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Abstract: In this paper, we study a distributed parameter estimation problem in a large-scale
network of communication sensors. The goal of the sensors is to find a global estimate of an
unknown parameter minimizing, which minimizes some aggregate cost function. Each sensor
can communicated to a few “neighbors”, furthermore, the communication channels have limited
capacities. To solve the resulting optimization problem, we use a weighted modification of the
distributed consensus-based SPSA algorithm whose main advantage over the alternative method
is its ability to work in presence of arbitrary unknown-but-bounded noises whose statistical
characteristics can be unknown. We provide a convergence analysis of the weighted SPSA-based
consensus algorithm and show its efficiency via numerical simulations.
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1. INTRODUCTION

Multi-agent systems and technologies have found numer-
ous applications in engineering, from mobile robotics to
distributed computing (Bullo et al., 2009; D.Bertsekas and
Tsitsiklis, 1989; Olfati-Saber et al., 2007; Ren and Cao,
2011; Shoham and Leyton-Brown, 2008). Coordination of
simple and inter-replaceable agents enables them to solve
complex problems more efficiently than centralized sys-
tems, enhancing also their reliability and resilience. Being
a special class of multi-agent systems, sensor networks
constituted by low-power miniature wireless sensor devices
“promise to revolutionize sensing in a wide range of ap-
plication domains” (Tubaishat and Madria, 2003) due to
their reliability, ease of deployment and cost-efficiency.

Obviously, data fusion from numerous sensors leads to
more accurate estimates of the unknown parameters than
small sensor groups can provide. However, as a sensor net-
work becomes large, data acquisition and processing at a
single center become virtually impossible, and distributed
algorithms are needed that require only local interactions
among sensors. A number of problems arises in design of
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such networks (Tubaishat and Madria, 2003) caused by
time-varying topology of the network, limited capabilities
of individual sensors (low power, small memory and minor
computational capacity) and communication constraints
(a large amount of data can lead to traffic congestion).

To provide accurate data fusion in the face of uncer-
tainties (e.g. measurement noises and other kinds of un-
known signals), distributed stochastic optimization is com-
monly used: the desired estimate of an unknown param-
eter should deliver an optimum to a certain mean-risk
functional. In distributed optimization, most studied are
methods for convex optimization, e.g. the alternating di-
rection method of multipliers (ADMM) (Boyd et al., 2011)
and subgradient methods (Nedić and Olshevsky, 2016;
Rabbat and Nowak, 2004). For non-convex optimization,
methods of surrogate functions have been used (Di Lorenzo
and Scutari, 2016). There are also algorithms that embed
a dynamic average consensus protocol into optimization
process (Falsone et al., 2020; Xie and Guo, 2018). Most
of methods, however, assume that some statistical char-
acteristics of the uncertain parameters are known, for
instance, the noises are Gaussian or have zero expectation.
In this paper, we are concerned with situation where the
random signals are completely unknown yet supposed to
be bounded (Granichin and Amelina, 2015), which makes
many statistical methods inapplicable.
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Rabbat and Nowak, 2004). For non-convex optimization,
methods of surrogate functions have been used (Di Lorenzo
and Scutari, 2016). There are also algorithms that embed
a dynamic average consensus protocol into optimization
process (Falsone et al., 2020; Xie and Guo, 2018). Most
of methods, however, assume that some statistical char-
acteristics of the uncertain parameters are known, for
instance, the noises are Gaussian or have zero expectation.
In this paper, we are concerned with situation where the
random signals are completely unknown yet supposed to
be bounded (Granichin and Amelina, 2015), which makes
many statistical methods inapplicable.

Convergence Analysis of Weighted
SPSA-based Consensus Algorithm in

Distributed Parameter Estimation Problem

Anna Sergeenko ∗,∗∗, Victoria Erofeeva ∗∗∗, Oleg Granichin ∗,∗∗,
Olga Granichina ∗∗∗∗, and Anton Proskurnikov ∗∗,†

∗ Saint Petersburg State University (Faculty of Mathematics and
Mechanics, Research Laboratory for Analysis and Modeling of Social

Processes) , St. Petersburg, Russia
∗∗ Institute for Problems in Mechanical Engineering of the Russian

Academy of Sciences, St. Petersburg, Russia
∗∗∗ Skolkovo Institute of Science and Technology, Moscow, Russia
∗∗∗∗ Herzen State Pedagogical University of Russia, St. Petersburg,

Russia
† Politecnico di Torino, Turin, Italy

Abstract: In this paper, we study a distributed parameter estimation problem in a large-scale
network of communication sensors. The goal of the sensors is to find a global estimate of an
unknown parameter minimizing, which minimizes some aggregate cost function. Each sensor
can communicated to a few “neighbors”, furthermore, the communication channels have limited
capacities. To solve the resulting optimization problem, we use a weighted modification of the
distributed consensus-based SPSA algorithm whose main advantage over the alternative method
is its ability to work in presence of arbitrary unknown-but-bounded noises whose statistical
characteristics can be unknown. We provide a convergence analysis of the weighted SPSA-based
consensus algorithm and show its efficiency via numerical simulations.

