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Abstract—Approximate Computing (AxC) trades off between
the accuracy required by the user and the precision provided by
the computing system to achieve several optimizations such as
performance improvement, energy, and area reduction. Several
AxC techniques have been proposed so far in the literature. They
work at different abstraction levels and propose both hardware
and software implementations. The standard issue of all existing
approaches is the lack of a methodology to estimate the impact
of a given AxC technique on the application-level accuracy.
This paper proposes a probabilistic approach based on Bayesian
networks to quickly estimate the impact of a given approximation
technique on application-level accuracy. Moreover, we have also
shown how Bayesian networks allow a backtrack analysis that
automatically identifies the most sensitive components. That
influence analysis dramatically reduces the space exploration
for approximation techniques. Preliminary results on a simple
artificial neural network shown the efficiency of the proposed
approach.

Index Terms—Approximate computing, Bayesian Networks,
Neural Networks, Functional approximation, Accuracy predic-
tion

I. INTRODUCTION

Approximate computing (AxC) refers to the idea that
computer systems can let applications trade off accuracy
for efficiency [1]. Intuitively, instead of performing exact
calculations, AxC aims to selectively relax the computation’s
accuracy to gain lower power consumption and faster execu-
tion time. So far, several AxC techniques have been proposed
in the literature both at the hardware and software levels [2].
The resiliency of computation to approximation errors tightly
depends on the application domain, as some are more resilient
than others [3], [4], [5]. Several publications demonstrated the
effectiveness of this approach when applied to applications
showing an inherent resiliency to errors [6], [7]. Among them,
Artificial Intelligence and, in particular, Deep Neural Networks
showed an intrinsic resilience to computational errors and thus
are well suited to leverage AxC to achieve better performances
at lower costs [8].

Although the literature is rich in approximate implementa-
tion and strategy proposals, selecting the components to ap-
proximate, together with selecting the best approximation tech-
niques for an application, remains a challenging problem [9],
[10], [11]. Indeed, while it is pretty much simple to quantify
the impact of an AxC technique on the performance or power
budget of an application, measuring the error introduced on
the result of the computation is still an open challenge.

Most of the approaches proposed in the literature run the
approximate application (i.e., the application implemented
with some data, functional, or both approximation) several
times and compare the outcomes with the precise applica-
tion [12], [13], [14], [15], [16]. An appropriate error metric
(e.g., the Structural Similarity Index (SSI) [17] in the case of
image processing) allows the comparison. If the approximate
application’s accuracy is not satisfactory, a different approx-
imate configuration must replace the actual one. Every new
approximation, the application must be executed and analyzed
again. The above process is an iterative one, and it goes until
the approximation is good enough. This process’s cost depends
on the number of runs of the application required to reach the
desired accuracy level.

Authors in [18], [19] proposed a different approach that
analytically formalizes the error induced by Cax and how it
propagates in the application. This approach’s benefit is that
it is possible to evaluate the approximation impact without
executing the application every time. However, the formaliza-
tion is application-dependent. Therefore, building the formal
model of an application is very complex and requires deeply
analyzing its algorithms.

This paper presents a stochastic approach to predict the
impact of an approximate technique on a Neural Network’s
(NN) accuracy. The approach delivers the characterization of
the different approximate components, done only once, and
then builds a Bayesian Network (BN) model of the NN,
following the principles in [20], [21]. Eventually, by analyzing
the network using the Bayesian inference theory, estimating
the neural network’s error distribution is possible. Moreover,
BNs allow a backtrack analysis that automatically identifies
the most sensitive components. That influence analysis dra-
matically reduces the space exploration for approximation
techniques. This paper aims to show how BNs can be used to
estimate approximation impacts on a DNN. The main benefits
are a dramatic reduction of the search space for applying
approximate computing techniques to DNNs.

The remainder of the paper is structured as follows. Sec-
tion II overviews the main concepts of the proposed approach.
Section II-C presents the proposed Bayesian model and how
it describes a neural network, while Section II-B presents the
necessary characterization of operators. Results are discussed
in Section III. Finally, Section IV summarizes the main
contributions and concludes the paper.978-1-6654-3595-6/21/$31.00 ©2021 IEEE



II. METHODS

As introduced in Section I, the goal of the proposed ap-
proach is to develop a stochastic method able to assess the
accuracy of an application exploiting a set of approximate
functional components. We model the application with the
same methodology of [21], in which three tasks allow us
to build the model of the target application. One of them
is application-independent (the component characterization),
while two of them, application dependent, are the following:

1) Bayesian network construction, and
2) Approximation analysis.
The first application-dependent task aims to analyze the

application source code to build the Bayesian Network. The
analysis task will resort to BN solving algorithms to analyze
the approximation’s impact on the outcomes.

