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ct

erical simulations for crashworthiness require the definition of material properties that are not always p
with standard experimental tests. This paper deals with the numerical optimization of a thermoplastic co
aterial model. The component is a vehicle impact attenuator made of an innovative All-PP (PolyPropylen

ite material. The peculiar failure mechanism of this material makes the numerical simulation of the collap
lt challenge to achieve with a trial-and-error calibration of the material card. Therefore, an optimization pr
is proposed to determine the material parameters. The optimization is implemented in LS-OPT, where t
quare error between the experimental and numerical load-displacement curves is the objective function to
zed. Two test cases are considered: (1) optimization of the material card based on the full load-displaceme
om the experimental tests and (2) optimization of relevant parameters of a numerical trigger added to cont
ontact instabilities between the impacting rigid wall and the component in the numerical simulations. T
ation strategies Sequential Response Surface Method (SRSM) and Efficient Global Optimization (EGO) a
he results show that the presented methodology allows characterizing the studied composite material and th
g a more efficient numerical model.

ds: Crashworthiness, Composite impact attenuator, Finite element analysis, Efficient Global Optimization,
tial Response Surface Method, Surrogate models

oduction

ecent years, fiber reinforced thermoplastic (FRTP) composites have been increasingly attracting the attenti
otive manufacturers [1]. The demand for the development of FRTP composites arise from the need to respe

ays more strict environmental regulations in terms of CO2, waste recover, reuse and recyclability. Seve
on the recyclability of thermoplastic materials and FRTP composites [2–8] demonstrate the advantages
ss of materials due to the possibility of reuse or recovery of fibers or matrix at the end of the life cycle
ponents. In addition to recyclability, FRTP composites are of great interest due to their peculiar mechanic

ies and high damage tolerance compared to conventional fiber reinforced thermoset (FRTS) composites [9–1
s of automotive application, crashworthiness is one of the most important aspects to be considered. It refe
bility of a component to absorb energy during an impact event. Conventional FRTS composites exhibit go
absorption properties in addition to their light weight and strength. However, compared to FRTS composit
omposites generally respond differently to a crush loading, with the interplay of multiple failure modes, su

ination, matrix cracking, matrix-fiber debonding, and fiber fracture [17, 18], making the crushing behav
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trollable and predictable compared to the plastic collapse mode. In this context, the development of Comput
ngineering (CAE) methods and the advances in numerical simulations using Finite Element Analysis (FE
ble prediction of component response to external loading conditions in the design phase of new produc
others, the advanced multiphysics simulation software package LS-DYNA allows the modeling of a wi

f physical events thanks to a highly nonlinear transient dynamic FEA with explicit time integration. T
l models available in the LS-DYNA software allow the simulation and prediction of the mechanical propert
posite materials starting from parameters that can be extrapolated by standard experimental tests. Howev
hese parameters are scaled up to simulate an entire component, the accuracy of the prediction decreas
ure certain behaviors, such as collapse mode or crush energy at larger scales (e.g., component scale), mo
ters are needed that typically cannot be defined by standard coupon tests. Moreover, polypropylene-bas
composites show progressive crushing mainly caused by delamination and plastic deformation [19, 20], a
rticular failure modes still make the finite element simulation of this class of materials an open issue [21, 2
re, many tests are usually necessary before a numerical model is obtained that agrees with the results fro
ental tests.

alternative to the direct numerical approach is numerical optimization [23–27]. For example, geometry op
n can be used to control the global crush behavior of a Carbon Fiber Reinforced Plastic (CFRP) compone
ering certain failure modes and thus avoiding catastrophic collapse [25, 28]. In this context, LS-OPT [29]
rical optimization tool that uses the LS-DYNA code to solve arbitrary nonlinear optimization problems a
the user to structure the design process, explore the design space, and compute optimal designs based on giv
es and constraints. LS-OPT can be used to identify the material parameters associated with the use of a
materials such as FRTP composites, which in particular require the application of highly complex mater
. After performing the physical tests and setting a parameterized simulation of such tests with LS-DYNA, t
er allows an automated calibration of the numerical model to predict the test results. The aim is to minimi
r between the experimental results and the simulation results.
his work, the optimization is applied to a Formula SAE impact attenuator made of an All-PP thermoplas
ite material [20] subjected to an axial impact load. The load-displacement curves extrapolated from the e
tal tests are used here to calibrate the parameters of the numerical model by minimizing the Mean Squa
SE) between the experimental and numerical curves. Sequential optimization techniques based on surroga

g techniques are used for this purpose. Indeed, according to previous studies [30, 31], surrogate models (
odels) seem to be a valuable tool in structural optimization in the field of crashworthiness. Structural op
n is characterized by strong numerical noise, discontinuities in the objective function to be optimized, a
l bifurcations in the crash behavior, which make gradient-based optimization algorithms unsuitable. Based
n number of FEAs, surrogate models allow the construction of a computationally favorable approximation
sidered expensive objective function [32], also called response surface. In this way, direct optimization of t
ective function – which is very expensive, since it relies on FEA simulations – is replaced by optimization
roximate model.
aim of this study is to increase the accuracy of the prediction of the global crush behavior of the impact

r during the experimental crush test by using two different optimization approaches: the Successive Respon
Method (SRSM) [33] and the Efficient Global Optimization (EGO) algorithm [34]. Both methods seque
d points in the design space, i.e., in the domain of definition of the considered parameters, and are effecti
ms for highly nonlinear problems such as crashworthiness. However, while the former is characterized
search , the latter is more suitable for global optimization. Indeed, at each iteration, SRSM adds the sam
of sampling points in an adaptive subregion and the optimization of the metamodel is restricted to the curre

on. On the other hand, EGO builds an initial response surface based on points added according to a Desi
riments (DoE) technique [32], and continues by adding a single point per iteration according to the optimiz
a low-cost function, the acquisition function, which balances local and global search. These algorithms a
in this study with a particular focus on predicting the first part of the load-displacement plot. Indeed, previo
have shown a dramatic discrepancy between the experimental and numerical curves during the initial impa
This was mainly due to initial contact instabilities between the impacting rigid wall and the component in t

cal simulations, as well as edge imperfections and undulations of the real component.
potential of the presented methodology in the design of numerical simulations is confirmed by the obtain
which allow several considerations. First, not all parameters have the same influence on the outcome of t
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ions and it is more convenient to select only some of them through a sensitivity analysis in order to sa
ational resources and obtain accurate results. Secondly, a focused study of the influence of the trigger – a
first stages of the crush – can lead to a more accurate prediction of the crush behavior. Finally, optimization

te models is very effective in terms of computational cost. Although both considered optimization algorithm
ble of achieving comparable optimal configurations of parameters, the EGO algorithm requires a much smal

of evaluations – and thus FEA simulations – to achieve such optima. Moreover, it should be emphasised th
plastic composites are still the subject of intensive analysis studies due to their relative novelty. Thus, the res

ork represents an important step in the numerical characterization of the studied material, from which futu
h can also benefit.

