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Abstract. It is well-known in the literature that fatigue failures originate from the weakest 
element within the component loaded volume. In particular, for metallic materials the fatigue 
crack typically nucleates from the most critical surface defect in the High-Cycle-Fatigue (HCF) 
region; whereas, it generally nucleates from the most critical internal defect in the Very-High-
Cycle-Fatigue (VHCF) region, at stress amplitudes below the so-called ‘transition stress 
amplitude’. Therefore, regardless of the fatigue region, the P-S-N curves must necessarily take 
into account the random distribution of the critical defect size. However, in the literature, there 
are few statistical models that can model the dependency between the fatigue life and the defect 
size or that can take into account the presence of different failure mechanisms (e.g., surface crack 
nucleation in HCF and internal crack nucleation in VHCF). In the present paper, a new software 
for the estimation of the P-S-N curves is proposed. The statistical P-S-N models recently 
proposed by the authors and implemented in the software are described in the paper. The 
procedure for the parameter estimation is also explained in detail and the software is finally 
validated with experimental datasets collected by the authors or available in the literature.  

1.  Introduction 
The structural integrity of components subjected to mechanical loads is assessed through design 
methodologies which permit to verify if the applied loads are below the maximum load that can be 
sustained by the material of the component. For static loads, the yield strength or the tensile strength are 
generally considered; whereas, in case of cyclic loads, the P-S-N curves are employed [1, 2]. P-S-N 
curves correlate the fatigue life, in terms of number of cycles to failure, and the applied stress. The 
fatigue strength at the desired number of cycles to failure is generally used for the design of components: 
therefore, a proper estimation of the P-S-N curves from experimental results is fundamental for a safe 
design and to guarantee the structural integrity of components that are to be designed. 

It is well-known that fatigue failures originate from the weakest element within the component risk-
volume (i.e., the region of material subjected to a stress amplitude close to the maximum applied stress). 
For example, for metallic materials the fatigue crack typically originates from the specimen surface in 
the High-Cycle-Fatigue (HCF) region. On the other hand, if large defects form during the manufacturing 
process, the fatigue crack can also originate from such large defects that are randomly distributed within 
the risk-volume. For example, surface defects can form during the machining or turning processes [3] 
or in high carbon steels employed in corrosive environments (corrosion pits [4]) or during the 
manufacturing processes (e.g., casting process or Additive Manufacturing processes [5]). Moreover, for 
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metallic materials the fatigue crack generally originates from the most critical internal defect in the Very 
High Cycle Fatigue (VHCF) region, at stress amplitudes below the so-called “transition stress 
amplitude”. When the fatigue crack originates from critical defects and the fatigue response is controlled 
by defects, the fatigue life not only depends on the applied stress amplitude, but also on the random 
distribution of defect size. However, in the literature, few statistical models can model the dependency 
between the fatigue life and the defect size or can take into account the presence of different failure 
mechanisms (e.g., surface crack nucleation in HCF and internal crack nucleation with fish-eye 
morphology in VHCF region). The defect size is indeed generally neglected, even if it strongly 
influences the fatigue response. 

In the present paper, a new software for the estimation of the P-S-N curves is proposed. The statistical 
P-S-N models that have been recently proposed by the authors [6, 7] and that have been implemented 
in the software are described in the paper. Moreover, a general formulation for the duplex P-S-N curves 
capable of modelling the dependence between the fatigue life and the defect size both in HCF and in the 
VHCF is proposed. The procedure for the parameter estimation is also explained in detail: both the least 
square method and the maximum likelihood principle are implemented, depending on the presence of 
runout specimens. The software is finally validated with experimental datasets collected by the authors 
or available in the literature. 

2.  Methods: P-S-N curves in presence of defects 
In this Section, the models implemented in the proposed software are analyzed. In particular, in Section 
2.1 the models for the fatigue life in presence of defects are described. In Section 2.2 the complete model 
for the duplex P-S-N curves is analyzed and in Section 2.3 the procedure for the parameter estimation 
is described. 