Within the BN, a set of Conditional Probability Tables
(CPTs) should describe each node’s probabilistic behavior.
This task characterizes a library of approximate operators
quantifying the error introduced by the approximation. An
operator’s characterization aims to build a CPT table to model
the conditional probability of having approximation errors at
the operator’s output, depending on the approximation of the
operator’s inputs.

A. Bayesian network construction

This task aims at analyzing the application source code
in order to build the Bayesian Network modeling. Therefore,
the application must be modeled in such a way to represent
formally:
• all data and operators involved in the computation;
• all relations between data and operators;
• the mechanisms that propagate approximation errors

through the data of the application.
To achieve this goal, we model the application in the form

of a Bayesian Network in which:
• nodes represent both data and operators by mean of

stochastic variables;
• edges depict the dependency between data and operators;
• each node is associated with a CPT able to express

how the approximation of the parents’ nodes impacts a
computation outcome.

All stochastic variables express different states according to
the modeling described in Section II-C. Once built, this model
analyzes how errors are propagated from the root nodes down
to the leaves representing the application’s outcome.

In this work, we aim at showing our approach on a case
study based on a simple Neural Network (NN). Let us consider
the example depicted in Figure 1-A, consisting of a single
neuron. The neuron performs a weighted sum (ws) between
Inputs (X1, X2, ... Xn) and Weights (W1, W2, ... Wn).
The neuron’s output is the result of the activation function
evaluated on the ws value. In this paper, we focus on the
Sigmoid as an activation function (eq. 5).

Figure 1-B shows the BN model of the considered neuron
example. Yellow nodes are the weight nodes (Wi), while the

black nodes are the inputs (Xi). Each input node is linked to a
CPT reported in Figure 1-C indicating the marginal probability
of the related data to be in one of the approximation classes
defined in equation 3 from Section II-C.

All intermediate nodes represent computations involving
different operators implemented by components analyzed dur-
ing the characterization phase (see Section II-B), which pro-
vide the required CPTs. In the example, we instantiated one
node for each multiplication (‘(*)’) between Xi and W̃i. Then,
we have a node modeling the accumulation (‘(+)’) and a node
modeling the sigmoid function (‘S(sw)’). The CPT reported in
Figure 1-D is an example of the one computed for the (‘(+)’)
operator.

Finally, orange nodes identify the leaf of the Bayesian
network representing the output of the computation. It serves
as an observation point, where the effect of the approximation
accumulates, allowing us to analyze it from a probabilistic
standpoint.
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Fig. 1: Bayesian Network example

We used a publicly available BN library and engine [22] to
create and analyze the BNs.

B. General approximate component characterization

This paper’s BN modeling follows the work proposed in
[21]. While in the original work, the approximation worked
on integer numbers and precision cut, the NNs require some
comma-based number representation. We chose to work with
the libfixmath cross-platform library [23]. The library de-
fines a fixed-point number of 32 bits. The point is placed in the
middle of the representation, having a half-word representing
the integer part and the other one dedicated to the fractional
part. This representation is suitable for approximating NNs,
especially in embedded environments [24], [25], [26].

In order to understand the error range from approximation,
we can start by defining the fractional part calculation:

15∑
x=0

bx · 2x−16 (1)

where bx is the bit value at position x, which counts the
position starting from the bit closer to the point place. In this
context, a precision reduction means removing bits from the
fractional part (the lower the better), and then set them at 0
when using in full 32 bits operations. Based on the number



of bits to remove, this identifies an initial precision error (ε)
on reduced data given by the k bits removed as:

