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Abstract 

Appropriately managing battery state-of-charge and temperature while ensuring minimized lap time represents a crucial issue 

in Formula-E competitions. An open research question might relate to simultaneously guarantee near-optimality in the race 

strategy solution, computational light-weighting and effective adaptability with respect to varying and unpredictable race 

conditions. In this paper, a novel near-optimal real-time capable Formula-E race controller is introduced that takes inspiration 

from the adaptive equivalent consumption minimization strategy (A-ECMS) approach. A reduced-order Formula-E car plant 

model is detailed first. The optimal Formula-E race problem subsequently discussed involves controlling at each lap the 

depletable battery energy, the thermal management mode and the race mode in order to minimize the overall race time. 

Moreover, avoiding excessively depleting the battery energy and overheating the battery are considered as constraints for the 

race optimization problem. Dynamic programming (DP) is implemented first to obtain the global optimal Formula-E race 

strategy solution in an off-line control approach. The proposed real-time capable A-ECMS based race controller finds then 

detailed illustration. The flexibility of the introduced A-ECMS Formula-E race controller is guaranteed by optimally calibrating 

the related equivalence factors to adapt to the current vehicle states (i.e. battery state-of-charge, battery temperature and lap 

number). Simulation results for the Marrakesh e-prix considering different race scenarios in terms of battery initial temperature 

and Safety car entry demonstrate that the estimated race time achieved by the A-ECMS race controller is always near-optimal 

being 1.7% higher at most compared with the corresponding global optimal benchmark provided by DP. 

Keywords: Adaptive equivalent consumption minimization strategy (A-ECMS), battery electric vehicle, energy management, Formula E 

(FE), adaptive optimal control, real-time race strategy
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1. Introduction 

The paradigm shift entailed by transportation 

electrification currently represents a major 

technological challenge in the automotive industry 

[1][2]. As example, a large variety of forward-looking 

technologies has been proposed regarding vehicle 

drivetrain electrification and the related energy storage 

system and power electronics [3]-[7]. In this 

framework, the institution of the Formula E® race 

championship by the Federation Internationale de 

l'Automobile (FIA) in 2014 has also been aimed at 

further fostering these deep technological innovations 

[8]. Formula E® as a new motorsport category for pure 

electric road vehicles indeed targets not only the 

accelerated advancement of transportation 

electrification [9], but it also represents a crucial 

playground for the digitalization of race competitions 

[10].  

Energy management plays a crucial role in Formula 

E® from the points of view of both the technological 

challenge and the competition between teams during 

races. Indeed, the energy stored in the high-voltage 

battery of Formula-E® race cars at the beginning of 

the race is limited, and each driver needs to 

appropriately weight its usage throughout the e-prix. 

As consequence, running out of battery energy before 

the end of the race due to poor energy management 

does not represent an uncommon event in Formula E® 

resulting in the withdrawal of the driver from the e-

prix [11]. To target finishing the race in the top 

positions, the best trade-off thus needs to be found 

between the overall race time and the high-voltage 

battery pack preservation considering different aspects 

(e.g. residual energy, temperature). 

In general, energy management represents a control 

problem for dynamic systems that can be studied with 

either off-line or on-line (i.e. real-time) approaches. 

Off-line methods exploit the knowledge of the entire 

dynamic scenario to be faced by the retained system to 

extract the optimal control trajectories over time. An 

example of application relates to hybrid electric 

vehicles (HEVs), where off-line methods can be used 

to identify the optimal power split between thermal 

engine and electric machines over time in terms of 

different targets (e.g. fuel economy, pollutant emission 

reduction) by knowing the entire driving mission in 

advance before running the numerical simulation 

[12][13]. Examples of off-line control methods 

include dynamic programming (DP) and Pontryagin’s 

Minimum Principle (PMP). These approaches can be 

employed to perform numerical simulations and 

identify optimal values of design parameters for the 

dynamic system under consideration, or to benchmark 

the optimality of on-line oriented approaches. On the 

other hand, on-line control methods operate in real-

time without knowing in advance the operational 

scenario and generally control the system to maximize 

given performance targets (e.g. energy economy, lap 

time) within a limited time window. They can be based 

as example either on heuristics (e.g. map-based, fuzzy 

logic) [14][15], or on instantaneous optimization [16], 

or on artificial intelligence [17][18]. 

Very few approaches have been proposed so far in 

literature regarding optimal race strategy and energy 

management applied to Formula E®. In 2020, Liu and 

Fotouhi used artificial neural networks to predict the 

performance of a Formula E® in a single lap and 

integrated this method in a Monte Carlo tree search 

algorithm to identify possible solutions as a pre-race 

strategy. Nevertheless, the global optimality of the 

identified race strategy was not validated [19]. Later, 

the same authors have improved their work by 

including a thermal model of the high-voltage battery 

pack. Several simulations were performed in this case 

in a single lap to evaluate the impact of the lap driving 

strategy and the usage of the attack mode on both lap 

time, battery energy consumption and temperature 

increase. However, the application of optimal control 

was limited to a single lap rather than to the entire race 

[20]. Results obtained in this last work laid the 

foundations for building a reducer-order numerical 

model of a Formula-E® car, which the same authors 

integrated in a deep deterministic policy gradient 

reinforcement learning based race strategy at the 

beginning of this year. A dedicated actor model was 

developed to handle both discrete and continuous 

action types, and the latter type was found particularly 

effective in the identification of an optimized race 

strategy in terms of overall time while accounting for 

both residual energy and temperature of the battery 

[21]. Despite the above cited works from Liu et al. 

entail a considerable advancement in the research field 

of optimal Formula E® race strategy, they characterize 
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for few key limitations and assumptions. Namely, the 

proposed real-time race strategies were not 

demonstrated identifying the global optimal race 

solution, e.g. they were not benchmarked with an 

optimal off-line controller. Moreover, probabilistic 

race events such as yellow flags or the entry of the 

Safety car following an accident as example were not 

extensively considered in the proposed overall race 

strategies. Such events may have a considerable 

impact on the overall race, and a proper race strategy 

should be able to effectively manage their eventual 

occurrence [22].  

