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Abstract:

Highly flexible thin-walled beams with complex open cross-sections are sensitive to torsional
and warping effects. The analysis of higher-order vibration modes in these structures needs more
accurate and precise methods in order to achieve reliable results and detect the cross-sectional
deformations in the structures’ free vibration response. This paper analyzes higher vibration modes
in a series of thin-walled beams, which were proposed by Chen as benchmark problems. These
are all open-section thin-walled beams with complex geometries. Global vibration modes, such as
bending and torsion, related to the rigid cross-sectional deformations can be detected via classical
and shear refined theories. However, cross-sectional deformations appear at higher frequencies, and
these modes are mixed with the global ones. To highlight this fact, this paper compares classical
beam theories with refined ones based on the Carrera Unified Formulation (CUF) and the shell
results using the commercial finite element (FE) software and the data available from the literature.
The CUF FEs based on the power of cross-sectional deformation coordinates (x, z) and those based
on the Lagrangian polynomials are implemented and compared using Modal Assurance Criterion.
A number of interesting conclusions are drawn about the effectiveness of classical and CUF-based
results. The need for models capable of detecting cross-sectional deformations is outlined. In fact,
many modes are lost by classical beam theories; on the other hand, they show rigid cross-section
modes that do not really exist. This fact is also confirmed by the shell models, which are more
expensive in terms of computational costs regarding the efficient CUF ones proposed here.

Keywords: Free vibration analysis; Carrera Unified Formulation; Thin-walled beam structures;
higher-order modes, cross-sectional deformations.

1 Introduction

Lightweight thin-walled beam structures with open sections are used extensively in different engi-
neering applications and industries, such as aerospace and construction. Beams are structures having
one dimension much larger than the other two and primarily subjected to lateral loads, resulting
in the bending of their reference axes. A general beam should be able to sustain extension, com-
pression, bending, transverse shear (flexure) and twisting loads [1]. One-dimensional beam theories
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have been studied broadly because of the simplicity and lower computational costs. Beam theories
were initially developed by Euler [2], Bernoulli [3], Timoshenko [4, 5] and further by Vlasov for the
thin-walled beams [6, 7].

Free vibration occurs when a system is left to vibrate on its own after the initial excitation. There
are no external forces acting on the system in the free vibration [8]. The free vibration response
of beam structures has been analyzed by many researchers [9, 10, 11]. Comprehensive studies were
presented in books by Gorman [12], and Blevins [13]. The free vibration analysis of stepped beams
is investigated in some research papers [14, 15, 16, 17]. Li [18] presented an approach for the free
vibration analysis of generally supported beams, considering the displacement of the beam as a
combination of Fourier series and auxiliary polynomial function. Chen and Hsiao [19] developed
an FE method for the coupled free vibration of thin-walled beams with open cross-sections, and
investigated numerical examples from the literature [20, 21, 22]. Dey and Talukdar [23] worked on
the free vibration of the thin-walled channel section steel beam and compared FE and experimental
results. Murin et al. investigated the effect of torsional warping on the eigenvibrations of thin-
walled beams with functionally graded materials [24]. One of the best contribution on the topic
is represented by the Generalized Beam Theory (GBT). It was introduced by Schardt [25] and
further developed by Camotim and Silvestre [26, 27, 28] and was efficiently used for the analysis
of vibrations in many thin-walled structures. Kugler et al. [29, 30] proposed a novel GBT based
on the reference beam problem for the slender prismatic structures. Piana et al. [31] compared
the experimental and numerical results in a compressed non-symmetric thin-walled beam with a
cruciform cross-section. They obtained the natural frequencies of the beam exciting the specimen
by means of a hammer. They detected the frequencies by using the Peak Picking technique using the
PZT pickups or Laser sensors. A finite element commercial code was used to validate the frequencies,
and a finite differences code was developed to follow the frequency-load responses. Jrad presented a
comprehensive study on the dynamic behavior of thin-walled beams using experimental, numerical
and analytical approaches [32, 33]. Fazzolari [34] proposed a Ritz formulation for the free vibration
analysis of thin-walled structures.