ε(k) =

k−1∑
x=0

bx · 2x−16 (2)

which is bigger when bx is 1 for all x ∈ [0, k].
Following the model in [21], a stochastic variable represents

each data node; hence a set of states defines each node’s
behavior based on the impact of the approximation. In [21], we
proposed three different classes of accuracy (states) for each
node: (i) precise (P), when the result is error-free regardless
of the precision reduction operation; acceptable (A), when
the introduced error remains under a user-defined threshold
(α); unacceptable (U) when the introduced error rises above
the threshold making value not acceptable. Therefore, each
node’s CPT expresses the node’s probability belonging to one
of these classes. When nodes are independent data nodes, e.g.,
input, weights, and biasses, CPTs represent the probability that
they belong to each of those classes based on all precision
reduction considered in the exploration. The CPT values can
be evaluated using probability distribution (when values may
vary) or based on the actual calculation of eq. 2 on its fixed
value based on all possible evaluated ks. This latter case is
the approach used on weights and biases in this paper. When
nodes represent operations among data, following the Bayes
Theorem, the operator’s characterization means computing
the operator’s output’s probability to be in a specific state
(accuracy level) conditioned to its parent nodes’ state. It is
crucial to understand that those probabilities are independent
of the probability expressed by the input states. They depend
only on the number of combinations of states of all inputs’
states. On the overall NN, the final accuracy depends on the
probabilities of the output layer’s nodes belonging to one of
the three accuracy classes.

Since the paper’s purpose is to prove the feasibility of an
approximation exploration based on BN as opposed to a full
experimental exploration, we start by defining how to model
the input nodes. From the definition in eq. 2, the introduced
approximation error classification (ε(k)) on an input of NN (ỹ),
i.e., weight and biases as defined during the training, follows
the rules:

Class(ỹ) =


P (Precise) if εy(k) = 0

A (Acceptable) if εy(k) ≤ α
U (Unacceptable) if εy(k) > α

(3)

With α the threshold is indicating the maximum value of
εy that the exploration can tolerate. Since εy depends on the
actual fixed value, and from the all admissible k cut in the
current exploration, for each weight or bias, we can compute
the probability of having ỹ in P, A, or U as:

P (ỹ is P ) = P (εy(k) = 0) =

∑
∀k→εy(k)=0 1

#k

P (ỹ is A) = P (εy(k) ≤ α) =
∑
∀k→εy(k)≤α 1

#k

P (ỹ is U) = P (εy(k) > α) =

∑
∀k→εy(k)>α 1

#k

(4)

Where #k is the number of considered k cut the exploration
is investigating. If α is more significant than the maximum
ε(k) out of a precision reduction, input nodes will not show
any U cases.

Operation nodes propagate the error from their inputs by
performing a specific computation. As stated in [21], since
the input error can be either masked or amplified, depending
on how the operation handles the inputs, their characterization
requires determining how this propagation occurs and classify
the results according to the three accuracy classes (P, A, or
U).

In this NN case, we need to evaluate three operators: (i) sum,
(ii) multiplication, and (iii) the sigmoid function (S(x)). The
first two operations are trivial to define. However, the sigmoid
is the activation function of each neuron in the reference NN
employed in the paper, which will take as input the result of
the multiply and accumulation across NN inputs, weights, and
biases, and will provide new inputs to intermediate layers or
the output of the NN. The following formula defines the S(x)
employed in this paper:

S(x) =
1

1 + e−x
(5)

In [21], we resorted to the enumeration of all cases to define
the operators’ CPTs. Since the fixed-point data type makes the
enumeration a less trivial task, we devised an Algorithm to
evaluate the CPTs automatically. It is important to stress out
that this operation will be necessary only once, given the α
threshold to be analyzed. Algorithm 1 depicts the algorithm
for operators with two inputs, i.e., sum and multiplication. It
expects four inputs: (i) the operator, (ii) the threshold, (iii) the
error difference considered acceptable as change within the
CPT values from the ones evaluated on the previous step, and
(iv) the minimum number of values to test. The output is the
CPT for the given operator.

The algorithm explores the huge space of all possible com-
binations of two inputs efficiently. It stops when it has evalu-
ated a minimum number of combinations (minNValues) as
well as when the maximum difference in the single values of
the CPT is below a given value (EM), line 15 in Alg. 1. The
algorithm is straightforward; at each iteration, it generates a
random number (p at line 5), as well as two versions of it, one
belonging to the ’A’ class and one to the ’U’ class (a and u at
lines 6-7). Other two ’A’ and ’U’ numbers are generated from
two different random numbers (a2 and u2 lines 8-9). Those
five values define the set of combinations tested to update
the CPT (comb_to_test in lines 10-12). Each combination
outcome is compared against the same combination using



Algorithm 1: Algorithm to define the CPT for a single
operator (OP)