Keywords: Sensor network, randomized algorithms, consensus, distributed parameter
estimation

1. INTRODUCTION

Multi-agent systems and technologies have found numer-
ous applications in engineering, from mobile robotics to
distributed computing (Bullo et al., 2009; D.Bertsekas and
Tsitsiklis, 1989; Olfati-Saber et al., 2007; Ren and Cao,
2011; Shoham and Leyton-Brown, 2008). Coordination of
simple and inter-replaceable agents enables them to solve
complex problems more efficiently than centralized sys-
tems, enhancing also their reliability and resilience. Being
a special class of multi-agent systems, sensor networks
constituted by low-power miniature wireless sensor devices
“promise to revolutionize sensing in a wide range of ap-
plication domains” (Tubaishat and Madria, 2003) due to
their reliability, ease of deployment and cost-efficiency.

Obviously, data fusion from numerous sensors leads to
more accurate estimates of the unknown parameters than
small sensor groups can provide. However, as a sensor net-
work becomes large, data acquisition and processing at a
single center become virtually impossible, and distributed
algorithms are needed that require only local interactions
among sensors. A number of problems arises in design of

� This work was supported IPME RAS by Russian Science
Foundation (project no. 21-19-00516).
E-mails: anna.sergeenko98@gmail.com, victoria@grenka.net,

o.granichin@spbu.ru, olga granitchina@mail.ru,

anton.p.1982@ieee.org

such networks (Tubaishat and Madria, 2003) caused by
time-varying topology of the network, limited capabilities
of individual sensors (low power, small memory and minor
computational capacity) and communication constraints
(a large amount of data can lead to traffic congestion).

To provide accurate data fusion in the face of uncer-
tainties (e.g. measurement noises and other kinds of un-
known signals), distributed stochastic optimization is com-
monly used: the desired estimate of an unknown param-
eter should deliver an optimum to a certain mean-risk
functional. In distributed optimization, most studied are
methods for convex optimization, e.g. the alternating di-
rection method of multipliers (ADMM) (Boyd et al., 2011)
and subgradient methods (Nedić and Olshevsky, 2016;
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is its ability to work in presence of arbitrary unknown-but-bounded noises whose statistical
characteristics can be unknown. We provide a convergence analysis of the weighted SPSA-based
consensus algorithm and show its efficiency via numerical simulations.
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1. INTRODUCTION

Multi-agent systems and technologies have found numer-
ous applications in engineering, from mobile robotics to
distributed computing (Bullo et al., 2009; D.Bertsekas and
Tsitsiklis, 1989; Olfati-Saber et al., 2007; Ren and Cao,
2011; Shoham and Leyton-Brown, 2008). Coordination of
simple and inter-replaceable agents enables them to solve
complex problems more efficiently than centralized sys-
tems, enhancing also their reliability and resilience. Being
a special class of multi-agent systems, sensor networks
constituted by low-power miniature wireless sensor devices
“promise to revolutionize sensing in a wide range of ap-
plication domains” (Tubaishat and Madria, 2003) due to
their reliability, ease of deployment and cost-efficiency.

Obviously, data fusion from numerous sensors leads to
more accurate estimates of the unknown parameters than
small sensor groups can provide. However, as a sensor net-
work becomes large, data acquisition and processing at a
single center become virtually impossible, and distributed
algorithms are needed that require only local interactions
among sensors. A number of problems arises in design of
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such networks (Tubaishat and Madria, 2003) caused by
time-varying topology of the network, limited capabilities
of individual sensors (low power, small memory and minor
computational capacity) and communication constraints
(a large amount of data can lead to traffic congestion).

To provide accurate data fusion in the face of uncer-
tainties (e.g. measurement noises and other kinds of un-
known signals), distributed stochastic optimization is com-
monly used: the desired estimate of an unknown param-
eter should deliver an optimum to a certain mean-risk
functional. In distributed optimization, most studied are
methods for convex optimization, e.g. the alternating di-
rection method of multipliers (ADMM) (Boyd et al., 2011)
and subgradient methods (Nedić and Olshevsky, 2016;
Rabbat and Nowak, 2004). For non-convex optimization,
methods of surrogate functions have been used (Di Lorenzo
and Scutari, 2016). There are also algorithms that embed
a dynamic average consensus protocol into optimization
process (Falsone et al., 2020; Xie and Guo, 2018). Most
of methods, however, assume that some statistical char-
acteristics of the uncertain parameters are known, for
instance, the noises are Gaussian or have zero expectation.
In this paper, we are concerned with situation where the
random signals are completely unknown yet supposed to
be bounded (Granichin and Amelina, 2015), which makes
many statistical methods inapplicable.
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In this paper, we pursue another line of research concerned
with the simultaneous perturbation stochastic approxima-
tion (SPSA) proposed by Spall (1992). The important
feature of SPSA is the underlying gradient approximation
that requires only two loss function measurements and
does not depend on the number of parameters being opti-
mized. Granichin and Amelina (2015) showed that SPSA
converges even in the presence of an arbitrary unknown-
but-bounded noise (whereas usually the estimation al-
gorithms are suitable only for noises with zero mean).
In Spall (2012), a modification of stochastic approximation
procedure based on a cyclic approach is considered. The
essence of the approach is that the parameter vector is
divided into several subvectors, which then is sequentially
updated while holding the remaining parameters at their
most recent values. The cyclic approach naturally gener-
alizes to distributed optimization.

