
29 January 2023

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Aftab: a risc-v implementation with configurable gateways for security / Rajabalipanah, Maryam; Sadeghipourrudsari,
Mahboobe; Jahanpeima, Zahra; Roascio, Gianluca; Prinetto, Paolo; Navabi, Zainalabedin. - ELETTRONICO. - (2021),
pp. 1-6. ((Intervento presentato al convegno 19th IEEE East-West Design & Test Symposium (EWDTS-2021) tenutosi a
Batumi, Georgia nel September 10-13, 2021 [10.1109/EWDTS52692.2021.9580979].

Original

Aftab: a risc-v implementation with configurable gateways for security

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/EWDTS52692.2021.9580979

Terms of use:
openAccess

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2923688 since: 2022-08-23T12:44:27Z

Institute of Electrical and Electronics Engineers Inc.

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

AFTAB: A RISC-V Implementation with
Configurable Gateways for Security

Abstract— A processor plays an important role in the

security of an entire embedded system. There are two reasons

for this. One is that a processor is a general-purpose machine,

the program of which can be altered for ill-intended purposes.

The other factor that adds to the vulnerability of the embedded

system is that an embedded processor uses memory addressing

for all its instructions and data. This creates a wide-open

gateway in and out of a processor by which secure data can be

read, unintended data and instructions can be injected in the

processor, and the processor can be made to perform unwanted

tasks and operations. The remedy we have planned for this is

securing the memory gateways and separating them from the

rest of the processor architecture. This is to say that we design

configurable gateways for instruction and data read and write

operations that can be configured to prevent various forms of

attacks coming from the processor’s memory. These

configurable gateway architectures are applied to a

RISC-V architecture that we have implemented at the RT Level.

 This paper discusses our implementation of RISC-V

architecture that we refer to as AFTAB. The paper emphasizes

on the memory gateways of this processor and shows its

interfaces with the configuration part of the processor and the

architecture of the read and write gateways. After a general

presentation of security and threads, we show how AFTAB

gateways can be designed and configured for certain types of

attacks. All works presented in this paper have been described

at the RT Level and synthesized. The synthesis results will be

presented.

Keywords—Processor, RISC-V, Configurable Gateways,

Security, Buffer Overflow, Hardware Implementation.

I. INTRODUCTION

According to the recent progress of electrical systems and
their capability to perform diverse applications, they are
susceptible to several security threats. Also, with the recent
proliferation of embedded devices, there is a growing need to
develop a security framework to protect such devices.
Processors that play the role of the heart of a digital system,
are one of the most critical components in an embedded
system that attract the attention of attackers. There are several
attack scenarios such as return-oriented programming (ROP),
code reuse, buffer overflow, code injection, memory safety
violation, and pointer corruption in the processors. These
attacks play a significant role in the system components,
wherein an adversary can control the whole system by
exploiting vulnerabilities in the system.

There are many techniques for protecting systems against
some of the attacks. Stack canaries are words placed on the
stack to detect return address overwriting that can happen by
attackers [1]. Control flow integrity (CFI) is another technique
that guarantees the program follows CFG in the runtime [2].

Address Space Layout Randomization (ASLR) prevents
memory corruption with randomization address space
positions of stack, code, and other data areas [3].

Accordingly, the processor designers put their efforts into
designing hardware that is secured against attackers. Several
works have been proposed to solve the security issues in ARM
[4], Intel [5], [6], and RISC-V processors [7-9].

RISC-V is an open-source Instruction Set Architecture
developed by the University of California, Berkeley [10].
Owing to being simple, free access, and open-source ISA that
allows anyone to design and customize it for a specific target
application, RISC-V is becoming more and more popular. Its
application domains include IoT, machine learning, signal
processing, real-time embedded systems [11-14]. This also
enhances the sensitivity of the system running on RISC-V
against the attacks, regardless of time. The processor’s
vulnerabilities can be exploited at boot time and/or at run time.
RISC-V being open-source provides an environment to
implement different levels of security by adding hardware-
based security solutions for a wide range of attacks.

