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AFTAB: A RISC-V Implementation with 
Configurable Gateways for Security 

 

Abstract— A processor plays an important role in the 

security of an entire embedded system. There are two reasons 

for this. One is that a processor is a general-purpose machine, 

the program of which can be altered for ill-intended purposes. 

The other factor that adds to the vulnerability of the embedded 

system is that an embedded processor uses memory addressing 

for all its instructions and data. This creates a wide-open 

gateway in and out of a processor by which secure data can be 

read, unintended data and instructions can be injected in the 

processor, and the processor can be made to perform unwanted 

tasks and operations. The remedy we have planned for this is 

securing the memory gateways and separating them from the 

rest of the processor architecture. This is to say that we design 

configurable gateways for instruction and data read and write 

operations that can be configured to prevent various forms of 

attacks coming from the processor’s memory. These 

configurable gateway architectures are applied to a  

RISC-V architecture that we have implemented at the RT Level. 

 This paper discusses our implementation of RISC-V 

architecture that we refer to as AFTAB. The paper emphasizes 

on the memory gateways of this processor and shows its 

interfaces with the configuration part of the processor and the 

architecture of the read and write gateways. After a general 

presentation of security and threads, we show how AFTAB 

gateways can be designed and configured for certain types of 

attacks. All works presented in this paper have been described 

at the RT Level and synthesized. The synthesis results will be 

presented. 

Keywords—Processor, RISC-V, Configurable Gateways, 

Security, Buffer Overflow, Hardware Implementation. 

I. INTRODUCTION  

According to the recent progress of electrical systems and 
their capability to perform diverse applications, they are 
susceptible to several security threats. Also, with the recent 
proliferation of embedded devices, there is a growing need to 
develop a security framework to protect such devices. 
Processors that play the role of the heart of a digital system, 
are one of the most critical components in an embedded 
system that attract the attention of attackers. There are several 
attack scenarios such as return-oriented programming (ROP), 
code reuse, buffer overflow, code injection, memory safety 
violation, and pointer corruption in the processors. These 
attacks play a significant role in the system components, 
wherein an adversary can control the whole system by 
exploiting vulnerabilities in the system. 

There are many techniques for protecting systems against 
some of the attacks. Stack canaries are words placed on the 
stack to detect return address overwriting that can happen by 
attackers [1]. Control flow integrity (CFI) is another technique 
that guarantees the program follows CFG in the runtime [2]. 

Address Space Layout Randomization (ASLR) prevents 
memory corruption with randomization address space 
positions of stack, code, and other data areas [3]. 

Accordingly, the processor designers put their efforts into 
designing hardware that is secured against attackers. Several 
works have been proposed to solve the security issues in ARM 
[4], Intel [5], [6], and RISC-V processors [7-9]. 

RISC-V is an open-source Instruction Set Architecture 
developed by the University of California, Berkeley [10]. 
Owing to being simple, free access, and open-source ISA that 
allows anyone to design and customize it for a specific target 
application, RISC-V is becoming more and more popular. Its 
application domains include IoT, machine learning, signal 
processing, real-time embedded systems [11-14]. This also 
enhances the sensitivity of the system running on RISC-V 
against the attacks, regardless of time.  The processor’s 
vulnerabilities can be exploited at boot time and/or at run time. 
RISC-V being open-source provides an environment to 
implement different levels of security by adding hardware-
based security solutions for a wide range of attacks.  

We exploit the popularity of RISC-V and present our 
RISC-V based processor, called AFTAB (A Fine Turin 
Architectural Being) meaning sunshine in the Persian 
language. The AFTAB architecture includes a core and 
interfacing gateways. The gateways wrap around the core and 
control and monitor its incoming and outcoming data from/to 
the memory and all memory-mapped devices. This paper 
focuses on the buffer-overflow attack in Return-Oriented 
Programming (ROP) as an instance of vulnerability that is 
directly related to the memory [15]. Not only the addresses 
that are the entry points defined by compiler/developer but 
also any executable address can be targeted by the jump and 
return instructions. This is the basic of what attackers use. The 
resolution of this problem in the AFTAB architecture is to 
involve a lightweight hardware-based shadow stack to work 
against such attacks. Since the gateways are internal to the 
architecture of AFTAB, they cannot be attacked as easily as 
the memory that connects to AFTAB by external busses. This 
makes our AFTAB architecture a secure implementation of 
RISC-V. 