The paper extends the results of our previous works.
In (Amelina et al., 2020; Granichin et al., 2021), we
propose and analyze a consensus-based distributed SPSA
algorithm for multi-target tracking in a heterogeneous
sensor network. An important feature of this algorithm is a
randomized gossip-based communication protocol needed
to satisfy the communication constraints assuming that
each agent can communicate only with a small group of
its neighbors. In Sergeenko et al. (2020), stronger commu-
nication constraints are introduced, and parameter opti-
mization is provided. In the papers mentioned above, we
consider the variance of the tracking error as a perfor-
mance index of our algorithm. In Erofeeva et al. (2021), we
propose a weighted version of the SPSA-based consensus
algorithm accounting for the heterogeneity of targets and
estimate a more important characteristic: the covariance
matrix of residuals. In this paper, we provide the con-
vergence analysis of the weighted SPSA-based consensus
algorithm in stationary case. We also determine a suitable
step-size of the algorithm based on this analysis.

The rest of this paper is organized as follows. Section 2
provides notations used in the paper. The formal prob-
lem is stated in Section 3. The weighted SPSA-based
consensus algorithm for distributed parameter estimation
is introduced in Section 4. The convergence analysis of
the algorithm is provided in Section 5. In Section 6, we
consider the numerical simulation results that shows how
estimates evolve over time. Section 7 concludes the paper.

2. PRELIMINARIES

Let (Ω,F , P ) be the underlying probability space corre-
sponding to sample space Ω, set of all events F , and prob-
ability measure P . E denotes mathematical expectation.

2.1 Graph Theory

Given a network consisting of n nodes. Let the interaction
between nodes be described by the directed graph GA =
(N , E), where N = {1, . . . , n} is a set of vertices and
E ⊆ N ×N is a set of edges. Denote by i ∈ N an identifier
of i-th node and (j, i) ∈ E if there is a directed edge from
node j to node i. The latter means that node j is able
to transmit data to node i. For a node i ∈ N , the set of
neighbors is defined as N i = {j ∈ N : (j, i) ∈ E}. The

in-degree of i ∈ N equals |N i|. Here and after, | · | is the
cardinality of a set, and the identifier of i-th node is used
as a superscript and not as an exponent.

Let ai,j > 0 be the weight associated with the edge
(j, i) ∈ E and ai,j = 0 whenever (j, i) /∈ E . Let A = [ai,j ]
be the weighted adjacency matrix, or simply connectiv-
ity matrix, associated with graph GA. The weighted in-
degree of i ∈ N is defined as deg+i (A) =

∑n
j=1 a

i,j , the
maximum in-degree among all nodes contained in graph
GA as deg+max(A), and the diagonal matrix as D(A) =
diagn(col{deg

+
1 (A), . . . ,deg+n (A)}), where col{·} is the col-

umn vector obtained by stacking its entries on top of
one another, diagn(b) is a square diagonal matrix with
elements of a vector b on the diagonal and other elements
equal to zero. Then, L(A) = D(A)−A is the Laplacian of
graph GA.

Definition 1. A directed graph GA is said to be strongly
connected if for every pair of nodes j, i ∈ N , there exists
a path of directed edges that goes from j to i.

Denote the eigenvalues of Laplacian L(A) by λ1(A), . . . ,
λn(A) and arrange them in ascending order of real parts:
0 ≤ Re(λ1(A)) ≤ Re(λ2(A)) ≤ . . . ≤ Re(λn(A)). It
is known, that if the graph is strongly connected then
λ1(A) = 0 and all other eigenvalues of L are in the
open right half of the complex plane (see, e.g., Lewis
et al. (2013)). The eigenvalue of matrix A with maximum
absolute magnitude is defined as λmax(A).

2.2 Notations

Let [·]T be vector or matrix transpose operation, [·]−1

be matrix inversion. ‖A‖ is the Frobenius norm: ‖A‖ =√∑
i

∑
j(a

i,j)2. 1d = [1, . . . , 1]T ∈ Rd is the vector of

all ones. ei = [. . . , 0, 1, 0, . . .]T ∈ Rd is the canonical basis
vector from Rd, where i-th entry is equal to 1. Id ∈ Rd×d is
the identity matrix. A⊗B is the Kronecker product defined
for any matrices A and B. The following notation A ≤ B
means that matrices are ordered in the sense of quadratic
forms: for every nonzero x ∈ Rn: xTAx ≤ xTBx.

3. PARAMETER ESTIMATION PROBLEM

We consider a network of n spatially-distributed sensors in
a field, namely, agents, capable of measuring parameters
(e.g., distance, heading, etc), performing local computa-
tions, and exchange information with neighboring nodes.
In this field, there are m targets. Each sensor i ∈ N =
{1, . . . , n} has its own hypothesis regarding the state of the
targets (i.e., their positions) or more simply an estimate
of the states. The goal of the network is to accurately esti-
mate the unknown parameters of the targets. The sensors
must also act together as a team to achieve this goal.

Let si = [si,1, . . . , si,d]T ∈ Rd be the state of sensor i,
rl = [rl,1, . . . , rl,d]T ∈ Rd be the state of target l ∈
M = {1, . . . ,m}, and θ = col{r1, . . . , rm} be the vector
consisting of all states to be estimated. Suppose that each
sensor measures a scalar quantity, which is the distance
between its own position and position of a target:

ρ(si, rl) = ||rl − si||2, ∀i ∈ N , l ∈ M. (1)
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Note that the proposed approach can be used for other
types of measuring parameters (e.g., bearing/azimuth).

