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ABSTRACT Microwave Imaging (MI) for biomedical applications has attracted attention due to its harmless
radiation compared to X-ray or MRI. One of the commonly used computing methods in MI is Finite
Difference TimeDomain (FDTD), which is executed several times in iterative loops, hence resulting in a high
execution time. Although several hardware accelerators for FDTD have been recently introduced, they are
not specifically designed for MI applications. In particular, only simple absorbing boundary conditions have
been investigated, and the impact of dispersive materials on FDTD has not been considered. In this paper,
we propose a multi-FPGA accelerator for 3D FDTD that is integrated in anMI algorithm, with Convolutional
PerfectlyMatched Layer (CPML) boundary conditions and an exact model for dispersive materials. By using
High Level Synthesis (HLS), we obtain an optimized hardware accelerator that uses an efficient blocking
method to reduce the data transfer time between external and local memories. We propose two alternative
architectures that trade off performance and resource usage. In addition, our code, being developed at a high
level, can also be run on GPUs whenever necessary. The results show that our multi-FPGA accelerator is
superior to three similar GPU-based designs in terms of execution time and power consumption.

INDEX TERMS FPGA, HLS, FDTD, hardware acceleration, microwave imaging.

I. INTRODUCTION
Microwave Imaging (MI) uses microwaves emitted and cap-
tured by several antennas to create an image of the inner
dielectric profile of an object. It has attracted attention among
biomedical researchers due to its low-cost, non-ionizing and
non-invasive characteristics.Medical diagnosis inMI is based
on the contrast between the dielectric properties of normal
and anomalous tissues [1].

MI solves the electromagnetic inverse-scattering problem,
which is inherently non-linear and makes the reconstruction
a challenging task. Although approximate linear methods
have been used [2]–[4], they have limited accuracy especially
when the object is highly heterogeneous. More accurate,
non-linear approaches solve the inverse problem by updating
the dielectric estimation iteratively, which results in a high
execution time. Fig. 1 shows a general diagram of the itera-
tive non-linear inverse scattering reconstruction for medical

The associate editor coordinating the review of this manuscript and

approving it for publication was Liang-Bi Chen .

imaging. Starting from an initial guess of the dielectric pro-
file, the forward solver, often implemented using the Finite
Difference Time Domain (FDTD) approach [5], computes
the electromagnetic fields. The output of the forward solver
is compared with the actual microwave measurements and,
based on the error, the dielectric profile is updated with a
specific inverse scattering algorithm. In this work, we used
the DBIM-TwIST algorithm for this inversion [6] and FDTD
as forward solver.

The high execution time comes from FDTD, for which
several hardware accelerators have been proposed, as cov-
ered in Sec. II. Although a GPU implementation is a nat-
ural choice, depending on the complexity of the problem—
primarily number of elements in the volume and number of
antennas—a 3D image reconstruction can still take hours to
finish. This motivated us to design an alternative hardware
accelerator for the MI algorithm developed by Miao and
Kosmas [6].

The MI algorithm was originally coded in MATLAB
with the forward part accelerated by a Tesla GPU using an
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FIGURE 1. General diagram of a non-linear image reconstruction iterative
algorithm in MI, with the compute-intensive FDTD step.

efficient commercial FDTD software library,Acceleware [7].
This code keeps the GPU fully busy by efficiently paralleliz-
ing the execution on the number of elements in the 3D vol-
ume. Since there is no room left to further parallelize on the
number of antennas, the GPU code of the FDTD is executed
sequentially for each of them. In MI systems with tens of
antennas [4], leveraging instead the antenna parallelism could
be the key to reducing the overall execution time from hours
to minutes.

Although one obvious solution is to parallelize the execu-
tion on many GPUs, this is impractical for various reasons,
including cost, form factor, and overall power consumption.
Instead, an implementation on a Multi-FPGA platform can
offer an equivalent performance at a fraction of cost and
power, not to mention the much more manageable size and
weight. A GPU implementation, however, can still outper-
form FPGA platforms with limited capacity.

For these reasons, we developed a 3D FDTD accelerator
using a high-level approach, so that the code can be both
implemented in FPGA using a High-Level Synthesis (HLS)
flow, or easily changed to be executed in a GPU. This is
possible because current FPGA design flows accept portable
C/C++ high-level descriptions, which are enriched with spe-
cific directives, termed pragmas, for generating the desired
Register-Transfer Level (RTL) code for FPGA hardware
implementation. This high-level approach allows to explore
the design space by changing the pragmas in a more effi-
cient way compared to RTL design. In [8], a comprehensive
analysis and the implications of using several HLS opti-
mization transformations (including the HLS pragmas) have
been presented for High-Performance Computing applica-
tions. In [9] and [10], the efficiency and performance of
HLS-based design space exploration are explored. In [11],
a fast HLS simulator is introduced to accelerate the hardware
simulation process, and in [12] and [13], new methodologies
are proposed for the optimum selection of HLS directives.

One of the design challenges for FDTD is the optimization
of the memory access to a large amount of data, which is
complicated by the relatively low amount of on-chip memory.
While many previous publications considered a less challeng-
ing 2D FDTD, we focus instead on a full 3D implementation.

To cope with the memory access issues in 3D FDTD, the few
previous works on the subject use specific blocking methods
to read blocks of data from the external memory, which is an
approach that we also use in this work.

However, previous 3D FDTD works use simplified Peri-
odic Boundary Conditions (PBC), which is not an accurate
approach for some MI problems, but simplifies the hardware
design. Improving the accuracy calls for more appropriate,
but more difficult to implement in hardware, boundary con-
ditions like Convolutional Perfectly Matched Layer (CPML),
which is used in few works and in a limited way. Finally,
previousworks on 3DFDTDdo not consider dispersivemate-
rials, which leads to more complex equations with depen-
dencies that result in less straightforward parallelization.
To the best of our knowledge, we are the first to propose
a full-fledged 3D FDTD in FPGA that implements both
CPML boundary conditions in all directions and uses an exact
model for dispersive materials. We propose two possible
FPGA implementations that use a different amount of on-chip
memory, which creates a trade off between performance and
resource usage.

In summary, the following is the list of our contributions:
• We propose the first FPGA accelerator for 3D FDTD
integrated in an MI algorithm for medical applications.

• This is the first 3D FDTD accelerator to fully model
dispersive materials, which makes the FPGA design
more challenging.

• The CPML boundary conditions for 3D FDTD are used
for all directions in contrast to previous accelerators
designed with a high level approach that either do not
consider CPML or consider periodic structures with
CPML conditions only for one direction.

• Two hardware architectures with different characteris-
tics are proposed and their pros and cons are analyzed.

• The entire hardware is designed using a High Level
Synthesis (HLS) tool and several specific hardware opti-
mization methods are used to design an efficient hard-
ware.

• Both single- and multi-FPGA platforms are analyzed
that can be used to accelerate FDTDwithmultiple anten-
nas.

• The GPU implementation derived from our 3D FDTD
code has a comparable performance with a commercial
GPU implementation.

In the remainder of the paper, we discuss the related work
in Sec. II and the principles of FDTD for MI in Sec. III,
present the FPGA hardware accelerator in Sec. IV and related
results in Sec. VI. In Sec. VII we discuss the challenges of
the design and an overview of the solutions, and finally,
we conclude in Sec. VIII.

II. RELATED WORK
Several FDTD accelerators proposed in the literature are
based on GPUs. For instance, in [14] an implementation
based on CUDA associates each thread to a cell in the
FDTD grid and obtains the same accuracy of the CPU design
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with a speed-up ratio proportional to the grid size.
Other GPU-accelerated versions of FDTD are proposed
in [15]–[17].

