
16 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Control-flow integrity for real-time operating systems: open issues and challenges / Eftekhari Moghadam, Vahid; Meloni,
Marco; Prinetto, Paolo. - ELETTRONICO. - (2021), pp. 1-6. (Intervento presentato al convegno 19th IEEE EAST-WEST
DESIGN & TEST SYMPOSIUM (EWDTS-2021) tenutosi a Batumi, Georgia nel September 10-13. 2021)
[10.1109/EWDTS52692.2021.9581003].

Original

Control-flow integrity for real-time operating systems: open issues and challenges

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/EWDTS52692.2021.9581003

Terms of use:

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2923694 since: 2021-09-14T12:51:19Z

Institute of Electrical and Electronics Engineers Inc.

Control-Flow Integrity for Real-Time Operating
Systems: Open Issues and Challenges

Vahid EFTEKHARI MOGHADAM
Politecnico di Torino

CINI Cybersecurity National Lab.
Turin, Italy

vahid.eftekhari@polito.it

Marco MELONI
Politecnico di Torino

Turin, Italy
marco.meloni@studenti.polito.it

Paolo PRINETTO
Politecnico di Torino

CINI Cybersecurity National Lab.
Turin, Italy

paolo.prinetto@polito.it

Abstract—The pervasive presence of smart objects in almost
every corner of our everyday life urges the security of such
embedded systems to be the point of attention. Memory vulner-
abilities in the embedded program code, such as buffer overflow,
are the entry point for powerful attack paradigms such as
Code-Reuse Attacks (CRAs), in which attackers corrupt systems’
execution flow and maliciously alter their behavior. Control-
Flow Integrity (CFI) has been proven to be the most promising
approach against such kinds of attacks, and in the literature, a
wide range of flow monitors are proposed, both hardware-based
and software-based. While the formers are hardly applicable as
they impose design alteration of underlying hardware modules,
on the contrary, software solutions are more flexible and also
portable to the existing devices. Real-Time Operating Systems
(RTOS) and their key role in application development for
embedded systems is the main concern regarding the application
of the CFI solutions.

This paper discusses the still open challenges and issues
regarding the implementation of control-flow integrity policies on
operating systems for embedded systems, analyzing the solutions
proposed so far in the literature, highlighting possible limits in
terms of performance, applicability, and protection coverage, and
proposing possible improvement directions.

Index Terms—security, cybersecurity, code-reuse attacks, ROP,
control-flow integrity, embedded systems, operating systems

I. INTRODUCTION

The widespread use of the Internet of Things (IoT) and the
social impact of the IoT applications and services, obliges data
protection and information security. Due to its heterogeneous
nature and complex architecture, IoT infrastructure and the
devices operating within, from large servers in the cloud to
small edge computing devices, are always facing security
and privacy issues. Thus, effective and powerful protection
mechanisms are necessary to be implemented in order to
guarantee the reliability and safety of operations. Security
of IoT can be classified under two main categories: security
in isolation and security inside the cloud. Security measures
inside the cloud focus more on the IoT infrastructure and
the security of its services. Issues like device authentication,
secure network access, secure communication, storage, and
availability fall into this category, whereas security in isolation
targets the solutions designed around the operational safety of
devices. Issues like secure boot, secure update, and memory
isolation of processes are examples of this category.

Trustworthiness is a key part of achieving higher security
for embedded systems. Aspect such as adopted programming
language can play an important role. Due to their nature,
most of the code written for the embedded devices is in C
and C++ [3]. These languages allow better low-level control
over the hardware and its resources, such as direct memory
management. Operating with such a level of freedom could
cause a wide range of security vulnerabilities. For example,
out-of-bound memory writes (e.g., buffer overflow) [4] can
lead to data corruption on stack or heap, and an adversary
can exploit these vulnerabilities in absence of countermea-
sures to inject malicious content into the memory. Some of
these vulnerabilities also enable attackers to corrupt code
pointers, which are used as an argument to indirect control-
flow instructions. In such exploitations, the attackers redirect
the program execution to a portion of code that is already
present in the memory (e.g., part of the standard library)
instead of directly injecting malware. Randomly in memory,
there are short sequences of instructions called gadgets that
an adversary can use. By chaining multiple gadgets together,
one can force a complete arbitrary execution. This kind of
threat is usually referred to as Code-Reuse Attacks (CRA),
and well-known exploit paradigms such as Return Oriented
Programming (ROP) [50] [20] [23] [48] and Jump Oriented
Programming (JOP) [16] [26] are based on such techniques.