2.1.  Fatigue life in presence of defects: statistical models 
 

According to the literature [6], the fatigue life can be considered as normally distributed with mean 𝜇  
dependent on the logarithm of the applied stress amplitude, 𝑠  (𝑥 = log (𝑠 )) and constant standard 
deviation 𝜎 . If defects are responsible for the fatigue failures, according to [7], 𝜇  is also a function of 
the characteristic defect size, 𝑎 ,  (area of the defect projected in a direction perpendicular to load 
direction [8]). For defects with irregular morphology, an equivalent defect size can be assessed 
according to [8, 9]. The fatigue life in presence of defects is therefore: 

 

⎩
⎨

⎧ 𝐹 | ,
𝑦; 𝑥, 𝑎 , = 𝛷

, ,

𝜇 𝑥, 𝑎 , = 𝑐 + 𝑚 𝑥 + 𝑛 𝑙𝑜𝑔 𝑎 ,

𝜎 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

, (1) 

 
where 𝐹 | ,

𝑦; 𝑥; 𝑎 ,  is the probability of failure, 𝛷(∙) is the cumulative distribution function of 

a standard normal variable, 𝑦 = log 𝑁 , being 𝑁  the number of cycles to failure and 𝑐 , 𝑚  and 𝑛  
are constant coefficients that have to be estimated from the experimental data. By substituting 𝐹 (𝑦; 𝑥) 
with 𝛼 , the 𝛼  conditional P-S-N curve can be estimated by solving Equation 1 with respect to 𝑥 for 
different values of 𝑦. The P-S-N curves estimated from Equation 1 are called “conditional P-S-N 
curves”, since they are conditioned to the defect size 𝑎 , .  

From the conditional P-S-N curves and by taking into account the definition of marginal distribution, 
the P-S-N curves not conditioned to 𝑎 ,  can be also estimated.  They are called in the following 

“marginal P-S-N curves” and are obtained by integrating from 0 to infinite with respect to 𝑎 ,  the 
product of the conditional fatigue life and the distribution of defect size, which is assumed to follow a 
Largest Extreme Value Distribution (LEVD) [8]: 
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𝐹 (𝑦; 𝑥) = ∫ 𝛷
, ,

, √

√

√

𝑑 𝑎 , , (2) 

 
being φ (∙) the probability density function of the standardized Largest Extreme Value distribution 
with parameters 𝜇√  and 𝜎√ . By substituting 𝐹 (𝑦; 𝑥) with 𝛼 , the 𝛼  marginal P-S-N curve can be 
estimated by solving Equation 2 with respect to 𝑥 for different values of 𝑦. Moreover, according to [10], 
by expressing the LEVD as a function of the risk-volume, the dependency between the P-S-N curves 
and the risk-volume can be estimated (size-effect). The models in Equation 1 and 2 are general and can 
be employed to assess the dependency of the fatigue life with respect to the defect size both in HCF and 
in VHCF. They are used to model the finite fatigue life, with a continuous decreasing trend; on the other 
hand, if an asymptotic behaviour is to be modelled at the end of the curve (i.e., a fatigue limit is present), 
the distribution function of the fatigue limit should be defined. According to [7], the cumulative 
distribution function of the logarithm of the fatigue limit (𝑋 ) conditioned to the defect size (i.e., 
𝐹 𝑦; 𝑥; 𝑎 , ) is given by: 
 

⎩
⎪
⎨

⎪
⎧𝐹 | ,

𝑥 ; 𝑎 , = 𝛷
,

𝜇 𝑎 , =
, ( )

,
⁄ ,

𝜎 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

, (3) 

 
being 𝜇 𝑎 ,  and 𝜎  the mean value and the standard deviation of the fatigue limit, respectively, 
with 𝑐 , 𝑐 ,  and 𝛼 ,  three constant coefficients that have to be estimated from the experimental data 
and 𝐻𝑉 the Vickers hardness of material [8]. In particular, the model in Equation 3 is general and can 
be used to estimate the fatigue limit both for fatigue failures with and without the Fine Granular Area 
(FGA) morphology. In particular, the constant coefficients 𝑐 ,  and 𝛼 ,  are estimated by considering 
the stress intensity factor threshold as a function of the defect size [7]; whereas the 𝑐  coefficient 
accounts for the local reduction of the stress intensity factor threshold in the vicinity of the defect within 
the FGA. It is generally acknowledged in the VHCF literature that crack can grow within the FGA even 
though the stress intensity factor associated to the defect is smaller than the threshold for crack 
propagation [7-8]. It is worth to note that for 𝑐 = 1, 𝜇 𝑎 ,  corresponds to the well-known 
Murakami equation for the estimation of the fatigue limit in presence of defects, without FGA; whereas, 
for 𝑐 ≠ 1, it permits to assess the fatigue limit in presence of defects, with FGA formation. 