High power consumption of GPUs draws attention to
FPGA implementations. In [18] an FPGA accelerator for
2D FDTD is designed using OpenCL for two hardware plat-
forms. The authors apply several OpenCL pragmas to create
deeply pipelined loops. However, they do not consider the
impact of boundary conditions. The FDTD hardware accel-
erator in [19] uses a HLS tool called MaxCompiler devel-
oped by Maxeler technologies. In their work, the authors
investigate different boundary conditions, including PBC
and CPML. However, their design can be used only for
periodic structures where one can model the entire simulation
space by a single periodic cell. In this cell, CPML conditions
are applied only to the top and bottom boundaries, and PBC
conditions are used for the other four boundaries. In con-
trast, we consider CPML in all directions as required by the
MI application, at the cost of a much more complex design.

Takei et al. present an OpenCL-based design for 2D FDTD
on FPGA [20]. To reduce the global memory access, they
used an overlapped tiling method that can locally store small
blocks of data. Despite lower power consumption compared
to GPU, the processing time could not be reduced for large
grid sizes. Waidyasooriya et al. in [21] extend the work
in [20] to 3D FDTD by pipelining multiple FDTD iter-
ations. Although they achieve better performance than
CPU- or GPU-based designs, they only consider periodic
structures for the boundary conditions. In addition, they sim-
plify the FDTD update equations by ignoring the polarization
current, hence reducing the required memory bandwidth.
Recently, in [22] an FPGA design for 3D FDTD that consid-
ers CPML boundary conditions has been proposed, although
the authors do not consider the impact of dispersive materials
and polarization currents. In addition, they use Verilog to
design their hardware at RTL, which increases the design and
development time compared to the HLS-based design and
makes less efficient the design space exploration.

FDTD can be seen as a Stencil computation. In stencils,
the elements of a multi-dimensional grid are updated itera-
tively based on the neighbouring cells using a fixed pattern.
The main bottleneck in both GPU and FPGA designs for
stencil computation is the data transfer time between global
and local memories. The common approach to alleviate this
problem is to use spatial or temporal blocking. In the for-
mer, a spatial block of data is stored in on-chip memory to
reduce the access time, and in the latter, different time steps
are pipelined for further parallelization. Regarding stencil
acceleration in FPGAs, there have been extensive research
works in recent years. In [23], Waidyasooriya et al. extended
their previous FPGA accelerator to a general stencil com-
putation by increasing the degree of parallelism. In addi-
tion to pipelining multiple iterations, they could compute
multiple grid cells in parallel. However, they did not report
results for 3D FDTD with complex boundary conditions
like CPML. In [24], another FPGA design for 3D stencils

using OpenCL uses a combination of spatial and temporal
blocking methods. In [25], [26], memory and power perfor-
mance of FPGA accelerators for general stencils have been
investigated. Other successful designs for stencil acceleration
have been presented in [27] and [28]. Although some of
the above works have considered FDTD as a benchmark for
stencil computation, they analyzed simplistic scenarios that
cannot be adapted to the special requirements of FDTD as
used in MI. For example, simple boundary conditions like
Dirichlet [25], [26], [28] or PBC [24] cannot be used in MI.
Polybench, a benchmark suite used in some stencil accelera-
tors, like [27], does not include a full 3D FDTD as only the
Transverse Electric (TE) mode is considered (other directions
of the fields are ignored). In addition, not modeling dispersive
materials as done in [23] can improve the hardware accel-
eration (e.g., with deeper pipelining on time iterations), but
cannot be done in MI applications.

III. FDTD IN MICROWAVE IMAGING
A. BACKGROUND
The main equations in FDTD for MI are the time-domain
Maxwell equations for dispersive and lossy materials:

∇ × H =
∂D
∂t
+ σeE + JS (1)

D(ω) = ε(ω)E(ω) (2)

−∇ × E =
∂B
∂t
+ σmH +MS (3)

B(ω) = µ(ω)H (ω) (4)

H and E are magnetic and electric fields; B and D are
magnetic and electric flux densities;MS and JS are magnetic
and electric current densities (zero in the following); σm and
σe are magnetic and electric conductivity; µ is magnetic
permeability and ε is electric permittivity.

Dielectric materials in MI have µ = µ0, the permeability
of free space. Thus, B = µ0H and (3)-(4) can be merged into
one equation (−∇×E = µ0

∂H
∂t +σmH+MS ). On the contrary,

the frequency dependency of ε in dispersive materials must
be modeled, typically with the Debye model that we also use
here. Taking this into account, Eqn. (2) can be written as:D =
ε0E + P, in which ε0 is the free-space permittivity and P is
the polarization vector that is proportional to E . Polarization
current, JP, is the time derivative of P: JP = ∂P

∂t .

FDTD solves the equations above based on finite differ-
ence approximations. The 3D volume is divided into cuboids
called Yee cells [29] in such a way that each magnetic field is
surrounded by four electric fields and vice versa. This results
in twomain update equations for electric andmagnetic fields,
respectively. Compared to the simpler case of non-dispersive
materials, however, an additional variable accounting for the
polarization current (JP) appears in the update equation for
the electric field only. The FDTD algorithm for a Debye
model repeats the following two steps at each time step [5]:

1) update magnetic fields;
2) for each electric field component:
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a) update electric fields and store them in a new
variable E ′;

b) update polarization currents based on the new and
old values of electric fields;

c) update the old fields with the new ones (E = E ′).

B. BOUNDARY CONDITIONS: CPML
FDTD is used to obtain the propagation of the electromag-
netic waves in the simulation space. Due to the finite size
of this space, the propagation must be terminated in the
‘‘Boundary Regions’’. Therefore, the update equations in
these regions must be modified by adding proper boundary
conditions. Dirichlet conditions consider that the fields in
the boundaries are zero, while PBC considers the fields to
be repeated after a fixed number of cells. These conditions
will create unwanted reflections from the boundary regions
towards the inner simulation space. CPML is a more complex
boundary condition that eliminates these reflections by letting
the propagation be absorbed in the boundary region.

To better understand the following description of the
FDTD code and the role played by the boundary conditions
the exemplifications in Fig. 2 are helpful. The figure shows all
the cells and identifies two boundary planes for each direction
(x, y, z) using a different coloring. The figure refers to the
magnetic field and shows that, for instance, the components
Hx andHz must be updated in the two planes of the y direction
(called front and back faces in the following), while the
components Hy and Hz must be updated in the two planes
of the x direction (left and right faces), and so on. A similar
figure can be used for the electric field.

FIGURE 2. Boundary regions for H field in 3D FDTD.

C. FDTD PSEUDO-CODE
Each FDTD update equation can be written in a general form
like the following equation for Hx :

Hx = ahxHx + bhy(E+xy − E
c
y )+ bhz(E

+x
z − E

c
z )

+ dhx(9Hxy +9Hxz). (5)

Ec and E+x are the electric field of the central cell being
calculated and of the next cell, respectively; 9Hxy, 9Hxz are
used in the boundaries only and can be considered to be zero

Algorithm 1: 3D FDTD Pseudo-Code
for s ∈ Antennas do // Loop over antennas

for c ∈ Domain Cells ∪ Boundary Cells do // Initialize at t=0
E{x,y,z}(s, c, t = 0) = 0, H{x,y,z}(s, c, t = 0) = 0

// From now on (s,c,t) omitted for readability
for t = 1 to Tmax do // Loop over time steps

// Update H: loop over all cells
for c ∈ Domain Cells ∪ Boundary Cells do

Hx = ahxHx + bhy(E
+x
y − Ecy )+ bhz(E

+x
z − Ecz )

Hy = ahyHy + bhx (E
+y
x − Ecx )+ bhz(E

+y
z − Ecz )

Hz = ahzHz + bhx (E
+z
x − Ecx )+ bhy(E

+z
y − Ecy )

// Update H boundary: loop over boundary cells
for c ∈ Boundary Cells of y direction, front face do