In many cases, the beam and plate structures are subjected to high frequencies and large ampli-
tude vibrations. Hence, the higher modes in the free vibration analysis of structures have been inves-
tigated in some studies. A review paper was presented by Langley and Bardell [35] on the alternative
analysis methods for high frequency vibrations of aerospace structures. Wei et al. [36] introduced a
discrete singular convolution algorithm for the high frequency vibrations of structures. Sudalagunta
et al. [37] provided a scheme for higher modes of vibrations for one-dimensional structures based
on the classic Ritz method. Ding et al. [38] considered the displacements of trigonometric function
and presented a theory for high frequency vibrations of rectangular beams. Lin et al. [39] derived
an energy FE formulation for the high frequency vibration of beam structures. Wang [40] proposed
a novel discrete singular convolution algorithm for the high frequency vibration of structures and
solved some free vibration problems of beam and plate structures.

In essence, it can be pointed out that when the problem is not governed by higher-order phe-
nomena, a 2D description of the problem (as provided, for instance, by GBT) is efficient, in terms
of efforts spent. On the contrary, when the problem is governed by complex phenomena, a 3D
description of the problem is mandatory. In this paper, this approach is used employing the Car-
rera Unified Formulation (CUF). CUF was introduced as a promising and reliable method for the
free vibration analysis of plate and shell structures [41, 42, 43, 44]. Carrera et al. [45] presented
a hierarchical FE based on the CUF for the free vibration response of beam structures. They for-
mulated the mass and stiffness matrices of the structure in terms of the independent fundamental
nuclei. Carrera et al. [46] evaluated higher-order theories using the framework of the CUF for the
free vibration response of various beam cross-sections, such as rectangular, rectangular thin-walled,
C-shaped, and annular beams. Petrolo et al. [47] conducted a free vibration analysis of compact
and bridge-like cross-sections using the CUF framework. Pagani et al. [48] used the higher-order
kinematic field based on the CUF, and presented an exact dynamic stiffness formulation for the free



vibration analysis of thin-walled structures. Pagani et al. [49] investigated the effect of nonstructural
localized inertia on the free vibration analysis of thin-walled structures by opportunely modifying
the fundamental nucleus of the mass matrix. Pagani et al. [50] applied radial basis functions to the
free vibration analysis of thin-walled beams. Dan et al. [51] worked on the free vibration of simply
supported beams with solid and thin-walled cross-sections using the CUF. Xu et al. [8] presented
an FE method based on the CUF by using Lagrange polynomial expansion for thin-walled beams
with different cross-sections.

Higher vibration modes of thin-walled beams with complex geometries are investigated in this
paper by using the framework of CUF. This paper analyzes higher vibration modes in a series of thin-
walled beams, which were proposed by Chen as benchmark problems. Classical and higher-order
beam theories are used, and the effect of cross-sectional deformations in the higher-order modes
are investigated. The Modal Assurance Criterion (MAC) is used to compare the free vibration
modes based on different structural theories. A comprehensive comparison is presented between
the classical beam theories, refined ones based on the CUF, shell results from the commercial FE
software and the data available from the literature. It is shown that many modes are lost by classical
beam theories, and instead, they show rigid-cross section modes that do not really exist. It is also
confirmed that by using the CUF, the results are not only obtained in a very cost-effective manner
but they are also accurate and in agreement with shell models with high computational costs.

2 Preliminary considerations

If we consider a generic beam with the cross-section domain S in the z — z plane, and the axis along
the y direction, the displacement, stress, and the strain vectors are defined as the following vectorial

forms: -
w(z,y, z;t) = {uz uyu,}

0 = {00 Oyy 02z Oaz Oyz 0wy}’ (1)
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If the small displacements and rotations are considered, the geometrical relations between the strains
and the displacements are expressed in the matrix forms as follows.

e=Du (2)

where D is the linear differential operators defined as:

0, O 0
0 9, 0
0 0 0,
D=1, 0 a | (3)
0 9. 9,
o, 0 0

where 0, = @7 Oy = @, and 0, = @ are partial derivative operators.
Ox oy 0z

Based on the Hook’s law, the stress-strain relationship is:

c=Ce (4)



For the isotropic material, the matrix C' is

[ A+2G A A0 0 0

A A+26 A 0 0 0

B A A A+2G 0 0 0
c= 0 0 0 G 0 0 (5)

0 0 0 0 G 0

0 0 0O 0 0 G|

where G and A are the Lame’s parameters related to the properties of isotropic material, and one
can use G = E/(2(1 +v)) and A = vE/((1 + v)(1 — 2v)) in case of Poisson’s ratio and Young’s
modulus [49].