We exploit the popularity of RISC-V and present our
RISC-V based processor, called AFTAB (A Fine Turin
Architectural Being) meaning sunshine in the Persian
language. The AFTAB architecture includes a core and
interfacing gateways. The gateways wrap around the core and
control and monitor its incoming and outcoming data from/to
the memory and all memory-mapped devices. This paper
focuses on the buffer-overflow attack in Return-Oriented
Programming (ROP) as an instance of vulnerability that is
directly related to the memory [15]. Not only the addresses
that are the entry points defined by compiler/developer but
also any executable address can be targeted by the jump and
return instructions. This is the basic of what attackers use. The
resolution of this problem in the AFTAB architecture is to
involve a lightweight hardware-based shadow stack to work
against such attacks. Since the gateways are internal to the
architecture of AFTAB, they cannot be attacked as easily as
the memory that connects to AFTAB by external busses. This
makes our AFTAB architecture a secure implementation of
RISC-V.

The rest of the paper is organized as follows. Section II
briefly introduces RISC-V ISA and reviews RV32IM’s
instructions and user-accessible registers. At the end of this
section, the AFTAB implementation is presented. Section III
illustrates our configurable gateways and their advantages.
Section IV explores the RISC-V security concerns. Section V
describes our remedy for RISC-V protection against ROP
attacks. Section VI discusses the experimental results in terms
of hardware resources. Section VII presents conclusions and a
brief review of our overall work.

Maryam Rajabalipanah1, Mahboobe Sadeghipour Roodsari1, Zahra Jahanpeima1, Gianluca Roascio2, Paolo Prinetto2,

Zainalabedin Navabi1

1 School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
{ m.rajabalipanah, mahboube.roudsari, jahanpeima, navabi}@ut.ac.ir

2 Dipartimento di Automatica e Informatica, Politecnico di Torino, Turin, Italy
{gianluca.roascio, paolo.prinetto}@polito.it

II. AFTAB DESIGN OF RISC-V

A. RISC-V

 RISC-V is the fifth-generation simplified instruction set
architecture developed by UC Berkeley and is currently
supported by the RISC-V foundation [10], [16]. It is based on
reduced instruction set computer (RISC) principles with
several extensions for 32-bit, 64-bit, and 128-bit instruction
widths. It has a fixed base integer ISA that includes three
primary variants (RV32I, RV64I, and RV128I) providing 32-
bit, 64-bit, and 128-bit address spaces respectively [17]. All
RISC-V processor implementations must support one of the
three mentioned standard base ISA. Additionally, the standard
bases can work with the standard extensions without
contradiction. Some of the widely used extensions are
referred to as M for Integer Multiplication and Division, A for
Atomic Instructions, and C for Compressed Instructions.

 This paper presents our AFTAB secure implementation
for the RV32IM, i.e., 32-bit instruction width architecture
supporting base integer ISA with its M-extensions.

B. AFTAB Programmer’s View

1) Instruction Set
RISC-V instructions are 32 bits in length, and there are six

core instruction formats (R/I/U/S/B/J) as shown in Fig. 1.
Letters R, I, S, B, U, and J are used for instruction types that
correspond to register-register, short immediate and loads,
stores, conditional branches, long immediate and
unconditional branch operations, respectively. In Fig. 1, rs, rd,
funct and imm respectively refer to source register, destination
register, function, and immediate value. The combination of
funct7 and funct3 with opcode determines what operation to
perform.

RISC-V instructions are categorized into arithmetic, data
transfer, logical, shift, and conditional/unconditional branch
instructions. Arithmetic and logical instructions have either
three or two register operands, and a sign-extended 12-bit
immediate, denoted by the I-type. Shift instructions use the I-
type or R-type format and can be done right/left,
logical/arithmetic, and register/immediate.

