stores 
the warp ID, the program counter, and the tread mask per warp. 
The warp state memory stores the current status per warp, 
which can either be (Ready, active, waiting, or finished).  

The warp generator takes the configuration parameters from 
the block scheduler of the GPU, identifies the total number of 
warp lines in the pool memory, and initializes every warp line.  

After the warp initialization finishes, the warp scheduler 
launch warps in a round-robin fashion, reading the pool and 
state memories. The PC, tread mask, and state are updated in 
the memories every time the warp completes the pipeline 
execution loop. This regular flow of warp scheduling is 
sometimes interrupted when a barrier synchronization 
instruction appears. The WU executes this instruction and 
marks all warps as waiting. For each waiting warp, the WU sets 
one bit in the fence register. Reading the fence register and 
checking that all bits are set indicates that all arrived warps are 
in a waiting state, so all of them are synchronized, and the 
barrier is released. In this case, the WU changes the state of all 
warps to ready, and the warp scheduling process continues as 
usual.  

The warp checker is in charge of checking each warp's 
status, performing a comparison between the current state of 
each warp coming from the SM and the previous values 
generated in the warp pool memory. According to the 
comparison results, the warp checker updates the warp pool and 
the status memory. Both the warp scheduler and the warp 
checker correspond to Finite State Machines (FSMs) and 
control the execution of every warp in the SM. 

2) The Control Flow Unit 
The Divergence Management Unit (DMU) in the 

control/execute pipeline stage of the FlexGripPlus GPU 
controls and tracks the Intra-Warp Divergences (IWDs), which 
appear in programs when the threads in the same warp execute 
different instructions, generating multiple execution paths. IWD 
occurs during the execution of all control flow instructions such 
as conditional and unconditional branches, barrier 



 

synchronization, kernel return, and set synchronization point. 
Additionally, the DMU interacts directly with the warp stack 
memory, which stores the starting (divergency) and ending 
points (convergency) of different execution paths for the same 
warp.  

The operation of the DMU for a warp executing branch 
instruction or conditional branch instruction follows four main 
steps. First, the synchronization point is reached, and the DMU 
pushes in the stack the synchronization point information for 
the current warp. In the second stage, the execution reaches the 
branch instruction. In this step, the threads in the “taken” path 
are executed first. At the same time, the thread mask of the 
“not-taken” path and the current PC are pushed in the stack. In 
the third stage, the first path of threads reaches the 
reconvergence point, the stack is popped, and the threads in the 
“not taken” path are loaded in the pipeline to be executed. In 
the fourth stage, all threads in the warp reach the reconvergence 
point, the synchronization information is popped from the 
stack, and all threads continue the parallel execution.  

The DMU in the FlexGripPlus GPU is an FSM that 
generates the control signals needed to manage the warp stack 
memory and the thread execution on each SP. Additionally, the 
DMU directly interacts with the WU, sending the thread masks 
and the warp state for the currently executed warp. The DMU 
generates and propagates the masks and state of the current 
warp through the pipeline stages up to when it arrives at the 
WU where the next warp will be scheduled. 

B. The FlexGrip GPU Performance Monitoring Unit   

The FlexGripPlus model has been enriched with a 
Performance Monitoring Unit (PMU). Each SM of the GPU 
includes a PMU in charge of counting events produced by 
several modules during any kernel execution. The PfCs 
implemented by the PMU correspond to counters existing in 
real NVIDIA GPUs. Additionally, the GPU includes the 
necessary SASS-compliant instructions allowing to access the 
PMU. The devised PMU is composed of a set of 2 PfCs. One 
counter calculates the number of launched inactive threads 
(INACT). This measurement takes the thread mask output port 
of the WU and increments the counter by a factor k, where k is 
the number of inactive threads per launched warp. The other 
counter increments on each warp stack accesses (STACK). This 
counter increments by one on each push and pop operation. 

These counters allow detecting critical faults affecting the 
WU and the DMU. In the WU, the faults present in the warp 
pool memory can be detected by resorting to the INACT 
counter. In fact, this counter allows to directly monitor the 
thread mask port of the WU, then any fault in that field of the 
warp pool memory can be detected because there will be a 
variation in the number of active or inactive treads during the 
application execution. Similarly, any fault in the program 
counter field of the warp pool memory can be detected by the 
INACT counter or by the STACK counter when a branch 
instruction producing divergences is present in the application. 
This detection is possible because any fault in this field will 
always produce a wrong instruction execution for the launched 
warp skipping some instructions or by repeating others.  

When a fault induces a malfunction in the FSM of the warp 
scheduler or the warp checker, it can be detected using any of 

the PfCs previously mentioned because of an erroneous warp 
execution either by a missing warp or a wrong warp sequence.  

TABLE I. NORMALIZED BOUND LIMITS FOR CHARACTERISTIC 
OPERATIONAL REGIONS  

PfC 
Applications 

FFT GRAY MM RED SOBEL SORT TRAN 

INACT 
Max 0.245 0.0 0.0 0.0 0.060 0.018 0.0 
Min 0.0 0.0 0.0 0.0 0.0 0.015 0.0 

STACK 
Max 0.917 0.0 0.500 0.500 0.0 1.014 1.0 
Min 0.0 0.0 0.0 0.0 0.0 1.018 0.0 

Faults affecting the DMU can be detected when control 
flow instructions are executed. So, a fault in this unit affecting 
the correct generation of the outputs, current thread mask, and 
warp state will affect the number of active and inactive 
launched threads per warp, so the INACT counter is able to 
detect those faults. Similarly, any fault in the stack memory can 
be detected by resorting to the same events. In addition, any 
fault in the FSM of the DMU that affects the control signals 
used by conditional branches, in turn, changes the number of 
divergences generated and directly affects the stack accesses. 
Hence the number of push and pop operations (counted by the 
STACK counter) requested to the stack memory can be used to 
detect faults in these locations of the DMU.  