In general, the problem is to find an estimation θ̂t of an
unknown parameter θ:

θ̂�t = argmin
θ̂t

||θ̂t − θ||2. (2)

In this paper, we consider a more difficult problem setting.
First, the solution of the optimization problem (2) needs
to be found in a distributed way. Second, we impose the
following communication constraints : at time instant t,
each sensor i ∈ N is able to measure the squared distance
to not more than one target. In practice, due to hardware
constraints, the number of communication channels that
can be used is usually less than the dimension of space
or equal to it. Without loss of generality, in this paper,
we assume that each sensor is able to collect data only
from d neighbors. In this case and if there is no noise,
we can use standard triangular approaches to determine
the target position. However, if positions of all m targets
need to be computed, then we have to simultaneously
collectm(d−1) measurements, and it is often impossible in
practice. Third, we assume that there is the unknown-but-
bounded noise involved in the measuring process, which is
considered in the next subsection.

Suppose sensor i estimates the state of target l at time
instant t. The sensor is able to collect the distances to the
same target measured by its neighbors j ∈ N̄ i

t ⊂ N i,
|N̄ i

t | = d. Let ui
t = [j1, . . . , jd, l]

T, j1, . . . , jd ∈ N̄ i
t ,

be a vector defining a set of neighbors used to collect
measurements associated with target l at time instant t.
Denote by

ρ̄jt (u
i) = ρ(si, rh(u

i
t))− ρ(sj , rh(u

i
t)) ∀j ∈ N̄ i

t , (3)

a residual between a measurement of sensor i and its
neighbors. Here and after, h(ui

t) : Rd+1 → R gives the
last element of ui

t.

In this case, using the square difference formula we get d
equations

ρ̄jt (u
i
t) = (sj − si)T(2rh(u

i
t) − sj − si), j ∈ N̄ i

t .

This allows us to derive

Cui
tr

h(ui
t)

t = Dui
t , r

h(ui
t)

t = [Cui
t ]−1Dui

t , (4)

where

Cui
t = 2



(sj1 − si)T

· · ·
(sjd − si)T


 , Dui

t =



ρ̄1t (u

i
t) + ‖sj1‖2 − ‖si‖2

· · ·
ρ̄dt (u

i
t) + ‖sjd‖2 − ‖si‖2


 .

Using the introduced notations, we define the measure-
ments of sensor i ∈ N at time instant t as follows:

yit = F i
t (u

i
t,x

i
t) + vit = ‖r̂h(u

i
t)

t − [Cui
t ]−1Dui

t‖2 + vit, (5)

where vit is the unknown-but-bounded additive noise, xi
t is

the measurement point depending on currently available

estimate r̂
h(ui

t)
t at time instant t. For example, xi

t = r̂
h(ui

t)
t .

3.1 Distributed Optimization

Denote by Ft−1 the σ-algebra of all probabilistic events,
which happened up to time instant t. EFt−1

denotes
the conditional expectation with respect to the σ-algebra
Ft−1. This σ-algebra is generated by the values of

all random variables (i.e., position of targets, noise,
changes in communication topology) at time instants τ =
{1, 2, . . . , t}.
Let ut = [u1

t , . . . ,u
n
t ]

T be the common vector defining
the sets of neighbors used to collect measurements from
each sensor. The multi-sensor multi-target problem can
be formulated as the following minimization problem: to

find estimate θ̂t = col{r̂h(u
1
t )

t , . . . , r̂
h(um

t )
t } that minimizes

the following loss function

θ̂�t = argmin
θ̂t

F̄t(ut, θ̂t),

F̄t(ut, θ̂t) = EFt−1

∑
i∈N

F i
t (u

i
t, r̂

h(ui
t)

t ). (6)

Usually, during optimization, each sensor fuses the needed
information from all available neighboring nodes. In our
problem setting, we mentioned the communication con-
straints that prohibit such communication strategy of the
sensors. These communication constraints arise due to
hardware and physical limitations since the bandwidths
of communication channels is not unlimited. When a large
number of sensors send and receive messages at the same
time, communication becomes a bottleneck. To deal with
this, we propose to choose communication links between
sensors randomly. More formally, for each sensor i ∈ N ,
we randomize the communication topology described by
graph GA at each time instant t to satisfy topology con-
straints such as the maximum number of links equals to d.
We use a randomly chosen subgraph GBt ⊂ GA associated

with adjacency matrix Bt = [bi,jt ], where the rows contain
no more than d nonzero entries. Afterwards, the observable
target at time instant t contained in ui

t is generated from a
uniform distribution independently for each sensor i ∈ N
as in gossip algorithm (Boyd et al., 2011). We randomize
the communication topology described by graph GA based
on the strategy similar to one presented in Amelina et al.
(2014).

4. WEIGHTED SPSA-BASED CONSENSUS
ALGORITHM

Let ui
k and ∆i

k ∈ Rd, k = 1, 2, . . . , i ∈ N , be inde-
pendent random variables. We generate ∆i

k called the
simultaneous test perturbation from Bernoulli distribution
with each component independently taking values ± 1√

d

with probabilities 1
2 . Let eh(ui

k
) ∈ Rm be the sparse vector

corresponding to the current target that sensor i observes,
then ∆̂i

k = eh(ui
k
) ⊗∆i

k. In this case, ∆̂i
k is the vector of

all zeros except for the rows that corresponds to h(ui
k).

Let Ui,l be a set containing all possible subsets N̄ i
t for

target l. The neighborhood of sensor i at time instant t is
defined by the i-th row of matrix Bt associated with graph
GBt . This row is defined by subset N̄ i

t generated from the
uniform distribution on the set Ui,l.