This paper aims therefore at overcoming the two 

identified research gaps and introducing a validated 

real-time optimal adaptive Formula E® race strategy 

approach considering the entry of the Safety car in a 

certain competition phase. To this end, a real-time 

control approach based on the concept of adaptive 

equivalent consumption minimization strategy (A-

ECMS) is proposed to be applied in the field of 

Formula E® race strategy. An optimal calibration 

procedure is performed for the equivalence factors of 

the proposed A-ECMS by implementing a particle 

swarm optimization (PSO) algorithm. Moreover, a 

global optimal off-line control method based on DP is 

implemented to benchmark the performance of the A-

ECMS real-time race controller. A comparison of the 

two control methods in different race conditions 

corroborates the capability of the proposed real-time 

strategy of returning a near-optimal race solution in 

terms of overall race time. The rest of this paper is 

organized as follows: a reduced-order plant model for 

the Formula E® is presented first. The optimal control 

problem associated to the Formula E® race strategy is 

subsequently discussed, and the implemented optimal 

off-line race strategy is detailed. The following section 

then aims at illustrating and optimally calibrating the 

proposed real-time A-ECMS based race strategy. 

Results are finally presented over different race 

conditions, and conclusions are drawn. 

2. Formula-E Reduced Order Plant Model 

This section aims at illustrating the considered 

plant model for the Formula-E® car. Particularly, the 

reduced-order plant model derived from Liu et al. is 

implemented to evaluate the lap time performance and 

variations in the battery states after each single lap 

[21]. It should be admitted that exhaustively validating 

the considered reduced-order plant model with 

experimental data has not been possible in this paper 

since electric race car data from both energy and 

thermal perspectives are strictly proprietary of 

Formula E® teams. Nevertheless, the retained 

reduced-order plant model has been developed by Liu 

et al. based on accurate data generated by means of a 

high-fidelity Formula E® lap co-simulation platform 

built by interfacing IPG/Carmaker® software with 

MATLAB/Simulink® software. Different drive power 

settings, regenerative power settings, lift/coasting 

distance settings, and environment temperature 

changes were simulated to study their effects on the 

electric race car performance such as lap time, battery 

state of charge (SOC) and battery temperature. The 

interested reader can consult [19][20] to obtain more 

details regarding the development of the high-fidelity 

Formula E® race car plant models upon which the 

considered reduced-order plant model has been 

numerically validated. 

Fig. 1 shows a schematic diagram of the reduced-

order plant model and its relationship with the race 

controller to be developed in this paper. The plant 

model used in this paper refers to a second-generation 

Formula E® car which characterize for values of 

maximum tractive power and energy stored in the 

battery of 200kW and 52kWh, respectively [20]. 

Moreover, the Formula E® technical regulations allow 

drivers to activate the attack mode for a limited 

number of times throughout the e-prix. When the 

 
 

 

Fig.  1. Schematic diagram of the reduced-order plant model for 

a Formula E® car. 
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attack mode is activated by the driver, an extra 35kW 

of tractive power is made available for a limited 

number of laps to improve the lap performance [23].  

At the beginning of each lap of the race, the 

controller selects the battery energy depletable 

throughout the single lap BElap in kilowatt-hours, a 

scalar value TM denoting the thermal mode which is 

representative of the battery thermal management, and 

a scalar value AM which is a flag for the usage of the 

attack mode. Based on values for these three control 

inputs, the reduced-order car plant model returns 

variations in battery SOC and battery temperature Tbatt 

together with an estimation of the corresponding lap 

time. The effects of the three single lap control inputs 

on battery states and lap time are summarized in Table 

1 and detailed as follows. 

Regarding BElap, its impact on the battery SOC at 

each generic lap k can be evaluated following (1): 

   (𝑘 + 1) =     (𝑘) − 𝛼   𝐴𝑀 ∙
𝐵𝐸𝑙𝑎𝑝(𝑘)

𝑘𝑊ℎ𝑏𝑎𝑡𝑡
      (1) 

where      (𝑘) is the battery energy to be used in 

the single lap, 𝛼   𝐴𝑀 refers to the attack mode 

multiplier which will be described later in this section, 

and 𝑘𝑊ℎ     is the battery capacity in kilowatt-hours. 

In this car plant model, BElap is supposed not to have a 

direct impact on Tbatt, while its impact on the lap time 

can be derived from a 2D lookup table f which reports 

lap time as a function of BElap and TM. This empirical 

table aims at modeling the lap time as a function of the 

driving strategy put in place by the driver for the given 

lap (e.g. in terms of acceleration aggressiveness, 

regenerative braking and ‘lift and coasting’ 

approaches), which in turn impacts on the battery 

energy consumption per lap that usually ranges within 

1.2kWh and 2kWh. 

As concerns TM, different lap strategies to manage 

the battery temperature rise are modeled with a 

continuous variable ranging from 0 to 3. A value of 0 

for TM denotes that the battery cooling system is not 

activated throughout the lap and the driver does not 

limit the driving aggressiveness or regenerative 

braking capability to reduce the battery temperature 

increase. On the other hand, progressively increasing 

TM involves increasing the lap time while reducing the 

battery temperature rise by means of both the cooling 

system operation, the adaptation of the driving style 

and the regenerative braking limitation. The battery 

temperature after a generic lap k can thus be evaluated 

as: 

     (𝑘 + 1) =       (𝑘) + 𝛼 𝐴𝑀 ∙  𝑟𝑖𝑠𝑒 ∙ 0.95𝑇𝑀     (2) 

where 𝛼 𝐴𝑀 and  𝑟𝑖𝑠𝑒  represent multipliers for the 

attack mode being used and for the reference battery 

 
 

 

Fig.  2. Lookup table f reporting lap time as a function of 

selected BElap and TM for   = 0,1 in the Marrakesh e-prix 

track. 

Unfeasible 

region

Table 1  

Effects of Single Lap Control Inputs on Battery States and Lap Time of Formula E® Race 

States and cost SOC Tbatt Lap time 

Control input    

BElap [1.2÷2]    (𝑘 + 1) =     (𝑘) − 𝛼   𝐴𝑀 ∙
     (𝑘)

𝑘𝑊ℎ    

  - 𝛼 𝑖𝑚𝑒𝐴𝑀 ∙ 𝑓(     ,   ) 

TM [0÷3] -      (𝑘 + 1) =      (𝑘) + 𝛼 𝐴𝑀 ∙ 𝜇𝑇 ∙ 0.95𝑇𝑀 𝛼 𝑖𝑚𝑒𝐴𝑀 ∙ 𝑓(     ,   ) 

AM [0,1,2] 𝛼   𝐴𝑀 = {
1              𝑖𝑓   = 0,1
1.079         𝑖𝑓   = 2

 𝛼 𝐴𝑀 = {
1              𝑖𝑓   = 0,1
1.023         𝑖𝑓   = 2

 𝛼 𝑖𝑚𝑒𝐴𝑀 = {
1              𝑖𝑓   = 0,1
0.983         𝑖𝑓   = 2
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temperature increase over a single lap in the retained 

race, respectively. TM is supposed not to have a direct 

impact on SOC, while its impact on the lap time can 

be derived as well from the 2D lookup table f. In this 

paper, the Marrakesh e-prix track is considered, and 

the corresponding lookup table f is illustrated in Fig. 