paper is organized as follows. Section 2 introduces the material PURE© used to fabricate the impact
r that is the focus of this study. In Sections 3 and 4, the mechanical [20, 35, 36] and numerical tests [3
sly performed on the component in question are each briefly recalled. In Section 5, an overview of the t
onsidered for the optimization, the settings of the sensitivity analysis performed to estimate the influence
erent parameters, a brief theoretical definition of the optimization strategies SRSM and EGO, and a practic
ion on how to set up the solver LS-OPT for the analyses are given. The results are presented in Section 6 a
l conclusions are drawn at the end in Section 7.

erial

impact attenuator of a Formula SAE Vehicle (Figure 1) made of an innovative thermoplastic composite m
considered for the analysis. The material is called PURE©, and both its matrix and reinforcement are ma

propylene. The PURE© is a laminated composite and each lamina has a woven structure. The thermoplas
esent a skin and core configuration, that are respectively the copolymer and the homopolymer. Polymers ge
resent high degree of anisotropy, and orienting the polymer chain provides higher mechanical performanc
ingly, the core of the tape is highly oriented towards providing strength. The tapes are manufactured with
sion process in which thin copolymer layers, which have lower melting temperature, cover directly the h

mer. The tapes are woven into fabrics that are then hot-compacted in sheets. During this process the copolym
nd, after solidification, it has bonding capability to keep the homopolymer fibers together. Hence, the copo
m the matrix and the homopolymer the reinforcement of the final composite material. The advantage of th
is in the wide consolidation temperature window (130-180 ◦C) that ensure to keep high mechanical propert
o-extruded tapes. Other advantages of the PURE© is the fully recyclability together with its manufacturi
and its peculiar crush behavior. Indeed, the material has a good impact resistance, showing a soft and plas
behavior. The impact attenuator considered is a component intended to absorb energy and attenuate the impa
ation during crash event. It has a truncated-cone geometry, where the frontal part has a lower cross-sectio
e part fixed to the chassis has a wider cross-section. The thickness is variable along the axis of the attenua
1): the red, green, and yellow portions have a thickness of 1.68 mm, 2.16 mm, and 2.4 mm, respectively. T
n of the thickness along the axis is designed to guarantee a progressive energy absorption during the collap

Figure 1: Formula SAE vehicle and zoom in on impact attenuator.
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omponent. Although its relatively simple geometry, this component was chosen for the study according to
nge of applications, that is not only restricted to the automotive sector, and that can be found in the aerospa

too.

erimental tests

erimental tests were performed by the authors in previous works [20, 35, 38, 39], where standard coupon t
nducted to characterize the mechanical response of the material, summarized in Table 1.

Experimental test results on standard PURE© specimens. E: Young Modulus; σu: strength; εu: maximum strain; G: shear modulus;
ngth.

Test E (GPa) σu (MPa) εu%
Tensile 3.4 217.8 5.90
Compression 5.1 17.5 0.52

G (GPa) τu(MPa) εu%
Shear 11.15 21.64 0.065

m the tests, it emerged that the tensile behavior of the material is characterized by high elongation to failure a
re is dominated by delamination. Failure due to delamination was confirmed also in compression tests, whe
rs slipped causing a sort of packaging of the tapes. Both compressive strength and strain to elongation result
lower than the tensile ones. The compression test on circular tubes showed a soft crush behavior. Indee
erial failed in a ductile manner, following a non-regular folding of the layers. This plastic-buckling failu
due to the peculiar behavior of the thermoplastic polymer. No brittle failure happened, as is instead usua

d in common FRTS composites, where the catastrophic failure mode is mainly dominated by fiber ruptu
cracking, fiber-matrix debonding, and delamination [40]. Crushing tests on the PURE© impact attenua
ed that plastic mode is the dominant failure mechanism, as can be seen in Figure 2. Specifically, Figure
he set-up of the quasi-static crushing test on the impact attenuator. The load was applied along the axis of t
tor by means of a moving metal plate that gets in contact with the upper section of the attenuator. The ed
section presents imperfections and undulations, due to the cutting process that caused some fibers to debon
ults of the quasi-static test are shown in Figure 2b. The failure mode of the attenuator is mainly dominat
tic deformation: the edge folded while crushing and the faces bent inward. No catastrophic failure occurre
lly happen in common FRTS composites: the material did not splinter and no debrits formation occurre
to a more controllable and predictable crushing behavior. The load-displacement trend in Figure 3a sho
ll distinguished peaks that are due to the thickness discontinuity along the component longitudinal axis. T

videnced a force that progressively and quite smoothly increases, and no sharp drop/peak of force are eviden

(a) (b)

Figure 2: Crush test set- up (a); Impact attenuator after crushing test (b).
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(a) (b)

Load-displacement experimental curves. (a) Curve recorded on the full range of displacement [0, 120] mm. (b) Zoom in on the first

erical modeling

finite element model of the component was built using the commercial software LS-DYNA PrePost versi
e component was modelled with fully integrated four node shell elements of 2.5 mm of size. A PART COM

was defined to set the thickness of each integration point, the correct ply staking sequence, and orientatio
ving plate was modelled with a rigid wall. An automatic penalty-based contact definition (AUTOMAT
E SURFACE) ensured self contacts between the rigid wall and between the elements themselves. The rig
ction coefficient was estimated to lay between 0.2 and 0.3. A trigger, modelled as two rows of shell elemen
o integration points along the thickness (Figure 4, grey elements), was added to the section of the impa
tor that impacts with the rigid wall. The trigger aims to simulate the degraded properties of this edge, due
ions and manufacture imperfections. In addition, the initial behavior of the crushing is highly influenced
ultaneous contact of the elements of the upper section with the rigid wall, causing apparent force peaks duri
y stages of the simulation. Consequently, two layers of elements with suitably degraded mechanical propert
nt a mathematical expedient for solving this issue.

