
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Using Hardware Performance Counters to support in-field GPU Testing / Juan-David, Guerrero-Balaguera; Rodriguez
Condia, Josie E.; SONZA REORDA, Matteo. - (2021), pp. 1-4. (Intervento presentato al convegno 28th IEEE
International Conference on Electronics Circuits and Systems tenutosi a Dubai nel 28 november-1 december 2021)
[10.1109/ICECS53924.2021.9665511].

Original

Using Hardware Performance Counters to support in-field GPU Testing

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ICECS53924.2021.9665511

Terms of use:

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2924512 since: 2021-09-17T11:21:36Z

IEEE

Using Hardware Performance Counters to support in-

field GPU Testing

Juan-David Guerrero-Balaguera, Josie E. Rodriguez Condia, Matteo Sonza Reorda

Department of Control and Computer Engineering, Politecnico di Torino, Torino, Italy

Abstract —Graphics Processing Units (GPUs) have gained

importance in several domains where a high computational effort

is required (e.g., where Artificial Intelligence is used). At the same

time, their adoption extended to domains (e.g., automotive,

robotics, aerospace) where the effects of possible hardware faults

can be extremely serious. Hence, it is crucial to identify methods

allowing to quickly detect the occurrence of faults in a GPU while

it works in the operational phase. In this paper we propose a

method based on the adoption of hardware performance

counters. We show that the method is able to detect permanent

faults occurring in some critical modules, thus allowing to

increase the overall reliability of the system. The method does not

involve significant costs, since performance counters already exist

in all real GPUs, e.g., to support silicon debug, and can be easily

accessed in software.

Keywords—Hardware Performance Counters, Graphics

Processing Units, In-field test, Reliability, Safety.

I. INTRODUCTION

The GPUs have grown in importance in recent years in
highly intensive computation applications such as multimedia,
multi-signal analysis, high-performance computing, and
Artificial Intelligence. Moreover, the use of these devices has
been adopted and extended to other domains with important
requirements in terms of reliability and functional safety (i.e.,
automotive, robotics, and aerospace).

The current cutting-edge technologies using in the
manufacturing of GPUs allow improving their performance and
reducing their power consumption. However, these
semiconductor technologies are susceptible to permanent faults
arising during the device’s operational life, e.g., by wear-out or
aging [1]. These faults may change the functionality of the
device and seriously affect the reliability of the system.
Accordingly, testing the device periodically for fault detection
before producing a catastrophic effect is mandatory.

The in-field test of a GPU involves using specialized
hardware structures or mechanisms to guarantee the
requirements of safety-critical applications in terms of
reliability and operational constraints. Design for Testability
(DfT) mechanisms, such as Memory and Logic BIST, can be
activated during the power on or in the idle times when the
timing constraints are less restricted. Other solutions use
software routines to test the functionality of each target module
in the GPU [2] [3]. All the above solutions require stopping the
application or using their idle time to launch the test.

In this paper, we present a solution for the in-field test of
GPUs using the hardware performance counters (PfCs).
Although these counters are resources available in the GPUs

devoted mainly to silicon debugging and design validation
purposes, they can be employed for testing purposes of some
critical components inside GPUs. The method allows the quick
and inexpensive detection of faults in some critical modules
within a GPU (such as the warp scheduler and the divergence
management unit) by monitoring the values produced by these
counters. Hence, using the proposed solution some faults can be
detected resorting to a true concurrent on-line testing, without
stopping the application.

The proposed usage of PfCs involves two stages. In a
preliminary stage, the target application is run on the device,
and the values of some PfCs is gathered to build an invariant
fault-free profile. The choice of the PfCs to build the profile
depends on the evaluated hardware module of the GPU we
consider. Once the expected values of the PfCs for the target
application have been calculated, the second stage consists in
monitoring whether, during the system operational phase, the
application forces the selected PfCs to produce values coherent
with the expected ones. In the negative case, the system may
force the execution of a detailed test procedure.