Next, we introduce a weighted version of SPSA-based
consensus algorithm. We define diagonal matrix Ψ = [ψij ],
where ψij > 0 if i = j and ψij = 0 otherwise. At
initialization step, for each i ∈ N , we choose initial vector

θ̂i0 ∈ Rmd, positive step-size αk, matrix Ψ, gain coefficient
γ, and the scale of perturbation β > 0.



 Anna Sergeenko  et al. / IFAC PapersOnLine 54-7 (2021) 126–131 129

Note that the proposed approach can be used for other
types of measuring parameters (e.g., bearing/azimuth).

In general, the problem is to find an estimation θ̂t of an
unknown parameter θ:

θ̂�t = argmin
θ̂t

||θ̂t − θ||2. (2)

In this paper, we consider a more difficult problem setting.
First, the solution of the optimization problem (2) needs
to be found in a distributed way. Second, we impose the
following communication constraints : at time instant t,
each sensor i ∈ N is able to measure the squared distance
to not more than one target. In practice, due to hardware
constraints, the number of communication channels that
can be used is usually less than the dimension of space
or equal to it. Without loss of generality, in this paper,
we assume that each sensor is able to collect data only
from d neighbors. In this case and if there is no noise,
we can use standard triangular approaches to determine
the target position. However, if positions of all m targets
need to be computed, then we have to simultaneously
collectm(d−1) measurements, and it is often impossible in
practice. Third, we assume that there is the unknown-but-
bounded noise involved in the measuring process, which is
considered in the next subsection.

Suppose sensor i estimates the state of target l at time
instant t. The sensor is able to collect the distances to the
same target measured by its neighbors j ∈ N̄ i

t ⊂ N i,
|N̄ i

t | = d. Let ui
t = [j1, . . . , jd, l]

T, j1, . . . , jd ∈ N̄ i
t ,

be a vector defining a set of neighbors used to collect
measurements associated with target l at time instant t.
Denote by

ρ̄jt (u
i) = ρ(si, rh(u

i
t))− ρ(sj , rh(u

i
t)) ∀j ∈ N̄ i

t , (3)

a residual between a measurement of sensor i and its
neighbors. Here and after, h(ui

t) : Rd+1 → R gives the
last element of ui

t.

In this case, using the square difference formula we get d
equations

ρ̄jt (u
i
t) = (sj − si)T(2rh(u

i
t) − sj − si), j ∈ N̄ i

t .

This allows us to derive

Cui
tr

h(ui
t)

t = Dui
t , r

h(ui
t)

t = [Cui
t ]−1Dui

t , (4)

where

Cui
t = 2



(sj1 − si)T

· · ·
(sjd − si)T


 , Dui

t =



ρ̄1t (u

i
t) + ‖sj1‖2 − ‖si‖2

· · ·
ρ̄dt (u

i
t) + ‖sjd‖2 − ‖si‖2


 .

Using the introduced notations, we define the measure-
ments of sensor i ∈ N at time instant t as follows:

yit = F i
t (u

i
t,x

i
t) + vit = ‖r̂h(u

i
t)

t − [Cui
t ]−1Dui

t‖2 + vit, (5)

where vit is the unknown-but-bounded additive noise, xi
t is

the measurement point depending on currently available

estimate r̂
h(ui

t)
t at time instant t. For example, xi

t = r̂
h(ui

t)
t .

3.1 Distributed Optimization

Denote by Ft−1 the σ-algebra of all probabilistic events,
which happened up to time instant t. EFt−1

denotes
the conditional expectation with respect to the σ-algebra
Ft−1. This σ-algebra is generated by the values of

all random variables (i.e., position of targets, noise,
changes in communication topology) at time instants τ =
{1, 2, . . . , t}.
Let ut = [u1

t , . . . ,u
n
t ]

T be the common vector defining
the sets of neighbors used to collect measurements from
each sensor. The multi-sensor multi-target problem can
be formulated as the following minimization problem: to

find estimate θ̂t = col{r̂h(u
1
t )

t , . . . , r̂
h(um

t )
t } that minimizes

the following loss function

θ̂�t = argmin
θ̂t

F̄t(ut, θ̂t),

F̄t(ut, θ̂t) = EFt−1

∑
i∈N

F i
t (u

i
t, r̂

h(ui
t)

t ). (6)

Usually, during optimization, each sensor fuses the needed
information from all available neighboring nodes. In our
problem setting, we mentioned the communication con-
straints that prohibit such communication strategy of the
sensors. These communication constraints arise due to
hardware and physical limitations since the bandwidths
of communication channels is not unlimited. When a large
number of sensors send and receive messages at the same
time, communication becomes a bottleneck. To deal with
this, we propose to choose communication links between
sensors randomly. More formally, for each sensor i ∈ N ,
we randomize the communication topology described by
graph GA at each time instant t to satisfy topology con-
straints such as the maximum number of links equals to d.
We use a randomly chosen subgraph GBt ⊂ GA associated

with adjacency matrix Bt = [bi,jt ], where the rows contain
no more than d nonzero entries. Afterwards, the observable
target at time instant t contained in ui

t is generated from a
uniform distribution independently for each sensor i ∈ N
as in gossip algorithm (Boyd et al., 2011). We randomize
the communication topology described by graph GA based
on the strategy similar to one presented in Amelina et al.
(2014).