The model for the conditional P-S-N curves in presence of defects and with fatigue limit is given by 
[7]: 
 

𝐹 | ,
𝑦; 𝑥, 𝑎 , = 𝛷

, ,
𝛷

,
, (4) 

 
The model for the marginal P-S-N curves in Equation 2 can be easily modified to take into account 

the presence of the fatigue limit:  
 

𝐹 (𝑦; 𝑥) = ∫ 𝛷
, ,

𝛷
,

, √

√

√

𝑑 𝑎 , , (5) 
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From Equation 1-5 it is possible to assess the P-S-N curves in presence of defects both in HCF and 
in VHCF. They represent the starting models for the estimation of the P-S-N curves of the so-called 
“duplex model”. 

2.2.  Duplex model: P-S-N curves 
 

According to the literature, the duplex model [11-13] involves a linear trend in the HCF region, a 
transition stress amplitude, a second linear trend in the VHCF region with a fatigue limit at the end. In 
its general formulation [14], in the HCF region the fatigue failures originate from the surface, whereas 
the crack initiation shifts to internal defects in the VHCF region. This is the most general model and is 
schematically shown in Figure 1: 

 
 

 
Figure 1: Schematic representation of the duplex P-S-N curve. 

 
The models in Equations 1-5 must be modified in order to take into account the presence of two 

different decreasing trends and of a transition stress amplitude. The logarithm of the transition stress 
amplitude (𝑋 ) is assumed to be normally distributed [6], with constant mean 𝜇  and standard deviation 
𝜎 : 
 

𝐹 (𝑥) = 𝛷

𝜇 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝜎 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

, (6) 

 
being 𝐹 (𝑥) the cumulative distribution function of the logarithm of the transition stress amplitude. By 
modifying the formulation in [6] to take into account the crack initiation from defects in the VHCF 
region, the general model for the marginal duplex P-S-N curve becomes: 
 

𝐹 (𝑦; 𝑥) = 𝛷 𝛷 , ( )

,
+ 1 − 𝛷  ∫ 𝛷

, , ,

,
𝛷

,

, √

√

√

𝑑 𝑎 ,  ,  (7) 

 
with the quantities with subscript 𝑠 (𝜇 , (𝑥) and 𝜎 , ) referring to the surface failure mode and the 
quantities with subscript 𝑖 referring to the internal failure mode (𝜇 , 𝑥, 𝑎 ,  and 𝜎 , ). This is the 
complete and most general model and by substituting 𝐹 (𝑦; 𝑥) with 𝛼  and solving Equation 7 with 

A
pp

lie
d 

st
re

ss
, 𝑠

 

Number of cycles, 𝑁  

Surface failures 

Failures from defect 

Transition 
stress 

Fatigue limit 
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respect to 𝑥 for different values of 𝑦 it is possible to assess the 𝛼  quantile of the P-S-N curve. It is 

worth to note that with 𝛷 = 1, Equation 7 reduces to the case of finite fatigue life with linear 

decreasing trend and failures originating from the surface; whereas, with 𝛷 = 0, Equation 7 

models a linear decreasing trend with fatigue limit in case of failures from defects. Moreover, if a clear 

fatigue limit is not evident from the experimental data, 𝛷
,

= 1 and the curve in the VHCF 

region has a continuous monotonic decreasing trend.  
If the fatigue crack originates from defects also in the HCF region, Equation 7 can be modified by 

replacing 𝛷 , ( )

,
 with 𝐹 (𝑦; 𝑥) in Equation 5: 

 

𝐹 (𝑦; 𝑥) = 𝛷 ∫ 𝛷
, , ,

, ,

,
, √ ,

√ ,

√ ,

𝑑 𝑎 , +  

+ 1 − 𝛷  ∫ 𝛷
, , , ,

, ,
𝛷

,
,

, √ ,

√ ,

√ ,

𝑑 𝑎 ,  , (8) 

 
and the superscript 1 and 2 discriminates between HCF (superscript 1) and VHCF (superscript 2). In 
general, 𝜑 ,  is equal to 𝜑 , , but this must be experimentally validated. 