The rest of the paper is organized as follows. Section II 
briefly introduces RISC-V ISA and reviews RV32IM’s 
instructions and user-accessible registers. At the end of this 
section, the AFTAB implementation is presented. Section III 
illustrates our configurable gateways and their advantages. 
Section IV explores the RISC-V security concerns. Section V 
describes our remedy for RISC-V protection against ROP 
attacks. Section VI discusses the experimental results in terms 
of hardware resources. Section VII presents conclusions and a 
brief review of our overall work. 
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II. AFTAB DESIGN OF RISC-V 

A. RISC-V 

 RISC-V is the fifth-generation simplified instruction set 
architecture developed by UC Berkeley and is currently 
supported by the RISC-V foundation [10], [16]. It is based on 
reduced instruction set computer (RISC) principles with 
several extensions for 32-bit, 64-bit, and 128-bit instruction 
widths.  It has a fixed base integer ISA that includes three 
primary variants (RV32I, RV64I, and RV128I) providing 32-
bit, 64-bit, and 128-bit address spaces respectively [17].  All 
RISC-V processor implementations must support one of the 
three mentioned standard base ISA. Additionally, the standard 
bases can work with the standard extensions without 
contradiction.  Some of the widely used extensions are 
referred to as M for Integer Multiplication and Division, A for 
Atomic Instructions, and C for Compressed Instructions. 

 This paper presents our AFTAB secure implementation 
for the RV32IM, i.e., 32-bit instruction width architecture 
supporting base integer ISA with its M-extensions. 

B. AFTAB Programmer’s View 

1) Instruction Set 
RISC-V instructions are 32 bits in length, and there are six 

core instruction formats (R/I/U/S/B/J) as shown in Fig. 1. 
Letters R, I, S, B, U, and J are used for instruction types that 
correspond to register-register, short immediate and loads, 
stores, conditional branches, long immediate and 
unconditional branch operations, respectively. In Fig. 1, rs, rd, 
funct and imm respectively refer to source register, destination 
register, function, and immediate value. The combination of 
funct7 and funct3 with opcode determines what operation to 
perform. 

RISC-V instructions are categorized into arithmetic, data 
transfer, logical, shift, and conditional/unconditional branch 
instructions. Arithmetic and logical instructions have either 
three or two register operands, and a sign-extended 12-bit 
immediate, denoted by the I-type. Shift instructions use the I-
type or R-type format and can be done right/left, 
logical/arithmetic, and register/immediate. 

Data transfer instructions, i.e., load and store, transfer a 
value between the registers and memory. Loads are encoded 
in I-type format, and stores are S-type. These instructions can 
transfer signed/unsigned, byte or half-word, or word value. 

The JAL and JALR instructions specify unconditional 
jumps and use the J-type format. The target address can be 
specified relative to the program counter (JAL) or as an 
absolute address in a register (JALR). On the other hand, 
branch instructions denote conditional jumps based on a 
comparison. Their first two operands are registers of which the 

values are compared. The third operand specifies the 
destination address relative to the program counter. Branches 
use the B-type instruction format. 

There are also multiplication and division instructions in 
RV32IM that use the R-type format. In these instructions, the 
content of one register is multiplied/divided by the contents of 
another register and the result is placed in the destination 
register. Multiplication/division can be signed or unsigned 
operations. 