3 Carrera Unified Formulation for the free vibration analysis

The three-dimensional displacement field according to the Carrera Unified Formulation (CUF) for
the beam structures is [52]:

U(IE,y,Z;t):FT(ZL‘,Z) u‘r(yat)v T:(]ala"' 7N7 (6)

where F- is the set of cross-section functions and w, is the generalized displacement vector. As
it is clear from Eq. (6), the use of CUF provides us a great advantage of arbitrarily selecting the
expansions of any order over the beam cross-section. Therefore, different structural theories based on
the order of expansion could be implemented and used. In this research, Taylor and Lagrange cross-
section functions are used to model the beam structure. By using the finite element approximation,
the displacement vector ., based on the nodal parameters u,; and shape functions IV; is defined as:

where N; is the i-th shape function, p is related to the order of the shape functions and q is vector
of the nodal unknowns. More information about the Lagrange polynomials and shape functions can
be found in [53]. By using the finite element approximation and the CUF, the displacement field
can be expressed as:

u(z,y, z;t) = Ni(y) Fr(z, 2) gri(t) (8)
According to the Principle of Virtual Displacements (PVD), we have:

6Lint + 6Line = 5Le:ct (9)

where Ljnt, Line, and Ley: represent the strain energy, work of the inertial loadings, and the work
of external loadings. For the free vibration analysis, the work of external loadings is zero, therefore:

5Lint + 5Line =0 (10)

By using the CUF as introduced previously, the following equations are obtained for the virtual
variations of strain energy and the inertial work.

O Lint = vf&sTadV = dul; ({/f Fi(z,2)N,(y) DT CDN;(y) Fy(z, z)dV) Ui = Sul K™ uy,

- (11)
§Line = [dul piidV = (5ug} <‘£ Fy(x,z)N;j(y)pNi(y)F; (z, z)dV> iy = (5usTjMTS”ilTi

where K75 and M™% are the Fundamental Nuclei (FN) of the stiffness and mass matrices. These
are 3 X 3 matrices based on the unified formulation for a given i, j pair, and independent of the
order of the structure model with a fixed form. The repeated indexes indicate summation. The



global matrices are obtained by considering all the combinations of the indices ¢, j, 7, and s. More
details about the fundamental nucleus formulation and their explicit forms can be found in [52, 54].

If we substitute the virtual variations of strain energy and the inertial work from Egs. (11) into
Eq. (10), the PVD could be written in the following form:

Suli (K™ ur; + M™iiy;) =0 (12)

That could be expressed as: - -
M™Y.+ K™ u; =0 (13)

Due to the fact that the problem is linear, the harmonic solutions can be used in order to obtain
the natural frequencies; therefore, the eigenvalues problem can be solved as follows.

(—wiM + K)uy, =0 (14)

where wy are the natural frequencies, and wy is the & th eigenvector.

3.1 Refined Taylor Expansion

Taylor Expansion (TE) models are formulated by employing polynomial expansion of the kind z™z"
as cross-section function F;. It should be noted that m and n are positive integers. The order of TE
model (N) represents the structural theory of the beam, and is defined as a user input. For instance
in the case of N = 2, the second-order displacement field is:

Uy = Ugy + TUgy + ZUgsy + xzuu + x2uUyy + z2u$6

_ 2 2
Uy = Uy; + TUy, + 2Uy; + x2 Uy, + T2Uy; + Z2 Uyg (15)
Uy = Uy + TUyy + ZUyy + T7Uyy + TZUL, + 27Uy

where u,, to u,, are the eighteen generalized displacement variables. In Fig. 1 some of theses
variables are shown schematically for a beam example under bending around z axis according to the
linear TE model (N = 1). As can be seen in this figure, for the mentioned beam example u,, is
the displacement and wu,, is the rotation. The classical beam theories such as Euler-Bernoulli beam
theory (EBBT) and Timoshenko beam theory (TBT) can be obtained as particular cases of the
linear TE model [52]. For instance, the TBT considers only the following terms for the displacement
field:

Uy = le
Uy = Uy, + Ty, + 2Uy, (16)
Uy = ’LLZ1

(a) Undeformed (b) Deformed

Figure 1: Some of the generalized displacement variables based on the linear TE model for a
schematic beam under bending around z axis



3.2 Refined Lagrange Expansion

Lagrange Expansions (LE) have been demonstrated to be very effective for several applications,
including aerospace and civil structures [55, 56, 57, 58]. For the LE models, the unknown variables
are pure displacements (See Fig. 2). In this research paper, different numbers of nine-nodes La-
grange polynomials (L9) are adopted for the expansion function over the cross-section. By using the
isoparametric formulation for the beams with arbitrary cross-sections, the interpolation functions
and the coordinates of the points for the L9 Lagrange polynomials are mentioned in Eqs. (17) and
Table 1, respectively. Fig. 3 shows the L9 Lagrange elements in the actual and normalized geome-
tries. Interested readers are referred to the book by Carrera et al. for more information about the
beam models with LE [52].

uX4/ uy4/ uz4 UX3, Uy3, UZ3

e 7/ Ux2,Uy2, Uz
) F.’“& ................................................................. . r.---‘; _____________________________________________ s, Uyl, ",
px il po ;
z X Z vx
(a) Undeformed (b) Deformed

Figure 2: Pure displacement variables based on the Lagrange model with four points for a schematic
beam under bending around z axis

Some of the generalized displacement variables based on the linear TE model for a schematic
beam under bending around z axis

By
>d

b » X e

Actual Geometry Normalized Geometry

Figure 3: Nine nodes Lagrange polynomials in the actual and normalized geometry

where
Fr=1(a®+aa)(B2+BB:), T=1,3,57T
Fr = 3B2(8% + BB:)(1 — o®) + 3ai(a® + aar)(1 = §%),  7=2,4,6,8 (17)
Fr=(1-a)(1-p%, 71=9
and



Table 1: Normalized coordinates of L9 element

Points 1 2 3 4 5 6 7 8 9
ar -1 0 1.1 1 0 -1 -1 0
Br -1 -1 -1 011 1 0 0

3.3 Shear locking

A numerical phenomenon that may occur as the thickness of beams or plates decreases is shear
locking [59, 60]. This arises because of the overestimation of the shear stiffness of the structures
that tends to be infinite as the thickness tends to zero [52]. Some techniques to tackle this issue are
reduced, selective integration, and Mixed Interpolation of Tensorial Components (MITC).

Zienkiewicz [61, 62] proposed the reduced integration method that suggests the decrease of the
order of numerical integration in some terms of the stiffness matrix in order to reduce the stiffness
of displacement-based elements. Selective integration [63, 64] is another technique based on the
reduced integration for transverse shear terms. Note that in the selective integration method, a full
quadrature is considered for the other terms of the stiffness matrix. In fact, this method is based
on a reduced Gauss integration of the terms of the stiffness matrix that are related to the shear.
Therefore, due to the reduction of the number of Gauss points, the shear stiffness of structure is also
decreased. The Mixed Interpolation of Tensorial Components (MITC) [65, 66] is also a remarkable
and successful method for eliminating the shear locking phenomenon. In the MITC formulation,
an independent FE approximation is introduced into the element domain for the transverse shear
strains. This results in the elimination of the transverse shear locking phenomenon. This method
is based on the use of assumed strain distributions for the derivation of the transverse shear terms
and, eventually membrane terms of the stiffness matrix of the finite elements[67]. In this paper,
the MITC method is used in combination with the CUF one-dimensional formulation. Interested
readers are referred to the work by Carrera [67] for more information about the formulation and
extension of MITC methodology to higher-order and hierarchical beam theories.