Figure 4: Numerical model of the impact attenuator.
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material card MAT 54/55 was used to model the thermoplastic composite, although the literature provid
examples where this material card is used to simulate FRTS composites [18, 28, 41]. This material card
hysical parameters of the material that are readily available through experimental tests, and some non-physic
ters that can be calibrated through optimization algorithms. The failure law chosen was the Chang Chang c
42]. Accordingly, the material card allows to set properties for the orthotropic direction of the material. T
m element stress can be defined for element tension (Xt) and compression (Xc) in longitudinal direction a
ent tension (Yt) and compression (Yc) in transverse direction. The characteristic loading curve of the eleme

s an elasto-plastic stress-strain relation. If strain to failure parameters are used (DFAIL parameters), the ma
eformation criteria is activated. The failure of the integration point, and consequently the element deletion
d by maximum strains in longitudinal and transverse compression and tension. In this material card, the cru
duction factor (SOFT) is a fundamental parameter to be defined in crush simulations [41]. It is a non-physic
ter that reduces the strength of the element row ahead of the crush front, in order to reduce instabilities due
t deletion.

imization

external optimizer LS-OPT was used to structure the design process, explore the design space and compu
parameter configurations, according to the specified objective. More in detail, two different analyses we
ed: firstly, the material parameters that most influence the crash response were optimized; secondly, the infl
the trigger on the global response of the component was evaluated, and opportune geometrical and mater

rameters influencing the physical and mechanical properties of the trigger were optimized. In the latter ca
ivity analysis was also performed with the aim to determine which variables have more impact on the o
iability, hence to obtain a model simplification by fixing the parameters that are less relevant in view of t
ation target.
erently from the methodology presented in [37], where the authors describe a targeted composite formulati
ptimization problem with load-history evaluations at specific displacements, here an ordinate-based cur
g optimization is performed. The Sequential Response Surface Method and the Efficient Global Optimizati
m are implemented, whose details are provided in Section 5.3 and Section 5.4, respectively. In Figure 5
rt of the proposed methodology is provided.

st cases

surrogate-based optimization strategies are used to overcome the statistical uncertainties coming from exp
tests and the necessity to tune non-physical parameters. Moreover, in order to reach an accurate overlappi

oad-displacement curves resulting from the experimental tests and numerical simulations, two different t
e considered, which are described in Section 5.1.1 and Section 5.1.2, respectively.

aterial card optimization
strain to failure calculated through experimental tests represents a loss of load-carrying capability of t
standard specimen mainly due to delamination. However, this parameter does not scale up well to a larg

ent. Indeed, the crushing collapse of the PURE© impact attenuator is mainly dominated by creasing, fo
nding, and plastic deformation. Due to these discrepancies, a good match to the experimental data can
d using multiple combinations of MAT54/55 parameters. According to the literature [41] and to previous n
analyses made from the authors, the compressive strain-to-failure in the fiber direction, DFAILc, is amo
meters that have the most influence on the crush response. Therefore, it is included in the optimization stud
er, in crashworthiness simulation, a crush front reduction factor called SOFT can be set. Its tuning can avo
ity and ensure stable crushing when the load goes from a row of elements to the following one. As such
ongly influences the crush simulation result, and is optimized as second and last variable of the optimizati
Therefore, a 2-dimensional optimization problem is addressed and targeted at minimizing the mean squar
l error, i.e., the difference in force values between the experimental and numerical load-displacement curv
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imization problems is defined as:

min
x1, x2

MSE =
1
P

P∑

k=1

(
fk(x1, x2) −Gk

Mk

)2

s.t. −0.35 ≤ x1 ≤ − 0.15,
0 ≤ x2 ≤ 1,

(

1 and x2 are the variables describing DFAILc and SOFT, respectively, and P is the amount of experimen
lues acquired during the test. Gk , k = 1, . . . , P, are the values on the experimental load-displacement targ

hown in Figure 3a, and fk(x1, x2) the corresponding components on the computed curve f resulting from
cal simulation. Mk is defined as the maximum targeted absolute value of the experimental load-displaceme
.e., Mk = max |Gk |. From the solver perspective, the displacement and force histories are extracted from t
ion output and afterwards used to construct a force vs. displacement crossplot. The experimental curves us
t curves are read into LS-OPT as file histories and the MSE between each crossplot and the corresponding t
then computed.

rigger optimization
ording to previous numerical experiments simulating the impact on the component, there is always an ea
force that is not visible in the experimental load-displacement curves. In order to reduce this discrepan
ization study was carried out on the trigger parameters that directly affect the stiffness of the front part

ponent. By calibrating them, it is possible to reduce the numerical instabilities and dampen the early for
hese parameters are the Young Modulus (Et), the compressive strain to failure (DFAILct), the maximu

ssive strength (Xct), and the wall thickness (Tk). While the latter is a geometrical parameter, the former defi
erial card of the numerical model. The Tk variable indicates the thickness of a single integration point of t
ement composing the trigger part. The variation ranges of the four parameters can be observed in Equati
ich defines the 4-dimensional optimization problem faced to obtain an accurate prediction of the part of t
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splacement curve influenced by the trigger presence. The design ranges for the variables were determin
ng to the authors’ experience and the initial design values associated with the numerical model, which we
y trial and error. The range should be neither too small, nor too large. Indeed, if the design range is sma
a risk that it will be too conservative and may not allow the design to converge at all if it is too small to captu
ability of the response, especially if the objective function is characterized by noise. On the other hand, if t
range is too large, more samples are needed on the search space in order to achieve sufficient accuracy of t
ve model.

minx MSE =
1
P

P∑

k=1

(
fk(x) −Gk

Mk

)2

s.t. −0.35 ≤ x1 ≤ − 0.15,
1.5 ≤ x2 ≤ 9.5,

0.01 ≤ x3 ≤ 0.1,
0.01 ≤ x4 ≤ 0.84

(

e variables vector is x = (x1, x2, x3, x4), whose components represent in the order the parameters DFAIL
and Tk, while the other symbols are defined as in Equation (1). The subscript t in the variable names, whi
the trigger component, is omitted and automatically implied in the following sections for simplicity and da

lity. The experimental reference curve for the calculation of the MSE is shown in Figure 3b. It should
at, although kriging is a powerful surrogate model which results in high performance in terms of predicti
this method is costly in terms of computational complexity, especially for large datasets: the computation

xity of kriging is O(n3) where n is the number datapoints, i.e., measurements or simulations in our speci
oreover, the higher the dimensionality of the problem, the higher is the necessary number of datapoints
obtain an accurate approximation of the objective function. As such, a preliminary study on the sensitivity