Control-Flow Integrity (CFI) is an ideal technique that
can be enforced to prevent attacks that alter the program
execution flow [8]. CFI enforcement dictates that the program
execution should follow a predetermined path following the
Control-Flow Graph (CFG). The CFG can be obtained by
analyzing the program binary. Several solutions for the CFI
have been proposed ranging from hardware-based solutions to
pure software implementations. For example, some commer-
cial tools such as the LLVM [5] compiler partially implement
security policies introduced by CFI in software. Although the
hardware-based solutions are the finest, they lack applicability
in most cases. On the contrary, software-based solutions are
more portable. Embedded systems nowadays have RTOSs or
embedded OSs on board since they help in producing better
code by providing the common functionalities needed for
application development and reducing the time and effort of
the development by hiding away underlying hardware details.

Although the adoption of CFI solutions is increasing among
commercial software, the embedded world has not benefited
much. Due to resource constraints of embedded platforms,
CFI solutions are rare, and performance or applicability costs
prevent easy integration.

This paper discusses on challenges that are to be faced
when proposing an all-encompassing solution, analyzing is-
sues of the current proposed solution for CFI for embedded
operating systems. The remainder of the paper is organized
as follows: Section II provides some technical background on
Control-Flow Integrity (CFI); Section III analyses in detail
CFI solutions proposed for embedded systems, their issues,
and challenges to be addressed. Section IV finally concludes
the paper.

II. BACKGROUND

Arbitrary Code Execution (ACE) in computer security is
the term used to express the attacker’s ability to execute
arbitrary programs or code on a target machine. There are
different classes of vulnerability [6] [1] [2] that can be used
by an adversary to exploit security flaws and accomplish ACE.
Memory safety vulnerabilities such as buffer overflow [47]
are among the most common ones in the embedded world
due to the heavy use of system programming languages like
C/C++. Although these languages provide better means of
low-level control over hardware resources, especially memory,
improper management by programmers can introduce security
vulnerabilities [47] [11] [53].

Arbitrary code execution exploits the control over the value
of the instruction pointer (also known as Program Counter)
of the running program. The instruction pointer points to the
next instruction that will be executed, therefore by tamper-
ing with the value of IP, attackers can alter the execution
and redirect it to malicious code, referred to as payload.
Classically, vulnerabilities present in stack [45] allowed the
attackers to inject the malicious code including the corrupted
instruction pointer in the program’s memory [45]. Due to
the adoption of protection mechanisms such as stack canary
[29] or Data Execution Prevention (DEP) [52] code injection
exploits lost their relevance. For example, in stack canary
protection mechanism when a function call takes place, some
know values (e.g., a random value) are pushed on top of the
stack placed between the return address and the function’s
local variables. On the return from the function, these values
are checked and if they have been changed, it is considered
as an attack resulting in program termination. With these
protection mechanisms in place, a new paradigm of attacks
emerged, the so-called Code-Reuse Attacks (CRA). In CRA,
attackers exploit the program’s code present in the memory,
bypassing the protection mechanism (e.g., DEP) and altering
the programs’ execution flow for getting a malicious result.
For example, Return-Oriented Programming (ROP) [20] [34]
[24] [23] [40] is a class of CRA in which short code sequences
within the existing binary, referred to as gadgets, ending with
ret instructions, are linked together and executed in arbitrary
order by exploiting the stack (assuming the return address

can point anywhere) to hijack the control flow. By having a
relatively large enough codebase, it has been shown that one
can link enough gadgets to achieve a meaningful result with
Turing-compute capabilities [50] [54]. Other classes of CRA
attacks exploit other forms of gadgets like indirect jmp and
call to achieve the desired control-flow alteration. Jump-
Oriented Programming (JOP) [16] [26] and Call-Oriented
Programming (COP) [49] are examples of that. To tackle the
CRA exploits, many studies and research have been done
and some countermeasures such as Address Space Layout
Randomization (ASLR) [14], Shadow Call Stack [55] [35] [27]
[19] [18], or heuristic-based approaches like DROP [25].

In the paper [7], the concept of Control-Flow Integrity
(CFI) as a general defense technique for control-flow hijacking
attacks is introduced. CFI security policy ensures that the
program execution flow strictly follows the path of Control-
Flow Graph (CFG). The CFG in question can be defined stat-
ically through analysis (source-code analysis, binary analysis,
or execution profiling) before program execution [8]. CFG rep-
resents the control flow of a program by grouping non-jumping
instructions which are executed sequentially into basic blocks
(the graph nodes), and the branches caused by jump, call, or
ret instructions (the graph edges). Subsequently, at runtime,
program control-flow transfers (potentially corrupted due to
an attack) are checked against the CFG to ensure correct
execution flow. Since in most cases it is possible to assume
the code stored in Flash memory as immutable, monitoring is
only enforced on indirect forms of branching instructions.