If the transition stress is not evident (i.e., a bilinear trend is present with an abrupt change of the 
slope, as for some Aluminium alloys [15]), Equation 7 can be easily modified as follows: 
 

𝐹 (𝑦; 𝑥) = ∫ 𝛷
, , ,

, ,

,
, √ ,

√ ,

√ ,

𝑑 𝑎 ,  ∙

 ∫ 𝛷
, , , ,

, ,
𝛷

,
,

, √ ,

√ ,

√ ,

𝑑 𝑎 ,  ,  (9) 

 
The model in Equation 7 is very general and can be easily adapted to different fatigue models 

available in the literature: duplex without fatigue limit, linear with or without fatigue limit, bilinear with 
or without fatigue limit. 
 

2.3.  Parameter estimation 
 

The models described in previous Sections depend on many constant parameters that must be estimated 
from the experimental data. Figure 2 shows schematically the procedure for the estimation of the 
parameters involved in the general model in Equation 7 (superscript 𝑠 refers to surface failures, whereas 
the superscript 𝑖 refers to internal failures from defects): 
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Figure 2: Schematic representation of the procedure for the parameter estimation of the duplex P-S-N 

curves 
 
According to Figure 2, the constant parameters of the distribution of the finite fatigue life in HCF 

and VHCF regions are estimated concurrently. In particular, they are estimated through the application 
of the Least Squares Method or of the Maximum Likelihood Principle by considering the model reported 
in Equation 1 (i.e., 𝑛 = 0, for surface failures). For failures from defects, the LEVD distribution 
parameters are estimated again through the application of the Least Squares Method or of the Maximum 
Likelihood Principle by considering the defect size measured on the fracture surfaces [7]. For the fatigue 
limit, the procedure for parameter estimation is described in detail in [7]. In particular, the 𝑐 ,  and 
𝛼 ,  parameters are estimated through a linear regression between the stress intensity factor associated 
to the size of the defect originating the fatigue failures (or the FGA size) and the defect size (or the FGA 
size); whereas the 𝑐  parameter is estimated through the application of the Maximum Likelihood 
method of the model reported in [7] and describing the probability of having a failure and runout for the 
experimental data. Following the scheme in Figure 2, once the parameters for the finite fatigue life and 
the fatigue limit are estimated, the mean value and the standard deviation for the transition stress 
amplitude become the only unknown parameters, which are estimated through the application of the 
Maximum Likelihood Principle of the model reported in Equation 7. In the proposed software this 
procedure is implemented and carried out automatically, providing the unknown parameters in few 
seconds. 

3.  Experimental validation 
 

In this Section, the models and the procedure for parameter estimation are experimentally validated. In 
particular, in Section 3.1 the graphical user interface is briefly presented; in Section 3.2 the models are 
experimentally validated by considering the experimental results obtained by the authors or taken from 
the literature. 

 

Finite fatigue life 
parameter estimation 
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𝜎 ,
+ 
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𝜎
 𝛷
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3.1.  Graphical user interface 
 

The software Matlab is used for the implementation of the models described in previous Section. In 
particular, a Matlab code is written for the automatic parameter estimation. In Figure 3, the graphical 
user interface is shown: 
 

 
Figure 3: Graphical user interface for the parameter estimation and for the assessment of the P-S-N 

curves. 
 

According to Figure 3, the developed graphical user interface permits to select the reliability of the 
P-S-N curves in output, to select the mode of failure in the HCF region (above the transition stress) for 
the duplex model and, for the conditional P-S-N curves, the defect size. The models currently available 
are those described in previous Section and the analysis can be run by uploading a text file and with the 
button “P-S-N”. The software provides in output the P-S-N curves and the estimated parameters in a 
text file. The graphical user interface is currently under development. 