2. f allows predicting the lap time as a function of BElap 

and TM and it has been derived in this case from [21]. 

As concerns the attack mode, a value of 0 for AM 

stands for the normal mode being selected for the 

current lap. On the other hand, a value of 1 denotes the 

activation of the attack mode to enter in operation for 

the following lap, while a value of 2 represents the 

attack mode being in operation for the current lap, thus 

having the extra 35kW of tractive power enabled. 

Looking at Table 1, the attack mode being activated 

involves a variation in the values of the three 

coefficients 𝛼   𝐴𝑀, 𝛼 𝐴𝑀 and 𝛼 𝑖𝑚𝑒𝐴𝑀  which in 

turn impact on the battery SOC variation, battery 

temperature increase and lap time, respectively. 

Particularly, higher energy consumption, higher 

battery temperature increase and lower lap time are 

induced by the activation of the attack mode. It should 

be noted that, when the attack mode is activated, up to 

2.16kWh of battery energy consumption per lap is 

allowed. 

The highlight of the illustrated reduced-order 

model relates to its computational efficiency in rapidly 

predicting the lap time and the variation in battery 

states as a function of the control inputs. A competitive 

and demanding environment such as a live race event 

might therefore represent a suitable field of application 

for this type of modeling approach. The interested 

reader can consult [20] for more information regarding 

process to reduce the order of the considered Formula 

E® car plant model achieved through several higher-

fidelity lap simulations. 

 

3. Optimal Race Problem and Off-Line Strategy 

In this section, the mathematical formulation for the 

optimal race problem in a Formula E® e-prix is 

discussed. Then, the global optimal solution for the 

retained problem is identified through the 

implementation of a dedicated DP based off-line 

optimization. 

3.1. Optimal Formula-E Race Problem 

The optimal control problem related to a Formula 

E® e-prix aims at minimizing the overall time to 

complete the race as follows: 

argmin [∑ 𝑙𝑎𝑝 𝑡𝑖𝑚𝑒(𝑘) ∙ 𝜇𝑆𝐶(𝑘)

𝑁𝑙𝑎𝑝

𝑘=1

] 

subject to: 

   (𝑁   ) > 0 

     (𝑁   ) ≤      −𝑀𝐴𝑋 

𝑛𝐴𝑀 ≤ 𝑛𝐴𝑀−𝑀𝐴𝑋 

𝑙𝑎𝑝𝑠𝐴𝑀 ≤ 𝑙𝑎𝑝𝑠𝐴𝑀−𝑀𝐴𝑋 

     −𝑚𝑖𝑛 <      <      −𝑀𝐴𝑋  

  𝑚𝑖𝑛 <   <   𝑀𝐴𝑋 

  (𝑘 = 1,2) = 0 

(3) 

where 𝑁    represents the total number of laps for 

the e-prix. Values for battery SOC and temperature 

      at the end of the e-prix are constrained to be 

respectively greater than 0 (i.e. remaining energy 

available to complete the race) and lower than the 

maximum allowed value      −𝑀𝐴𝑋 . The total number 

of attack modes throughout the race 𝑛𝐴𝑀 needs to be 

lower than the maximum number 𝑛𝐴𝑀−𝑀𝐴𝑋 allowed by 

regulations for the given e-prix. Similarly, for each 

attack mode activation, the number of laps completed 

in attack mode 𝑙𝑎𝑝𝑠𝐴𝑀 is required to be lower than the 

maximum allowed number 𝑙𝑎𝑝𝑠𝐴𝑀−𝑀𝐴𝑋. As specified 

by the Formula E® technical regulations, activating 

the attack mode is not available in the first two laps of 

the race [23]. Finally, values for both       and    

need to be within the physical ranges allowed by the 

plant model. 𝜇𝑆𝐶 represents a weighting coefficient 

that accounts for the Safety car entry throughout the 

race. The Safety car entry in a particular phase of the 

race represents an impactful event in the e-prix. 

Indeed, drivers are demanded to queue in a platoon 

that proceeds at slow speed for few laps before getting 

back to the normal race. In this case, gaining distance 

from the drivers behind in the initial phases of the e-

prix by reducing the average lap time (and 

consequently depleting and heating the battery more) 

might be neutralized when platooning behind the 

Safety car. On the other hand, a beneficial condition 

may relate to have large residual energy and low 
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battery temperature when getting back to the normal 

race after the exit of the Safety car. To include this 

consideration in the mathematical formulation of the 

Formula E® race problem, assuming one Safety car 

entry occurring throughout the retained e-prix, a value 

of  𝜇𝑆𝐶 lower than 1 is considered for the laps 

performed before the Safety car entry, while a value of  

𝜇𝑆𝐶 equal to 1 is retained for the laps completed after 

the Safety car entry. This allows giving more emphasis 

to the laps to be completed when getting back to the 

normal race as the Safety car exits.  

For the laps in which the racing cars need to travel 

behind the Safety car, the lap time is kept constantly to 

112.91s as it can be obtained by increasing by 40% the 

average lap time in Fig. 2 as suggested in [24]. As 

concerns the battery temperature, a cooling rate of 

0.952° C per lap is supposed as it can be derived from 

the results over time for the simulations of a Formula 

E® car travelling behind the Safety car in the 

Marrakesh e-prix shown in [19]. Other than battery 

cooling, slow driving behind the Safety car involves 

limiting the battery energy consumption: only 

0.23kWh per lap are indeed required by interpolating 

the BElap curve at TM equal to 0 and 112.91s of lap 

time. However, to stimulate the competition and 

advance the development of dedicated race strategies, 

the Formula E® technical regulations impose a 1kWh 

deduction of available battery energy applied to each 

driver per minute of each Safety car period [23]. For a 

lap time corresponding to 112.91s, this results in an 

equivalent battery energy consumption of 2.11kWh 

per lap in which the Safety car is on track. 

The control variable set U associated to the 

illustrated control problem is reported in (4) and values 

for each of the three variables contained need to be 

decided at the beginning of each lap. 