E objective function to the variability of the problem variables was carried out. This allowed for identifyi
meters that have more impact on the output variability and performing focused optimization studies taki
ount a maximum of two variables in a single analysis.

nsitivity Analysis
ce the design optimization process is expensive, suitable design parameters should be determined. At t
ng, it is important to select many rather than a few design variables. Afterward, it is commonly preferred
variable screening to reduce the number of design variables, and therefore the overall computational time.

dy, the Analysis of Variance (ANOVA) [43] is used to evaluate the main and interaction effects of the desi
s defining the trigger on the computation of the MSE. ANOVA assesses the importance of one or more facto
paring the response variable means, i.e. the averaged objective function values, at the different factor levels.
torial DoE sampling technique was here used to evaluate the objective function for every possible combinati

possible design variable [32]. This is the most straightforward way of sampling a design space, where ea
can assume only a prescribed number of discrete values, a.k.a. factor levels. In this study, three levels f

riable were chosen, leading to a total of 34 = 81 DoE points. The levels for each factor are given in Table
ir combinations can be visualized in Figure 6, which provides an example of samples distribution involvi
E, and Xc parameters.

Table 2: Factor information for the full factorial DoE generated in the sensitivity analysis study.

Factor Levels Values
Tk 3 0.010 0.425 0.840
Xc 3 0.010 0.055 0.100
E 3 1.5 5.5 9.5
DFAILc 3 -0.40 -0.25 -0.10

in effects plots and interaction plots were also evaluated. The former are used to examine the differenc
n level means for the single factors, while the latter show how the relationship between one categorical fac
ontinuous response depends on the value of a second categorical factor, respectively.
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Example of Full Factorial sampling for a selection of parameters – Tk, E, and Xc – in 2D and 3D views. The highlighted sample ref
tial configuration of parameters.

quential Response Surface Method (SRSM)
he branch of metamodel-based optimization, which is used to create and optimize an approximate model
ign instead of optimizing the design through direct simulation, the first technique adopted in this study is t
tial Response Surface Method (SRSM) [33]. The SRSM uses a region of interest – a subspace of the desi
to determine an approximate optimum. Sampling is done sequentially, meaning that only a small numb

ts is chosen for each iteration and multiple iterations are performed. After each iteration, a response surfa
mating the real objective function is constructed over the parameters domain, it is optimized, and the doma
ed to a new region of interest, centered on the current optimum. The algorithm proceeds by moving the cen
egion of interest as well as reducing its size. The variables ranges for the next iteration depend on both t
ory nature of the solution and the accuracy of the current optimum. The first is based on whether the curre
m and the previous designs are on the opposite or the same side of the region of interest. Regarding this, it
oting that at the first iteration, the previous design is defined according to a configuration of parameters giv
put before the optimization is launched - the parameter configuration defining the baseline model in our ca
numerical model obtained with the trial and error technique. The accuracy of the current optimum is inste

ed using the proximity of the predicted optimum of the current iteration to the previous design. The smal
ance between the two designs, the more rapidly the region of interest is reduced in size. In the current study,
ration a space filling sampling strategy is used to distribute points over the domain and the kriging metamod
n to construct the response surface [32].

cient Global Optimization (EGO)
cient global optimization (EGO) [34] is a Gaussian process model-based adaptive algorithm finalized to rea
ptimal solution by using a low budget of evaluations. The EGO algorithm begins by fitting a surrogate mod
of initial points specified according to a DoE scheme. Even in this case, the DoE sampling scheme is t

lling design and the response surface is constructed according to the kriging surrogate model. While the D
is arbitrary, the choice of the surrogate model is strictly dictated by the optimization strategy. Indeed, after t

ponse surface is fitted according to the training points – DoE points and related objective function evaluatio
l iterations a new point, referred to as infill point, is selected by maximizing an Expected Improvement (E
n [32], which is defined as follows:

E[I(x)] =


(ymin − ŷ(x))Φ

(
ymin−ŷ(x)

ŝ(x)

)
+ ŝ(x)ϕ

(
ymin−ŷ(x)

ŝ(x)

)
if ŝ(x) > 0,

0 if ŝ(x) = 0.
(

tion (3), ŷ is the function approximating the real and expensive objective function, ymin is the best obje
ction value observed in all the previous iterations, ŝ represents the uncertainty on the interpolated functi
hile Φ and ϕ are the Gaussian cumulative distribution function and probability density function, respective
re, the EI not only considers the predicted response value, but also its variance. The error committed in t
mation ŝ is utilized to balance between local and global search. In fact, Equation (3) allows for locating n
n promising areas, close to locations where the best fitness function value has been computed, as well as

sampled areas, which are characterized by a low sampling density and, consequently, high uncertainti
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according to Equation (3), the EI can be large due to any of the two additive terms — the first governed
iction mean and the other by the prediction variance. The point with the maximum EI is evaluated to upda

ging model, i.e., a FEM simulation is performed and the objective function value associated to the output
ed to one of the best sample so far and used to augment the training set on which the response surface is
ll procedure is repeated until a prescribed number of evaluations is reached.

tup in LS-OPT

software LS-OPT was used to carry out the optimization of (1) the material card parameters SOFT a
c based on the match between the entire load-displacement curves from experimental tests (Figure 3a) a
ions, and (2) the most influencing parameters on the trigger behavior, and hence the first portion of the loa
ement curve depicted in Figure 3b, identified thanks to the ANOVA test. The focus of this section is to descri
mization from the software perspective, by providing a visual depiction of the methods flow and useful deta
e options settings to run the algorithms. Since the trigger optimization was addressed through both SRS

O, this test case is here used to illustrate the logical flows and the technical details.
ure 7 illustrates the LS-OPT graphical user interface, where the optimization flowchart of the SRSM is d

Once the parameters undergoing the optimization procedure are defined, the flow starts with the sampli
where a Design of Experiments methodology [32] is used to sample the design space. In particular, a Spa
sampling strategy is chosen to locate a set of evenly distributed points over the prescribed domain so th
imum distance between any two points is maximized. The objective function is evaluated by performi
mulations on models defined according to the parameter configurations associated to each DoE point. T
splacement curves are derived from the simulations, and the MSE is computed for each curve and assigned
e function value to the single sampling data point. In this way, it is possible to describe the variation of t
e function based on the values of the design variables affecting the process. Once the training set is availab
le domain is defined as Region of Interest and a response surface through the Kriging metamodel [32] is bu
e available datapoints. In our case, exponential correlation functions and a quadratic trend model are chosen
he level of regression of the model and the polynomial degree of the approximation, as was done in [37]. T
m of the objective function is determined on the approximated response surface by using a Genetic Algorith
ith the default settings provided by LS-OPT. The optimum is evaluated and is taken as the first sample of t
ng iteration, where a new region of interest is defined as a portion of the one of the previous iteration, and t
s located on the previous optimum. On the restricted domain, the described steps – sampling, approximati
ction, optimization – are repeated until a given termination criterion is met, which in our analyses is fixed
number of 5 iterations. By setting 10 evaluations per iteration, this termination criteria implies a total bu
0 evaluated sample points. In the last iteration, the sample points are located in a region of interest that

nough to consider a satisfactorily small range of variability in the data. The optimization terminates with
tion simulation on the computed optimum.