Data transfer instructions, i.e., load and store, transfer a
value between the registers and memory. Loads are encoded
in I-type format, and stores are S-type. These instructions can
transfer signed/unsigned, byte or half-word, or word value.

The JAL and JALR instructions specify unconditional
jumps and use the J-type format. The target address can be
specified relative to the program counter (JAL) or as an
absolute address in a register (JALR). On the other hand,
branch instructions denote conditional jumps based on a
comparison. Their first two operands are registers of which the

values are compared. The third operand specifies the
destination address relative to the program counter. Branches
use the B-type instruction format.

There are also multiplication and division instructions in
RV32IM that use the R-type format. In these instructions, the
content of one register is multiplied/divided by the contents of
another register and the result is placed in the destination
register. Multiplication/division can be signed or unsigned
operations.

2) User Accessible Registers
The RISC-V has 32 general-purpose registers. X0, the first

register, is hardwired to zero, writes to it is ignored, and is
always read as 0. The other registers are introduced as follow:
x1 (return address), x2 (stack pointer), x3 (global pointer), x4
(thread pointer), x5 (alternate return address), x6-7 (temporary
registers), x8 (frame pointer), x9 (saved register), x10-17
(function argument/return value), x18-27 (saved registers),
x28-31 (temporary registers).

C. AFTAB RTL Architecture

This part presents the architecture, configuration, and
operation of our 32-bit AFTAB implementation of RISC-V.
AFTAB communicates with the memory with standard
memory accessing handshaking signals through a 32-bit
address bus and 32-bit bi-directional data bus.

The description of the AFTAB RTL architecture is divided
into three main parts: Datapath, Controller, and Gateways.
First, we depict the overall Datapath and its main components.
Next, we illustrate the controller and its contribution to the
Datapath, and finally, we demonstrate the Gateways.

1) Overall Datapath
In the AFTAB’s Datapath, shown in Fig. 2, the user-

accessible registers are included in a register-file of sixteen
32-bit registers, each of which can be used as the source or
destination of an instruction. This register-file has a multi-port
structure, the interface of which is provided by three 4-bit
ports for addressing the register-file, a 32-bit writeData, and
two 32-bit P1, P2 for the read data. The access to the contents
of two source registers is simultaneous. The writeRegFile,
setZero, and setOne are the input ports that will be issued for

Fig. 2. Abstract RTL of AFTAB Processor

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0

Opcode

Opcode

Opcode

Opcode

Opcode

Opcode

rd

rd

imm[4:0]

rd

rd

imm[4:1] imm[11]

funct3

funct3

funct3

rs1

funct3

rs1

rs1

rs1

imm[31:12]

imm[19:12]imm[11]

rs2

rs2

rs2

imm[11:0]

funct7

imm[11:5]

imm[10:5]imm[12]

imm[20] imm[10:1]

R-type

I-type

S-type

B-type

U-type

J-type

Fig. 1. RISC-V Instruction Formats

writing the writeData, value one, and value zero to the
destination register. The register-file is encircled by a unit
called arithmetic and logical units (ALU) which is mainly
responsible for performing arithmetic, shift, logical, multiply
and divide operations.

The AFTAB’s Datapath also includes four standard
registers, i.e., PC, IR, ADR, DR, that are mainly used for
memory data transfer and memory addressing. The program
counter register (PC) keeps the address of the next instruction
and the instruction register (IR) stores the newly fetched
instruction. The address register, i.e., ADR, refers to the
memory location for reading, or the address to which DR is to
be written. The task of address calculation is handled by the
address calculation unit (ACU), which encompasses the ADR
and PC registers and provides them with the proper inputs.

As discussed in Section II, a fetched instruction consists of
several fields based on the format of the instructions. All the
instruction formats except register/register have an immediate
value that is spread in various parts of an instruction (separate
immediate fields). When an instruction is to be executed, the
appropriate immediate value must be constructed from the
immediate fields. Hence, in our architecture, a unit called
Immediate Selection and Sign Extension Unit (ISSEU), which
is sitting next to IR in Fig. 2 is appointed to form the
immediate value according to the currently fetched instruction
format.