Given a CFG, CFI policy enforcements are generally cat-
egorized into coarse-grained or fine-grained types. Coarse-
grained polices are those who do not strictly follow the CFG
due to lack of precision, and they are more like heuristic
solutions chasing against most probable cases. The possible
aim of such solutions could be tackling the performance
overhead. Contrarily, fine-grained solutions comply strictly
with the CFG. Thus, fine-grained CFI policies are the only
solutions that can guarantee full compliance with the intended
program design.

In literature, there are many CFI implementations pur-
posed each focusing on different aspects such as precision,
performance, or scalability. There exist software solutions
based on binary instrumentation such as label-based binary
instrumentation, first proposed by the original CFI paper [7],
or Control-Flow Locking [15]. Also, hardware-based solutions
tackle the monitoring through hardware with the hope of
mitigating the overhead, such as the solution introduced by
Sullivan et al. [51] on SPARC LEON 3 processor. In the next
section, an analysis will be made of some of the relevant
techniques proposed to provide real-time operating systems
with CFI protection, and their effective applicability and pos-
sible limitations will be discussed, including some suggestions
for future studies that aim to find an all-encompassing and
improved solution compared to the techniques proposed so
far.

III. CURRENT SOLUTIONS AND OPEN ISSUES

To the authors’ best knowledge, current research on the
implementation of CFI for embedded and real-time operating
systems is poor, especially regarding software-based solutions
for commercially available systems. However, some research
for commodity operating systems can be taken into consider-
ation as a starting point for application to RTOSs.

An ideal, all-encompassing solution for real-time applica-
tions should have these characteristics:

• Complete CFI coverage, which is comprised of:
– Full forward and backward branches protection;
– Protection of the interrupt context, which is not

predictable from the CFG analysis only [44].
• Uncompromised workload schedulability: this means

having ideally negligible overhead. This is evaluated
depending on the specific system and workload. Most
embedded platforms running real-time applications are
usually resource-constrained, which makes this a sig-
nificant issue. Overhead should be considered both for
performance and code size.

This ideal solution is difficult to achieve because it incurs
the trade-off between security and overhead. All proposed
solutions at the moment have to compromise on one of them,
although to different degrees, while giving priority to the other
one. This makes RTOS hardening a still open issue.

Among the solutions providing full forward and backward
branch protection, one possibility is RECFISH [56]. In this
RTOS-specific solution, a traditional approach to CFI is ap-
plied, using static analysis to generate the complete CFG and
then instrumenting the binary with label checking. The hard-
ware memory protection functionalities of the ARM platform
are employed to isolate a memory region for the shadow
stack, which is used to protect backward branches. The system
interacts with the shadow stack through supervisor calls that,
by triggering a software interrupt, can write to the protected
memory in privileged mode. While these mechanisms work
at the bare-metal level, OS support is added by making some
changes to FreeRTOS [36], a popular open-source RTOS, by
modifying the scheduler, task initialization, and task control
block. As expected from classical CFI solutions, there is
significant overhead from all the extra instructions introduced
by the binary instrumentation, with relevant schedulability
difficulties. The researchers tested a wide array of workloads
and the results were mixed depending on their composition:
around 15% of all workloads tested were not schedulable
anymore after instrumentation, and a 30% of loss in utilization
was measured for the worst cases. As a possible way to
mitigate this problem, the researchers propose the idea of
marking the tasks that do not allow any user interaction as
“safe” and not instrument those, while applying CFI checks
only to the “unsafe” ones. In their benchmarks, this has been
proven successful, but introduces the new problem of having
the developer decide which tasks are safe or not and trust
their judgement. Inter-task communication between “safe” and
“unsafe” tasks also becomes a problem, along with state

persistence among subsequent task executions. Creating a tool
able to analyse the tasks and schedule and automatically mark
tasks as “safe” or “unsafe” could be a way to significantly
reduce the schedulability issue. Also, RECFISH is not com-
pletely secure, since it is still vulnerable to attacks to interrupt
handlers [44], that operate at the same privilege level of
supervisor calls and that can potentially modify the shadow
stack memory.