 𝑈 = {
     

  
  

}                         (4) 

     U includes the battery energy depletable, the 

thermal management mode and the attack mode to be 

set at the beginning of each lap, as illustrated in Fig. 1. 

Variables contained in U in turn impact on the battery 

states and the race cost function as recalled in Table 1. 

A global optimal off-line approach for solving the 

illustrated race control problem will be detailed in the 

follow-up of this section. 

3.2. Global Optimal Off-line Race Strategy 

In this paper, DP is implemented first as an off-line 

algorithm that can identify the global optimal solution 

for the race problem detailed above. DP represents a 

widely implemented approach to evaluate global 

optimal solutions for dynamic control problems [25]-

[27]. Based on the Bellman’s principle of optimality, 

DP can find the global optimal solution by 

exhaustively searching through discretized control 

variables and state variables for the retained control 

problem. The optimal solution can thus be identified 

by minimizing the overall value of cost function for 

the entire dynamic problem [28]-[31]. In DP, the set of 

state variables needs definition that contains the 

physical variables to be tracked throughout the 

dynamic problem (i.e. the Formula E® race). 

Evaluating the evolution over time of state variables 

and imposing constraints on their punctual and final 

values is allowed in this way [32]. Four state variables 

are included in X to be associated with the Formula E® 

race problem under analysis as reported in (5). 

𝑋 = {

   
     
  

𝑙𝑎𝑝𝑠𝐴𝑀

}             (5) 

     Evaluating the evolution of SOC and Tbatt 

throughout the race allows constraining their final 

value to be within the physical allowed limits (i.e. 

greater than 0 for SOC and lower than      −𝑀𝐴𝑋, for 

Tbatt, respectively). Including    is performed for two 

main reasons. First, it allows ensuring that an 

activation lap (i.e. AM=1) is achieved before entering 

the actual attack mode (i.e. AM=2). Moreover, it 

allows detecting each mode attack activation to make 

sure that the DP controller does not overcome the 

maximum allowed number 𝑛𝐴𝑀−𝑀𝐴𝑋. Finally, the 

number of laps driven in attack mode for each attack 

mode activation is accounted in order to comply with 

𝑙𝑎𝑝𝑠𝐴𝑀−𝑀𝐴𝑋. 

In this work, the DP function implemented in 

Matlab© software and made available by Sundstrom 

and Guzzella is used [33]. The Marrakesh e-prix track 

is retained, a value of 2 is considered for both 

𝑙𝑎𝑝𝑠𝐴𝑀−𝑀𝐴𝑋 and 𝑛𝐴𝑀−𝑀𝐴𝑋, while the maximum 

temperature achievable by the battery is set to 58° C 

as suggested in [21]. As stated by the Formula E® 
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technical regulations, each race lasts 45 minutes. Once 

the 45 minutes are up and the leader has crossed the 

finish line, a supplementary final lap needs to be 

completed [34]. For the Marrakesh e-prix, the total 

number of laps thus amounts to 35 in this case 

considering 34 laps achievable in the 45-minute span 

and the additional final lap. The initial battery 

temperature is assumed being equal to the ambient 

temperature, with a value of 30° C assumed in this DP 

case study. Moreover, it is assumed that, for this initial 

case study, the Safety car enters the track at the 

beginning of lap 15 and leaves it at the end of lap 17. 

Considering these input data, a sensitivity analysis is 

performed in this sub-section to determine the most 

suitable grid sizes to be retained for control and state 

variables in DP when solving the optimal race problem 

under analysis. In particular, the mesh for the control 

variable BElap is discretized with [6, 11, 16, 21, 26, 31] 

elements, while the corresponding state variable     

is discretized with 10 times the number of elements 

compared with BElap. As concerns      , the 

corresponding state variable is discretized with [11, 

21, 31, 41, 51, 61, 71, 81, 91, 101] elements. Finally, 

the discretization of    is performed considering a 

number of elements equal to rounding-up the size of 

       divided by 5. An odd number of elements is 

considered for the discretized vectors of state and 

control variables in order to take into account the 

middle values of each variable for all the discretization 

options.  

Results obtained for the sensitivity analysis 

considering DP are reported in Fig. 3 both in terms of 

estimated race time (ERT) and computational time 

(CT). ERTs can be directly evaluated from the solution 

obtained from DP for the considered optimal race 

control problem, while CTs in this case refer to a 

desktop computer with Intel Core i7-8700 (3.2 GHz) 

and 32 GB of RAM. Only the results corresponding to 

sizes of the sensitivity variables allowed by the 

computational capability of the employed desktop 

computer in terms of processing and storage memory 

have been reported. As regards      , a knee-point for 

the ERT can be observed in Fig. 3(a) for 31 elements 

in the corresponding state variable for all the BElap grid 

sizes. Observing a knee-point in the optimality of the 

solutions is common within sensitivity analysis of DP 

[13]. 31 elements are thus suggested being considered 

in the       state variable, since a higher number of 

elements would increase the corresponding CT 

without further improving the optimality of the DP 

solution. As concerns BElap, progressive reduction in 

the ERT can be observed in Fig. 3 (a) for 31 elements 

of        when increasing the size of BElap up to 21 

elements. However, when further increasing the 

number of elements for BElap beyond 21, little 

advantage is obtained in terms of optimality of ERT, 

while the corresponding CT is observed remarkably 

increasing in Fig. 3(b) from 21.2 minutes up to 45.2 

minutes. In this case, limiting the grid size for BElap to 

21 elements might be suggested as a reasonable trade-

off between optimality of the ERT solution and 

corresponding computational cost. 

4. Real-time Optimal Race Strategy 

The mathematical formulation for the optimal 

Formula E® race problem and the related off-line 

control algorithm have been described in the previous 

section. Even though the off-line control achieved by 

implementing DP can return the global optimal 

solution for the energy management problem in a 

 
 

 

Fig.  3.  Sensitivity results for the DP mesh sizes in terms of 
ERT and CT. 

 

(a) Estimated race time

(b) Computational time

45.2

32.8

21.2
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Formula E® e-prix, the achievement of this approach 

appears difficult in a real-world race scenario. A first 

limitation in this framework relates to the 

computational cost. Indeed, 21.2 minutes are required 

to complete the DP workflow for the optimal race 

problem under analysis. This might contrast with a 

race environment in which control decisions need to 

be achieved within few seconds. A second drawback 

concerns DP requiring the full knowledge of the race 

events a priori, namely the given laps in which the 

Safety car will be on track in this case, which cannot 

be known beforehand in a real-world scenario. To 

overcome this drawback, this section aims at 

describing a real-time capable Formula E® race 

strategy based on the widely employed A-ECMS 

control approach. The implemented A-ECMS 

approach is presented first, followed by the calibration 

of the values of equivalence factors through the 

implementation of a PSO algorithm. 