9Hxy = chy19Hxy + chy2(E
+y
z − Ecz ), Hx += dhx9Hxy

9Hzy = chy19Hzy + chy2(E
+y
x − Ecx ), Hz += dhz9Hzy

for c ∈ Boundary Cells of y direction, back face do
// see footnotea

for c ∈ Boundary Cells of x direction, left face do
9Hyx = chx19Hyx + chx2(E

+x
z − Ecz ), Hy += dhy9Hyx

9Hzx = chx19Hzx + chx2(E
+x
y − Ecy ), Hz += dhz9Hzx

for c ∈ Boundary Cells of x direction, right face do
// see footnotea

for c ∈ Boundary Cells of z direction, top face do
9Hxz = chz19Hxz + chz2(E

+z
y − Ecy ), Hx += dhx9Hxz

9Hyz = chz19Hyz + chz2(E
+z
x − Ecx ), Hy += dhy9Hyz

for c ∈ Boundary Cells of z direction, bottom face do
// see footnotea

// Update E: loop over all cells
for c ∈ Domain Cells ∪ Boundary Cells do

E ′x = aexEx + bey(Hc
y − H

−x
y )+ bez(Hc

z − H
−x
z )

E ′y = aeyEy + bex (Hc
x − H

−y
x )+ bez(Hc

z − H
−y
z )

E ′z = aezEz + bex (Hc
x − H

−z
x )+ bey(Hc

y − H
−z
y )

E ′x += cPJPx , E ′y += cPJPy, E ′z += cPJPz

// Update E boundary: loop over boundary cells
for c ∈ Boundary Cells of y direction, front face do

9Exy = cey19Exy + cey2(Hc
z − H

−y
z ), E ′x += dex9Exy

9Ezy = cey19Ezy + cey2(Hc
x − H

−y
x ), E ′z += dez9Ezy

for c ∈ Boundary Cells of y direction, back face do
// see footnoteb

for c ∈ Boundary Cells of x direction, left face do
9Eyx = cex19Eyx + cex2(Hc

z − H
−x
z ), E ′y += dey9Eyx

9Ezx = cex19Ezx + cex2(Hc
y − H

−x
y ), E ′z += dez9Ezx

for c ∈ Boundary Cells of x direction, right face do
// see footnoteb

for c ∈ Boundary Cells of z direction, top face do
9Exz = cez19Exz + cez2(Hc

y − H
−z
y ), E ′x += dex9Exz

9Eyz = cez19Eyz + cez2(Hc
x − H

−z
x ), E ′y += dey9Eyz

for c ∈ Boundary Cells of z direction, bottom face do
// see footnoteb

// Update JP: loop over all cells
for c ∈ Domain Cells ∪ Boundary Cells do

JP{x,y,z} = spJP{x,y,z} + Qp(E ′{x,y,z} − E{x,y,z})
E{x,y,z} = E ′

{x,y,z}

for c ∈ Antenna Cells do // Add antenna source
signals:

Ez(s, c, t) = Source(s, c, t)

aSame equations of previous loop with new 9̂H and ĉh variables
bSame equations of previous loop with new 9̂E and ĉe variables

in the main cells. All the other terms are constant with a spa-
tial dependency. When computing the cells in the boundary
layers in y direction,9Hxz is zero and when updating the cells
in the boundaries of z direction, 9Hxy is zero. In the overlay
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of boundary cells in y and z directions, both terms are present.
Therefore, the update equation for Hx can be divided into
different regions including the main cells, boundary cells of
y direction (front and back) and boundary cells of z direction
(top and bottom). Separate loops must be considered for each
region to obtain the final output.

These separate loops are described by the FDTD
pseudo-code in Alg. 1. Notice the difference between
Update H and Update E equations due to the polarization
currents JP{x,y,z}. Ec, H c are the electric and magnetic fields
of the central cell being calculated; (E+x ,E+y,E+z) and
(H−x ,H−y,H−z) are the electric and magnetic fields of the
next and the previous cell, respectively, in (x, y, z) directions.
Except variables H ,E, JP, 9H , 9E , all the other terms are
constant with a spatial dependency, which requires a signif-
icant amount of memory. For more details on FDTD please
refer to [5]. Note that the dependency on time step (t) and
antenna index (s) in Alg. 1 is omitted whenever needed to
improve readability. In addition, even though the antenna
source signals can be added in any direction, in our design
the antennas emit an electric field in the z direction.

As Alg. 1 clearly shows, the outer loop can be easily
unrolled and assigned to different parallel Compute Units
(CUs), each in charge of one antenna. In the next two sections,
we focus first on the design and optimization of a single CU
and its implementation on one FPGA, then we focus on the
multi-FPGA implementation of a multi-CU system.

IV. FPGA DESIGN OF AN FDTD COMPUTE UNIT
We validated our initial C++ design in terms of accuracy
against the Acceleware commercial code. Both codes use
32-bit Floating-Point (FP) data for all the variables in Alg. 1.
Note that computing precision is critical in MI iterative algo-
rithms, as the errors tend to accumulate and lead to inexact
solutions. This is why fixed-point data type, which would
certainly lead to higher computation speed, cannot be used
in this case.

Although we easily converted our initial code to RTL
for FPGA implementation using HLS tools,1 the estimated
performance (latency in number of clock cycles times the
estimated clock period) was worse than the GPU one in
Acceleware. To enhance the performance, we adopted various
hardware optimization strategies, which consisted in the use
of specific HLS pragmas and some modifications to the
original C++ code. Although the code can be easily adapted
to different FPGAs from different vendors, we focused our
optimizations and experiments on a Xilinx target. Therefore,
from now on, we often refer to Vivado HLS and Vivado as the
tools for HLS development and implementation, respectively.
It is important to note that the design goal in our hardware
accelerator is to minimize the total latency of the FDTD com-
putation, because this reduces the overall execution time of

1Both the development tools and the advanced target FPGAs nowadays
support the synthesis of FP arithmetic to hardware.

the MI iterative algorithm. This can be achieved by applying
the HLS optimization strategies described in the following.

Fig. 3 presents a schematic representation of the HLS code
for a single CU, in which each block is a function that
corresponds to an update equation inAlg. 1. The JP equations,
which are separate in Alg. 1, are merged with the Update E
and E boundary blocks in Fig. 3 to avoid rereading the E
fields from the externalmemory. Table 1 summarizes theHLS
optimization techniques used in the hardware design and the
functions in which they are used, as explained thoroughly
in the next subsections. The top-level function denotes the
function that contains the loop over the time steps in Alg. 1.

FIGURE 3. FDTD CU design in HLS for a single FPGA.

TABLE 1. HLS hardware optimization strategies for a FDTD CU.

Vivado HLS synthesizes the C++ code and generates the
RTL code of an IP block that is integrated in theVivado imple-
mentation flow with the additional blocks in Fig. 4. These
include a memory controller, two reset blocks, and an AXI
interconnect block that connects to the memory controller the
IP interfaces, all compliant with the AXI standard.

A. TWO ARCHITECTURES: LARGE AND SMALL
For a more flexible design, we propose two hardware archi-
tectures, termed Large and Small, which use a different num-
ber of AXI I/O interfaces and a different amount of local
on-chip memory for storing magnetic or electric fields in
the boundary regions. In the large design more computing
resources and more AXI interfaces are used, which results
both in a lower number of CUs that can be implemented in
a single FPGA but also in a lower latency per CU compared
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FIGURE 4. Detailed view of the CU design in Vivado.

to the Small design in which less resources and interfaces are
used. Hence, depending on the number of CUs over which
a designer wishes to parallelize the computation and the
number of available FPGAs, either the Large or the Small
design is the preferred choice in terms of execution time,
as shown later.

To avoid performance bottlenecks in the Large design,
18 AXI interfaces are needed, as shown in Fig. 5, to guarantee
a concurrent access to all the data arrays needed during
the computation. Note that the aggregate bandwidth is still
compatible with the external DRAM specifications, as we
show later. Since in our target FPGA each memory controller
can handle only up to 16 ports, one CU needs two memory
controllers, which is possible in large FPGAs with multiple
external DRAM memory banks.