A more secure solution that also involves protection against
interrupt attacks can potentially be found looking at non-
RTOS-specific research. Several solutions aiming to solve the
problem of kernel security in commodity operating systems
have been proposed, with approaches that can potentially be
considered for embedded OSs as well. Some of them, like
KCoFI [30], use coarse-grained CFI, which can be beaten with
carefully-crafted attacks [37] [28] [22] [31]. Finding a fine-
grained solution was thus made necessary to obtain adequate
security guarantees. One proposed solution is FINE-CFI [41]:
this approach uses virtualization as a way to protect not only
the forward and backward branches through code instrumen-
tation with indexed hooks [42], but the interrupt context as
well: Linux KVM [39] handles a protected stack used to store
control data whenever an interrupt is called, and check it
when going back to the normal operations. This solution still
introduces some non-negligible overhead, going from 10% to
20% depending on the benchmark. This is of course a source
of issues for task schedulability in real-time situations. Despite
the increasing support for KVM on ARM, especially from
ARMv8, and even if KVM seems to introduce acceptable
latencies for most real-time workloads [10] when compared
to the past [12], there is still the problem of KVM being
limited to use with Linux. Preempt RT [33] and LITMUSRT

[21], respectively a real-time patch and an extension to the
stock kernel, can mitigate the latency problem present in the
standard Linux kernel. In any case, the issue of the size and of
a too-large Trusted Computing Base (TCB) still stands. This
is a problem for memory-constrained systems, and translates
into a very wide attack surface. An ideal solution would be
able to support the adoption of a more lightweight RTOS, like
FreeRTOS or RIOT, for use on resource-constrained systems.
For those situations, having an embedded specific hypervisor
that is not dependent on a single kernel architecture would be
preferable.

Despite the advantages, both of the last two works presented
cannot appropriately handle the schedulability problem. This
issue is instead primarily addressed by TrackOS [46]. TrackOS
is a RTOS based on FreeRTOS, that adds CFI monitor-
ing capabilities while prioritizing determinism and workload
schedulability. It works by generating a call graph for every
regular task through static analysis, and then by scheduling a
special “monitoring” task that gets scheduled along with the
other ones as part of the workload. The task checks the control
stack of each other tasks against their call graph for clues
of control flow violations whenever the scheduler executes it.
This allows the user to control the overhead introduced by
CFI and only schedule the monitoring task in a way that does

not compromise the schedulability of the overall workload,
depending on deadlines and their relative importance com-
pared to overall security protection. Even if providing security
improvements in a very time-efficient manner, this approach is
not a complete solution against control-flow attacks: there is
no real control over branching operations, which means that,
as long as a task is not switched out by the scheduler, any
attack will go on undetected. More, a monitoring task just
being a task like the others is also a problem, as it incurs
the risk of being starved by a higher-priority task, if any exist.
Overall, TrackOS is a perfect example of the trade-off between
schedulability and full CFI coverage, achieving the former at
the cost of a security loss.

An area of interest is the world of hardware-assisted support
for security features, which is becoming more and more
common in the embedded world as well. ARM in particular
has been working in that direction for the last few years.
With the introduction of ARMv8.3, Pointer Authentication
(PA) [17] has been added as a hardware-assisted way of
securing function pointers by signing them with a unique code
that is to be used for authentication before consuming them.
This code (called Pointer Authentication Code or PAC) is
generated using the QARMA algorithm [13], which takes the
pointer, a key, and a modifier to generate a value that will get
truncated and inserted in the unused bits of the pointer. This
is possible since 64-bit pointers are oversized for the address
space they usually refer to, and thus have unused bits. There
are 5 different keys that can be used, and the modifier depends
on the developer’s choice.

Since the first Qualcomm whitepaper came out in 2017 [38],
several applications of PA have been proposed to implement
control-flow protection through function pointer authentication
instead of using labels. One of them is Camouflage [32],
which protects the PA keys by using them through a function
contained inside of a memory page that is mapped as a XOM
(eXecution Only Memory) at the kernel level by the hypervisor,
which also controls key use in such a way to avoid exposing
them. The modifiers used for the PAC generation differ based
on whether they are generated for forward or backward
branches. The control-flow protection works by signing the
function pointers for forward branches and the stack pointer
to protect backward branches and then authenticating them
before calling a function or returning from it. This is done
through setter and getter inline functions in the first case and
function prologues and epilogues in the second one. These
work thanks to code instrumentation in a similar fashion to
traditional labels, which means that this system is vulnerable
to time-of-check-to-time-of-use attacks (TOCTOU) [9], and
has no protection from interrupt-based attacks, which could be
employed to expose and modify kernel registers, like modifiers
or previously authenticated pointers. Additionally, while the
risk of pointer-reuse attacks is mitigated through the use of
custom modifiers, it is still an unsolved vulnerability. There is
also the issue of not respecting ISO C compliance and needing
to adapt some C library functions to be able for Camouflage
to work. As for the overhead introduced by this system,

system call benchmarks denote a performance overhead ranged
from 10% to 30%, but the researchers argue that actual user
applications are not that system-call intensive, and provide
3 benchmarks with an average of 7% overhead. The system
call usage of tasks in a real-time schedule thus can influence
heavily the total overhead.