2) Controller (Overall view)
The AFTAB’s controller controls the flow of data in the

AFTAB’s Datapath by providing both an appropriate number
of states and proper control signals. Here we concentrate on
the main states of our controller.

When an instruction is to be fetched, the first state (fetch)
opens a path in the Datapath from the PC register to the
memory and from the memory to IR in order to read the
instruction from the memory and store it in IR. The next state
(decode) specifies the instruction’s operation by checking the
opcode of the instruction and leads the controller to the
corresponded execution states. There are sets of executing
states for each instruction’s operation that achieve the required
actions for running the operation in our Datapath and returning
to the fetch state.

The AFTAB’s controller is also responsible for providing
security check control signals related to security solutions, an
example for which is proposed in Section IV.

3) Gateways
The data transfer instructions require access to the

memory. We develop our design by providing gateways to
facilitate data transfer proceedings. The gateways, called
DARU and DAWU (Data Adjustment and Read/Write Unit),
sit outside the AFTAB’s core, and act as an interface between
the core and external devices. They take control of the bi-
directional transfer of data from the processor to the outside,
and vice versa.

Beyond the above task, the gateways establish a platform
to improve the performance of the AFTAB processor. For
example, many hardware solution techniques can be
implemented in these gateways for security. In the following
section, we introduce the other benefits that can be gained by
our proposed gateways. Section V describes the shadow stack
hardware solution located in the gateways.

III. CONFIGURABLE GATEWAYS

AFTAB gateways provide configurable mechanisms for
memory access. These hardware units are separate modules
from the core of AFTAB. This way, handling memory-
mapped operations and providing alternatives and remapping
memory accesses only go into modules that are dedicated for
such purposes. Memory map operations that benefit from such
dedicated hardware units include accessing various types of
memories, cache handling, IO devices, interrupt, and stack
handling. In general, gateways provide memory access for
instructions related to memory access or instructions that use
memory-mapped registers, IO devices, adjacent memory,
closely coupled memory, etc.

The following parts explain more impacts of these
configurable gateways and their architectures.

A. Impact of Gateways

Our gateways facilitate and accelerate access to the
memory. Some benefits of DARU and DAWU gateways in
the processor are listed as below:

• Data buffering and adjustment: The gateways control
the sequence and the number of transferred bytes in
load and store instructions.

• Endian handling: These gateways are capable of
handling big/little-endian data format.

• Limited handling of most handshaking and arbitration
tasks for small systems.

• Limited preliminary address decoding for system
memory and devices.

• Gateways can potentially handle near-memory
processing.

B. AFTAB Core Interfacing

DARU and DAWU gateways are interfaces between the
AFTAB processor and its memory. These gateways are
separated from the core and perform all the tasks mentioned
in the previous part. DARU and DAWU have their
independent FSMs for buffering, handshaking, and internal

Fig. 3. The Visionary View of Processor Side of an Embedded

System

register controls. Processor Read/Write control signals are
directly connected to the gateways, and the gateways also
manage bus driving for the processor.

C. Bus Utilization Switching

When a read or write operation is to occur, the processor
issues the Read or Write control signal to inform the target
device. The target device can be physically near the processor
like the adjacent memory and the buffering unit, shown in
Fig. 3, or away from the processor like the main memory. In
traditional bus structures, bus arbitration and memory
handshaking that are used for DRAM and slow
communications are bypassed by the bus structure for adjacent
memory and IO devices. This bypassing is usually done by the
external bus structure using proper address decoding logic
structures.