FIGURE 5. Details of the interfaces of the CU for Small and Large designs.

In the Small design, on the other hand, we reduced the
number of AXI ports to 15 by removing three AXI ports
(Din2, Din3, Din4) (orange box in Fig.5) and using a shared
port (Din1) instead. This reduction of AXI interfaces makes it
possible to reduce the resource usage as shown in Sec. IV-C
and Sec. VI-B. As a result, the data in the Small design is
routed to some of the blocks in Fig. 5 via shared interfaces,
at the cost of a lower performance. However, by using lower
resources, we can fit more CUs into a single large FPGAwith
multiple memory controllers, each handling one single CU,
hence increasing the overall throughput per single FPGA.

Table 2 shows how the variables in Alg. 1 are mapped
to the AXI ports according to the design version. Note that
Din2-4 only exist in the Large design. In Tab 2, bh_xy is
the combination of bhx and bhy in one single array, and
similarly be_xy for bex and bey. 9E∗ and 9H∗ associated to
port Din1 refer to all the variables of that type in Alg. 1.

TABLE 2. Description of AXI interfaces.

In the following, we explain the optimization methods
listed in Table 1.

B. BLOCKING METHOD AND MERGING OF JP UPDATE
EQUATIONS
To optimize the memory access, we use a method similar
to the spatial blocking used in stencils. Fig. 6(a) shows the
general approach using shift registers as local memory in a
2D stencil with dimensions X and Y . The stencil moves from
left to right until it reaches the end of a row and moves one
row downward. To compute the current cell C, the four sur-
rounding cells (N,E,S,W) are needed. As the stencil moves,
a new cell is written in the head of a shift register and used
immediately as ‘‘new’’ S cell, while the ‘‘old’’ N cell is
removed from the tail of the shift register. The shift register
holds the last 2X+1 cells from the grid (darker orange cells).

There are significant differences between a generic
2D stencil and a 3D FDTD. As shown in Fig. 6(b), updating
the magnetic field in a cell requires the electric field in the
current and next positions, while updating the electric field
requires the magnetic field in the current and previous posi-
tions. Therefore, instead of the 5-cell stencil pattern, we need
3 cells for H update and 3 cells for E update. For a 2D FDTD,
this would require two shift registers (for H and E) each of
size X + 1, but for a 3D FDTD, the size becomes XZ + 1.

FIGURE 6. Blocking method for FDTD and its difference with a general
stencil.

In addition, since in 3D FDTD the three components
of E and H fields need each a separate shift register, the
number of resources in FPGA is severely impacted.
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Algorithm 2: Pseudo-Code for Update E With Blocking
and JP Merge
Update E:
s = 0; size = (X − 1)(Y − 1)+ 1;
for k=Z-1;k>1;k-- do // Process XY planes in Z direction

for Domain Cells ∪ Boundary Cells in plane k do
if Boundary Cells and Use local storage for H then

BF = H ;// Local storage in BRAM

Blocking:
// Store new XY plane in memory
Hram{x,y,z}[s++] = H{x,y,z}[k];
#pragma resource Hram RAM_2P_LUTRAM
if s = size then // Hram=full

s = 0;

if (k < Z − 1) then // ignore first plane (Z-1)
// Process old XY plane (while reading
new)
Hc
{x,y,z} = Hram{x,y,z}[s];

H−y
{x,z} = Hram{x,z}[(s+ X − 1)%size];

H−z
{x,y} = Hram{x,y}[(s+ size− 1)%size];

H−x
{y,z} = Hram{y,z}[(s+ 1)%size];

Main Update E (for plane k + 1):
E ′x = UpdateE(Ex ,Hc

y ,H
−x
y ,Hc

z ,H
−x
z , JPx );

E ′y = UpdateE(Ey,Hc
x ,H

−y
x ,Hc

z ,H
−y
z , JPy);

E ′z = UpdateE(Ez,Hc
x ,H

−z
x ,Hc

y ,H
−z
y , JPz);

Merge JP update (for plane k + 1):
if Domain Cells then

JP{x,y,z} = spJP{x,y,z} + Qp(E ′{x,y,z} − E{x,y,z});
E{x,y,z} = E ′

{x,y,z};

Therefore, instead of using shift registers with Flip-Flops or
Look-Up Tables (LUTs), we use BRAMs to locally store the
fields. Since BRAMs are dual-port SRAMs, however, it is not
possible to read more than two values per clock cycle. More-
over, we cannot partition the arrays to overcome the two-port
limitation, because the accessed elements are not always
in the same partition. Therefore, we replicate the BRAMs
multiple times to simultaneously access all the required cells.
As we will see in Sec. VI, to balance the resource utilization
it is possible, by means of the HLS resource allocation direc-
tive, to replace the BRAMswith LUTs arranged as distributed
memories.

This local memory for blocking is represented by theHram
variable in Alg. 2. Note that, after a round of initialization
with an initial plane in the z direction, the memory gets
filled with a new plane while the computation happens on
the previous plane. The concurrency of memory access to the
new plane and computation on the old plane is a key factor to
obtain a high computing throughput and so a low execution
latency. Another local memory used only for the bound-
ary field cells is BF in Alg. 2, which is described in detail
in Sec. IV-C.
Another optimization consists in merging the loop that

updates JP with the other loops for E update and E-boundary
update, previously shown as three separate loops in Alg. 1.
For this purpose, we split the JP update equations in two parts
for the main domain and boundary cells. In Alg. 2 the part of
the main cells is updated with the if condition in the last few
lines.

Algorithm 3: Pseudo-Code for Update H-BoundaryWith
Merging Boundary Loops and Local Storage
Update H:
{. . .
if Boundary Cells and Use local storage for E then

BF = E ;// Local storage in BRAM

. . . }
Update H-boundary:
if NOT use local storage for E then

Change BF to E

#pragma loop merge
for Boundary cells in y direction, front face do

9Hxy = chy19Hxy + chy2(BF
+y
z − BFcz ), Hx += dhx9Hxy;

9Hzy = chy19Hzy + chy2(BF
+y
x − BFcx ), Hz += dhz9Hzy;

for Boundary cells in y direction, back face do
9̂Hxy = ĉhy19̂Hxy + ĉhy2(BF

+y
z − BFcz ), Hx += dhx 9̂Hxy;

9̂Hzy = ĉhy19̂Hzy + ĉhy2(BF
+y
x − BFcx ), Hz += dhz9̂Hzy;

// 2 (×2) other loops for x and z directions

For space reasons, we do not show the pseudo-code for
Update H, which uses the same blocking method of Alg. 2.

C. LOOP MERGE AND LOCAL STORAGE FOR BOUNDARIES
A key strategy to improve the FDTD performance is to move
the accesses of the many array variables from the external
DRAM to on-chip SRAMs. Due to the large number of
cells, however, even for the largest FPGAs this strategy is
applicable only to a subset of the variables. For this reason,
we use on-chip memory only for the boundary elements,
when possible. This is shown in Algs. 2-3 with local storage
BF enabled or disabled with an if conditional statement.

The loops for the update equations for the six boundary
regions in Fig. 2, which are separated in Alg. 1, can bemerged
in pairs according to the coloring scheme in Fig. 2. Alg. 3
shows how the loops in Update H-boundary are merged by
using the loop merge HLS pragma. Note that the complete
CPML boundary conditions require 6 loops in total for all
the directions for each field (E or H), while in previous
works, the simplified CPML boundary conditions require
only 2 loops as they are used only for one direction.

Despite the loop merging in the H-boundary update,
the problem of accessing the 9H∗ arrays from the external
memory several times remains intact. Tomaximize the execu-
tion speed of the merged loops, the arrays need to be accessed
four times in parallel, so the four AXI ports Din1-4 almost
entirely dedicated to them shown in Table 2 and in Fig. 5
(3 dedicated ports, Din2-4, and one shared port, Din1).