Figure 7: Optimization flowchart in LS-OPT for the SRSM optimization strategy. The main settings are shown on the right.
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LS-OPT interface for the EGO algorithm is illustrated in Figure 8. EGO is a separate metamodel-ba
ation strategy in LS-OPT, which restricts the choice of the metamodel to kriging, since it is able to ta
ge of its ability to estimate the potential error committed in the approximation. Indeed, the maximization
unction defined in Equation (3) allows for locating points in the domain area containing the current best desig
as in scarcely sampled regions, characterized by an high variance of the model. The optimization happens

ps. The first step (Step 1) consists of a unique iteration, set as shown in Figure 8, on the left. First of all, a D

Optimization flowchart in LS-OPT for the EGO optimization strategy. The red frames highlight the diagram blocks that differ for the t
tep 1 and Step 2 – of the optimization process.

iple points is performed. Again, a Space Filling design was chosen to locate 8 sample points. Based on that, t
response surface is built and an approximated value of the objective function ŷ as well as the error committ
pproximation ŝ are associated to each point of the search domain. Hence, the EI function is built over t
main, and its optimization returns the infill point to be evaluated through FEM simulation. Step 1 is follow

quential EGO with one sample per iteration (Step 2), as shown by Figure 8 (right). The switch from Step
2 is practically handled by letting the first iteration end and changing the algorithm settings before restarti
mization run from the second iteration. In the sequential EGO, one infill point per iteration is added, and t
e surface is updated at each iteration based on all the previous points (i.e., DoE samples and infill point
rth noting that, at the end of every iteration, the current best design is updated if the simulated infill po

etter objective function value than the best so far, that is the best among the DoE points and all the previo
ints. Even in this case, the algorithm stops when a prescribed number of 50 iterations is reached, which i
ble budget for the addressed 2-dimensional optimization problem [31] and in line with the total budget used f
M optimization strategy. Alternative termination criteria are design change or objective function tolerances

lts and discussion

load-displacement curve of the experimental crush test on the impact attenuator is shown in Figure 3a. Fo
f force can be distinguished in the curve. These peaks are due to thickness discontinuity, as illustrated

4, and layer compaction. The material did not splitter: the faces folded and compacted themselves. The cur
ed a force that progressively and quite smoothly increases, an no sharp drop/peak of force are evident.
numerical material model was set-up according to the outcome of the standard experimental tests: the You
s, the ultimate strain and the stress in tension and compression were computed experimentally and then us
t parameters. However, these parameters are affected by statistical uncertainties, and the SOFT non-physic
annot even be experimentally evaluated. Accordingly, a trial and error process was necessary to fine-tune t
l parameters, and through this process, a high sensitivity of the response to the variation of the SOFT a
c parameters was evident. Figure 9a shows a comparison of the collapse mode between the experimental a
ulated component, calibrated by trial and error. The faces of the experimental attenuator undergo to buckli
er compaction (Figure 9a). Instead, the faces of the numerical model do not compact due to element failu
etion (Figure 9b-9c).
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(a) (b) (c)

Figure 9: Crush behavior: (a) experimental test and (b)-(c) numerical simulation.

aterial card optimization
DFAILc and SOFT parameters of the material map were optimized using the SRSM methodology describ
on 5.3. A total budget of 4 iterations, each with 8 simulated sample points, was considered. This choice
ed by a trade-off between computational cost and accuracy. After the fourth iteration, the algorithm choos
iently reduced range that allows to consider a satisfactorily small range of variability in the data. The samp
re arranged according to a space-filling DoE scheme that allows points to be generated by maximizing th
distances. The MSE kriging response surface is then adjusted based only on the sample points of the curre
n to obtain a locally accurate approximation and easily drive the search for the optimum towards the restrict
f interest. As can be seen in Figure 10, the domain tends to shrink around the predicted optimum by focusi
ch on lower DFAILc values.

: Top views of the metamodel approximations for the 4 iterations of the SRSM optimization procedure for the material card optimizati
nse surface of the last iteration is also shown in isometric view.

ting from the search domain D = [−0.35,−0.15] × [0.01, 0.99], it ends up to the optimum (DFAILc, SOF
7, 0.66), which corresponds to an MSE amounting to 0.440. However, low DFAILc values lead the elemen
nd erode at low deformations, resulting in an overall brittle-like behavior and decreasing the average loa

11 shows the optimal result of the optimization. It can be appreciated how the global behavior follows th
xperimental curve. The peak around 40 mm, corresponding to the first thickness increase, is well capture
tantial difference can be noticed around 55 mm. In fact, experimentally, this peak of force is due to t
tion of the bent layers of the attenuator’s edges. The numerical simulation, on the other hand, does not exhi
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e 11: Comparison of the experimental load-displacement curve with the optimized numerical curve obtained by SRSM Methodology

paction behavior, as the elements tend to fail before the lateral faces of the attenuator compact themselv
9c). Finally, it is possible to appreciate a marked discrepancy of the initial peak between the simulated cur
experimental curve. This discrepancy is evident both in terms of peak force (difference of around 50%) a

s of stiffness, and was attenuated by implementing and optimizing a numerical trigger, as described in t
ng sections.

nsitivity analysis on the trigger parameters

introduced in Section 5.1.2, the influence of 4 variables (Tk, Xc, E, DFAILc) on the trigger response w
d in order to find the factors that most influence the crush response on the first displacements. Each po
oE corresponds to a crush simulation on the first 20 mm of the component, according to each combinati
factors, as described in Section 5.2. In fact, the influence of the trigger on the force response is evide

the first moments of crushing. Furthermore, this choice allows to considerably reduce the computational tim
imulations. Figure 12 shows the main effects plot for the MSE between the numerical and the experimen
This plot evaluates the differences between the fitted means of the levels for each factor analyzed. Each po
nts the response mean of the factor. If the responses of a factor are placed horizontally, then it can be stat
factor has not a strong influence on the response.