4. WEIGHTED SPSA-BASED CONSENSUS
ALGORITHM

Let ui
k and ∆i

k ∈ Rd, k = 1, 2, . . . , i ∈ N , be inde-
pendent random variables. We generate ∆i

k called the
simultaneous test perturbation from Bernoulli distribution
with each component independently taking values ± 1√

d

with probabilities 1
2 . Let eh(ui

k
) ∈ Rm be the sparse vector

corresponding to the current target that sensor i observes,
then ∆̂i

k = eh(ui
k
) ⊗∆i

k. In this case, ∆̂i
k is the vector of

all zeros except for the rows that corresponds to h(ui
k).

Let Ui,l be a set containing all possible subsets N̄ i
t for

target l. The neighborhood of sensor i at time instant t is
defined by the i-th row of matrix Bt associated with graph
GBt . This row is defined by subset N̄ i

t generated from the
uniform distribution on the set Ui,l.

Next, we introduce a weighted version of SPSA-based
consensus algorithm. We define diagonal matrix Ψ = [ψij ],
where ψij > 0 if i = j and ψij = 0 otherwise. At
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θ̂i0 ∈ Rmd, positive step-size αk, matrix Ψ, gain coefficient
γ, and the scale of perturbation β > 0.

In order to get estimates {θ̂it} of overall state vectors {θit}
based on measurement points {xi

t}, we propose to use the
weighted algorithm with two measurements of distributed
sub-functions F i

t (u
i
t,x

i
t):




xi
2k = θ̂i2k−2 + β∆̂i

k, xi
2k−1 = θ̂i2k−2 − β∆̂i

k,

θ̂i2k−1 = θ̂i2k−2,

θ̂i2k = θ̂i2k−1 − αkΨ

[
∆̂i

k

yi2k − yi2k−1

2β
+

γ
∑

j∈N̄ i
2k−1

bi,j2k−1(θ̂
i
2k−1 − θ̂j2k−1)


 .

(7)

Consider the last equation of the algorithm (7): the first
part is similar to SPSA-like algorithm from Granichin and
Amelina (2015) and the second one coincides with Local
Voting Protocol (LVP) from Amelina et al. (2015), where
it was studied for stochastic networks in the context of load
balancing problem. The SPSA part represents a stochastic
gradient descent of sub-functions F i

t (u
i
t,x

i
t), and LVP part

is determined for each agent i by the weighted sum of
differences between the information about the current
estimate θ̂i2k−1 of agent i and available information about
the estimates of its neighbors.

Further, we use notation θ̄t = col{θ̂1t , . . . , θ̂nt } for the
common vector of estimates of all agents at time instant t.
Also, we introduce the following: ȳt = col{y1t , . . . , ynt },
∆̄t÷2 = diagnmd(col{∆̂1

t÷2, . . . , ∆̂
n
t÷2}). Using these nota-

tions, the algorithm (7) can be rewritten in the following
form

θ̄2k = θ̄2k−1 − αkΨ̄

[
∆̄k

(
ȳ2k − ȳ2k−1

2β
⊗ 1md

)
+

γ(L(B2k−1)⊗ Imd)θ̄2k−1

]
. (8)

The algorithm (7) runs in parallel at each sensor to

estimate θ̂t. In the next section, we show that all these n
sequences converge to the neighborhood of true vector θt.

5. MAIN RESULT

In this section, we provide a convergence analysis of the
proposed algorithm. First, let us formulate assumptions
about the dynamics of the targets, noise, and network
topology.

Assumption 1: ∀i ∈ N , k = 1, 2, . . ., matrices C
ui

k

2k , C
ui

k

2k−1
are invertible.
Assumption 2: For k = 1, 2, . . . , the successive differences
ṽik = vi2k − vi2k−1 of measurement noise are bounded:

|ṽik| ≤ cv < ∞, or E(ṽik)2 ≤ c2v if sequence {ṽit} is random.
Assumption 3: For all k = 1, 2, . . . , i ∈ N , l ∈ M:
a) vectors ui

k, ∆
i
k, are mutually independent;

b) if ui
k, ∆

i
kare random, they do not depend on the σ-

algebra F2k−2;
c) if ṽik are random, then random vectors ui

k, ∆i
k, and

elements ṽik are independent;
d) E‖∆i

k‖2 ≤ σ2
∆, E[∆i

k(∆
i
k)

T] ≤ σ2
∆Imd.

Assumption 4: a) For all i ∈ N , j ∈ N̄ i
t weights bi,jt are

independent random variables with mean Ebi,jt = bi,jav , and
E[(L(Bt)−L(Bav))(L(Bt)−L(Bav))

T] ≤ QB , Bav = [bi,jav ].

Denote bmax as the maximum element of QB;
b) Graph GBav is strongly connected.

Our analysis of the proposed algorithm applied to the
problem presented in subsection 3.1 relies on the following
definition.

Definition 2. A covariance matrix of residual has an
asymptotically efficient upper bound S > 0 if ∃k̄ such that
∀k > k̄

E[(θ̄2k − 1n ⊗ θ)(θ̄2k − 1n ⊗ θ)T] ≤ 1

k
S + o(

1

k
).

The following theorem shows the asymptotically efficient
upper bound of the covariance matrix of residual provided
by the algorithm (7).

Theorem 1: If Assumptions 1–4 hold, αk = 1
k and −(γλ̄2+

2
m )Ψ̄+ 1

2Inmd is stable (Gantmacher and Brenner (2005)),
then the covariance matrix of residual provided by the
algorithm (7) has asymptotically efficient upper bound S,
which is the solution of the following equation

S

(
(γλ̄2 +

2

m
)Ψ̄T − 1

2
Inmd

)
+

(
(γλ̄2 +

2

m
)Ψ̄− 1

2
Inmd

)
S = 4nc2vΨ̄Ψ̄T. (9)

6. SIMULATION

In this section, we present a numerical experiment, which
illustrates the performance of the suggested algorithm (7).