Input: OP = Operator to Analyse;
α = threshold;
EM = acceptable error difference;
minNValues = minimum number of values to test
Output: CPTOP = OP’s CPT

1 e = MAX ERROR;
2 CPTOP = all columns sum equal to 1;
3 repeat
4 OLD CPTOP = CPTOP ;
5 p = random ();
6 a = gen acceptable version(p, α);
7 u = gen unacceptable version(p, α);
8 a2 = gen acceptable version(random (), α);
9 u2 = gen unacceptable version(random (), α);

10 comb to test = [(p,a), (p, u), (a,a2), (a, u), (u, u2)];
11 foreach c ∈ comb to test do
12 evaluate and update(c, OP, α, CPTOP ) );
13 end
14 e = max (OLD CPTOP - CPTOP );
15 minNValues = minNValues - 1;
16 until e > EM || minNValues > 0;

the corresponding precise version of all ’A’s and ’U’s. The
classification of the OP outcome of each combination, used
as input, allows updating the CPT. It is the purpose of
the evaluate_and_update function. Eventually, line 14
evaluates the difference between the new CPT and the old one.

Algorithm 1 is designed for two input operators. Since the
third operand in a NN is the sigmoid, we employed the same
approach to the S(x) operator of eq. 5. The only difference
when investigating S(x) is that lines 8-9 are unnecessary
because the operator is a unary one. Still, for the same
reason, line 10 does not define combinations, but all the three
values generated at lines 5-7 are going to be the input of the
evaluation loop at lines 11-13.

The results included in this paper leverage on a
minNValues set as the 1E+9 of all possible combinations
of two inputs, and a EM equal to 1E-6. Moreover, all random
numbers follow a uniform distribution, which can be changed
if shreds of evidence might show a different distribution in
values.

C. Approximation analysis

The Bayesian inference allows the analysis of the model to
predict the approximation at the output of the NN [27].

We compute the posterior probability of the leaves of the
network (orange nodes in Figure 1) to be in one of the
three approximation classes defined in equation 3 to have
the necessary prediction. Literature is full of different update
belief algorithms for this scope. In particular, the library
used to implement the proposed framework [22] provides two
solvers: (1) the exact solver proposed by Lauritzen in [28],

and (2) the Estimated Posterior Importance Sampling (EPIS)
approximate stochastic solver proposed in [29]. The first one
might prove helpful with medium-size models (i.e., tens of
nodes), while the second one suits huge models (i.e., thousands
of nodes). Results in this paper come from the exact solver
since the analyzed BN was small enough.

The proposed model’s flexibility can help insight the ac-
curacy reduction of the application quickly, thus quickly
exploring different design solutions.

III. EXPERIMENTAL RESULTS

While in [21] we demonstrated the approach on single
benchmarks, in this paper, we focus on correctly predicting
the approximation quality of a Neural Network outcome. For
this reason, we work on a small network able to implementing
the XOR bit-wise operation. This example is quite simple
but, at the same time, complex enough to show the benefits
of our approach. Fig. 2a depicts the topology of the XOR
neural network. It is composed of two inputs, two layers,
and one output. The first layer contains two neurons, while
the last layer contains only one neuron. Each neuron has the
same structure as the example shown in Fig. 1 plus an extra
input called bias. All the activation functions are Sigmoid. The
XOR network implementation consists of a C code where the
data types are 32-bit fixed-point with 16 bits representing the
fractional part and 16 the fractional part.

The experimental setup defines a small test set of all possi-
ble combinations of input values, and the primary constraint is
to avoid approximation on the input values. The network train
was a precise one. The reduction was applied in the range of
[0, 31] bits, meaning that 0 is no approximation and 31 refers
to all but the most significant bit set to 0. The range was set
as a huge one on purpose, with the sole intention of proving
the BN’s predictive capability. As mentioned in Section II-B,
this reduction range will only change the probability of the
three classes based on the trained values of each weight or
bias, leaving the propagation estimation to the Bayes theorem
unaltered in methods.

A. Prediction Reliability

To effectively demonstrate the modeling’s prediction capa-
bility if applied to NNs, we run the iterative exploration against
the BN modeled based on different α values. This process
requires generating the CPT tables of all operators for each α
and then use them on the previously one-time modeled BN.
Together with the CPT, the weights and biases distribution
have been computed and assigned to the CPT’s proper nodes.
Table I shows the three classifications for all three alpha used.