C. Performance counters precomputation and monitoring 

Once the PfCs of interest are identified, several experiments 
using representative applications in order to characterize each 
one in terms of the PfCs values under fault-free conditions are 
performed. The experiments were developed using the 
FlexGripPlus configured with 1 SM and 8 SPs per SM. The 
representative applications employed for the experiments were 
carefully selected to cover all parallel communications patterns 
presented in GPU programming. Those applications are Fast 
Fourier Transform (FFT), Matrix Multiplication (MM), 
Reduction (RED), Transpose of a Matrix (TRAN), Sobel Filter 
(SOBEL), RGB to Gray conversion (GRAY). 

Each application was executed five times, employing 
different input data each time. For each experiment, the 
evolution of the selected PfCs was collected during the 
execution of each application. Each performance counter was 
sampled ten times during the execution of the kernel for each 
application. The sampling of the PfCs consists in reading each 
performance counter on a given sampling time tx during the 
kernel execution and then calculating the difference between 
the current counter value PFC(tx) and the previous one PFC(tx-

1). This sampling data allows identifying the characteristic 
operational region in which the values of the PfCs guarantee 
that the application is executing correctly. Otherwise, when any 
performance counter value lies outside this region, this is 
considered as a possible fault presence indication.  

Table I presents the normalized bounds of the operational 
region calculated for each application using two representatives 
PfCs. One counter (INACT) is used to detect faults in the 
already mentioned locations in the WU and in the DMU, and 
the other counter (STACK) for detecting faults in the DMU. 
The INACT counter is normalized, corresponding to the 
number of inactive threads divided by the total number of 
launched threads. For the STACK counter, the normalization is 
calculated as the number of Push and Pop operations divided by 



 

the number of divergences. The normalization process is 
performed for each individual sampling period.  

TABLE II. FAULT EFFECTS IN THE WARP SCHEDULER MEMORY  

PfC 
 Applications 

 FFT GRAY MM RED SOBEL SORT TRAN 

INACT 
Max +0.003 +0.030 +0.031 +0.031 +0.031 +0.029 +0.031 
Min 0.0 0.0 +0.028 0.0 0.0 0.0 0.0 

STACK 
Max +0.042 0.0 0.0 0.0 0.0 0.0 0.0 
Min 0.0 0.0 0.0 0.0 0.0 -0.036 0.0 

 

TABLE III. FAULT EFFECTS IN THE DMU  

PfC 
 Applications 

 FFT GRAY MM RED SOBEL SORT TRAN 

INACT 
Max -0.088 0.0 0.0 0.0 0.0 0.0 0.0 
Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

STACK 
Max +0.458 0.0 +0.984 +0.500 0.0 +0.700 +0.875 
Min 0.0 0.0 0.0 0.0 0.0 -0.429 0.0 

As shown in Table I, the characteristic operational region 
for the INACT counter is particular for each application. For 
example, in the FFT, SOBEL and SORT applications the 
inactive threads reach a maximum ratio 0.245, 0.060 and 0.018, 
respectively. The minimum ratio of 0.0 means that during the 
execution of the application, the performance counter does not 
change between two consecutive sampling times. For the case 
of GRAY, MM, RED, and TRAN, the maximum and minimum 
values are 0 because these applications do not have inactive 
threads during normal execution.  

In the case of the STACK, the GRAY and SOBEL 
applications do not produce any divergence and push/pop 
operations. Therefore, those applications are excluded from the 
analysis using this counter, because they do not use the DMU.  

The values of the selected PfCs are affected by the presence 
of a stuck-at fault in the selected locations of the WU and 
DMU. Table II shows the changes in the normalized selected 
PfCs when a fault is present (highlighted in gray) in the thread 
mask of the warp pool memory. According to these results, the 
INACT counter overcomes the maximum value allowable in all 
applications, more precisely by 0.003 for the FFT application 
up to 0.031 for MM, RED, SOBEL, and TRAN. On the other 
hand, the STACK counter can detect this fault as well, but only 
for FFT and SORT applications.  

Table III presents the affected performance counter ratio 
results in the faulty scenario where one fault is present in the 
selected locations of the DMU to control the stack memory 
(highlighted in gray). According to the results, this kind of 
faults affects the maximum number of push/pop operations, 
increasing the STACK counter value during the execution of 
any application. In all applications, the STACK counter 
overflows the maximum region value by 0.5 for RED up to 
0.984 in MM. In the case of SORT, the STACK value is lower 
than the minimum value by 0.429. We observe in Table III that 
the STACK counter detects this kind of faults independently of 
the considered application. 

IV. CONCLUSIONS 

This paper proposes the usage of PfCs as a support for in-
field test of GPUs. These counters are available in GPUs 
mainly to support silicon debugging and for design validation. 
However, they can be used for testing purposes of some critical 
components inside the GPUs (in this paper we considered the 
WU and the DMU). The method allows the quick and 

inexpensive detection of critical faults in the target components 
by monitoring the values produced by these counters. Any 
deviation in the counter’s values outside the operational region 
for the selected application corresponds to a fault detection and 
can be used to stop the application and launch an in-field test 
procedure. Therefore, this work demonstrates that the selected 
PfCs are effective for the detection of faults in critical units 
during the runtime of any application in a GPU.  

As future work we plan to extend the use of PfCs to 
evaluate other units in the GPU, such as the SP or the memory 
controllers.  
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