Given a distributed network of 5 sensors monitoring an
area of interest. Let N = {1, 2, 3, 4, 5} be the set of
sensors. Each sensor has no more than two active com-
munication channels at each time instant, i.e., |N̄ i

t | = 2.
The communication channels are used to collect data from
the neighbors. Within the area of interest, there are 10
targets. The sensors have to estimate their states. At time
instant t, si = [si,1, si,2]T ∈ R2 is the current state of
sensor i ∈ N , rl = [rl,1, rl,2]T ∈ R2 is the state of target
l ∈ M = {1, 2, . . . , 10}, θ = col{r1, . . . , r10} is the common
state of all targets.

In this sumulation, we consider hybrid noise which is
uniformly distributed around constants that change with
time, e.g. vik = ±1 + 0.1 ∗ sin(k), where the sign in front
of 1 switches each 50-th iteration.

According to Theorem 1, the step-size parameter α has
to be equal to 1

k . However, the algorithm (7) working on

each node with the parameter αk = 1
k1−ρ , ∀ρ > 0 has more

consistent convergence. In this simulation, the following
parameter were chosen: αk = 1

k3/5 , β = 0.1, γ = 1.0 were
chosen to satisfy the conditions of Theorem 1. The targets
are located in the interval [0; 100]. The targets and sensors
coordinates are random values uniformly distributed in
intervals [0; 100] and [100; 120] respectively.

Let us consider for every target l and sensor i at each time

instant t the covariance matrix of residuals Σ̃i,l
t ∈ Rd×d,

which is represented as a part of the common covariance
matrix. Fig. 1 shows how the average first diagonal element

of the covariance matrix of residuals Σ̃i,l
t depending on

different matrices Ψ evolves over time. It is well seen that
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the new algorithm converges. The algorithm for choosing
optimal Ψ will be studied in future works.
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Fig. 1. The average value over all sensors and targets of the

first entry of covariance matrix of residuals Σ̃i,l
t , where

(1): Ψ1 = Imd, (2): Ψ1 = 0.5Imd, (3): Ψ3 = 2Imd

7. CONCLUSION

In this paper, we study the weighted SPSA-based con-
sensus algorithm. We provide the convergence analysis of
this algorithm in stationary case. We also determine a
suitable step-size of the algorithm based on this analysis.
The method is validated through simulation, where the
parameters were chosen based on the convergence analysis.

APPENDIX

The proof of Theorem 1:

Denote di
t = θ̂i

2� t−1
2 � − θ, d̄t = col{d1

t , . . . ,d
n
t }, where �·�

is a ceiling function, νk = d̄2k, Dk = νkν
T
k , Σk = E[Dk],

s̄k = αk

2β ∆̄k((ȳ2k − ȳ2k−1) ⊗ 1md), v̄t = col{ṽ1t , . . . , ṽnt },
ūk = col{u1

k, . . . ,u
n
k}, Ψ̄ = In ⊗Ψ.

Let F̄k−1 = σ{Fk−1, v̄2k−1, v̄2k, ūk, ∆̄k} be the σ-algebra
of probabilistic events generated by Fk−1, v̄2k−1, v̄2k, ∆̄k,

F̃k−1 = σ{Fk−1, v̄2k−1, v̄2k, ūk}, and F̂k−1 = σ{Fk−1,

v̄2k−1, v̄2k}: Fk−1 ⊂ F̂k−1 ⊂ F̃k−1 ⊂ F̄k−1 ⊂ Fk.

Using that θ̄2k−1 = θ̄2k−2 and L(B2k−2)1n = 0, we get

νk = θ̄2k − 1n ⊗ θ =

= ḡk − Ψ̄s̄k − αkγΨ̄[(L(B2k−2)− L(Bav))⊗ Imd]νk−1,

where ḡk = [Inmd − αkγΨ̄(L(Bav)⊗ Imd)]νk−1. Then,

Dk = ḡkḡ
T
k − ḡks̄

T
k Ψ̄

T − Ψ̄s̄kḡ
T
k + Ψ̄s̄ks̄

T
k Ψ̄

T−
αkγ(ḡk − Ψ̄s̄k)ν

T
k−1[(L(B2k−2)− L(Bav))⊗ Imd]

TΨ̄T−
αkγΨ̄[(L(B2k−2)− L(Bav))⊗ Imd]νk−1(ḡ

T
k − s̄Tk Ψ̄

T)+

α2
kγ

2Ψ̄[(L(B2k−2)− L(Bav))⊗ Imd]Dk−1[(L(B2k−2)−
L(Bav))⊗ Imd]

TΨ̄T.

1. Consider σ-algebra F̄k−1.

Now, we take the conditional expectation over σ-algebra
F̄k−1 and apply Assumption 4:

EF̄k−1
[Dk] ≤ ḡkḡ

T
k − ḡks̄

T
k Ψ̄

T − Ψ̄s̄kḡ
T
k + Ψ̄s̄ks̄

T
k Ψ̄

T+

α2
kγ

2bmax‖Dk−1‖2Ψ̄Ψ̄T, (10)

where bmax is the maximum element of QB.