In our design of AFTAB, as shown in Fig. 3, the gateways
sit between the processor’s core logic and the external system
bus structure. The gateways intercept memory access signals
and the address bus. If the request is for DRAM and shared
devices on the system bus, the signals will be passed on to the
system bus and the bus handles arbitration and any necessary
handshaking. On the other hand, if the gateways decide that
the request is for the processor’s local SRAM for stack
handling or adjacent memory accessing, the system bus will
not be involved and DARU and DAWU directly handle the
memory of IO accessing.

As shown in Fig. 4, the gateways are equipped with
switches on Read and Write control signals to provide a local
path. The local path connects the processor and the nearby
devices. The decision to switch to the main shared bus or the
local bus is made in DARU and DAWU using the address
decoding unit and a configuration table. In this configuration,
access to the local devices takes fewer clock cycles and
because it is concentrated in gateways, there is a better control,
thus more security in what the processor accesses.

D. Gateway Configurable Architecture

The structures of the gateways are shown in Fig. 4.
Registers, a configuration table, address decoding, switches,
and an FSM, are the most important units of DARU and
DAWU.

The registers temporarily store the transferred data for the
read and write operations. A counter also keeps track of the
number of transferred bytes. The configuration table contains
the base addresses of the memory-mapped segments. When
the processor is starting up, the addresses are loaded into this
configuration table.

Address decoding unit receives the AFTAB core’s
Read/Write control signals and address, and distributes them
to the corresponding target device. Address decoding unit uses
the configuration table to see where the coming address refers.
If the incoming address refers to a location of the main
memory, the switches will be connected to the right-hand side
Read/Write. However, if the address refers to a location of
adjacent memory, then the switches will be connected to the
Read/Write signals on the lower side of the gateway switches
in Fig. 4.

The FSMs of DARU and DAWU start data transferring
when receiving Read/Write and end it after receiving
MemReady. The FSMs also control the flow of data.

IV. RISC-V SECURITY CONCERNS

The issue of data security and protection has recently
intercepted a primary interest at all levels of digital application
design. The hardware level is not excluded, since it is now
widely accepted that it is subject to numerous vulnerabilities
and specific attacks [18]. Moreover, being at the base of a
computing system, its compromise can mean the compromise
of the overlying services, even if they have adequate software
protections [19]. For this reason, the world of research and
industry is moving more and more in the direction of finding
the most suitable technologies to create hardware components
that meet security-by-design requirements.

In particular, in the context of processor architecture
design, the challenge is to be able to make them resilient to
families of very powerful binary attacks, which inject
malicious executions directly at the machine-code level. This
is the case of Code Injection and Code Reuse Attacks [20-22],
including the famous Return-Oriented Programming (ROP)
paradigm [15]. Thanks to these exploits, it is possible to make
a victim processor execute an arbitrary sequence of
instructions to perform any kind of malicious action.

These types of attacks are made possible starting from
source code vulnerabilities allowing memory corruption [23],
and in particular, code pointers corruption, such as the return
addresses of functions that are redirected to other areas at the
attacker’s will. Although the attack domain is software,
applying defenses at this level may not be enough. For
example, the randomization of code addresses to make it more
difficult to locate targets [24] is too weak and can be easily
brute-forced [25], or code static analysis to remove
vulnerabilities [26] is based on the recognition of known
patterns, and hardly gets full coverage.

A promising direction is about blocking these types of
attacks at the hardware level. Since these are based on the
knowledge of parameters directly managed by the hardware,
such as machine instructions and memory addresses, the
defenses can also be architected by abstracting from the details
on higher-level services. Furthermore, users are not required
to adopt any particular strategy for the design and use of
software, since they rely on hardware architectures already
protected by design. The issue of the hard portability and
applicability of these solutions in legacy systems can be
solved by the current trend, which sees an increment in the use
of soft architectures such as RISC-V, synthesizable on
hardware-reconfigurable devices.