4.1. A-ECMS Race Strategy for Formula-E  

ECMS was introduced as control approach by 

Paganelli and by Delprat in 2002 [35][36]. It 

represents a real-time implementation of the 

Pontryagin’s minimum principle, and it was originally 

derived from the optimal control theory applied to the 

field of hybrid electric vehicles and presented by 

Delprat in 2001 [37][38]. The key principle of ECMS, 

when applied to hybrid electric powertrains, is that an 

equivalent fuel consumption can be related to the use 

electrical energy. An instantaneous cost function can 

 

(a) 𝑠𝑆𝑂𝐶 = 0.12 ; 𝑠 = 0.08 

 
 

(b) 𝑠𝑆𝑂𝐶 = 0.10 ; 𝑠 = 0.03 

Fig.  4.  Cost functions for normal mode and attack mode as a function of control variables       and    for different values of equivalence 

factors. 
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be evaluated as the sum of the two energy 

contributions (fuel and electricity), weighted by means 

of a dedicated equivalence factor s [39]. The control 

decision is achieved at each time instant by setting 

values of control variables corresponding to the 

minimum of the cost function [40]. The equivalence 

factor s is kept as constant in the traditional version of 

ECMS, while it is varied over time in the A-ECMS. 

An A-ECMS approach for hybrid electric powertrains 

was initially proposed by Musardo et al. in 2004 by 

adapting s over time according to the current value of 

battery SOC, paving the way for copious similar 

approaches developed in the following decade [41]-

[44].  

In this work, the cost function 𝐽𝐴−𝐸𝐶𝑀𝑆 that needs 

minimization at each lap k in A-ECMS is reported in 

(6) and involves lap time, battery energy consumption 

and battery temperature increase: 

𝐽𝐴−𝐸𝐶𝑀𝑆(𝑘) = [1 − 𝑠𝑆𝑂𝐶(   ,      , 𝑘)]

∙ [1 − 𝑠𝑇(   ,      , 𝑘)]

∙ 𝑙𝑎𝑝 𝑡𝑖𝑚𝑒(𝑘)

+ 𝑠𝑆𝑂𝐶(   ,      , 𝑘)

∙ 𝛥𝑆𝑂𝐶(𝑘) + 𝑠𝑇(   ,      , 𝑘)

∙ 𝛥𝑇    −𝑟𝑒 (𝑘) 

with: 

𝛥𝑇    −𝑟𝑒 (𝑘) =
𝛥𝑇    (𝑘)

     −𝑀𝐴𝑋 −  𝐵   (0)
 

(6) 

where 𝑠𝑆𝑂𝐶  and 𝑠𝑇 represent two equivalence 

factors for the use of battery energy and the increase 

in battery temperature, respectively. These are not 

constant, rather they are updated at the end of each lap 

k based on the battery SOC, the battery temperature 

and the lap number k. 𝛥𝑆𝑂𝐶  is the estimated variation 

in battery SOC for the current lap according to the 

selected values of control variables (i.e.      ,    

and   ). Similarly, 𝛥𝑇    −𝑟𝑒  is the relative variation 

in battery temperature for the current lap, and it 

depends on the battery temperature variation 𝛥𝑇     at 

the end of the given lap k normalized according to the 

maximum battery temperature variation allowed 

throughout the race.  

By increasing the values of 𝑠𝑆𝑂𝐶  and 𝑠𝑇 it becomes 

possible in this way to progressively limit the battery 

energy depletion and the battery temperature increase 

at the expense of an increase in the lap time. At the 

beginning of each lap, two cost functions are 

particularly evaluated for the normal mode and the 

attack mode, respectively. If the minimum for the cost 

function associated to the attack mode is lower than 

the minimum for the cost function associated to the 

normal mode, the value of    for the corresponding 

lap is set to 1 and the attack mode is set to be in 

operation in the following lap. Fig. 4 illustrates 

examples of response surfaces for cost functions 

associated to both normal mode and attack mode 

obtained from the reduced-order Formula E® car plant 

model as a function of control variables       and    

for different values of equivalence factors. For values 

of equivalence factors associated to Fig. 4(a), the 

minimum belongs to the response surface associated 

to the cost function of the normal mode, which would 

therefore be selected as operating mode for the given 

lap. On the other hand, when modifying the values of 

equivalence factors as linked to Fig. 4(b), the 

minimum belongs to the response surface for the 

attack mode cost function, this latter becoming thus 

advantageous in turn.  

 
 

Fig.  5.  Flowchart of the implemented PSO algorithm for optimal 
calibration of the A-ECMS equivalence factor. 

 

 

Start. Initialization of PSO algorithm variables (i.e. equivalence factor parameters)

Step 1. Initialization of swarm particles

Step 2. Evaluation of objective function of particles

For particle i = 1:N

Creation of and adaptation tables for particle i

Creation of 12 different race scenarios sweeping:

▪ Battery initial temperature (22 C, 26 C, 30 C)

▪ Safety car entrance (no entrance, lap  7, lap 15, lap 23)

For race scenario = 1:12

Evaluation of according to the A-ECMS race strategy

if or 

end

end

end

Step 3. Update of local and global optima of swarm particles

Step 4. Update of velocity and position of swarm particles

Stop. Results analysis:

▪ Optimized adaptation tables for A-ECMS equivalence factors ( and )

▪ Performance of calibrated A-ECMS race strategy in different race conditions

Maximum iteration reached?

Yes

No
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As a common practice, particular attention should 

be paid to the calibration of the equivalence factors in 

the A-ECMS. This indeed represents a crucial step that 

might notably affect the optimality of the control 

solution produced by A-ECMS, as it can be already 

observed in the modifications in the response surfaces 

for the cost functions in Fig. 4(a) and Fig. 4(b). 

4.2. Optimal Calibration of the Equivalence Factors 

In the formulation of the A-ECMS provided in the 

previous sub-section, values for both 𝑠𝑆𝑂𝐶  and 𝑠𝑇 need 

to be defined as a function of SOC, Tbatt and lap 

number in the form of 3D lookup tables. In this work, 

𝑠𝑆𝑂𝐶  and 𝑠𝑇 are retained to linearly increase for 

progressively increasing values of SOC, Tbatt and lap 

number. In this work, ranges of SOC, Tbatt and lap 

number are particularly discretized with five elements 

each from the lowest to the highest possible value. 