In this paper we considered an open-source model of a GPU
(named FlexGripPlus) mimicking an NVIDIA GPU, where
some PfCs are available. Our experiments demonstrate that
monitoring the values of PfCs inexpensively allows to detect
some critical faults in a few control modules.

II. BACKGROUND

A. GPU organization1
Graphic Processing Units (GPUs) are devices composed of
scalable arrays of parallel execution units known as Streaming
Multiprocessors (SMs). Each SM in a GPU uses the Single-
Instruction Multiple-Tread (SIMT) execution model, where a
single instruction executes multiple independent threads
concurrently. The execution of one instruction in the SM uses
five stages of pipeline (fetch, decode, read, execution/control
flow, and writeback).

A scheduler unit controls the execution of one SIMT
instruction, fetching, decoding, and distributing the workloads
to be executed in the parallel processing cores called Streaming
Processors (SPs) of the SM. One SM can contain between 8
and 128 SPs depending on the GPU model and the number of
parallel threads to be processed concurrently. Additionally, the
read and write pipeline stages contain the special controllers

1 This subsection summarizes the architecture and behavior

of NVIDIA GPUs, although the method proposed in the paper
easily extends to GPUs of other vendors.

and necessary logic to load and store data into the storage units
(General Purpose Registers File (GPRF), Shared Memory
(SMem), Global Memory (GMem), and Constant Memory
(CMem)). GPRF, SMem, and CMem reside inside the SM, and
GMem is external to the device.

B. Hardware performance counters

The hardware PfCs are mainly used to evaluate the
performance, the occupied resources, the debugging, or the
application’s optimization [4]–[6]. In addition, several works
have explored the PfCs usage for other purposes like power
consumption monitoring [7], [8], or detecting malicious attacks
[9]–[11]. Moreover, PfCs can be employed to detect anomalies
or errors caused by faults (transient or permanent) during the
execution of any safety-critical application.

Until now, the usage of PfCs for reliability purposes has
been evaluated mainly for CPU-based systems, in which the
PfCs are employed to characterize microprocessor-based
systems for reliability monitoring [12]. Additionally, The PfCs
can be exploited to create statistical modeling for online testing
and fault tolerance [13] and for Cyber-Physical Systems
reliability and security attacks mitigation [14]. Other works use
PfCs for the test programs development [15] or to detect control
flow errors caused by faults [16].

In GPUs, several PfCs are available as in most advanced
microprocessors. Modern GPUs offer between 100 to 200 PfCs
[4] grouped into five general categories: memory, instruction,
multiprocessor, cache, and texture [10]. We can find their use
in different areas, such as power consumption measurement [7],
[17], kernel characterization for optimization [5], [18], and
security attacks detection and mitigation [10].

Accessing the GPU PfCs requires incorporating software
libraries (APIs and Performance Tools) interacting with the
low-level software interfaces to access and collect the PfCs'
information. AMD has the GPUPerfAPI performance API and
NVIDIA offers several performance tools supporting different
features of its devices, such as CUPTI and NVIDIA PerfKit.

The NVIDIA profiling APIs and tools access PfCs using a
low-level software interface of the GPU. That interface
comprises several assembly instructions (SASS) especially
developed to configure a performance counter and capture the
counting value into a general-purpose register. The counters are
available to the GPU itself, or to the Host where the profiler
tool analyzes the results. In NVIDIA GPUs [19], the SASS
pmevent instruction triggers one or more performance monitor
events. The PfCs are visible as special read-only registers and
accessed using the mov or cvt instructions.

III. EXPERIMENTAL SETUP AND RESULTS

For the purpose of this work, the FlexGripPlus GPU model
was employed to evaluate the effectiveness of PfCs in the
detection of some critical faults in two GPU modules during the
execution of a selected application. The selected modules are i)
the WU and ii) the control flow unit. These units are critical for
the normal execution flow of any application in the GPU, since
faults affecting them are very likely to seriously impact the
behavior of the whole GPU. Therefore, the detection of any
fault in these modules before they cause a fatal failure is
mandatory.