While the Large design leverages the simultaneous access
through these ports, the Small one eliminates ports Din2-4.
As discussed later in Sec. VI-B, in the Small design there is
no benefit in using the local BRAMs to store the electric fields
(BF = E), since the performance is limited by the serialized
access to all the 9H∗ arrays through one shared AXI port.
The loop merging for the Update E-boundary is shown in

Alg. 4. Here we merged the part of the JP update equations
related to the boundary cells, while the part related to themain
cells is merged with the E update, as shown in Alg. 2.
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Algorithm 4: Pseudo-Code for Update E-BoundaryWith
Merging Boundary Loops and JP Merge
Update E:
{. . .
if Boundary Cells and Use local storage for H then

BF = H ;// Local storage in BRAM

. . . }
Update E-boundary:
if NOT use local storage for H then

Change BF to H ;

#pragma loop merge
for Boundary cells in y direction, front face do

9Exy = cey19Exy + cey2(BFcz − BF
−y
z ), E ′x += dex9Exy;

9Ezy = cey19Ezy + cey2(BFcx − BF
−y
x ), E ′z += dez9Ezy;

Merge JP update, front face:
JP{x,z} = spJP{x,z} + Qp(E ′{x,z} − E{x,z});
E{x,z} = E ′

{x,z};

for Boundary cells in y direction, back face do
9̂Exy = ĉey19̂Exy + ĉey2(BFcz − BF

−y
z ), E ′x += dex 9̂Exy;

9̂Ezy = ĉey19̂Ezy + ĉey2(BFcx − BF
−y
x ), E ′z += dez9̂Ezy;

Merge JP update, back face:
JP{x,z} = spJP{x,z} + Qp(E ′{x,z} − E{x,z});
E{x,z} = E ′

{x,z};

// 2(×2) other loops for x and z directions

D. LOOP PIPELINE, FUNCTION INLINE, AND STORAGE
FOR COEFFICIENTS
The last optimization strategies consist in setting directives to
a) inline all the functions and b) pipeline the innermost loop
in nested loops like those over all the cells in three dimen-
sions. Both strategies significantly improve the Initiation
Interval (II) of the loops, which is the distance in clock cycles
between the starting of two consecutive iterations and cor-
responds to the inverse of the loop throughput, as discussed
thoroughly in Sec. VI. A perfectly pipelined loop starts a new
computation every clock cycle (II=1). In practice, dependen-
cies between iterations prevent to obtain this goal for every
loop. As for function inlining, it allows for further resource
sharingwhen this does not impact performance and allows for
optimization across function hierarchies. Alg. 5 shows how
the pragmas associated with these strategies are used in the
update functions.

Algorithm 5: HLS Pragmas of Loop Pipelining and
Function Inlining in 3D FDTD Algorithm
Update functions:
#pragma inline// Function is inlined
// Loop over all cells in (x,y,z) dimensions
for k=1 to Z do

for j=1 to Y do
for i=1 to X do // Innermost loop on x is pipelined

#pragma pipeline
. . .

Finally, we locally store constant coefficients ae{x,y,z} and
de{x,y,z} in Alg. 1 in URAMs, which are large memories
available in high-capacity Xilinx FPGAs. Since the coeffi-
cient values vary over the entire domain, they need a large
amount of storage, but one AXI port is enough to load them
during the initialization. By using both BRAMs and URAMs,

we achieve a high utilization of local FPGA storage as shown
in Sec. VI.

V. MULTI-FPGA IMPLEMENTATION
The possibility of unrolling the outermost loop in Alg. 1
and let multiple CUs work in parallel on different antennas,
is hindered by the limited resources available in one FPGA.
For example, the FPGA used in our experiments supports up
to 3 CUs in the Small design and 2 CUs in the Large one.
In particular, this FPGA contains three so-called Super Logic
Regions (SLRs) and our fastest design uses one CU per SLR.
Although we could place more CUs, the advantage of paral-
lelism is countered by a) the slower memory access caused
by the AXI ports sharing, and b) the slower clock frequencies
caused by the routing congestion. The only chance to improve
performance is to use multiple FPGAs.

We emphasize that the computations in each FPGA and
for each antenna are independent and there is no need for
data sharing between them. This straightforward parallelism
simplifies the deployment over commercially available and
energy-optimized multi-FPGA platforms. This is in contrast
with the use of multiple GPUs, e.g. in High-Performance
Computing (HPC) clusters, which are more expensive and
less energy efficient for similar performance. To show this
contrast and to demonstrate the advantages of using FPGAs
over GPUs, we proposed the deployment of our FDTD accel-
erator on a Multi-FPGA platform.

Multi-FPGA platforms have become easily accessible,
like for example the Amazon AWS EC2 F1 instances.
The AWS platform has eight Xilinx UltraScale+ FPGAs,
each connected to a multi-bank local DDR DRAM. The
FPGAs are connected via the PCIexpress (PCIe) bus to an
x86 host CPU, as shown in Fig. 7. The figure also shows how
multiple CUs working on 3F or 2F antennas, depending on
the design version with either 15 or 18 AXI ports, can be
allocated to F FPGAs.

FIGURE 7. Multi-FPGA platform with F FPGAs for 3D FDTD acceleration.

The host code in the CPU coordinates the execution of
the CUs in the FPGAs similarly to how the host code con-
trols execution of multiple threads in a GPU. Initially the
host transfers the inputs required by FDTD to all the local
DDR memories. As we show in Sec. VI, the overhead for
this initial PCIe transaction is negligible compared to the
computing time.
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The total execution time depends on the number of FPGAs,
the number of antennas, and the design version.WithA anten-
nas and F FPGAs, depending on the maximum supported
number of antennas nA in each FPGA (2 in the Large version
or 3 in the Small one) the relation between the total execution
time (Ttot ) and the time for each antenna (Tant ) is:

Ttot =
⌈ A
nA · F

⌉
× Tant (6)

By using the AWS platform with 8 FPGAs, Ttot will be
equal to Tant for up to 8×3 = 24 or 8×2 = 16 antennas in the
Small and Large designs, respectively. For a larger number
of antennas, the time will scale with factor d A24e in the Small
design and d A16e in the Large one. Note, however, that Tant is
different for the two cases, as discussed in the next section.

VI. RESULTS
Although the code that we developed is portable, we per-
formed our experiments on a specific Xilinx FPGA target,
the Virtex UltraScale+ used in the Amazon EC2 F1 instance
(vu9p-flgb2104-2-i). This FPGA consists of 3 Super Logic
Regions (SLRs) positioned at the left, middle, and right side
of FPGA. It also contains 4 DDR4 memory interfaces with
each interface accessing a 16 GiB memory. The middle SLR
contains 2 memory interfaces while the left and right SLRs
contain one interface each. Before reporting the performance
results obtained on this FPGA, we briefly discuss the accu-
racy of the C++ code in comparison to the Acceleware code.

To perform the accuracy check, we simulated a grid of
50 × 50 × 50 main cells with a boundary region of 10 cells
on each side. Therefore, in total, the simulation space has
70× 70× 70 = 343000 cells. The total number of time steps
was 1000. Fig. 8 reports the magnitude of the S21 scattering
parameter related to the transmission between an antenna
source and an observation point in the simulation space as a
function of frequency. This is a typical information used in the
DBIM-TwIST MI algorithm and is obtained from the FDTD
forward solver. The curves show an almost perfect overlap-
ping between what Acceleware and our synthesizable C++
code obtain, with aMean Absolute Percentage Error (MAPE)
of 0.01%.

For what concerns the execution time, this is the product of
the overall execution latency, in clock cycles, and the clock
period. The latency is minimized at a high level with a proper
design space exploration, which we could perform thanks to
the flexibility of HLS coding and the features of Vivado HLS
(2019.1 version). During the HLS phase, we aimed to keep
the clock frequency target high enough so that the resulting
performance would be competitive with the GPU design, but
not too high in order to avoid issues at the implementation
stage, specially during the routing phase. Determining the
proper clock target and the most appropriate strategies for
the implementation required a few iterations between the
high-level abstract design in Vivado HLS and the low-level
physical design in Vivado.