Intermediate values of equivalence factors can then be 

obtained by linearly interpolating within the 

discretized values. Considering five discretized values 

for each of the three variables affecting the 

equivalence factors leads to retain 53=125 different 

values to be calibrated for each equivalence factor, 

thus 250 parameters in total. The consideration of five 

discretized elements of equivalence factors with 

respect to the values of both SOC, Tbatt and lap number 

stems from seeking a trade-off between control 

accuracy and computational cost. Indeed, further 

increasing the number of elements would lead to 

exponentially increase the number of equivalence 

factor parameters to be tuned within the calibration 

process (e.g. 432 parameters to be calibrated for four 

discretized elements, 686 parameters to be calibrated 

for five discretized elements). 

The calibration of the discretized adaptation tables 

for 𝑠𝑆𝑂𝐶  and 𝑠𝑇 represents in this case a further 

optimization problem considering 250 variables. In 

this framework, an efficient approach requires 

implementation to explore the 250-dimensional 

calibration space, since operating an exhaustive search 

may result unpractical. To this end, PSO is 

implemented in this paper as a well-known approach 

for solving global optimization problems. PSO is an 

iterative stochastic optimization algorithm that relies 

on a numerical model capturing the social behavior of 

fishes and birds proposed by Kennedy and Eberhart in 

1995 [45]. The flowchart of the PSO approach 

implemented in this work is illustrated in Fig. 5 and 

detailed as follows. During step 1, a population of N 

particles is initialized aiming at the subsequent 

exploration of the calibration space searching for the 

minimum of the PSO cost function 𝐽𝑃𝑆𝑂. At each 

iteration of the PSO algorithm, step 2 aims at assessing 

the value of 𝐽𝑃𝑆𝑂 for each particle of the swarm. This 

is performed by simulating the Formulae E® car 

reduced-order plant model presented in section II 

being controlled by A-ECMS in the Marrakesh e-prix 

considering the equivalence factor adaptation tables 

corresponding to the given swarm particle i. Various 

race conditions in terms of initial battery temperature 

and Safety car entry are considered in this step for the 

sake of enhancing the robustness of the calibrated A-

ECMS with respect to the variety of possible race 

circumstances. Three different values of initial battery 

temperature are considered corresponding to 22°C, 

26° C and 30° C, and four possibilities for the Safety 

car entry are retained in lap 7, lap 15, and lap 23 

potentially and reasonably relating to initial phase, 

middle phase and final phase of the race, respectively. 

As the safety car enters, this is assumed staying on the 

track for three laps, since this number relates to the 

highest empirical probability for a safety car phase 

duration as observed in [24]. The fourth Safety car 

case corresponds to not have it entering the track 

throughout the entire race. Combining initial battery 

temperature and Safety car entry options, totally 

twelve race scenarios are generated for simulating the 

e-prix with the Formula E® car reduced-order plant 

model being controlled by the proposed A-ECMS 

approach considering the equivalence factor 

adaptation tables related to the given particle i. For a 

given race scenario, if the A-ECMS that considers the 

calibration of 𝑠𝑆𝑂𝐶  and 𝑠𝑇  according to the parameters 

of particle i allows ending the simulated e-prix without 

excessively depleting the battery energy and 

overtaking      −𝑀𝐴𝑋, the corresponding 𝐽𝑟 𝑐𝑒  is 

retained. On the other hand, it the final battery SOC or 

battery temperature requirements are not met for the 

race scenario under consideration, the corresponding 

𝐽𝑟 𝑐𝑒  is labelled with a remarkably large value 

(representative of infinite). Finally, the cost function 

𝐽𝑃𝑆𝑂−𝑖 for the given particle i is evaluated as the 

average of the values of 𝐽𝑟 𝑐𝑒  evaluated over the 

twelve considered race scenarios. On average, only 0.5 
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seconds are required to simulate the Formula E® car 

reduced-order plant model being controlled by A-

ECMS in the twelve retained race scenarios on the 

same computational platform introduced for DP in the 

previous section. This suggests the computational 

lightweight of A-ECMS and the subsequent ease of 

real-time application of such approach in real-world 

race scenarios. Once 𝐽𝑃𝑆𝑂 has been evaluated for all 

the particles of the swarm, step 3 aims at updating the 

local and global minima for the swarm. Position and 

velocity of each particle in the 250-dimensional 

calibration space considered are then updated in step 4 

based on the local and global optima previously 

identified. Three main PSO parameters are involved in 

this procedure, namely the inertia parameter, the 

cognitive parameter, and the social parameter [46]. 

More details regarding this step can be found in [47]. 

Once the maximum number of iterations is reached 

for the PSO algorithm, obtained results include the 

calibrated tables for 𝑠𝑆𝑂𝐶  and 𝑠𝑇  as a function of SOC, 

Tbatt and lap number, and the simulation of the Formula 

E® car reduced-order plant model being controlled by 

A-ECMS for the retained race scenarios. Compared 

with other popular stochastic optimization algorithms 

(e.g. genetic algorithm – GA), PSO distinguishes by 

ease of management and parameter tuning [48][49]. 

This corroborates the likelihood of effectively finding 

a global optimum for the considered calibration 

problem and it represents the main motivation behind 

the use of PSO in this work. The version of the PSO 

algorithm considered in this paper refers to the 

corresponding toolbox provided by the Yarpiz project 

and it is implemented in MATLAB© software [50]. 

Retained PSO parameters in this work are reported 

in Table 2. Particularly, the five discrete values 

respectively considered for SOC, Tbatt and lap number 

are illustrated, along with set values for PSO 

parameters. Values of inertia, cognitive and social 

coefficients for the PSO have been retained from [46]. 

A further trial-and-error check has been performed to 

ensure that the effectiveness of the PSO workflow 

could not be improved by considering different values 

of parameters in Table 2.  Fig. 6 illustrates the trend of 

the best value of 𝐽𝑃𝑆𝑂 for the entire swarm as a function 

of the iteration of the PSO algorithm. The optimization 

procedure is particularly found converging to a 

minimum in the retained 250-dimensional A-ECMS 

calibration space after the 16th iteration of the PSO 

algorithm. The convergence for the optimization 

procedure observed in Fig. 6 may suggest the 

effectiveness of the values of PSO parameters retained 

in Table 2. Extracts of the adaptation tables for 𝑠𝑆𝑂𝐶  

and 𝑠𝑇 corresponding to the optimization-based 

calibration results automatically identified by PSO are 

shown in Fig. 7 for three different values of      . In 

this case, the 2D lookup tables with lap number and 

SOC as independent variables for intermediate values 

of        can be obtained by linearly interpolating 

within the two lookup tables corresponding to the 

adjacent discrete       values. The squared markers in 

Fig. 7 represent the discretization of SOC and lap 

number performed for both the A-ECMS equivalence 

factors considered.  