Reported results confirm the reliability of the BN prediction,
showing a maximum percentage point error of 5.42pp. The
absolute error variability reflects the data dependency of the
multiplication, as already demonstrated in [21]. Moreover,
it also accounts for the difference between the input node
actual distribution and the uniform distribution used for the
operators’ characterization. Using a characterization based on
a different distribution is a choice we made to demonstrate



Fig. 2: XOR network
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TABLE I: Experimental Results

α P A U
BN 76.52% 23.48% 0.00%

App. Run 76.37% 23.63% 0.00%1
Abs. Error 0.15pp 0.15pp 0.00pp

BN 71.83% 0.01% 28.15%
App. Run 76.37% 0.89% 22.73%0.1

Abs. Error 4.54pp 0.88pp 5.42pp
BN 57.79% 0.00% 42.20%

App. Run 61.58% 1.45% 36.96%0.0001
Abs. Error 3.79pp 1.45pp 5.25pp

the characterization’s re-usability when feasible. The possible
values in this case (0 and 1 only) were not worth a specific
characterization. Nonetheless, since the outcome comes from
a non-linear function such as the sigmoid, it is interesting to
notice that we could adequately model it using the BN. More-
over, having the three α expressing a considerable variation
in the quality tolerance, the absolute errors confirm the BN
prediction’s reliability.

B. Efficiency & optimization

While it is still on a tiny scale, the first row of Table II shows
the number of combinations required to explore all possible
configurations of precision reduction of the six weights and
three biases of the network. The same row also reports the
time required to fully explore all of them, i.e., to apply the
select combination of bits to cut on each of the nine items, run
all test cases, collect and classify the results. The second row
reports how the BN behaves when used to explore the NN
approximation. The second column displays the number of
alternatives that remain to explore after running a backward
influence analysis, as possible in the engine included in the

framework in [21]. The algorithm can analyze the BN in order
to highlight the dependency of influence between nodes. Using
this tool, we selected the three biases as the most critical
nodes that influenced the NN’s capability to produce precise
outcomes, even when other nodes see a heavy approximation.
This exclusion from the approximation set reduces the design
space to 6 out of 9 nodes, and the second column of Table II
reports the overall reduction in the exploration space, as the
number of new combinations to check, which is the 3.6% of
the full-size space. Therefore, the backtrack analysis results
made it possible to have precise outcomes on every test input,
just avoiding approximation on the biases. This outcome was
correctly predicted by the BN, imposing the node states as
precise. In the NN implementation, we run all combinations
left, avoiding approximating the biases simultaneously, check-
ing the NN results. From a timing perspective, it is essential to
remark that reported times, while a few seconds higher than the
iterative approach, include operators’ characterization process,
reusable when another NN employs the same data type α
values. The analysis timing opens for potential scalability gain
when the NN to analyze grows. Suppose the operators are not
going to change. In that case, the number of combinations
to explore will see the exponential growth of the iterative
approach’s timing, while the BN analysis time has room for
coping with the growth by switching from an exact solving
algorithm to an approximated one.

IV. CONCLUSION

In this paper, we proposed a probabilistic method to an-
alyze the impact of the precision reduction approximation
to data nodes of a Neural Network. The proposed approach
can estimate the effect of the approximation on the network



TABLE II: Comparison between experimental exploration and
BN approach when Influence analysis’s results are applied to
the exploration

Technique # alternatives to explore Time (s)
Iterative

(
31
9

)
= 2.0160075E + 7 204.96

Approach
BN

(
31
6

)
= 736281 231.10 =

00.02 (solver + analysis)
81.88 (add) +
83.95 (mul) +
65.26 (sigmoid)

outcomes, covering all possible numbers of bits of reduction
and selecting a specific approximation. The neural network
translates into a Bayesian Network model in which each of
the three operators handling data, i.e., sum, multiplication,
and the sigmoid function, are characterized only once. The
characterization is a one-time task that produces a library
of CPTs re-used on different neural network models. To
assess the accuracy of the obtained estimations, we evaluated
the neural network responses against the BN’s prediction,
using different quality thresholds for the classifications. A
backtrack influence analysis demonstrates the capability of
efficiently support the design space exploration by reducing the
number of weights and biases to approximate. Results show
the accuracy of the prediction and the gain in terms of design
exploration time.
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