A similar approach is used in PATTER (Pointer AuThenTi-
cation for kERnels) [57], which uses static analysis and code
instrumentation to protect the kernel by leveraging the security
functionalities of PA. The code analysis and instrumentation
are applied to the Intermediate Result from the LLVM compi-
lation process of Clang, and once again, custom modifiers are
used to try to have unique context identifiers needed to make
pointer-reuse attacks more difficult. Here, one can notice that
all function pointers in the kernel memory are in the same
address range: this means that the address of each one of them
can be used as a unique identifier to make pointer-reuse attacks
impossible. Compared to the previous work, this one mitigates
the risk of TOCTOU attacks by using specific instructions
like brlaa and retaa, which implement authentication and
branching in a single instruction, guaranteeing the atomicity of
the operation. This is unfortunately not possible for function-
pointer store and load operations, but the authors argue that
this is a non-issue, since they will be authenticated atomically
before branching anyway. To get full coverage of the function
pointers inside the kernel the static algorithm used by PATTER
is not enough, since there are some special cases to consider,
like the use of pointer arithmetic, pointers holding physical
addresses, and pointers inside of unions. In the considered
kernel (Linux), all of these are fairly rare. So, for the first
two cases, manual patching is possible, and for the last one
a protocol using the 64-bit alignment of pointers as a way to
recognize the element type is a working solution. However,
there is no guarantee this is the case for all OS kernels,
and more robust/structured solutions to the problem would
be ideal. Looking at the system call benchmarks, PATTER
introduces around 10%-20% performing overhead. Additional
testing would be needed to assess the actual impact on normal
operation when running user applications.

Both PA-based solutions still result in introducing some
overhead, although significantly less compared to other solu-
tions, but only PATTER introduced adequate protection against
TOCTOU attacks. The use of atomic instructions would be
advisable for Camouflage as well. Also, the adoption of PA
introduced new attack vectors, because of pointer substitution.
The feasibility and dangerousness of those attacks still have
to be adequately evaluated and would be a matter of interest
to better frame PA as a security measure.

Table I summarizes the results of the analysis made on the
solutions presented, with respect to the individuated metrics
of interest: coverage of both backward and forward edges,
interrupt awareness, and workload schedulability.

IV. CONCLUSIONS

The present paper analysed control-flow integrity solutions
designed for embedded systems, focusing on embedded op-

TABLE I
SUMMARY OF ANALYSED SOLUTIONS AND THEIR COVERAGE OF THE

MAIN ISSUES.

Solution F&B coverage Int. awareness Schedulability
RECFISH [56] Yes No Compromised
FINE-CFI [41] Yes Yes Compromised
TrackOs [46] No No Uncompromised

with appropriate
scheduling

Camouflage [32] Yes No Compromised
PATTER [57] Yes Yes Compromised

erating systems and real-time operating systems. As it was
stated, the CFI solutions for the embedded world are limited.
Due to resource/performance constraints, proposed solutions
have many drawbacks that need to be addressed and their ap-
plicability is limited due to this fact. As an example, TrackOS
can flexibly tackle the problem of scheduling, however, it lacks
full security coverage. This trade-off between performance
and security coverage is the main point of discussion. The
ideal solution that should be considered has to guarantee the
full coverage (forward edges, backward edges, and interrupts
awareness) while introducing no significant overhead. How
to achieve such a solution is still an open issue, especially
considering the RTOS sector.

Some ideas and techniques from the current research could
be taken into consideration for future solutions. Virtualization
is a technique that has become more common in the embedded
sector in recent years, with native support present in most
recent ARM platforms. Hence, hypervisor-based techniques
could be a viable solution. On that end, the limiting factor
of current research is the common use of KVM. While fine
for commodity operating systems, for real-time platforms it
could be better to use some different virtualization techniques
to be able to adopt lightweight RTOS, thus reducing both bloat
and possibly latency. Tools such as Bao [43], an open-source
lightweight hypervisor created for embedded platforms with
specific consideration for real-time use, could be compelling
instruments in that direction. Another interesting area is native
hardware extensions, like PA. Having this hardware support for
security features could be a very powerful ally when trying to
reduce overhead while maintaining strong security guarantees.
The inherent overhead from the authentication, even if limited,
could still be a problem for real-time applications. In the
case of RTOSs selecting tasks in a similar fashion to the
optimizations proposed for RECFISH could be a way to reduce
the overall delay and maintain better schedulability, by only
applying PA to the tasks deemed “unsafe”.