 
 
Fig.  6.  Flowchart of the implemented PSO algorithm for optimal 

calibration of the A-ECMS equivalence factor. 

 

 

Table 2 

PSO parameters for equivalence factor adaptation tables 

Category Parameter Value 

A-ECMS 

equivalence 

factors 

SOC discretization [-] [0, 0.25, 0.5, 0.75, 1] 

Tbatt discretization 

[°C] 
[20, 29.5, 39, 48.5, 58] 

Lap number 
discretization [-] 

[1, 9, 18, 27, 35] 

PSO 
parameters 

Number of variables 
[-] 

250 

Swarm size [-] 5000 

Inertia coefficient [-] 1 

Cognitive coefficient 
[-] 

5 

Social coefficient [-] 2 

Maximum number of 

iterations [-] 
25 
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5. Results 

In this section, results obtained in different race 

scenarios of the Marrakesh e-prix are presented for 

both DP and A-ECMS race strategies. As mentioned 

earlier, the application of DP in a real-world race 

scenario might result unpractical due to both its off-

line nature and the associated computational cost. 

However, as a common practice, an off-line global 

optimal control approach such as DP can be used to 

benchmark the optimality of the solutions provided by 

a real-time capable controller such as A-ECMS 

[51][52]. To this end, Table 3 reports ERTs in the 

twelve retained Marrakesh race scenarios for both DP 

 
(a) 𝑠𝑆𝑂𝐶   

 

 
(b) 𝑠  

Fig.  7.  Adaptation tables for 𝑠𝑆𝑂𝐶  and 𝑠𝑇 obtained from the PSO automatic calibration procedure. 

 

 

Table 3 

ERTs obtained by DP and A-ECMS in the Marrakesh e-prix for different race scenarios 

 No safety car Safety car in lap 7 to lap 9 
Safety car in lap 15 to lap 

17 
Safety car in lap 23 to lap 

25 

Initial 

       [° C] 
DP A-ECMS DP A-ECMS DP A-ECMS DP A-ECMS 

22 2810.0 s 
2856.7 s 
(+1.7%) 

2918.9 s 
2943.7 s 
(+0.8%) 

2924.8 s 
2943.7 s 
(+0.6%) 

2938.4 s 
2952.8 s 
(+0.5%) 

26 2812.5 s 
2850.3 s 

(+1.3%) 
2918.4 s 2939.6 s 

(+0.7%) 
2926.4 s 

2939.1 s 

(+0.4%) 
2939.0 s 

2949.6 s 

(+0.4%) 

30 2818.7 s 
2857.7 s 
(+1.4%) 

2916.8 s 
2941.4 s 
(+0.8%) 

2924.1 s 
2941.4 s 
(+0.6%) 

2935.4 s 
2953.6 s 
(+0.6%) 
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and A-ECMS. The percentages of the difference in 

ERTs between A-ECMS and DP are illustrated as 

well. The near-optimality of the proposed version of 

A-ECMS can be demonstrated in this way by the 

corresponding ERTs being higher than the related DP 

ERTs by no more than 1.7% only. In general, the 

effectiveness of the introduced A-ECMS as Formula 

E® race strategy seems enhanced in the e-prix 

scenarios involving Safety car entry, with the 

corresponding increase in ERTs being always 

contained within 0.8% compared with the related 

global optimal race solution. These results are in line 

with the general near-optimality of the solutions 

provided by appropriately calibrated ECMS based 

controllers, as it has been already demonstrated in 

literature for other fields of application [42][52]. 

In fig. 8, a comparison is illustrated between DP 

and A-ECMS in terms of control actions generated and 

resulting lap time and car states as a function of lap 

number for initial       equal to 26° C and Safety car 

on track from lap 7 to lap 9. In general, DP tends to set 

quite constant values of control variables in terms of 

      and    over the simulated e-prix. Moreover, 

the attack mode does not find activation. This 

generally stems from the a priori knowledge of the 

entire Formula E® race scenario that allows DP to set 

smooth and constant control actions throughout the 

race. On the other hand, the control behavior of the 

calibrated A-ECMS varies considerably according to 

the specific phase of the race. In particular, a 

conservative strategy is performed in the initial phase 

of the race (e.g. up to lap number 21) both in terms of 

battery energy usage and battery temperature increase. 

Differently, the A-ECMS tends to control the Formula 

E® car more aggressively in the final phase of the race. 

This correlates with the A-ECMS setting higher values 

of       (i.e. around 2 kWh), lower values of     (i.e. 

closer to 0) and activating the attack mode twice from 

lap number 22 onwards in Fig. 8(a). The control 

decisions performed by A-ECMS might relate to its 

real-time operation which does not involve knowing 

the race conditions in advance. Nevertheless, the race 

strategy operated by A-ECMS correlates well with a 

real-world e-prix scenario in which drivers need to 

raise the race pace in the final phases aiming at 

achieving the top positions. In this framework, a 

strategic hint might relate to activating the attack mode 

in the final phases of the e-prix as performed by A-

ECMS in Fig. 8(a). This contrasts with the attack mode 

activation being performed in the first laps of the e-

prix as in [21]. Indeed, an eventual Safety car entry 

leading the drivers to queue in a slow speed platoon 

might nullify the time advantage achieved earlier in 

the race at the expenses of lowering both the battery 

available energy and the allowed margin in battery 

temperature increase.  