Figure 12: Main Effects Plot evaluated on the MSE response, with data averaged on each factor level.

m this graph it is evident that the DFAILc value has no influence on the evaluated response. Instead, the thic
ems to have a strong effect on the MSE value. However, it is of great importance to evaluate the relationsh

13

Jo
ur

na
l P

re
-p

ro
of



that the ng
the mea on
betwee ht
horizon ite
distant vs
E plots rs
have a p A)
carried he
null hy nd
Xc, and nd
was con he
parame

It is re
14 show of
crush d ns
almost he
compon er

Journal Pre-proof
Figure 13: Interaction Plots for MSE, with data averaged on each factor level.

Table 3: Factor information for the full factorial DoE generated in the sensitivity analysis study.

Variable P-Value
Tk 0
Xc 0
E 0
DFAILc 0.87
Tk*Xc 0
Tk*E 0
Tk*DFAILc 0.42
Xc*E 0.06
Xc*DFAILc 0.73
E*DFAILc 0.73

interaction between two factors has on the response value. Figure 13 shows the interaction plots, representi
ns for the levels of one factor on the x-axis, and a separate line for each level of another factor. The interacti

n DFAILc and the other three factors is confirmed to be inconsistent. The DFAILc vs Tk plot presents straig
tal lines, meaning that a change in DFAILc does not affect the outcome. The three lines are parallel but qu
from each other, confirming that the Tk value has a stronger effect. The DFAILc vs Xc and the DFAILc
present straight parallel lines too, even if they are closer each other, suggesting that these two paramete
oor effect on the response. For completeness, Table 3 shows the results of the analysis of variance (ANOV
out with a significance level of 5 percent. For the values of Tk, Xc, and E, it is not possible to accept t

pothesis. Mixed terms of the second order were also analyzed. In this case, the interactions between Tk a
between Tk and E turn out to influence the response. Mixed terms of the third order were evaluated too, a
firmed that the terms containing the DFAILC variable have not influence on the response. Consequently, t

ters Tk, Xc and E were used for trigger optimization, reducing the dimension of the problem to 3 variables.
clear from the interaction plots (figure 13) that the Tk variable has the stronger effect on the response. Figu
s the effect of the only trigger thickness on the component stress distribution after the first 7 mm and 14 mm

isplacement. It is evident how a reduced thickness leads the effect of the trigger being null. The load remai
zero (Figure 15) for the first two millimeters of crushing. Afterwards, the elements of the upper edge of t
ent get in contact with the rigid wall at the same time, causing a sudden increase of the load. On the oth
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thick trigger causes a noticeable increase in load during the early stages of the impact. The elements of t
transfer the load directly to the underlying elements, before these come into contact with the rigid wall.
oticed in Figure 14, the elements above the top section are more loaded, and greater out of plane deformati
ding of the vertical faces are evident. An intermediate trigger thickness, would hence guarantee a softeni
n the upper edge of the nose. Indeed, it is possible to appreciate the triggering of some folds, from which t
ation propagates more regularly.

Figure 14: Stress distribution of the impact attenuator crush according to the thickness of the trigger.

Figure 15: Influence of the trigger thickness on the force-displacement trend.

igger optimization
ed on the outcome of the sensitivity analysis, the trigger optimization was performed using both the SRS
O optimization strategies, by focusing on the parameters that have the greatest impact on the variability of t
e function. Initial experiments with the SRSM have empirically shown that this optimization technique ten
localize the search. In contrast, the EGO algorithm has high potential because it constructs and optimizes
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tion function that balances exploitation (evaluating points with low mean) and exploration (evaluating poin
gh uncertainty) of the search domain. The error that the kriging surrogate model makes in approximating t
ective function is not used at all in the SRSM, since the optimum of the response surface is simply found by
algorithm. EGO has been applied both to a one-dimensional optimization problem, where the thickness is t
riable, and to two-dimensional problems, where the thickness is optimized together with either the modulus
trength to failure Xc. All the parameters that do not undergo optimization are kept constant according to t
e of the material card optimization on the full load-displacement curve described in Section 6.1.

RSM on Tk and Xc
rst, the Tk and Xc parameters are estimated by using an SRSM iterative procedure. It is composed of fi

ns, each of which starts from a DoE sample set of 10 points that are located on the domain according to
lling scheme, which allows for generating samples that are evenly distributed allover the current region
, as shown in Figure 16. From the figure, it is evident that at each iteration the region of interest is reduced a
d on the predicted optimum of the preceding iteration. The evolution of the region of interest is particula

: Top views of the metamodel approximations for the 5 iterations of the SRSM optimization procedure for the trigger optimization on
k variables.

(a)

(b)

Figure 17: Histories of variables (a) and objective (b) for the SRSM optimization strategy over the 5 iterations.
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able in Figure 17a, where the history of the predicted optimum (red curve) and the range of the domain
n (blue curves) are clearly shown. Starting from a parameters configuration equal to (Tk,Xc)= (0.52, 0.0
baseline model, i.e., the one set through trial and error, the parameters configurations defining the predict
found in the five iterations are shown in Table 4. It should be noted that, while for the thickness parameter t

Table 4: Evolution of the significant samples for the SRSM applied to the optimization of Tk and Xc.

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5
Point (Tk, Xc) MSE Point (Tk, Xc) MSE Point (Tk, Xc) MSE Point (Tk, Xc) MSE Point (Tk, Xc) MS

Optimum (0.34, 1) 0.180 (0.22, 0.048) 0.227 (0.19, 0.070) 0.235 (0.21, 0.057) 0.218 (0.25,0.062) 0.1
d Optimum (0.34, 1) 0.426 (0.22, 0.048) 0.227 (0.19, 0.070) 0.253 (0.21, 0.057) 0.234 (0.25,0.062) 0.2
puted (0.27, 0.045) 0.276 (0.22, 0.048) 0.227 (0.22, 0.048) 0.227 (0.19, 0.057) 0.227 (0.18, 0.062) 0.1

m is always internal to the variation range, the Xc variable often ends up being located on the boundaries of
on domain. This can be interpreted as a too strong tendency of the algorithm of localizing the search, with t
lity of missing important information on the neglected domain areas.
predicted optimum of each iteration is evaluated through numerical simulation and used as DoE point of t

ng one. In Figure 17b, the objective function value of this point is represented and referred to as Comput
e. In line with this, the term Computed Optimum is used to refer to the combination of parameters that
t the end of the sequential optimization strategy as the point that optimizes the last MSE approximation mod
e Best Computed is the parameters configuration that shows the lowest MSE among all the points that ha
aluated during the optimization procedure. It can be observed that the Best Computed is not updated duri
nd, third, and forth iterations, and only the fifth iteration is able to furnish a prediction that also leads to
n of the MSE between the experimental and numerical curves. As illustrated in Table 4, the minimum MS
found with the parameters configuration (Tk,Xc) = (0.25, 0.062), which provides an MSE of 0.199.