A. FlexGrip architecture

FlexGipPlus is an open-source soft-core GPU compliant
with the NVIDIA G80 architecture [20]. FlexGripPlus is
compatible with the CUDA programming flow and implements
52 assembly instructions. The internal organization of the
FlexGripPlus GPU is composed of a scalable array of
Streaming Multiprocessors (SMs) and one block scheduler in
charge of dispatching the tasks to each SM. Inside each SM, the
warp scheduler assigns the warps to the Scalar Processors
(SPs).

1) The Warp Unit
According to the NVIDIA specifications, the threads

assigned to an SM are launched in small groups called warps. A
warp is composed of 32 or 64 threads that execute the same
instruction in parallel using independent data (SIMT). In
FlexGripPlus, the Warp Unit (WU) is in charge of managing
the execution of threads in each SM.

The WU comprises six functional units that interact
between them. These functional units are the warp generator,
warp scheduler, warp checker, fence registers, and two
memories used to store the information about the execution and
status of each thread per warp. The warp pool memory stores
the warp ID, the program counter, and the tread mask per warp.
The warp state memory stores the current status per warp,
which can either be (Ready, active, waiting, or finished).

The warp generator takes the configuration parameters from
the block scheduler of the GPU, identifies the total number of
warp lines in the pool memory, and initializes every warp line.

After the warp initialization finishes, the warp scheduler
launch warps in a round-robin fashion, reading the pool and
state memories. The PC, tread mask, and state are updated in
the memories every time the warp completes the pipeline
execution loop. This regular flow of warp scheduling is
sometimes interrupted when a barrier synchronization
instruction appears. The WU executes this instruction and
marks all warps as waiting. For each waiting warp, the WU sets
one bit in the fence register. Reading the fence register and
checking that all bits are set indicates that all arrived warps are
in a waiting state, so all of them are synchronized, and the
barrier is released. In this case, the WU changes the state of all
warps to ready, and the warp scheduling process continues as
usual.

The warp checker is in charge of checking each warp's
status, performing a comparison between the current state of
each warp coming from the SM and the previous values
generated in the warp pool memory. According to the
comparison results, the warp checker updates the warp pool and
the status memory. Both the warp scheduler and the warp
checker correspond to Finite State Machines (FSMs) and
control the execution of every warp in the SM.

2) The Control Flow Unit
The Divergence Management Unit (DMU) in the

control/execute pipeline stage of the FlexGripPlus GPU
controls and tracks the Intra-Warp Divergences (IWDs), which
appear in programs when the threads in the same warp execute
different instructions, generating multiple execution paths. IWD
occurs during the execution of all control flow instructions such
as conditional and unconditional branches, barrier

synchronization, kernel return, and set synchronization point.
Additionally, the DMU interacts directly with the warp stack
memory, which stores the starting (divergency) and ending
points (convergency) of different execution paths for the same
warp.

The operation of the DMU for a warp executing branch
instruction or conditional branch instruction follows four main
steps. First, the synchronization point is reached, and the DMU
pushes in the stack the synchronization point information for
the current warp. In the second stage, the execution reaches the
branch instruction. In this step, the threads in the “taken” path
are executed first. At the same time, the thread mask of the
“not-taken” path and the current PC are pushed in the stack. In
the third stage, the first path of threads reaches the
reconvergence point, the stack is popped, and the threads in the
“not taken” path are loaded in the pipeline to be executed. In
the fourth stage, all threads in the warp reach the reconvergence
point, the synchronization information is popped from the
stack, and all threads continue the parallel execution.

The DMU in the FlexGripPlus GPU is an FSM that
generates the control signals needed to manage the warp stack
memory and the thread execution on each SP. Additionally, the
DMU directly interacts with the WU, sending the thread masks
and the warp state for the currently executed warp. The DMU
generates and propagates the masks and state of the current
warp through the pipeline stages up to when it arrives at the
WU where the next warp will be scheduled.