FIGURE 8. Accuracy comparison: Acceleware design versus our C++ code.

In the following we explain the impact of HLS-based opti-
mization methods on the hardware performance. After that,
we describe the design procedures and the results obtained
first on a single FPGA and then on the multi-FPGA platform.
We also report a comparison between the FPGA design and
three GPU designs: the first one was developed in Matlab
and tested on an NVIDIA Tesla K20c, the second one was
developed using Acceleware and tested on a Tesla P40 GPU,
and the third one is our design obtained from the same C++
code that runs on the FPGA and tested also on the Tesla K20c
GPU. For the comparison we used the same simulation space
of the accuracy check discussed above.

A. IMPACT OF HLS OPTIMIZATIONS ON PERFORMANCE
The HLS optimization techniques described in Sec. IV
improve the performance of our FDTD hardware accelerator.
It is important to note that different optimization strategies
are applied step-by-step and the designer must have enough
knowledge about the algorithm bottlenecks to find the best
HLS optimizations. Each of these changes the performance
and also the bottlenecks, hence the designer must monitor
and analyze the performance change while exploring the
accelerator design space using HLS. Here, the impact of each
HLS optimization on the hardware performance is explored
in more detail. Starting from the original code without any
HLS directives, we add each optimization method incremen-
tally and measure the performance of the FDTD Compute
Unit (CU) in terms of latency and resource usage. The results
in Fig. 9 show that each directive contributes to reducing
the latency until the minimum latency of 8.6 s is obtained
when all the directives are applied. (The figure is split in
two histograms with different scales for better readability.)
Fig. 10 shows the latency of each FDTD function and their
relation with HLS directives. Each directive operates on one
or multiple functions: pipeline and inline directives operate
on all functions, storage for coefficients (Coefs) is applied to
Update E and E-boundary functions, Blocking is applied to
Update H and E, and loopMerge+ storage for Boundaries is
applied to H-boundary function.2

2It can be applied to E-boundaries as well, but it complicates routing in
the implementation step in our target FPGA.
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FIGURE 9. Impact of different HLS optimization methods on the total
latency. (Numbers on top of the bars show the improvement compared to
the original code, and numbers bellow the arrows show the improvement
compared to the previous optimization method).

FIGURE 10. Impact of different HLS optimization methods on the latency
of each FDTD function.

The HLS estimation of the resource usage for the accel-
erator with respect to different HLS directives is shown
in Fig. 11. Note that the Small design uses all the HLS direc-
tives except for loop merging and storage for the boundaries.
The high URAM usage is due to the storage of constant
coefficients (Sec. IV-D). The Blocking method (Sec. IV-B)
increases the LUT usage and the last directive in the Large
design (Merge+Boundaries) increases the BRAM usage.
Although DSPs and FFs are not fully utilized, the advantage
of using a large FPGA with high number of resources is the
higher availability of URAMs. Compared to the design with-
out URAMs (Inline directive in Fig. 11), the optimized Small
design including URAMs (after Blocking method) obtains
2.8× improvement in the total latency (Fig. 9).

B. FDTD PERFORMANCE ON A SINGLE FPGA
To optimize the clock frequency, we used specific Vivado
strategies for both logic synthesis and implementation. For
synthesis we use the Flow_PerfOptimized_High strategy,
which sets the tool options to maximize timing performance
and gives less importance to minimizing resource usage
(e.g., no resource sharing, FSM extraction forced to one-
hot, no LUT combining, etc.). For the implementation of
the Large design we used the Performance_HighUtilSLRs
strategy, which aims to maximize the utilization of an SLR;
for the Small one we used the ExtraTiming_Opt strategy,
which gives priority chiefly to meeting timing constraints.
For both designs, we obtain a maximum clock frequency
of 167MHz.

For the latency optimization, Fig. 12 shows II and latencies
of the loops present in the various FDTD building blocks, for

FIGURE 11. Impact of HLS optimization methods on resource usage
per SLR.

FIGURE 12. The performance of the main FDTD loops in Small and Large
design in HLS.

both the Small and Large designs. It is observed that for E
Update and H Update we can achieve the minimum II of 1
thanks to the blocking method described in Sec. IV-B and the
loop pipelining described in Sec. IV-D.

Optimizing the II of the boundary loops is a much more
complicated task. First of all, many more variables need to
be accessed from memory, as clear from the comparison
between Algs. 3-4 and Alg. 2. Note that merging the loops
on two boundary faces in the same direction, while beneficial
for the sharing of some logic, does not reduce the number
of accesses to variables defined over two physically distinct
areas of the domain. Note also that further increasing the
number of AXI ports is not possible because of the mentioned
limitations of memory controllers and the complications aris-
ing from accessing multiple controllers in different SLRs.
The only viable option is to store the E andH variables in local
on-chip memories, while using four separate ports for9E and
9H variables (the corresponding ports between E and H can
be shared). Even with this solution, the best achievable II for
the boundary loops with the selected number of AXI ports
is 2, as determined by the simultaneous access from the same
AXI port to variables defined in two distinct boundary faces.

Unfortunately, II=2 is not achievable for both E and H
boundaries at the same time. In particular, sharing the same
BRAMs for both boundary fields complicates routing, lead-
ing to timing failures in the implementation. An alternative is
to use separate BRAMs, but the resource usage exceeds the
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available BRAMs in each SLR region (48% in total, i.e. about
one and a half out of three SLRs available). As a result, one
CU gets placed across two SLRs, and the routing phase in
Vivado ends with a large negative slack because of the large
routing delay of the many wires that cross the SLRs.

Nevertheless, by using the local memory either in E or
H boundary loops, we respect the BRAM limits in one
SLR without increasing the routing complexity. In the Large
design, we apply it to H-boundary. This requires to have four
separate ports for 9H∗ (Din1-4 in Fig. 5 and Table 2 for the
Large design). Therefore, as shown in Fig. 12, in the Large
design the II for H-boundary is 2, while for E-boundary is 4.
In the Small design, however, both E- and H- boundary loops
obtain II=4 as the local memory is not used: eliminating ports
Din2-4 already degrades II from 2 to 4, hence making local
memory totally ineffective. Using less BRAMS, however,
makes room for more CUs in a single FPGA, hence balancing
the longer latency of each CU with higher parallelism.

The clock frequency estimated by HLS for both design ver-
sions is 170MHz, very close to the final 167-MHz frequency
obtained after implementation. Critical paths are related to
the data transfer from AXI ports to local memory (BRAM,
LUT-based, or URAM). This is because memory blocks are
scattered in the SLRs, thus causing significant routing delays.

The estimated execution time for the Small and Large
designs is 10.14 s and 8.6 s, respectively, and is determined
by the computation time and not by the DDRmemory access.
This is because the maximum bandwidth of 19.2GB/s of
each DDR4 memory bank in the AWS F1 instance is always
greater than the peak required bandwidth given by simultane-
ous writes and reads, each of which consumes a bandwidth
of 4B×167MHz = 0.667GB/s. In the Small design, each
CU uses one Memory Controller (MC) connected to a single
memory bank for at most 15 reads and 4 writes (Alg. 4), thus
the peak bandwidth is (15+4)×0.667 = 12.7GB/s, which is
less than 19.2GB/s. In the Large design, each CU has 16 ports
mapped to one MC (MC1) and 2 ports to another MC (MC2).
With 16 reads and 4 writes in MC1, and 2 reads and 1 write
in MC2, the peak bandwidth is 20 × 0.667 = 13.36GB/s
for MC1 and 3 × 0.667 = 2GB/s for MC2, both less than
19.2GB/s. When more CUs are mapped to one FPGA, it is
not an issue either, as shown in the following.