3.2.  Model validation 
 
The models implemented and the procedure for parameter estimation are finally validated. The simplest 
model, i.e. the marginal P-S-N curves without fatigue limit, is validated at first. In particular, the 
experimental data reported in [16] (experimental tests on as-built AlSi10Mg specimens obtained through 
a Selective Laser Melting process) are considered for the validation. The parameter estimation is carried 
out by applying the Maximum Likelihood Principle and by considering both failures and runout. Figure 
4 shows the marginal P-S-N curves for the experimental data in [16]: the median, the 90-th and the 10–
th marginal curves are shown, together with the experimental data.   

Reliability Mode of failure 
in HCF 

Output curves Defect size for 
conditional curve 

Model available 

Experimental 
dataset 
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Figure 4: Marginal P-S-N curves estimated through tests on AlSi10Mg specimens produced through 

SLM [16]. 
 

According to Figure 4, the marginal P-S-N curves are in agreement with the experimental data: about 
the 50% of the experimental failures are above the median curve and about the 89% are within the 80% 
confidence interval, thus validating the proposed model.  

The case of experimental failures in VHCF with FGA morphology and fatigue limit is also validated. 
The experimental data reported in [17] (ultrasonic fatigue tests on H13 tool steel) are considered. The 
resulting marginal P-S-N curves (median, 10% and 90%) are shown in Figure 5. 
 

 
 
Figure 5: Marginal P-S-N curves estimated from tests on H13 specimens [17]: finite fatigue life (with 

FGA morphology) and fatigue limit. 
 

As for Figure 5, also the model with fatigue limit is in good agreement with the experimental data, 
with all the data within the 80% confidence interval and the median curve below and above the 50% of 
the experimental failures.  

The duplex model without fatigue limit is also validated. The experimental dataset reported in [11] 
and obtained by testing a High-Strength-Low-Alloy (HSLA) steel is considered: in particular, surface 
failures are found above the transition stress; whereas failures originating from defects are 
experimentally found in the VHCF region. The experimental data and the estimated marginal P-S-N 
curves (95%, median and 5%) are shown in Figure 6. 
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Figure 6: Marginal P-S-N curves estimated through tests on HSLA specimens [11]: duplex model 

without fatigue limit. 
 

According to Figure 6, even if the number of experimental data is limited, the model is capable to 
properly fit the two trends and the transition stress. The median curve is capable to equally subdivide 
the experimental failures and all the data are within the 90% confidence interval. 

Finally, the complete duplex model is validated by considering the fatigue response of a H13 tool 
steel. In particular, for the HCF region the experimental results are taken from the literature [18] and the 
fatigue failures originated from the specimen surface. On the other hand, the experimental data for the 
VHCF are collected by the authors [17]. Even if the data are obtained by different authors and by 
considering different manufacturing processes, they can be used for a qualitative validation of the 
proposed duplex model. Figure 7 shows the experimental data together with estimated P-S-N curves 
(5%, median and 95%). 
 

 
 

Figure 7: Marginal P-S-N curves estimated through tests on H13 tool specimens [17, 18]: duplex 
model with fatigue limit. 

 
As shown in Figure 7, the estimated model for the complete duplex curve well fits the experimental 

data and is capable of properly modelling the occurrence of two failure modes, a transition between 
them and a final asymptote. 96% of the experimental data are within the 90% confidence interval and 
the median curve equally subdivides the experimental dataset, proving the validity of the model and of 
the procedure for the parameter estimation even in presence of different failure modes. 

4.  Conclusions 
 
In the present paper, a new software for the estimation of the P-S-N curves in case of failures originating 
from defects has been proposed. The models implemented in the software have been described and 
validated by considering the experimental data collected by the authors and taken from the literature. In 
particular, a general model for the estimation of the duplex curve with fatigue limit has been proposed. 
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Differently from the literature, the influence of defects on the fatigue life in the HCF and in the VHCF 
region can be taken into account with the proposed formulation.  

The experimental validation has confirmed the validity of the implemented models and also of the 
procedure for the parameter estimation, which takes a limited time even for the most complex models 
(less than 1 minute). The proposed software has been implemented by writing a Matlab code. It would 
permit to reliably assess the P-S-N curves when defects are at the origin of the fatigue failures and would 
help designers in assessing the fatigue strength of components both in HCF and in the VHCF region and 
in presence of different failure modes. 
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