Fig. 9, Fig. 10, and Fig. 11 show comparisons 

between DP and A-ECMS in terms of control actions, 

lap time and Formula E® car states for initial       
equal to 26° C and Safety car on track from lap 15 to 

lap 17, from lap 23 to lap 25, and without safety car 

entry, respectively. These three figures aim at 

corroborating the effectiveness of the proposed A-

ECMS approach in adapting to different race 

conditions (e.g. Safety car entry). Particularly, the A-

ECMS conservative race behavior in the initial phases 

of the e-prix and the subsequent more aggressive race 

pace (e.g. after the Safety car exit) are confirmed for 

different race scenarios both in Fig. 9, in Fig. 10 and 

 

 
(a) Control variables

 
(b) Lap time and vehicle states 

 

Fig.  8.  Selected values of control variables, lap time and Formula 

E® car states as a function of lap number for both DP and A-ECMS 

(initial      = 26° C, safety car in lap 7 to lap 9). 
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in Fig. 11. This validates the effective adaptability of 

the proposed A-ECMS Formula E® race strategy 

approach to different e-prix scenarios. For the sake of 

briefness, time series obtained considering initial       
equal to 22° C and 30° C have not been plotted in 

figures, but the reader can refer to Table 3 for obtained 

results in terms of ERT for both DP and A-ECMS in 

these race conditions. 

6. Conclusions 

An optimal Formula E® race strategy is 

fundamental in minimizing the overall race time while 

preserving the battery states both from SOC and 

temperature points of view. The optimality of formula 

E® race strategies currently proposed in literature has 

generally not been demonstrated. Moreover, their 

adaptability with respect to varying and uncertain race 

conditions has not yet been enhanced. To answer these 

needs, this paper proposes a near-optimal real-time 

capable adaptive race strategy for a Formula E® car.  

A reduced-order plant model has been presented 

first that allows rapidly estimating the lap time and the 

variations in vehicle states for a Formula E® car after 

a given lap of the e-prix as a function of selected 

control variable values. Control variables handled by 

the high-level race controller include the battery 

energy depletable throughout the lap, the thermal 

management mode, and the race mode (i.e. normal 

mode or attack mode). The optimal race problem has 

then been introduced and the related global optimal 

solution has been obtained with an off-line global 

optimal control approach such as DP considering the 

Marrakesh e-prix. The subsequent introduction of a 

real-time Formula E® race controller based on the A-

ECMS approach has aimed at overcoming the limits in 

the real-world applicability of DP. The key idea 

supporting the proposed A-ECMS for Formula E® 

race management is to adapt the value of the 

equivalence factor as function of the current lap 

number, battery SOC and battery temperature. In this 

 

 
(a) Control variables

 
(b) Lap time and vehicle states 

 

Fig.  9.  Selected values of control variables, lap time and Formula 
E® car states as a function of lap number for both DP and A-ECMS 

(initial      = 26° C, safety car in lap 15 to lap 17). 

 

 

 

 
(a) Control variables

 
(b) Lap time and vehicle states 

 

Fig.  10.  Selected values of control variables, lap time and Formula 
E® car states as a function of lap number for both DP and A-ECMS 

(initial      = 26° C, safety car in lap 23 to lap 25). 
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framework, PSO has been implemented to extract 

optimal adaptation tables for the A-ECMS 

equivalence factors. Simulation results considering 

different race conditions in terms of battery initial 

temperature and Safety car entry for the Marrakesh e-

prix have suggested the near-optimality of the 

proposed A-ECMS Formula E® controller. In 

particular, the increase in ERT for the Formula E® A-

ECMS race strategy is always contained within 1.7% 

compared with the corresponding global optimum 

benchmark provided by DP. Moreover, the effective 

adaptability of the proposed A-ECMS Formula E® 

race controller has been suggested by the achievement 

of near-optimality in ERT over different race 

scenarios. Effectively benchmarking the A-ECMS 

results with the off-line optimization results identified 

by DP thus provides a first validation of the near-

optimality of the proposed Formula E® race strategy. 

The proposed methodology is generalized and can 

be applied to any Formula E® racing car to minimize 

the overall race time while complying with battery 

energy and thermal constraints in real-time during an 

e-prix. To apply the methodology to other formula E® 

cars, high-fidelity simulations need to be performed or 

experimental data need to be collected for 

characterizing the behavior of the considered car 

throughout a lap in a given track. Then, the considered 

reduced-order car plant model should be fit to 

numerical or experimental results. Finally, the 

introduced real-time Formula E® race controller can 

be calibrated with PSO for the considered plant model. 

Related future work might involve extending the 

optimal calibration of the real-time Formula E® race 

strategy to different safety car phases and race 

scenarios. Moreover, the near-optimality of the 

proposed race strategy might be validated upon 

experimental data or by increasing the fidelity level for 

the Formula E® car plant model. In particular, a multi-

fidelity simulation approach might be established in 

interfacing the computationally lightweight reduced-

order control model with a more detailed Formula E® 

car plant model capable of simulating its operation 

within a single lap as well. Furthermore, simulating 

the operation of the proposed race controller in 

additional tracks might lay the foundations to develop 

dedicated design and component sizing methodologies 

for Formula E® car systems. 

List of symbols 

αSOCAM 
Multiplier for battery SOC depletion per lap in 

attack mode 

αTAM 
Multiplier for battery temperature increase per 

lap in attack mode 

αTimeAM Multiplier for lap time decrease in attack mode 

AM Flag for attack mode activation 

BElap Battery energy depleted throughout a single lap 

BElap-min 

Minimum battery energy depleted throughout a 

single lap 

BElap-MAX 

Maximum allowed battery energy depleted 

throughout a single lap 

ΔSOC Variation in battery SOC after a single lap 

ΔTbatt 

Variation in battery temperature after a single 

lap 

ΔTbatt-rel 

Relative variation in battery temperature after a 

single lap 

 

 
(a) Control variables 

 
(b) Lap time and vehicle states 

 

Fig.  11.  Selected values of control variables, lap time and Formula 
E® car states as a function of lap number for both DP and A-ECMS 

(initial      = 26° C, no safety car entry). 
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JA-ECMS A-ECMS cost function 

JPSO PSO cost function 

k Lap number 

kWhbatt Battery capacity 

lap time Lap time 

lapsAM 

Number of laps completed in a single attack 

mode activation 

lapsAM-MAX 

Maximum allowed number of laps per attack 

mode activation 

μSC 

Race cost function weighting coefficient for 

safety car entry  

Nlap Total number of laps in the e-prix 

nAM Number of attack mode activations 

nAM-MAX 

Maximum allowed number of attack mode 

activations 

SOC Battery state-of-charge 

sSOC 

Equivalence factor for battery energy depletion 

in A-ECMS 

sT 

Equivalence factor for battery temperature 

increase in A-ECMS 

Tbatt Battery temperature 

Tbatt-MAX Maximum allowed battery temperature 

TM Thermal mode 

TMmin Minimum thermal mode 

TMMAX Maximum thermal mode 

Trise 

Multiplier for battery temperature increase per 

lap in attack mode 
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