B. The FlexGrip GPU Performance Monitoring Unit

The FlexGripPlus model has been enriched with a
Performance Monitoring Unit (PMU). Each SM of the GPU
includes a PMU in charge of counting events produced by
several modules during any kernel execution. The PfCs
implemented by the PMU correspond to counters existing in
real NVIDIA GPUs. Additionally, the GPU includes the
necessary SASS-compliant instructions allowing to access the
PMU. The devised PMU is composed of a set of 2 PfCs. One
counter calculates the number of launched inactive threads
(INACT). This measurement takes the thread mask output port
of the WU and increments the counter by a factor k, where k is
the number of inactive threads per launched warp. The other
counter increments on each warp stack accesses (STACK). This
counter increments by one on each push and pop operation.

These counters allow detecting critical faults affecting the
WU and the DMU. In the WU, the faults present in the warp
pool memory can be detected by resorting to the INACT
counter. In fact, this counter allows to directly monitor the
thread mask port of the WU, then any fault in that field of the
warp pool memory can be detected because there will be a
variation in the number of active or inactive treads during the
application execution. Similarly, any fault in the program
counter field of the warp pool memory can be detected by the
INACT counter or by the STACK counter when a branch
instruction producing divergences is present in the application.
This detection is possible because any fault in this field will
always produce a wrong instruction execution for the launched
warp skipping some instructions or by repeating others.

When a fault induces a malfunction in the FSM of the warp
scheduler or the warp checker, it can be detected using any of

the PfCs previously mentioned because of an erroneous warp
execution either by a missing warp or a wrong warp sequence.

TABLE I. NORMALIZED BOUND LIMITS FOR CHARACTERISTIC
OPERATIONAL REGIONS

PfC
Applications

FFT GRAY MM RED SOBEL SORT TRAN

INACT
Max 0.245 0.0 0.0 0.0 0.060 0.018 0.0
Min 0.0 0.0 0.0 0.0 0.0 0.015 0.0

STACK
Max 0.917 0.0 0.500 0.500 0.0 1.014 1.0
Min 0.0 0.0 0.0 0.0 0.0 1.018 0.0

Faults affecting the DMU can be detected when control
flow instructions are executed. So, a fault in this unit affecting
the correct generation of the outputs, current thread mask, and
warp state will affect the number of active and inactive
launched threads per warp, so the INACT counter is able to
detect those faults. Similarly, any fault in the stack memory can
be detected by resorting to the same events. In addition, any
fault in the FSM of the DMU that affects the control signals
used by conditional branches, in turn, changes the number of
divergences generated and directly affects the stack accesses.
Hence the number of push and pop operations (counted by the
STACK counter) requested to the stack memory can be used to
detect faults in these locations of the DMU.

C. Performance counters precomputation and monitoring

Once the PfCs of interest are identified, several experiments
using representative applications in order to characterize each
one in terms of the PfCs values under fault-free conditions are
performed. The experiments were developed using the
FlexGripPlus configured with 1 SM and 8 SPs per SM. The
representative applications employed for the experiments were
carefully selected to cover all parallel communications patterns
presented in GPU programming. Those applications are Fast
Fourier Transform (FFT), Matrix Multiplication (MM),
Reduction (RED), Transpose of a Matrix (TRAN), Sobel Filter
(SOBEL), RGB to Gray conversion (GRAY).

Each application was executed five times, employing
different input data each time. For each experiment, the
evolution of the selected PfCs was collected during the
execution of each application. Each performance counter was
sampled ten times during the execution of the kernel for each
application. The sampling of the PfCs consists in reading each
performance counter on a given sampling time tx during the
kernel execution and then calculating the difference between
the current counter value PFC(tx) and the previous one PFC(tx-

1). This sampling data allows identifying the characteristic
operational region in which the values of the PfCs guarantee
that the application is executing correctly. Otherwise, when any
performance counter value lies outside this region, this is
considered as a possible fault presence indication.