2) User Accessible Registers 
The RISC-V has 32 general-purpose registers. X0, the first 

register, is hardwired to zero, writes to it is ignored, and is 
always read as 0. The other registers are introduced as follow: 
x1 (return address), x2 (stack pointer), x3 (global pointer), x4 
(thread pointer), x5 (alternate return address), x6-7 (temporary 
registers), x8 (frame pointer), x9 (saved register), x10-17 
(function argument/return value), x18-27 (saved registers), 
x28-31 (temporary registers). 

C. AFTAB RTL Architecture 

This part presents the architecture, configuration, and 
operation of our 32-bit AFTAB implementation of RISC-V. 
AFTAB communicates with the memory with standard 
memory accessing handshaking signals through a 32-bit 
address bus and 32-bit bi-directional data bus. 

The description of the AFTAB RTL architecture is divided 
into three main parts: Datapath, Controller, and Gateways. 
First, we depict the overall Datapath and its main components. 
Next, we illustrate the controller and its contribution to the 
Datapath, and finally, we demonstrate the Gateways.  

1) Overall Datapath 
In the AFTAB’s Datapath, shown in Fig. 2, the user-

accessible registers are included in a register-file of sixteen 
32-bit registers, each of which can be used as the source or 
destination of an instruction. This register-file has a multi-port 
structure, the interface of which is provided by three 4-bit 
ports for addressing the register-file, a 32-bit writeData, and 
two 32-bit P1, P2 for the read data. The access to the contents 
of two source registers is simultaneous. The writeRegFile, 
setZero, and setOne are the input ports that will be issued for 

 
 

Fig. 2. Abstract RTL of AFTAB Processor 
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Fig. 1. RISC-V Instruction Formats 

 



writing the writeData, value one, and value zero to the 
destination register. The register-file is encircled by a unit 
called arithmetic and logical units (ALU) which is mainly 
responsible for performing arithmetic, shift, logical, multiply 
and divide operations. 

The AFTAB’s Datapath also includes four standard 
registers, i.e., PC, IR, ADR, DR, that are mainly used for 
memory data transfer and memory addressing. The program 
counter register (PC) keeps the address of the next instruction 
and the instruction register (IR) stores the newly fetched 
instruction. The address register, i.e., ADR, refers to the 
memory location for reading, or the address to which DR is to 
be written. The task of address calculation is handled by the 
address calculation unit (ACU), which encompasses the ADR 
and PC registers and provides them with the proper inputs.  

As discussed in Section II, a fetched instruction consists of 
several fields based on the format of the instructions. All the 
instruction formats except register/register have an immediate 
value that is spread in various parts of an instruction (separate 
immediate fields). When an instruction is to be executed, the 
appropriate immediate value must be constructed from the 
immediate fields. Hence, in our architecture, a unit called 
Immediate Selection and Sign Extension Unit (ISSEU), which 
is sitting next to IR in Fig. 2 is appointed to form the 
immediate value according to the currently fetched instruction 
format. 

2) Controller (Overall view) 
The AFTAB’s controller controls the flow of data in the 

AFTAB’s Datapath by providing both an appropriate number 
of states and proper control signals. Here we concentrate on 
the main states of our controller. 

When an instruction is to be fetched, the first state (fetch) 
opens a path in the Datapath from the PC register to the 
memory and from the memory to IR in order to read the 
instruction from the memory and store it in IR. The next state 
(decode) specifies the instruction’s operation by checking the 
opcode of the instruction and leads the controller to the 
corresponded execution states. There are sets of executing 
states for each instruction’s operation that achieve the required 
actions for running the operation in our Datapath and returning 
to the fetch state.  

The AFTAB’s controller is also responsible for providing 
security check control signals related to security solutions, an 
example for which is proposed in Section IV.  

3) Gateways 
The data transfer instructions require access to the 

memory. We develop our design by providing gateways to 
facilitate data transfer proceedings. The gateways, called 
DARU and DAWU (Data Adjustment and Read/Write Unit), 
sit outside the AFTAB’s core, and act as an interface between 
the core and external devices. They take control of the bi-
directional transfer of data from the processor to the outside, 
and vice versa.  