V. ACKNOWLEDGMENTS

This paper is partially supported by the Ph.D. research
program of TIM S.p.A (Italy).

REFERENCES

[1] Understanding type confusion vulnerabilities.
https://www.microsoft.com/security/blog/2015/06/17/
understanding-type-confusion-vulnerabilities-cve-2015-0336/, 2015.
[Online; accessed 30-July-2021].

[2] Ghostscript RCE through type confusion. https://securitylab.github.com/
research/cve-2018-19134-ghostscript-rce/, 2019. [Online; accessed 30-
July-2021].

[3] Interactive: The Top Programming Languages 2020
- IEEE Spectrum. https://spectrum.ieee.org/static/
interactive-the-top-programming-languages-2020, 2020. [Online;
accessed 07-June-2021].

[4] CCWE-120: Buffer Copy without Checking Size of Input (’Classic
Buffer Overflow’). https://cwe.mitre.org/data/definitions/120.html, 2021.
[Online; accessed 21-July-2021].

[5] Clang 13 documentation - CONTROL FLOW INTEGRITY. https://
clang.llvm.org/docs/ControlFlowIntegrity.html, 2021. [Online; accessed
27-July-2021].

[6] Deserialization of untrusted data. https://owasp.org/www-community/
vulnerabilities/Deserialization of untrusted data, 2021. [Online; ac-
cessed 30-July-2021].

[7] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-flow
integrity. In Proceedings of the 12th ACM conference on Computer
and communications security, pages 340–353. ACM, 2005.

[8] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow integrity
principles, implementations, and applications. ACM Transactions on
Information and System Security (TISSEC), 13(1):1–40, 2009.

[9] Robert P Abbott, Janet S Chin, James E Donnelley, William L Konigs-
ford, S Tokubo, and Douglas A Webb. Security analysis and enhance-
ments of computer operating systems. Technical report, NATIONAL
BUREAU OF STANDARDS WASHINGTONDC INST FOR COM-
PUTER SCIENCES AND . . . , 1976.

[10] Luca Abeni and Dario Faggioli. Using xen and kvm as real-time
hypervisors. Journal of Systems Architecture, 106:101709, 2020.

[11] J. Afek and A. Sharabani. Dangling pointer: Smashing the pointer for
fun and profit, 2007.

[12] Mehdi Aichouch, Jean-Christophe Prevotet, and Fabienne Nouvel. Eval-
uation of an rtos on top of a hosted virtual machine system. In
2013 Conference on Design and Architectures for Signal and Image
Processing, pages 290–297. IEEE, 2013.

[13] Roberto Avanzi. The qarma block cipher family. almost mds matrices
over rings with zero divisors, nearly symmetric even-mansour construc-
tions with non-involutory central rounds, and search heuristics for low-
latency s-boxes. IACR Transactions on Symmetric Cryptology, pages
4–44, 2017.

[14] S. Bhatkar, D. DuVarney C, and R. Sekar. Address obfuscation: An
efficient approach to combat a broad range of memory error exploits.
In USENIX Security Symposium, volume 12, pages 291–301, 2003.

[15] T. Bletsch, X. Jiang, and V. Freeh. Mitigating code-reuse attacks with
control-flow locking. In Proceedings of the 27th Annual Computer
Security Applications Conference, pages 353–362. ACM, 2011.

[16] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. Jump-oriented
programming: a new class of code-reuse attack. In Proceedings of the
6th ACM Symposium on Information, Computer and Communications
Security, pages 30–40. ACM, 2011.

[17] ARM Connected Community Blog. Armv8-a architecture – 2016
additions. https://community.arm.com/groups/processors/blog/2016/10/
27/armv8-a-architecture-2016-additions, 2016.

[18] C. Bresch, D. Hély, A. Papadimitriou, A. Michelet-Gignoux, L. Amato,
and T. Meyer. Stack redundancy to thwart return oriented programming
in embedded systems. IEEE Embedded Systems Letters, 10(3):87–90,
Sep. 2018.