4 Description of the Chen benchmark

In this section, a series of thin-walled beams with open cross-sections proposed by Chen [19] as
benchmark problems are introduced. The first two thin-walled beams are with C-shaped and T-
shaped cross-sections. The other two thin-walled beams are with arbitrary and complex cross-
sections. For each beam, the cross-section geometries and isotropic material properties are illustrated
in Fig. 4. Note that all the dimensions in this figure are in millimeters (mm).
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(c) Beam 3- arbitrary cross-section
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(d) Beam 4- arbitrary cross-section
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Figure 4: The schematic view and material properties of the beam 1- C-shaped cross-section

5 Numerical Assessments

In this section, the convergence study is performed in order to evaluate the effect of number of
FEs and different expansions over the beam cross-section. Afterwards, the shear locking behavior is
investigated for some of the beams, and the efficiency of methods for eliminating the shear locking
is evaluated.

5.1 Convergence study

In this section, the convergence analysis is presented based on the displacements and axial stresses
for the cantilever beams subjected to a point load at the free end. The displacements at the free end
of the beam, and the axial stresses near the clamped edge of the beam are evaluated. Four beams
with C-shaped, T-shaped, and two arbitrary cross-sections are investigated.

5.1.1 Beam 1- C-shaped cross-section

In order to investigate the effect of FE discretization, a convergence study is conducted for the
displacements and stresses of the C-shaped beam. The beam is clamped at one end and subjected to
a downward tip force P = 1000 at the free end (point A in Fig. 4(a)). The results of the vertical
displacements at the bottom point (See point B of Fig. 4(a), y = 1280mm) and axial compressive
stresses at the bottom point (y = 128mm) of the C-shaped beam are reported in Table 2. The
results of this table are presented for the beam elements with two nodes (B2), three nodes (B3), and
four nodes (B4) elements, respectively. 14 Lagrange polynomials with nine nodes (14L9) are used for



the expansion function over the cross-section. The last columns of table 2 are devoted to the error
values of displacements and axial stresses compared to the 20B4-14L.9 model. Based on the values
of this table, Figs. 5a and 5b, which indicate the displacements and axial stress versus the DOF of
each model. In addition, the corresponding error values are plotted in Figs. 5¢ and 5d. The results
show that for both the vertical displacements and axial stresses, the convergence rate of B4 beam
elements is significantly higher than B3 and B2 elements. Furthermore, the predicted displacement
values for B2 elements are not accurate enough because of the necessity of the consideration of shear
refinements in the model. This issue will be further investigated in Section 5.2.

Table 2: The convergence analysis of the vertical displacements at the bottom point (See point B
of Fig. 4(a), y = 1280mm) and axial compressive stresses at the bottom point (y = 128mm) of the
beam 1- C-shaped cross-section- effect of FE discretization

Model DOF Displacement (mm) Axial Stress (M Pa) Displacement Error %  Axial Stress Error %
5B2-14L9 1566 3.29 64.36 78.84 77.29
10B2-14L9 2871 6.48 87.13 58.32 69.26
20B2-14L9 5481 10.72 213.14 31.06 24.81
30B2-14L9 8091 12.80 235.51 17.68 16.92
50B2-14L9 13311 14.38 263.54 7.52 7.03
5B3-14L9 2871 15.10 139.42 2.89 50.81
10B3-14L9 5481 15.37 220.11 1.15 22.35
20B3-14L9 10701 15.49 272.46 0.38 3.88
30B3-14L9 15921 15.53 281.03 0.12 0.86
5B4-14L9 4176 15.36 187.63 1.22 33.81
10B4-14L9 8091 15.49 237.92 0.38 16.07
20B4-14L9 15921 15.55 283.48 0.00 0.00
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Figure 5: The convergence analysis of the vertical displacements at the bottom point (See point B
of Fig. 4(a), y = 1280mm) and axial compressive stresses at the bottom point (y = 128mm) of the
beam 1- C-shaped cross-section- effect of FE discretization