Table I presents the normalized bounds of the operational
region calculated for each application using two representatives
PfCs. One counter (INACT) is used to detect faults in the
already mentioned locations in the WU and in the DMU, and
the other counter (STACK) for detecting faults in the DMU.
The INACT counter is normalized, corresponding to the
number of inactive threads divided by the total number of
launched threads. For the STACK counter, the normalization is
calculated as the number of Push and Pop operations divided by

the number of divergences. The normalization process is
performed for each individual sampling period.

TABLE II. FAULT EFFECTS IN THE WARP SCHEDULER MEMORY

PfC
 Applications

 FFT GRAY MM RED SOBEL SORT TRAN

INACT
Max +0.003 +0.030 +0.031 +0.031 +0.031 +0.029 +0.031
Min 0.0 0.0 +0.028 0.0 0.0 0.0 0.0

STACK
Max +0.042 0.0 0.0 0.0 0.0 0.0 0.0
Min 0.0 0.0 0.0 0.0 0.0 -0.036 0.0

TABLE III. FAULT EFFECTS IN THE DMU

PfC
 Applications

 FFT GRAY MM RED SOBEL SORT TRAN

INACT
Max -0.088 0.0 0.0 0.0 0.0 0.0 0.0
Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0

STACK
Max +0.458 0.0 +0.984 +0.500 0.0 +0.700 +0.875
Min 0.0 0.0 0.0 0.0 0.0 -0.429 0.0

As shown in Table I, the characteristic operational region
for the INACT counter is particular for each application. For
example, in the FFT, SOBEL and SORT applications the
inactive threads reach a maximum ratio 0.245, 0.060 and 0.018,
respectively. The minimum ratio of 0.0 means that during the
execution of the application, the performance counter does not
change between two consecutive sampling times. For the case
of GRAY, MM, RED, and TRAN, the maximum and minimum
values are 0 because these applications do not have inactive
threads during normal execution.

In the case of the STACK, the GRAY and SOBEL
applications do not produce any divergence and push/pop
operations. Therefore, those applications are excluded from the
analysis using this counter, because they do not use the DMU.

The values of the selected PfCs are affected by the presence
of a stuck-at fault in the selected locations of the WU and
DMU. Table II shows the changes in the normalized selected
PfCs when a fault is present (highlighted in gray) in the thread
mask of the warp pool memory. According to these results, the
INACT counter overcomes the maximum value allowable in all
applications, more precisely by 0.003 for the FFT application
up to 0.031 for MM, RED, SOBEL, and TRAN. On the other
hand, the STACK counter can detect this fault as well, but only
for FFT and SORT applications.

Table III presents the affected performance counter ratio
results in the faulty scenario where one fault is present in the
selected locations of the DMU to control the stack memory
(highlighted in gray). According to the results, this kind of
faults affects the maximum number of push/pop operations,
increasing the STACK counter value during the execution of
any application. In all applications, the STACK counter
overflows the maximum region value by 0.5 for RED up to
0.984 in MM. In the case of SORT, the STACK value is lower
than the minimum value by 0.429. We observe in Table III that
the STACK counter detects this kind of faults independently of
the considered application.

IV. CONCLUSIONS

This paper proposes the usage of PfCs as a support for in-
field test of GPUs. These counters are available in GPUs
mainly to support silicon debugging and for design validation.
However, they can be used for testing purposes of some critical
components inside the GPUs (in this paper we considered the
WU and the DMU). The method allows the quick and

inexpensive detection of critical faults in the target components
by monitoring the values produced by these counters. Any
deviation in the counter’s values outside the operational region
for the selected application corresponds to a fault detection and
can be used to stop the application and launch an in-field test
procedure. Therefore, this work demonstrates that the selected
PfCs are effective for the detection of faults in critical units
during the runtime of any application in a GPU.