The literature presents numerous ideas on hardware-based
solutions, ranging from the simplest replication of sensitive

Fig. 4. Gateways Structure

code pointers [27-29] to their encryption in memory [30], [31]
or tagging [32], [33]. The ideal solution can combine several
defense principles, and must present some fundamental
requirements, including:

• complete transparency with respect to the user;

• a low impact on additional consumption in terms of
area and power;

• a negligible increase in application execution times;

• the inviolability of its control structures and of any
sensitive data stored to apply the protection;

V. PROPOSED SECURITY REMEDY

As discussed in the previous sections, DARU and DAWU
control the AFTAB’s incoming and outgoing links. One of the
primary purposes of separating these two parts is to have
configurable gateways, which helps us easily add our
configurable hardware security modules and protect the
processor against various attacks such as memory corruption.

For many instructions, some handshaking occurs between
the controller and DURU or DAWU to ensure the instructions
are not malicious. Many attacks can be detected in the
execution stage by using the lightweight hardware security
modules that are in DARU and DAWU. AFTAB’s controller
is directly connected to these two modules in a 2-way
handshaking by security check control signals (SCCSs). These
signals are issued based on the type of instructions in two
steps, first DARU and DAWU record some parameters
according to the instruction being executed. Next, they send
some security feedback to the processor controller to ensure
the executing instruction is not malicious. In the following, we
will show a case to detect the buffer-overflow attack in
Return-Oriented Programming (ROP) or any memory
corruption for an interrupt return address that is a major
security concern.

Fig. 5 shows the security module addition of DARU to
ensure the correct return address of ROP and interrupts. This

is achieved by a lightweight SRAM stack memory. In this
scenario, the first step is to store the correct return addresses.
In this architecture, when a function call or an interrupt occurs
in a program, the controller issues a push to the shadow stack
to place the address of the next instruction, i.e., PC+4, at the
top of the stack. More return addresses are pushed on the stack
for recursive function calls in the program. The stack behavior
is the same for all function calls in the program, and the last
PC address of the last function call is stored at the top of the
stack.

In the next step, once a return instruction is executed, the
controller issues a stack pop operation and contents will be
compared with the address in the return instruction. The
comparison is simply made with an array of XNOR followed
by the AND gates shown in Fig. 5. The return instruction will
be executed normally if the result of stack compare is true,
otherwise, otherwise the program will exit abnormally before
the execution stage gets completed.

VI. AFTAB IMPLEMENTATION

To assess the functionality of the AFTAB processor,
several programs have been simulated on it successfully.
Afterward, we have described the AFTAB architecture in
VHDL and have implemented it on both Cyclone 10 GX and
Cyclone IV FPGAs. The Intel Cyclone 10 GX devices with
the M20K memory blocks enable utilizing 20 Kbits of
embedded memory for AFTAB’s register-file, instead of
using logic elements [34]. Also, the memory capacity
corresponding to Cyclone IV with M9K memory blocks is 9
Kbits [35]. Because of employing these memory blocks, the
number of logic elements is noticeably reduced. Table I
depicts hardware utilization in terms of logic elements,
registers and memory bits.

TABLE I. AFTAB RESOURCE UTILIZATION

AFTAB

Architecture

Hardware Resources

Total Logic

Utilization
Total Registers

Total Memory

Bits

Cyclone 10 GX 978 639
2048

(2 RAM Blocks)

Cyclone IV 2089 590
2048

(2 RAM Blocks)

Fig. 6. Chip Planner View and Design Mapping

Fig. 5. DARU shadow stack architecture

To investigate the FPGA mapping of AFTAB, the FPGA
layout has been extracted, as shown in Fig. 6. The FPGA’s
logic elements and the M20K memory blocks are denoted
respectively with the blue and the yellow column in the
background. For more clarification on the layout, each
component is represented with a color corresponding to color
mapping items shown on the left-hand side of the layout.

VII. CONCLUSIONS

This paper presented a secure RISC-V architecture. The
design of the processor separates its main computation engine
from its memory accessing parts that we refer to as gateways.
We showed the general architecture of read and write
gateways, i.e., DARU and DAWU. The architectures of the
gateways were discussed and we showed provisions that we
have put in these units for configurability purposes.