In order to investigate the effect of structural theories, the same convergence study is conducted
for the displacements and stresses of the C-shaped beam. Three LE models of 819, 1419, and 2219
are considered with 20B4 FE beams. As shown in Fig. 6, these LE models include 51, 87, and 135
Lagrange points, respectively. In addition, five TE models of order 1, 2, 5, 10, and 15 are considered
for the sake of completeness. The results of this convergence analysis are reported in Table 3, where
the last two columns are related to the errors of displacements and axial stresses in comparison
with the 20B4-22L.9 model. The results reveal that classical and TE models of lower orders cannot
predict the displacements and axial stresses accurately. For instance, consider the cases of TE =1
and TFE = 2 that show more than 50 percent error in comparison with the refined model of 22L.9.
Thus, the selection of fine structural theories is vital for the accurate evaluation of displacements
and stresses in the beams with unsymmetric cross-sections under bending and torsion.
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Figure 6: Discretization of the beam-1 cross-section based on different Lagrange expansions

Table 3: The convergence analysis of the vertical displacements at the bottom point (See point B
of Fig. 4(a), y = 1280mm) and axial compressive stresses at the bottom point (y = 128mm) of the
beam 1- C-shaped cross-section- effect of the structural theory

Model DOF  Displacement (mm) Axial Stress (M Pa) Displacement Error %  Axial Stress Error %
20B4,TE=1 549 7.24 127.98 53.44 54.88
20B4,TE=2 1098 7.18 128.60 53.82 54.66
20B4,TE=5 3843 8.31 155.63 46.55 45.13
20B4,TE=10 12078 14.63 267.55 5.91 5.67
20B4,TE=15 24888 15.33 277.15 1.41 2.29

20B4-8L9 933 15.54 283.29 0.06 0.12
20B4-14L9 15921 15.55 283.48 0.00 0.05
20B4-22L9 24705 15.55 283.65 0.00 0.00

5.1.2 Beam 2- T-shaped cross-section

In order to investigate the effect of FE discretization, a convergence study is conducted for the
displacements and stresses of the T-shaped beam. The beam is clamped at one end and subjected to
a downward tip force P = 15000N at the free end (point A in Fig. 4(b)). The results of the vertical
displacements at the bottom point (See point B of Fig. 4(b), y = 2000mm) and axial compressive
stresses at the bottom point (y = 200mm) of the T-shaped beam are reported in Table 4. The
results of this table are presented for the beam elements with two nodes (B2), three nodes (B3), and
four nodes (B4) elements, respectively. 15 Lagrange polynomials with nine nodes (15L9) are used
for the expansion function over the cross-section. The last columns of table 4 are devoted to the
error values of displacements and axial stresses compared to the 20B4-15L9 model.

11



Table 4: The convergence analysis of the vertical displacements at the bottom point (See point B
of Fig. 4(b), y = 2000mm) and axial compressive stresses at the bottom point (y = 200mm) of the
beam 2- T-shaped cross-section- effect of FE discretization

Model DOF Displacement (mm) Axial Stress (M Pa) Displacement Error %  Axial Stress Error %
5B2-15L9 1674 10.84 228.88 57.10 53.57
10B2-15L9 3069 18.82 327.71 25.52 33.52
20B2-15L9 5859 23.20 474.24 8.19 3.79
30B2-15L9 8649 24.28 475.76 3.91 3.48
50B2-15L9 14229 24.90 486.85 1.46 1.23
5B3-15L9 3069 24.84 402.06 1.70 18.43
10B3-15L9 5859 25.10 441.04 0.67 10.53
20B3-15L9 11439 25.22 486.00 0.19 1.41
30B3-15L9 17019 25.26 489.21 0.03 0.76
5B4-15L9 4464 25.09 429.61 0.71 12.85
10B4-15L9 8649 25.22 467.26 0.19 5.21
20B4-15L9 17019 25.27 492.96 0.00 0.00