2. Consider σ-algebra F̃k−1.

After we take the conditional expectation over σ-algebra
F̃k−1 step by step:

EF̃k−1
[Dk] ≤ ḡkḡ

T
k − ḡkEF̃k−1

[s̄Tk ]Ψ̄
T − Ψ̄EF̃k−1

[s̄k]ḡ
T
k+

Ψ̄EF̃k−1
[s̄ks̄

T
k ]Ψ̄

T + α2
kγ

2bmax‖Dk−1‖2Ψ̄Ψ̄T. (11)

Under fulfilment of Assumption 4b, we have λ̄2 > 0 (see
Olfati-Saber and Murray (2004)). Hence, for the first term
in (11) we derive

ḡkḡ
T
k ≤ Dk−1 − αkγλ̄2(Ψ̄Dk−1 +Dk−1Ψ̄

T)+

α2
kγ

2λ̄2
max‖Dk−1‖2Ψ̄Ψ̄T.

By virtue of Assumptions 1, 3 we can evaluate the second

and the third term in (11) as following. Denote rh(u
i
k) =

eh(ui
k
) ⊗ [Cui

k ]−1Dui
k , r̂

h(ui
k)

t = diagmd(eh(ui
k
) ⊗ Id)θ̂

i
t,

ṽik = vi2k − vi2k−1, then ∀i ∈ {1, . . . , n}:

yi2k − yi2k−1 = 4β(∆̂i
k)

T(r̂
h(ui

k)
2k−2 − rh(u

i
k)) + ṽik.

Under Assumption 3 we have EF̃k−1
[ṽik∆̂

i
k] = 0. Denote

R̄t = diagnmd(col{eh(u1
t÷2

) ⊗ Id, . . . , eh(un
t÷2

) ⊗ Id}).By
Assumption 3, using that ∆i

k is drawn from the symmetric
distribution, for the fourth term in (11), we obtain

EF̃k−1
[s̄ks̄

T
k ] ≤ 4α2

kEF̃k−1
[∆̄k(∆̄k)
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α2
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4β2
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i∈N

(ṽik)
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[∆̄i
k(∆̄k)

T].

3. Consider σ-algebra F̂k−1.

Denote Zk = E[∆̄k(∆̄k)
T]. Summing up the second and

the third term from (11) and taking the conditional

expectation over σ-algebra F̂k−1,we derive the following:

−EF̂k−1
[ḡks̄

T
k ]Ψ̄

T − Ψ̄EF̂k−1
[s̄kḡ

T
k ] ≤

−2
αk

m
(Dk−1Z

T
k Ψ̄

T + Ψ̄ZkDk−1)+

2α2
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1

m
λ̄maxΨ̄(Dk−1Z

T
k + ZkDk−1)Ψ̄

T.

4. Consider σ-algebra F̂k−1.

After we take the conditional expectation over σ-algebra
F̂k−1:

EF̂k−1
[s̄ks̄

T
k ] ≤ 4

α2
k

m2
‖Dk−1‖EF̂k−1

[‖∆̄k‖4]+

α2
k

4β2

∑
i∈N

(ṽik)
2Zk.

5. Consider σ-algebra Fk−1:

Finally, taking the conditional expectation over σ-algebra
Fk−1, by virtue of Assumption 2, for the fourth term
in (11) we get
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the new algorithm converges. The algorithm for choosing
optimal Ψ will be studied in future works.
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Fig. 1. The average value over all sensors and targets of the

first entry of covariance matrix of residuals Σ̃i,l
t , where

(1): Ψ1 = Imd, (2): Ψ1 = 0.5Imd, (3): Ψ3 = 2Imd

7. CONCLUSION

In this paper, we study the weighted SPSA-based con-
sensus algorithm. We provide the convergence analysis of
this algorithm in stationary case. We also determine a
suitable step-size of the algorithm based on this analysis.
The method is validated through simulation, where the
parameters were chosen based on the convergence analysis.
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ḡkḡ
T
k ≤ Dk−1 − αkγλ̄2(Ψ̄Dk−1 +Dk−1Ψ̄

T)+

α2
kγ

2λ̄2
max‖Dk−1‖2Ψ̄Ψ̄T.

By virtue of Assumptions 1, 3 we can evaluate the second

and the third term in (11) as following. Denote rh(u
i
k) =

eh(ui
k
) ⊗ [Cui

k ]−1Dui
k , r̂

h(ui
k)

t = diagmd(eh(ui
k
) ⊗ Id)θ̂

i
t,
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[ḡks̄

T
k ]Ψ̄

T − Ψ̄EF̂k−1
[s̄kḡ
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Summing up the bounds, taking the unconditional expec-
tation, and considering that ‖z−1

k Zk − Inmd‖ = O(k−1),
αkzk = k−1 we derive the following from (11)

Σk ≤ Σk−1 − (αkγλ̄2 +
1
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)(Σk−1Ψ̄
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4α2
kzknc

2
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1

k
κkO(‖Σk−1‖) + o(k−2),

where {κk} : κk → 0 if k → ∞.

Let αk = 1
k , Wk = 1

1
k γλ̄2+

1
k

2
m

(Σk − 1
kS). Consider the

equation (9): if −(γλ̄2+
2
m )Ψ̄+ 1

2Inmd is stable, then there
exists a positive-definite matrix S which is a solution of
this Lyapunov equation.

Then, according to Lemma 9 from Granichin and Polyak
(2003), Wk −−−−→

k→∞
0.

This completes the proof of Theorem 1.
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