[19] C. Bresch, A. Michelet, L. Amato, T. Meyer, and D. Hely. A red team
blue team approach towards a secure processor design with hardware
shadow stack. In 2017 IEEE 2nd International Verification and Security
Workshop (IVSW), pages 57–62, July 2017.

[20] E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When good
instructions go bad: Generalizing return-oriented programming to risc.
In Proceedings of the 15th ACM conference on Computer and commu-
nications security, pages 27–38. ACM, 2008.

[21] John M Calandrino, Hennadiy Leontyev, Aaron Block, UmaMah-
eswari C Devi, and James H Anderson. Litmusˆ rt: A testbed for
empirically comparing real-time multiprocessor schedulers. In 2006 27th
IEEE International Real-Time Systems Symposium (RTSS’06), pages
111–126. IEEE, 2006.

[22] N. Carlini and D. Wagner. Rop is still dangerous: Breaking modern
defenses. In 23rd USENIX Security Symposium (USENIX Security 14),
pages 385–399, 2014.

[23] S. Checkoway, L. Davi, A. Dmitrienko, A.R. Sadeghi, H. Shacham, and
M. Winandy. Return-oriented programming without returns. In Pro-
ceedings of the 17th ACM conference on Computer and communications
security, pages 559–572. ACM, 2010.

[24] S. Checkoway, A. J. Feldman, B. Kantor, J.A. Halderman, E. W. Felten,
and H. Shacham. Can dres provide long-lasting security? the case of
return-oriented programming and the avc advantage. EVT/WOTE, 2009,
2009.

[25] P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and L. Xie. Drop: Detecting
return-oriented programming malicious code. In A. Prakash and I. Sen
Gupta, editors, Information Systems Security, pages 163–177, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg.

[26] P. Chen, X. Xing, B. Mao, L. Xie, X. Shen, and X. Yin. Automatic
construction of jump-oriented programming shellcode (on the x86). In
Proceedings of the 6th ACM Symposium on Information, Computer and
Communications Security, pages 20–29. ACM, 2011.

[27] N. Christoulakis, G. Christou, E. Athanasopoulos, and S. Ioannidis. Hcfi:
Hardware-enforced control-flow integrity. In Proceedings of the Sixth
ACM Conference on Data and Application Security and Privacy, pages
38–49. ACM, 2016.

[28] Mauro Conti, Stephen Crane, Lucas Davi, Michael Franz, Per Larsen,
Marco Negro, Christopher Liebchen, Mohaned Qunaibit, and Ahmad-
Reza Sadeghi. Losing control: On the effectiveness of control-flow
integrity under stack attacks. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, pages 952–963,
2015.

[29] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, Q. Zhang, , and H. Hinton. Stackguard: Automatic adaptive
detection and prevention of buffer-overflow attacks. 98:5–5, 01 1998.

[30] John Criswell, Nathan Dautenhahn, and Vikram Adve. Kcofi: Complete
control-flow integrity for commodity operating system kernels. In 2014
IEEE Symposium on Security and Privacy, pages 292–307. IEEE, 2014.

[31] L. Davi, A. Sadeghi, D. Lehmann, and F. Monrose. Stitching the
gadgets: On the ineffectiveness of coarse-grained control-flow integrity
protection. In 23rd USENIX Security Symposium (USENIX Security 14),
pages 401–416, 2014.

[32] Rémi Denis-Courmont, Hans Liljestrand, Carlos Chinea, and Jan-Erik
Ekberg. Camouflage: Hardware-assisted cfi for the arm linux kernel.
In 2020 57th ACM/IEEE Design Automation Conference (DAC), pages
1–6. IEEE, 2020.

[33] The Linux Foundation. PREEMPT RT: The Linux Kernel real-time
patch. https://wiki.linuxfoundation.org/realtime/start, 2021.

[34] A. Francillon and C. Castelluccia. Code injection attacks on harvard-
architecture devices. In Proceedings of the 15th ACM conference on
Computer and communications security, pages 15–26. ACM, 2008.

[35] Aurélien Francillon, Daniele Perito, and Claude Castelluccia. Defending
embedded systems against control flow attacks. In Proceedings of the
first ACM workshop on Secure execution of untrusted code, pages 19–26.
ACM, 2009.

[36] FreeRTOS. FreeRTOS - Market Leading RTOS (Real Time Operating
System) for embedded systems with Internet of Things extensions. https:
//www.freertos.org/, 2021. [Online; accessed 27-July-2021].

[37] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis. Out of
control: Overcoming control-flow integrity. In 2014 IEEE Symposium
on Security and Privacy, pages 575–589, May 2014.