GO on Tk
observing both, the main effects plots in Figure 12 and the interaction plots in Figure 13, it is clear that t
jective function is mainly influenced by the trigger thickness. On the other hand, the maximum strain for fib

ssion DFAILc is practically insignificant. As such, the good convergence properties of the EGO strategy we
ted on a one-dimensional problem with Tk as unique parameter, and on two-variables problems afterward. T
test case is described in this section.
ting from a space-filling DoE of 4 points, Figure 18 shows the evolution of the kriging approximation over t

iterations that were performed, with 1 infill point each. In the figure, the new sample chosen according
imization of the EI acquisition function is highlighted and, based on it, the model is refitted at each iteratio
e noted that the new point is sometimes located by the algorithm in the most promising area of the doma
region containing the current best design, while other times it moves away from the optimal area to explo
populated regions. This attitude is also evident in Figure 19, which shows the optimization history of both t

int and the best computed until each iteration. Indeed, when the MSE value of the computed feasible is mu
han the one of the best computed, it means that the EI maximization locates the infill point in a less populat
f the domain, where the approximation model might not be not accurate and, as a consequence, a new po
there would likely be far from optimality. Of course, the best computed is updated only if the new infill po
etter objective function value than the best so far, therefore its history decreases monotonously. From t
ation history, it is evident that the optimum predicted in the first iteration following the initial DoE procedu
represents the best computed throughout the prescribed budget of iteration, that corresponds to the total budg
element simulations. Indeed, this optimization test case benefits from both, its low dimensionality and t

tive/explorative capabilities of the EGO algorithm. However, it is worth underlining that reducing the sear
only one variable is equivalent to searching for the optimum within a subspace of the actual 4-dimension

defined by Equation 2, thus limiting the algorithm freedom during its search. Indeed, EGO converges to t
point with Tk = 0.21 mm and an MSE value of 0.249, which is worse than the best computed from the SRS
on 2 parameters, but, since it was reached after only 5 objective function evaluations (i.e., FEM evaluatio

umerical model), can be considered satisfactory given the trade-off between prediction accuracy and saving
ational resources. We hence decided to use the same optimization strategy to optimize couples of paramete
to exploit the interaction effects between them: Tk and E first, and Tk and Xc afterward.
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: Evolution of the kriging model approximation of the MSE objective function for Tk ∈ [0.01, 0.84], based on the initial 4 DoE points a
nfill point per iteration.

: Optimization history of the EGO algorithm applied to the optimization of Tk by minimizing the MSE between experimental a
l load-displacement curves. Both the histories of the infill point and the best computed are shown, together with the predicted optim
he EI function.

GO on two parameters
limitations showed by the optimization on the one-dimensional test case drove the investigation towar

ge of the EGO algorithm on the optimization of couples of parameters: (Tk, E) and (Tk, Xc). Both t
ation studies start from an 8-samples space-filling DoE scheme on a bi-dimensional search space defined f
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se according to the variables boundaries specified in Equation (2). At each iteration, a kriging response surfa
on the available training data, leading to a global prediction of the MSE objective function. Again, bas
and the available points, the EI acquisition function is built and optimized through genetic algorithm. T
d optimum is evaluated, compared to the best computed so far withing the optimization procedure, and us
te the approximation model for the following iteration. If the simulation returns an objective function val
better than the best so far, then the infill points becomes the best computed – y∗ in Equation (3) – and t
ation proceeds with the following iteration. The optimization history of the predicted optimum, the comput
m, and the best computed is shown in Figure 20a and Figure 20b for the (Tk, E) and the (Tk, Xc) test ca
ively. In both plots, the mixed exploitative/explorative attitude of the EGO algorithm can be observed thanks

(a) (b)

: Optimization history of the EGO algorithm applied to the optimization of (a) Tk and E and (b) Tk and Xc variables, by minimizing
ween experimental and numerical load-displacement curves.

ent variation in the computed objective function values of the infill points, i.e., the predicted optima throu
imization of EI. In a total budget of 50 evaluations in addition to the ones needed for the DoE phase, t

mputed undergoes several updates, leading to the final optimal samples (Tk, E) = (0.22, 6.87) and (Tk, Xc)
.089). The respective objective function values are MSE(0.22, 6.87) = 0.191 and MSE(0.18, 0.089) = 0.19
both the bi-dimensional test cases allow for obtaining a lower MSE than the optimization of the thickne
ter by itself, which means that interaction effects are not totally negligible. On the other hand, by keeping
at in Section 6.3.2 the best computed is found by using 5 FEM simulations, EGO converges to an optim
uch faster and with much less computational effort when optimizing one variable only. All in all, it is wo

ning that both the values found for the Tk parameters are very close to the value found in the one-dimension
ation problem (Tk = 0.21 mm).

onsiderations on the optimization results
rder to assess the accuracy of the load-displacement numerical curves compared to the experimental on
ror measures have been evaluated: the Root Mean Squared Error (RMSE), the coefficient of determinati
d the maximal residual error (εmax). The computations are performed by interpolation of the experimen
erical load-displacement data at 20 and 120 query points when interested on the [0, 20] mm and [0,12

placement ranges, respectively. Good agreement is stated when the RMSE and the εmax measures prese
value, whereas the R2 should have a value close to the unit [29]. To draw some general conclusions, t
parameters configuration found in the trigger optimization test cases were used to run verification FE

ions on the full displacement range of interest, [0, 120] mm. Indeed, the studies aimed at optimizing t
levant parameters of the trigger component were set to maximize the coherence between experimental a
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cal curves in the range [0, 20] mm, which corresponds to the portion of curve that is most influenced
n in the trigger set up. As a consequence, it is not obvious that parameters configurations minimizing t
n the first 20 mm are optimal for the full range of displacements too. Table 5 contains the aforemention
y measures evaluated on the outcome of the final verification FEM simulations. The accuracy is evaluat
optimal parameter configurations resulting from every performed study, except for the SRSM optimization
ger component. Indeed, it resulted to be a too exploitative search technique, and hence a priori less reliab
O for the case of interest. It can be observed that the numerical curve tuned by trial and error is less accura

ccuracy estimation of the numerical approximation of the full load-displacement curves from the experimental tests. Bold style highlig
esults.