As future work we plan to extend the use of PfCs to
evaluate other units in the GPU, such as the SP or the memory
controllers.

REFERENCES

[1] S. Hamdioui, et al., “Reliability challenges of real-time systems in

forthcoming technology nodes,” Design, Automation and Test in
Europe, 2013, pp. 129–134.

[2] J. D. Guerrero-Balaguera, et al., “On the Functional Test of Special
Function Units in GPUs,” International Symposium on Design and

Diagnostics of Electronic Circuits and Systems, 2021, pp. 81–86.

[3] J. E. R. Condia, et al., “On the testing of special memories in GPGPUs,”
International Symposium on On-Line Testing and Robust System

Design, 2020.

[4] B. Zigon, et al., “Utilizing gpu performance counters to characterize
gpu kernels via machine learning,” International Conference on

Computational Science, 2020, pp. 88–101.

[5] S. C. Tsai, et al., “Kernel Aware Warp Scheduler,” IEEE International
Symposium on Circuits and Systems, 2018.

[6] B. Sprunt, “The basics of performance-monitoring hardware,” IEEE

Micro, vol. 22, no. 4, pp. 64–71, 2002.
[7] R. A. Bridges, et al., “Understanding GPU power: A survey of

profiling, modeling, and simulation methods,” Computing Surveys, vol.

49, no. 3. Association for Computing Machinery, 2016.
[8] Y. Kim, et al., “System-level online power estimation using an on-chip

bus performance monitoring unit,” IEEE Trans. Comput. Des. Integr.

Circuits Syst., vol. 30, no. 11, pp. 1585–1598, 2011.
[9] S. Das, et al., “SoK: The challenges, pitfalls, and perils of using

hardware performance counters for security,” IEEE Symposium on

Security and Privacy, 2019, pp. 20–38.
[10] H. Naghibijouybari, et al., “Rendered Insecure: GPU Side Channel

Attacks are Practical,” Conference on Computer and Communications

Security, 2018, vol. 15.
[11] X. Wang et al., “Malicious Firmware Detection with Hardware

Performance Counters,” IEEE Trans. Multi-Scale Comput. Syst., vol. 2,

no. 3, pp. 160–173, 2016.
[12] E. W. L. Leng, et al., “Hardware performance counters for system

reliability monitoring,” International Verification and Security

Workshop, 2017, pp. 76–81.
[13] S. Esposito, et al., “A novel method for online detection of faults

affecting execution-time in multicore-based systems,” ACM Trans.

Embed. Comput. Syst., vol. 16, no. 4, 2017.
[14] A. Carelli, et al., “Performance monitor counters: Interplay between

safety and security in complex cyber-physical systems,” IEEE Trans.

Device Mater. Reliab., vol. 19, no. 1, pp. 73–82, 2019.
[15] W. Lindsay, et al., “Automatic test programs generation driven by

internal performance counters,” International Workshop on

Microprocessor Test and Verification, 2005, pp. 8–13.
[16] H. A. H. Ahmad, et al., “A performance counter-based control flow

checking technique for multi-core processors,”International Conference

on Computer and Knowledge Engineering, 2017, pp. 461–466.
[17] J. Guerreiro, et al., “GPGPU Power Modeling for Multi-domain

Voltage-Frequency Scaling,” International Symposium on High-

Performance Computer Architecture, 2018, pp. 789–800.
[18] J. Filipovič, et al., “Using hardware performance counters to speed up

autotuning convergence on GPUs,” arXiv:2102.05297 [cs.DC], 2021.

[19] NVIDIA Corporation, “PTX ISA :: CUDA Toolkit Documentation,”
2021. [Online]. Available: https://docs.nvidia.com/cuda/parallel-thread-

execution/index.html. [Accessed: 30-Jun-2021].

[20] J. E. R. Condia et al., “Flexgripplus: An improved gpgpu model to
support reliability analysis,” Microelectronics Reliability, vol. 109,

2020.