[38] Qualcomm Technologies Inc. Pointer authentication on armv8.3. Tech-
nical report, January 2017.

[39] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori.
kvm: the linux virtual machine monitor. In Proceedings of the Linux
symposium, volume 1, pages 225–230. Dttawa, Dntorio, Canada, 2007.

[40] T. Kornau et al. Return oriented programming for the ARM architecture.
PhD thesis, Master’s thesis, Ruhr-Universität Bochum, 2010.

[41] Jinku Li, Xiaomeng Tong, Fengwei Zhang, and Jianfeng Ma. Fine-cfi:
fine-grained control-flow integrity for operating system kernels. IEEE
Transactions on Information Forensics and Security, 13(6):1535–1550,
2018.

[42] Jinku Li, Zhi Wang, Tyler Bletsch, Deepa Srinivasan, Michael Grace,
and Xuxian Jiang. Comprehensive and efficient protection of kernel
control data. IEEE Transactions on Information Forensics and Security,
6(4):1404–1417, 2011.

[43] José Martins, Adriano Tavares, Marco Solieri, Marko Bertogna, and
Sandro Pinto. Bao: A lightweight static partitioning hypervisor for
modern multi-core embedded systems. In Workshop on Next Gener-

ation Real-Time Embedded Systems (NG-RES 2020). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2020.

[44] N. Maunero, P. Prinetto, and G. Roascio. Cfi: Control flow integrity
or control flow interruption? In 2019 IEEE East-West Design Test
Symposium (EWDTS), pages 1–6, Sep. 2019.

[45] A. One. Smashing the stack for fun and profit. Phrack magazine,
7(49):14–16, 1996.

[46] Lee Pike, Pat Hickey, Trevor Elliott, Eric Mertens, and Aaron Tomb.
Trackos: A security-aware real-time operating system. In International
Conference on Runtime Verification, pages 302–317. Springer, 2016.

[47] J. Pincus and B. Baker. Beyond stack smashing: recent advances in
exploiting buffer overruns. IEEE Security Privacy, 2(4):20–27, July
2004.

[48] R. Roemer, E. Buchanan, H. Shacham, and S. Savage. Return-oriented
programming: Systems, languages, and applications. ACM Transactions
on Information and System Security (TISSEC), 15(1):2, 2012.

[49] AliAkbar Sadeghi, Salman Niksefat, and Maryam Rostamipour. Pure-
call oriented programming (pcop): chaining the gadgets using call
instructions. Journal of Computer Virology and Hacking Techniques,
14(2):139–156, May 2018.

[50] H. Shacham et al. The geometry of innocent flesh on the bone: return-
into-libc without function calls (on the x86). In ACM conference on
Computer and communications security, pages 552–561. New York,,
2007.

[51] D. Sullivan, O. Arias, L. Davi, P. Larsen, A. Sadeghi, and Y. Jin.
Strategy without tactics: Policy-agnostic hardware-enhanced control-
flow integrity. In 2016 53nd ACM/EDAC/IEEE Design Automation
Conference (DAC), pages 1–6, June 2016.

[52] Microsoft Support. A detailed description of the Data Execution
Prevention (DEP). https://support.microsoft.com/en-us/help/875352/
a-detailed-description-of-the-data-execution-prevention-dep-feature-in.
[Online; accessed 18-June-2019].

[53] L. Szekeres, M. Payer, T. Wei, and D. Song. Sok: Eternal war in memory.
In 2013 IEEE Symposium on Security and Privacy, pages 48–62, May
2013.

[54] M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. Freeh, and P. Ning. On
the expressiveness of return-into-libc attacks. In International Workshop
on Recent Advances in Intrusion Detection, pages 121–141. Springer,
2011.

[55] Tzi-Cker Chiueh and Fu-Hau Hsu. Rad: a compile-time solution to
buffer overflow attacks. In Proceedings 21st International Conference
on Distributed Computing Systems, pages 409–417, April 2001.

[56] Robert J Walls, Nicholas F Brown, Thomas Le Baron, Craig A Shue,
Hamed Okhravi, and Bryan C Ward. Control-flow integrity for real-
time embedded systems. In 31st Euromicro Conference on Real-
Time Systems (ECRTS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2019.

[57] Yutian Yang, Songbo Zhu, Wenbo Shen, Yajin Zhou, Jiadong Sun, and
Kui Ren. Arm pointer authentication based forward-edge and backward-
edge control flow integrity for kernels. arXiv preprint arXiv:1912.10666,
2019.