1) SINGLE FPGA SMALL DESIGN WITH 3 CUs
Since the Small design fits in one SLR and the FPGA consists
of three SLRs, up to three CUs working in parallel on three
antennas can be instantiated as shown in Fig. 13(a). Since
each CU is connected to a separate MC and so to a separate
memory bank, the DDR4 bandwidth limit is not exceeded.

Table 3 shows both the resource usage estimation obtained
with Vivado HLS and the actual values after place-and-route
in Vivado for the Small design. The HLS estimation includes
only the FDTD block, while Vivado results include all the
blocks in Fig. 4. The percentage for the HLS estimation
in Table 3 refers to one SLR. For the Vivado results, it refers
instead to the entire FPGA with three CUs, each using one

FIGURE 13. Device view in a) Small and b) Large design after
place-and-route (it contains 3 SLRs in the left, middle
and right side of the FPGA).

TABLE 3. Resource usage for the Small design: HLS estimation and
Vivado implementation results.

single SLR. Table 3 shows a high resource utilization of
URAMs. This is because we use them to store large constant
arrays (aei, bei) in the update E function (see Sec. IV-C).

2) SINGLE FPGA LARGE DESIGN WITH 2 CUs
One CU in Large design consumes more BRAMs than the
total number of BRAMs in one SLR. Therefore, a maximum
of two CUs can be mapped onto one FPGA with three SLRs,
as shown in Fig. 13(b). TwoCUs share threeMCs (MC1,MC2
and MC3) while still not exceeding the DDR4 bandwidth.
MC1 and MC2 are used for 2 × 16 ports and MC3 is used
for 2× 2 ports. The peak bandwidth for both MC1 and MC2
is 13.36GB/s (calculated as for the single CU). Regarding
MC3, the maximum number of reads and writes in 4 ports is
8 in the worst case leading to a peak bandwidth of 8×0.667 =
5.3GB/s, again less 19.2GB/s.

The resource usage is shown in Table 4. The high BRAM
usage is due to the local storage of the electric fields for
the boundary region (BF , see Sec. IV-C). The percentage in
the HLS estimation is for one SLR while the percentage
in Vivado is for the entire FPGA. Note how two CUs use
more than 2/3 of the total BRAM resources, hence making it
impossible to map three CUs like in the Small design. For the
blockingmethod described in Sec. IV-Bwe cannot mapHram
in Alg. 2 to BRAMs, otherwise the design gets too congested
(90%BRAMusage) and there is a significant penalty in clock
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frequency. For this reason we use LUTs as distributed RAM,
using the LUT resource allocation pragma shown in Alg. 2.
As shown in Table 3 and Table 4, the DSP usage in

both designs is low. This shows that our implementation is
not compute-bound. The limiting factors in our design are
related to the access to the internal on-chip memories and
the number of AXI ports. We do not exceed the memory
bandwidth by carefully selecting the number of AXI ports.
Further increasing the number of ports (to the maximum
supported ports that is 16 × 4 = 64), while still compatible
with bandwidth, is not possible in practice due to the com-
plexities in routing stage and accessing multiple SLRs. The
application is memory-bound with respect to the access to
on-chip memory. It is constrained by the internal resource
limitations. To improve the performance, we need either more
local storage, or a greater number of AXI ports. For the former
we are limited by the internal resources, and for the latter
we are restricted by the complexities arising from the routing
stage.

TABLE 4. Resource usage for the Large design: HLS estimation and
Vivado implementation results.

3) COMPARISON BETWEEN FPGA, GPU, AND CPU
Table 5 reports performance and power consumption for the
FDTD accelerator on a CPU, three GPU designs (including
the one derived from the code developed in this work), and
FPGA. To allow a proper performance comparison between
accelerators with different capacities in terms of parallel
processed antennas, we chose the time per antenna as per-
formance metric (total time divided by the number of par-
allel processed antennas). Since we could not measure the
actual power consumed by the FPGA, the power consumption
for FPGA reported in the third column of the table is the
total consumed on-chip power obtained by the post-route
report from the Vivado Power Analysis tool. This value can
be therefore considered only a crude approximation of the
actual power consumed by the device. The corresponding
power consumption for CPU and GPU could not be measured
either, so for a fair qualitative comparison, we compared the
maximum Thermal Design Power (TDP) for our UltraScale+
FPGA with CPU and GPU designs in the second to last
column of the table. In addition, we reported the maximum
energy consumption in the last column (obtained from the
TDP values and the execution time). It is observed that the
maximum TDP for our FPGA target is between the CPU and
GPU designs, but thanks to the lower execution time it would
result in a more energy efficient implementation, should the
actual power consumption scale more or less in the same way

TABLE 5. Performance comparison: CPU = Intel Xeon, GPU1 = Tesla K20C
GPU2 = Tesla P40, GPU3 = GPU1 CUDA implementation, and FPGA
(UltraScale+). TDP = Thermal Design Power, Energy = TDP×Time.

in the three designs from TDP to actual power values. The
results confirm that FPGAs can be more energy efficient than
GPUs and CPUs, and show that FPGAs can be competitive
with GPUs at scientific computation. Somewhat surprisingly,
our GPU design (GPU3) is also 14% faster than the Accele-
ware GPU code. Compared to MATLAB implementation in
GPU1, the CUDA implementation in this work (GPU3) is
about 3 times faster. This is because CUDA is the native pro-
gramming method for NVIDIAGPUs. As for the comparison
between the two FPGA designs, the higher parallelism of the
Small design results in a better performance, albeit at a higher
power cost.

Table 6 shows a comparison between the performance
of our proposed FPGA design for 3D FDTD with other
FPGA implementations. It is observed that none of the
previous works considered the impact of polarization cur-
rents which creates additional computations in each cell
in the simulation space. In addition, the boundary con-
ditions in our design is CPML in all directions that is
not considered in works [26] and [19]. The performance
can be measured in Mcells/s by dividing the total num-
ber of cells for all the time steps by the total processing
time ((Max.Ant.× Tmax × Total_Cells)/Time(s)). It can be
converted to GFLOP/s by multiplying the performance in
MCells/s to the number of operations in each cell. As shown
in Table 6, although the performance in Mcells/s is not high
in this work, the performance in GFLOP/s outperforms other
implementations. This is because of the polarization currents
in FDTD equations that create additional operations in each
cell. Note that in [22], the peak performance was reported that
is obtained without full CPMLs and is not a fair comparison
with our work, so we computed the performance of [22] in
MCells/s when there are CPML boundaries in all directions.
In addition, our design can operate in higher clock frequency
than previous methods.
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TABLE 6. Performance comparison between our single Small FPGA
design and other FPGA implementations.

C. FDTD PERFORMANCE ON MULTIPLE FPGAs
Increasing the number of FPGAs can improve the FDTD
performance. To assess such improvement we measured the
execution time for a fixed number of antennas with different
number of FPGAs. Fig. 14 shows the FDTD execution time
for 8 and 24 antennas by varying the number of FPGAs from
1 to 10. It is observed that the reduction of the execution
time depends on the number of antennas and FPGAs as
well as the design version (Small or Large). Note from the
curves in Fig. 14 that when the number of available FPGAs is
sufficient to process all the antennas in parallel, increasing
the number of FPGAs beyond that number does not fur-
ther improve the performance. For example, in the Amazon
EC2 F1 instance with 8 FPGAs, the Small and Large designs
can process up to Amax = 3×8 = 24 and Amax = 2×8 = 16
antennas in parallel, respectively, in a fixed time equal to
Tant in Eqn. (6). Whenever the number of antennas to process
exceeds Amax, the time will increase according to Eqn. (6)
with F = 8. Note how the best solution in Fig. 14, either
Small or Large, depends on the number of antennas and the
number of FPGAs, due to the interplay between the different
number of CUs per FPGA and the different value of Tant .