Beyond the above task, the gateways establish a platform 
to improve the performance of the AFTAB processor. For 
example, many hardware solution techniques can be 
implemented in these gateways for security. In the following 
section, we introduce the other benefits that can be gained by 
our proposed gateways. Section V describes the shadow stack 
hardware solution located in the gateways. 

III. CONFIGURABLE GATEWAYS 

AFTAB gateways provide configurable mechanisms for 
memory access. These hardware units are separate modules 
from the core of AFTAB. This way, handling memory-
mapped operations and providing alternatives and remapping 
memory accesses only go into modules that are dedicated for 
such purposes. Memory map operations that benefit from such 
dedicated hardware units include accessing various types of 
memories, cache handling, IO devices, interrupt, and stack 
handling. In general, gateways provide memory access for 
instructions related to memory access or instructions that use 
memory-mapped registers, IO devices, adjacent memory, 
closely coupled memory, etc.  

The following parts explain more impacts of these 
configurable gateways and their architectures. 

A.   Impact of Gateways  

Our gateways facilitate and accelerate access to the 
memory. Some benefits of DARU and DAWU gateways in 
the processor are listed as below:  

• Data buffering and adjustment: The gateways control 
the sequence and the number of transferred bytes in 
load and store instructions.  

• Endian handling: These gateways are capable of 
handling big/little-endian data format.  

• Limited handling of most handshaking and arbitration 
tasks for small systems. 

• Limited preliminary address decoding for system 
memory and devices.  

• Gateways can potentially handle near-memory 
processing.  

B. AFTAB Core Interfacing 

DARU and DAWU gateways are interfaces between the 
AFTAB processor and its memory. These gateways are 
separated from the core and perform all the tasks mentioned 
in the previous part. DARU and DAWU have their 
independent FSMs for buffering, handshaking, and internal 

 

 
 

Fig. 3. The Visionary View of Processor Side of an Embedded 

System 



register controls. Processor Read/Write control signals are 
directly connected to the gateways, and the gateways also 
manage bus driving for the processor.  

C. Bus Utilization Switching  

When a read or write operation is to occur, the processor 
issues the Read or Write control signal to inform the target 
device. The target device can be physically near the processor 
like the adjacent memory and the buffering unit, shown in  
Fig. 3, or away from the processor like the main memory. In 
traditional bus structures, bus arbitration and memory 
handshaking that are used for DRAM and slow 
communications are bypassed by the bus structure for adjacent 
memory and IO devices. This bypassing is usually done by the 
external bus structure using proper address decoding logic 
structures. 

In our design of AFTAB, as shown in Fig. 3, the gateways 
sit between the processor’s core logic and the external system 
bus structure. The gateways intercept memory access signals 
and the address bus. If the request is for DRAM and shared 
devices on the system bus, the signals will be passed on to the 
system bus and the bus handles arbitration and any necessary 
handshaking. On the other hand, if the gateways decide that 
the request is for the processor’s local SRAM for stack 
handling or adjacent memory accessing, the system bus will 
not be involved and DARU and DAWU directly handle the 
memory of IO accessing.  

As shown in Fig. 4, the gateways are equipped with 
switches on Read and Write control signals to provide a local 
path. The local path connects the processor and the nearby 
devices. The decision to switch to the main shared bus or the 
local bus is made in DARU and DAWU using the address 
decoding unit and a configuration table. In this configuration, 
access to the local devices takes fewer clock cycles and 
because it is concentrated in gateways, there is a better control, 
thus more security in what the processor accesses.  

D. Gateway Configurable Architecture 

The structures of the gateways are shown in Fig. 4. 
Registers, a configuration table, address decoding, switches, 
and an FSM, are the most important units of DARU and 
DAWU. 

The registers temporarily store the transferred data for the 
read and write operations. A counter also keeps track of the 
number of transferred bytes. The configuration table contains 
the base addresses of the memory-mapped segments. When 
the processor is starting up, the addresses are loaded into this 
configuration table.  