After this discussion, we showed that by only making
changes to the processor’s gateways hardware security
features could be incorporated into the processor. The AFTAB
processor designed as such was synthesized, and synthesis
results showed the gateways and the real-estate that is
dedicated to these units. We have shown that independent
design of secure configurable memory gateways has a low
hardware overhead, and at the same time adds flexibility to a
processor. Independent design of our gateways means that
they can be used for any processor, be it RISC-V or any other
embedded processor. The gateways designed as such
eliminate heavy burdens of system’s required bussing.

REFERENCES

[1] C. Cowan, et al. “Stackguard: automatic adaptive detection and
prevention of buffer-overflow attacks.” In USENIX security
symposium, vol. 98, pp. 63-78, 1998.

[2] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. “Control-flow
integrity principles, implementations, and applications.” ACM
Transactions on Information and System Security (TISSEC) 13, no. 1,
pp. 1-40, 2009.

[3] P. Team. “PaX address space layout randomization.” http://pax.
grsecurity. net/docs/aslr. txt, 2003.

[4] Y. Yanqiu, W. Zhenyu, and Z. Lijun. “Research on Control Flow
Integrity Verification in ARM Architecture.” Computer Engineering,
pp. 151-155, 2015.

[5] R. Ramakesavan, D. Zimmerman, and P. Singaravelu. “Intel memory
protection extensions (intel mpx) enabling guide.”, 2015.

[6] “Intel: Control-Flow Enforcement Technology Review”, 2016.

[7] A. Menon, S. Murugan, C. Rebeiro, N. Gala, and K. Veezhinathan.
“Shakti-t: A risc-v processor with light weight security extensions.”
In Proceedings of the Hardware and Architectural Support for Security
and Privacy, pp. 1-8, 2017.

[8] A. De, A. Basu, S. Ghosh, and T. Jaeger. “FIXER: Flow integrity
extensions for embedded RISC-V.” In 2019 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pp. 348-353, 2019.

[9] M. Werner, R. Schilling, T. Unterluggauer, and S. Mangard.
“Protecting risc-v processors against physical attacks.” In 2019
Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 1136-1141, 2019.

[10] A.S. Waterman, “Design of the RISC-V instruction set architecture.”,
University of California, Berkeley, 2016.

[11] E. Flamand, et al. “GAP-8: A RISC-V SoC for AI at the Edge of the
IoT.” 2018 IEEE 29th International Conference on Application-
specific Systems, Architectures and Processors (ASAP). IEEE, 2018.

[12] S. Bailey, et al. “A mixed-signal risc-v signal analysis soc generator
with a 16-nm finfet instance.” IEEE Journal of Solid-State Circuits 54,
no. 10, pp. 2786-2801, 2019.

[13] E. Torres-Sánchez, J. Alastruey-Benedé, and E. Torres-Moreno.
“Developing an AI IoT application with open software on a RISC-V
SoC.” In 2020 XXXV Conference on Design of Circuits and Integrated
Systems (DCIS), pp. 1-6. IEEE, 2020.

[14] I. Zagan, C.A. Tanase, and V.G. Gaitan. “Hardware Real-time Event
Management with Support of RISC-V Architecture for FPGA-Based
Reconfigurable Embedded Systems.” Advances in Electrical and
Computer Engineering 20, no. 1, pp. 63-70, 2020.

[15] R. Roemer, E. Buchanan, H. Shacham, and S. Savage. “Return-
oriented programming: Systems, languages, and applications.” ACM
Transactions on Information and System Security (TISSEC) 15, no. 1,
pp. 1-34, 2012.

[16] D. Kanter, “RISC-V offers simple, modular ISA.” Microprocessor
Report, 2016.

[17] “The RISC-V Instruction Set Manual, Volume I: User-Level ISA,
Document Version 20191213”, Editors Andrew Waterman and Krste
Asanovi´c, RISC-V Foundation, December 2019.