While the computation time remains constant for up to
Amax antennas, the time required to transfer all the coeffi-
cients from the host to the DDR memories via the PCIe bus
grows proportionally to the number of FPGAs because of
the inevitable data duplication [30]. (As the initial values of
E and H fields are zero, there is no need to take them into
consideration.) To account for this overhead, we analyzed
the maximum data transfer time. Table 7 shows the type and
size of the coefficients used in Alg. 1 that need to be trans-
ferred. In Table 7, N is the size of the 3D FDTD simulation
space including the boundary regions (70 × 70 × 70 in our
experiments), and nb is the size of the boundary in each
side (10 in our case). Each coefficient, except Qp, sp, cP, is
a 3-dimensional vector. For example, bh represents coeffi-
cients (bhx , bhy, bhz).

TABLE 7. Dimensions of FDTD coefficients.

The FDTD coefficients with the largest size in Table 7
are highlighted in bold. These coefficients are 3-dimensional

FIGURE 14. FDTD execution time for different number of FPGAs,
(a) 8 antennas, (b) 24 antennas.

vectors, except forQp, which is a 1-dimensional vector. Other
coefficients have small size and do not affect the transfer time
significantly. Therefore, the data to be transferred via PCIe
amounts to (4×3+1)×N = 13×N floating-point constants.
By considering the maximum PCIe data transfer rate in the
AWS F1 instance (12GB/s), we can obtain the maximum
data transfer time for each antenna, which is TPCIe = 1.4ms.
By comparing TPCIe with the total FDTD execution time for
each antenna (8.6 s in the best case), we can see the data
transfer time is negligible.

Fig. 15 shows the execution time for multiple antennas
accelerated by 8 FPGAs and compares it with the best GPU
results (Tesla k20c in this work, GPU3). With the exception
of the cases in which one or two antennas are processed,
the FPGA designs show always a higher performance. For
many antennas to process, the multi-FPGA accelerator can
significantly reduce the execution time. It should be noted
that when the number of antennas is a multiple of 16 or 24,
there is an increase in the execution time as predicted
by Eqn. (6).

Finally, we report system-level performance results for the
MI reconstruction algorithm shown in Fig. 1. With 24 anten-
nas, on the Tesla P40 the execution time of the Acceleware
FDTD code was 135.4 s per iteration, while the inversion
part, executed by the host, is negligible (0.07 s). In our
Small Multi-FPGA design, the FDTD takes instead 10.14 s,
which corresponds to a speed-up of more than 13x. Com-
pared to the GPU design in this work (GPU3) the speed-up
is 11.5x.
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FIGURE 15. FDTD execution time for 8 FPGAs and different number of
antennas, (a) from one antenna up to the maximum number in a single
FPGA (3 for Small design), (b) Comparison of the single GPU in this work
(GPU3, highly optimized for one antenna) and multi-FPGA design for
multiple antennas, (c) more detailed view of multi-FPGA design results.

VII. DISCUSSION
In this section, we would like to summarize the main char-
acteristics of our design of an FDTD accelerator, the main
challenges faced during the design, and the solutions to these
challenges by using HLS. First of all, it is important to note
that although it is possible to take any synthesizable code
written in C, C++, OpenCL, or systemC, and accelerate it
in hardware by using HLS, the performance highly depends
on the algorithm and it is not always possible to obtain the
desired performance using HLS. It depends on the algo-
rithm, degree of parallelization, hardware optimizations, tar-
get FPGA device, available resources, and achievable clock
frequency.

Secondly, regarding the characteristics of our design,
it should be noted that for our GPU design, all the resources
are used to optimize the performance for one antenna. As the
GPU resources are already fully used, there is no space left for

further parallelization. On the contrary, in our FPGA design,
we leveraged the multi-antenna parallelism to reduce the
overall execution time. This is highly beneficial inMicrowave
Imaging systems due to the large number of required anten-
nas. This parallelism on the number of antennas in addition
to the number of cells in the 3D volume is one of the key
characteristics of our FPGA design for FDTD algorithm.
Other characteristics of our design are related to the design
methodology that we adopted for the acceleration using HLS.
Due to the iterative nature of FDTD algorithm, it is possi-
ble to parallelize the computations in the volume cells by
‘‘unrolling’’ and ‘‘pipelining’’ the loops. Merging the loops,
local storage of boundaries and constant coefficients, and
using a blocking strategy to reduce the memory access time
are among other characteristics that could optimize the hard-
ware acceleration.

Thirdly, we describe the challenges of the design and their
solutions in this work. One of the main challenges in this
application (3D FDTD) is the access to a high volume of
data from external memory. This high memory bandwidth
requirement becomes more challenging when we use the
more advanced FDTD computations, related to the polar-
ization currents (which has not been considered in previous
works). To overcome this issue in this work, we used HLS
capabilities to:
• efficiently process the extra computations on polariza-
tion currents by merging JP currents loops in Update E
and E-boundary. Table 5 shows the higher GFLOPs for
this work that is related to these extra computations.

• define high number of AXI ports to meet bandwidth
requirement (Fig. 5, 15 or 18 ports)

• create a spatial blocking approach to reduce the data
transfer time between external and local memories.

Another challenge is related to the computations in the
boundary regions in 3D volume. Due to the access pattern in
these regions, the parallelization of boundary computations is
more challenging. By using HLS, we could:
• Merge the parallel loops in the boundary regions for
parallel computations

• use local memories for boundary regions whenever pos-
sible to store the required data

There are some other challenges related to the hardware
‘‘implementation’’ stage when using more storage resources
and higher number of ports. These configurations must be
carefully selected in order to avoid routing failures in the
implementation step. We proposed two hardware architec-
tures (Large and Small) with different hardware configura-
tions for a more flexible design, both of which are imple-
mentable in FPGA. The combination of these strategies with
the usage of other HLS-based optimizations described in the
paper makes it possible for our FPGA design to have a com-
parable performance to the GPU design and other HLS-based
approaches.

Finally, there were several other HLS works tackling these
problems for FDTD (and Stencils) acceleration in FPGA.
Most of them focused on solving the issue of memory
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access time by presenting different blocking methods to pro-
cess blocks of data from the 3D volume in multiple itera-
tions. These methods include the combination of ‘‘spatial’’
and ‘‘temporal’’ blocking. Specifically, the OpenCL-based
designs proposed in [21], [23], and [24] are among the suc-
cessful works in the HLS domain for these blocking strate-
gies. The problem of complex boundary conditions is still an
open issue in hardware accelerators designed by HLS and the
related works simplified the boundary conditions in favor of
more parallelization. Using these methods in previous works
could reduce the total processing time. However, ignoring
the impact of polarization currents makes them ineffective in
medical Microwave Imaging applications. The complex data
dependencies created by the polarization currents call for a
more straightforward approach to tackle the issues ofmemory
transfer time, boundary conditions, and polarization currents
at the same time, that is what we focused on in this work.

VIII. CONCLUSION
In this paper, we proposed a multi-FPGA hardware accelera-
tor for 3D FDTD to be used in MI for medical applications.
It is designed entirely in HLSmaking it possible to use several
hardware optimization methods to obtain the best perfor-
mance. The distinctive features of FDTD in this work are
the modeling of polarization currents in dispersive materials,
and the use of CPML boundary conditions in all directions.
The combination of these features add extra complexity to
the hardware design, but the HLS optimizations, including
loop merge, blocking, pipelining and local memory storage,
results in an efficient accelerator that is comparable with GPU
or CPU-based design. Compared to the best GPU design of
the same FDTD algorithm, a single FPGA can achieve 1.44x
lower execution time per antenna. Our FPGA design is more
energy efficient than CPU or GPU-based designs, and the
maximum power for the FPGA design is still lower than
the GPUs. In addition, the multi-FPGA design outperforms
the other accelerators by processing multiple antennas in
parallel. For a typical number of 24 antennas, 11.5x reduction
of execution time can be achieved compared to the best
GPU design.
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