Address decoding unit receives the AFTAB core’s 
Read/Write control signals and address, and distributes them 
to the corresponding target device. Address decoding unit uses 
the configuration table to see where the coming address refers. 
If the incoming address refers to a location of the main 
memory, the switches will be connected to the right-hand side 
Read/Write. However, if the address refers to a location of 
adjacent memory, then the switches will be connected to the 
Read/Write signals on the lower side of the gateway switches 
in Fig. 4. 

The FSMs of DARU and DAWU start data transferring 
when receiving Read/Write and end it after receiving 
MemReady. The FSMs also control the flow of data. 

IV. RISC-V SECURITY CONCERNS 

The issue of data security and protection has recently 
intercepted a primary interest at all levels of digital application 
design. The hardware level is not excluded, since it is now 
widely accepted that it is subject to numerous vulnerabilities 
and specific attacks [18]. Moreover, being at the base of a 
computing system, its compromise can mean the compromise 
of the overlying services, even if they have adequate software 
protections [19]. For this reason, the world of research and 
industry is moving more and more in the direction of finding 
the most suitable technologies to create hardware components 
that meet security-by-design requirements.  

In particular, in the context of processor architecture 
design, the challenge is to be able to make them resilient to 
families of very powerful binary attacks, which inject 
malicious executions directly at the machine-code level. This 
is the case of Code Injection and Code Reuse Attacks [20-22], 
including the famous Return-Oriented Programming (ROP) 
paradigm [15]. Thanks to these exploits, it is possible to make 
a victim processor execute an arbitrary sequence of 
instructions to perform any kind of malicious action. 

These types of attacks are made possible starting from 
source code vulnerabilities allowing memory corruption [23], 
and in particular, code pointers corruption, such as the return 
addresses of functions that are redirected to other areas at the 
attacker’s will. Although the attack domain is software, 
applying defenses at this level may not be enough. For 
example, the randomization of code addresses to make it more 
difficult to locate targets [24] is too weak and can be easily 
brute-forced [25], or code static analysis to remove 
vulnerabilities [26] is based on the recognition of known 
patterns, and hardly gets full coverage. 

A promising direction is about blocking these types of 
attacks at the hardware level. Since these are based on the 
knowledge of parameters directly managed by the hardware, 
such as machine instructions and memory addresses, the 
defenses can also be architected by abstracting from the details 
on higher-level services. Furthermore, users are not required 
to adopt any particular strategy for the design and use of 
software, since they rely on hardware architectures already 
protected by design. The issue of the hard portability and 
applicability of these solutions in legacy systems can be 
solved by the current trend, which sees an increment in the use 
of soft architectures such as RISC-V, synthesizable on 
hardware-reconfigurable devices. 

The literature presents numerous ideas on hardware-based 
solutions, ranging from the simplest replication of sensitive 
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code pointers [27-29] to their encryption in memory [30], [31] 
or tagging [32], [33]. The ideal solution can combine several 
defense principles, and must present some fundamental 
requirements, including: 

• complete transparency with respect to the user; 

• a low impact on additional consumption in terms of 
area and power; 

• a negligible increase in application execution times; 

• the inviolability of its control structures and of any 
sensitive data stored to apply the protection; 

V.  PROPOSED SECURITY REMEDY 

As discussed in the previous sections, DARU and DAWU 
control the AFTAB’s incoming and outgoing links. One of the 
primary purposes of separating these two parts is to have 
configurable gateways, which helps us easily add our 
configurable hardware security modules and protect the 
processor against various attacks such as memory corruption.  