RMSE R2 εmax

trial and error 0.78683 0.58768 2.5776
SRSM Full 0.70997 0.67118 2.1101
EGO Tk 0.66460 0.68574 1.2761
EGO Tk/E 0.60536 0.70444 1.5250
EGO Tk/Xc 0.65767 0.71191 1.3603

other curve according to each error measure, proving an improvement lead by surrogate-based optimizati
es. Moreover, when evaluated on the full range of displacements, the optimal solutions from the optimizati
on the trigger component perform better than the optimum of the SRSM result obtained by minimization
E computed on the full load-displacement curve. This means that a focused study on the trigger compone
cial for improving the overall accuracy of the numerical load-displacement curve. This can be also observ

RMSE on [0,20]

1.0708
1.036

0.62323

0.53827
0.58299

EGO Tk EGO Tk/E EGO Tk/Xc SRSM full Trial and Error

(a)

RMSE on [0,120]

0.78683

0.70997
0.6646

0.60536
0.65767

EGO Tk EGO Tk/E EGO Tk/Xc SRSM full Trial and Error
0

0.2

0.4

0.6

0.8

1

1.2

(b)

Figure 21: (a) RMSE evaluated on the full crush curve; (b) RMSE Evaluated on the first 20 mm of crush displacement.

re 21, which provides visual evidence of the RMSE accuracy measure for different test cases. From Figu
s evident that the optimization of the MSE objective function on the full displacements range does not provi
rate approximation of the initial part of the curve, which is mostly influenced by the trigger definition. O
r hand, when focusing the optimization strategy to minimize the MSE computed on the first 20 mm of cru

ement only, the found optima still perform well when simulated on a total time that is sufficient to cover t
lacements range, as illustrated in Figure 21b.
igure 22, the load-displacement curves extracted from the experimental tests are compared to the ones resulti
e simulations that are set according to the results of the optimization procedure.
igure 22a, the curves resulting from the optimization studies on the trigger component are shown. It c

ssed that all the curves associated to the optimal parameter configurations returned by EGO provide a mo
e approximation of the experimental curve than the trial-end-error method. Indeed, the optimized trigger allo
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(a) (b)

: Comparison of experimental and numerical load-displacement curves. (a) The experimental curve is compared to the optimized cur
rial and Error curve on the [0, 20] mm displacement range. (b) The experimental curve is compared to the best optimized curve in ter
and the Trial and Error curve on the [0, 120] mm displacement range.

Figure 23: Crush behavior of the optimized numerical impact attenuator and comparison with the experimental test.

nuating the initial pick due to contact instabilities between the impacting rigid wall and the component in t
cal simulations. It is also evident that the blue curve, which is the outcome of the simulation corresponding
tion of EGO on the one-dimensional test case, tends to overly overestimate the experimental trend if compar
urves obtained as optima of the 2-variables test cases. In Figure 22b, the experimental and trial and err

are compared to the numerical curve that provides the lower RMSE among all the considered test cases, i.
come of the complete simulation on the numerical model set according to the optimum of the EGO Tk
e. Also here, it can be noted that such a curve is able to capture the experimental behavior with satisfacto
y, by definitely improving the approximation provided by the numerical model tuned by hand. The first
crushing are well approximated by the numerical curve (green) as well as the peak of force at 40 mm, th
onds to the first thickness variation, and the following drop of load. The rest of the numerical curve follo
cattered path respect to the experimental one, due to the absence of the compacted walls on the impacti
the attenuator, that causes the “up and down” force trend. However, the average increasing tendency is w
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d by the numerical curve.
ally, Figure 23 shows the crushing behavior of the impact attenuator with optimized properties. It is noticeab
the global deformations and the bending of the vertical face in correspondence of the thickness variation a

ptured. The same cannot be said for the folding and compacting of the top edge. Indeed, the element erosi
of the material card lead the elements in contact with the rigid wall to be deleted before that layer compacti

clusions

his paper, a numerical optimization study for the material parameter identification of an All-PP compos
attenuator in crashworthiness was presented. It is well known that the mechanical properties determined
d tests usually do not adequately reflect the failure mechanism of a composite component subjected to cru
, especially in the case of the particular failure mode of an All-PP composite material. Therefore, the proble
ng from specimen to component was addressed using a parameter identification procedure from LS-OPT bas
ptimization of the numerical load-displacement crush curve with respect to the most influential parameters
erical model. In this study, an optimization methodology consisting of several conceptual building blocks w
ed and tested. The optimization study is divided into two sub-problems. The first problem aims at optimizi

terial card parameters based on minimizing the Mean Square Error (MSE) between the experimental a
cal load-displacement curves recorded for the whole range of displacements [0, 120] mm. Here, the paramete
nd DFAILc of the LS-DYNA material card were chosen as the variables to be optimized. On the other han
nd problem has the more focused objective of optimizing both the geometrical and material parameters o

cal trigger with degraded properties, which was modeled and optimized to represent the top edge imperfectio
uce the initial contact instabilities between the rigid wall and the impact attenuator. In this second phase, t
e was to minimize the MSE on the shorter range [0, 20] mm. The introduction of the numerical trigger a

mization proved to be a good solution for damping the oscillations and force peaks during the first impa
In the logical flow of the method, two different surrogate-based optimization strategies were considere

uential Response Surface Method (SRSM) and the Efficient Global Optimization (EGO) algorithms. T
tegies were compared in terms of exploitative/explorative search behavior and convergence speed towards
solution. Furthermore, the paper contains a detailed description of the practical setup of the optimizers
. This is particularly useful in the case of EGO, which was introduced to the software relatively recently an
horough search of the relevant literature, has never been applied to similar mechanical test cases. The resu
at optimization is beneficial for refining significant parameters on both the full component and the trigg

tained numerical load-displacement curve accurately reproduces the experimental results. An improveme
numerical curve obtained by trial and error was visible in terms of accuracy measures as well as in the visu

ion of the resulting curves. In summary, the exploratory and exploitative capabilities of the EGO algorith
a more convenient choice for optimizing the objective function with low computational cost.

g

s research did not receive any specific grant from funding agencies in the public, commercial, or not-for-pro

vailability

raw/processed data required to reproduce these findings are available to download from https://dat

ey.com/datasets/vrctbtnswz/1.
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