[18] P. Prinetto and G. Roascio. “Hardware Security, Vulnerabilities, and
Attacks: A Comprehensive Taxonomy.” In ITASEC, pp. 177-189.
2020.

[19] R. Baldoni, R. De Nicola, and P. Prinetto. “The Future of
Cybersecurity in Italy: Strategic Focus Areas.” Consorzio
Interuniversitario Nazionale per l’Informatica - CINI, 2018. ISBN:
9788894137330.

[20] A. One. “Smashing the stack for fun and profit.” Phrack magazine 7,
no. 49, pp. 14-16, 1996.

[21] S. Designer. “Getting around non-executable stack (and
fix).” Available: https://seclists.org/bugtraq/1997/Aug/63, 1997,
[Online; accessed 07-June-2021].

[22] H. Shacham. “The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86).” In Proceedings of the
14th ACM conference on Computer and communications security, pp.
552-561, 2007.

[23] C.W. Enumeration. “CWE-119: Improper Restriction of Operations
within the Bounds of a Memory Buffer.”, Available:
https://cwe.mitre.org/data/definitions/119.html, 2021. [Online;
accessed 07-June-2021].

[24] S. Bhatkar, D.C. DuVarney, and R. Sekar. “Address Obfuscation: An
Efficient Approach to Combat a Broad Range of Memory Error
Exploits.” In USENIX Security symposium, vol. 12, no. 2, pp. 291-301,
2003.

[25] G.F. Roglia, L. Martignoni, R. Paleari, and D. Bruschi. “Surgically
returning to randomized lib (c).” In 2009 Annual Computer Security
Applications Conference, pp. 60-69, 2009.

[26] M. Wenzl, G. Merzdovnik, J. Ullrich, and E. Weippl. “From hack to
elaborate technique—a survey on binary rewriting.” ACM Computing
Surveys (CSUR) 52, no. 3, pp. 1-37, 2019.

[27] H. Ozdoganoglu, T.N. Vijaykumar, C.E. Brodley, B.A. Kuperman, and
A. Jalote. “SmashGuard: A hardware solution to prevent security
attacks on the function return address.” IEEE Transactions on
Computers 55, no. 10, pp. 1271-1285, 2006.

[28] A. Francillon, D. Perito, and C. Castelluccia. “Defending embedded
systems against control flow attacks.” In Proceedings of the first ACM
workshop on Secure execution of untrusted code, pp. 19-26, 2009.

[29] C. Bresch, et al. “Stack redundancy to thwart return oriented
programming in embedded systems.” IEEE Embedded Systems
Letters 10, no. 3, pp. 87-90, 2018.

[30] Q. Pengfei, Y. Lyu, J. Zhang, D. Wang, and G.Qu. “Control flow
integrity based on lightweight encryption architecture.” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems 37, no. 7, pp. 1358-1369, 2017.

[31] Y. Li, Z. Dai, and J. Li. “A control flow integrity checking technique
based on hardware support.” In 2018 IEEE 3rd Advanced Information
Technology, Electronic and Automation Control Conference (IAEAC),
pp. 2617-2621, 2018.

[32] V. Kuznetzov, et al. “Code-pointer integrity.” In The Continuing Arms
Race: Code-Reuse Attacks and Defenses, pp. 81-116, 2018.

[33] N. Roessler and A. DeHon. “Protecting the stack with metadata
policies and tagged hardware.” In 2018 IEEE Symposium on Security
and Privacy (SP), pp. 478-495, 2018.

[34] Intel® Cyclone® 10 GX Core Fabric and General Purpose I/Os
Handbook. Available: https://www.intel.com/content/dam/www/
programmable/us/en/pdfs/literature/hb/cyclone-10/c10gx-51003.pdf,
2021.

[35] Cyclone IV Device Handbook, Volume 1, Available: https://www.
intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/c
yclone-iv/cyclone4-handbook.pdf