For many instructions, some handshaking occurs between 
the controller and DURU or DAWU to ensure the instructions 
are not malicious. Many attacks can be detected in the 
execution stage by using the lightweight hardware security 
modules that are in DARU and DAWU. AFTAB’s controller 
is directly connected to these two modules in a 2-way 
handshaking by security check control signals (SCCSs). These 
signals are issued based on the type of instructions in two 
steps, first DARU and DAWU record some parameters 
according to the instruction being executed. Next, they send 
some security feedback to the processor controller to ensure 
the executing instruction is not malicious. In the following, we 
will show a case to detect the buffer-overflow attack in 
Return-Oriented Programming (ROP) or any memory 
corruption for an interrupt return address that is a major 
security concern. 

Fig. 5 shows the security module addition of DARU to 
ensure the correct return address of ROP and interrupts. This 

is achieved by a lightweight SRAM stack memory. In this 
scenario, the first step is to store the correct return addresses. 
In this architecture, when a function call or an interrupt occurs 
in a program, the controller issues a push to the shadow stack 
to place the address of the next instruction, i.e., PC+4, at the 
top of the stack. More return addresses are pushed on the stack 
for recursive function calls in the program. The stack behavior 
is the same for all function calls in the program, and the last 
PC address of the last function call is stored at the top of the 
stack.  

In the next step, once a return instruction is executed, the 
controller issues a stack pop operation and contents will be 
compared with the address in the return instruction. The 
comparison is simply made with an array of XNOR followed 
by the AND gates shown in Fig. 5. The return instruction will 
be executed normally if the result of stack compare is true, 
otherwise, otherwise the program will exit abnormally before 
the execution stage gets completed.   

VI. AFTAB IMPLEMENTATION 

To assess the functionality of the AFTAB processor, 
several programs have been simulated on it successfully. 
Afterward, we have described the AFTAB architecture in 
VHDL and have implemented it on both Cyclone 10 GX and 
Cyclone IV FPGAs.  The Intel Cyclone 10 GX devices with 
the M20K memory blocks enable utilizing 20 Kbits of 
embedded memory for AFTAB’s register-file, instead of 
using logic elements [34]. Also, the memory capacity 
corresponding to Cyclone IV with M9K memory blocks is 9 
Kbits [35]. Because of employing these memory blocks, the 
number of logic elements is noticeably reduced. Table I 
depicts hardware utilization in terms of logic elements, 
registers and memory bits.  

TABLE I.  AFTAB RESOURCE UTILIZATION 

AFTAB 

Architecture 

Hardware Resources 

Total Logic 

Utilization 
Total Registers 

Total Memory 

Bits 

Cyclone 10 GX 978 639 
2048 

(2 RAM Blocks) 

Cyclone IV 2089 590 
2048 

(2 RAM Blocks) 

 

   
 

Fig. 6. Chip Planner View and Design Mapping  

 
Fig. 5. DARU shadow stack architecture  



To investigate the FPGA mapping of AFTAB, the FPGA 
layout has been extracted, as shown in Fig. 6. The FPGA’s 
logic elements and the M20K memory blocks are denoted 
respectively with the blue and the yellow column in the 
background. For more clarification on the layout, each 
component is represented with a color corresponding to color 
mapping items shown on the left-hand side of the layout.  

VII. CONCLUSIONS 

This paper presented a secure RISC-V architecture. The 
design of the processor separates its main computation engine 
from its memory accessing parts that we refer to as gateways. 
We showed the general architecture of read and write 
gateways, i.e., DARU and DAWU. The architectures of the 
gateways were discussed and we showed provisions that we 
have put in these units for configurability purposes.  

After this discussion, we showed that by only making 
changes to the processor’s gateways hardware security 
features could be incorporated into the processor. The AFTAB 
processor designed as such was synthesized, and synthesis 
results showed the gateways and the real-estate that is 
dedicated to these units. We have shown that independent 
design of secure configurable memory gateways has a low 
hardware overhead, and at the same time adds flexibility to a 
processor. Independent design of our gateways means that 
they can be used for any processor, be it RISC-V or any other 
embedded processor. The gateways designed as such 
eliminate heavy burdens of system’s required bussing. 
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