In order to investigate the effect of structural theories, the same convergence study is conducted
for the displacements and stresses of the T-shaped beam. Three LE models of 9L9, 1519, and 23L9
are considered with 20B4 FE beams. As shown in Fig. 7, these LE models include 57, 93, and 141
Lagrange points, respectively. In addition, five TE models of order 1, 2, 5, 10, and 15 are considered
for the sake of completeness. The results of this convergence analysis are reported in Table 5, where
the last two columns are related to the errors of displacements and axial stresses in comparison with
the 20B4-23L9 model. The results reveal that in contradiction with the previous beam example,
for the T-shaped beams, classical and TE models of lower orders can also predict the displacements
and axial stresses accurately. For instance, consider the cases of TE = 1 and TE = 2 that show less
than 1 percent error in comparison with the refined model of 231.9. This is due to the effect of the
geometry of cross-section and the applied load point. In fact, for this example, the load is applied
at the midline of the cross-section where there are symmetric geometric conditions with respect to
the z direction. Therefore, the torsional effects are reduced, and that results in the capability of
classical and low order models for capturing the accurate values of displacements and axial stresses.
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Figure 7: Discretization of the beam-2 cross-section based on different Lagrange expansions
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Table 5: The convergence analysis of the vertical displacements at the bottom point (See point B
of Fig. 4(b), y = 2000mm) and axial compressive stresses at the bottom point (y = 200mm) of the
beam 2- T-shaped cross-section- effect of the structural theory

Model DOF Displacement (mm) Axial Stress (M Pa) Displacement Error %  Axial Stress Error %
20B4,TE=1 549 25.18 488.11 0.35 0.90
20B4,TE=2 1098 25.09 489.93 0.71 0.53
20B4,TE=5 3843 25.25 491.95 0.07 0.12
20B4,TE=10 12078 25.27 492.54 0.07 0.00
20B4,TE=15 24888 25.27 492.58 0.00 0.00

20B4-9L9 10431 25.27 493.68 0.00 0.22
20B4-15L9 17019 25.27 492.96 0.00 0.08
20B4-23L9 25803 25.27 492.56 0.00 0.00

5.1.3 Beam 3- Arbitrary cross-section

In order to investigate the effect of FE discretization, a convergence study is conducted for the
displacements and stresses of the beam 3 with arbitrary cross-section. The beam is clamped at one
end and subjected to a downward tip force P = 30000N at the free end (point A in Fig. 4(c)). The
results of the vertical displacements at the bottom point (See point B of Fig. 4(c), y = 10000mm)
and axial compressive stresses at the bottom point (y = 1000mm) of the beam are reported in
Table 6. The results of this table are presented for the beam elements with two nodes (B2), three
nodes (B3), and four nodes (B4) elements, respectively. 16 Lagrange polynomials with nine nodes
(16L9) are used for the expansion function over the cross-section. The last columns of table 6 are
devoted to the error values of displacements and axial stresses compared to the 20B4-161.9 model.

Table 6: The convergence analysis of the vertical displacements at the bottom point (See point B of
Fig. 4(c), y = 10000mm) and axial compressive stresses at the bottom point (y = 1000mm) of the
beam 3- arbitrary cross-section- effect of FE discretization

Model DOF Displacement (mm) Axial Stress (M Pa) Displacement Error %  Axial Stress Error %
5B2-16L9 1782 14.60 10.83 82.56 85.92
10B2-16L9 3267 33.92 27.51 59.48 64.25
20B2-16L9 6237 58.88 59.05 29.67 23.27
30B2-16L9 9207 70.00 66.13 16.39 14.07
50B2-16L9 15147 78.06 72.98 6.77 5.17
5B3-16L9 3267 82.13 39.04 1.91 49.27
10B3-16L9 6237 83.14 69.22 0.70 10.05
20B3-16L9 12177 83.56 74.97 0.20 2.58
30B3-16L9 18117 83.68 76.76 0.05 0.25
5B4-16L9 4752 83.10 47.93 0.75 37.72
10B4-16L9 9207 83.53 71.06 0.23 7.66
20B4-16L9 18117 83.73 76.96 0.00 0.00

In order to investigate the effect of structural theories, the same convergence study is conducted
for the displacements and stresses of the beam 3 with arbitrary cross-section. Three LE models of
1219, 16L9, and 2519 are considered with 20B4 FE beams. As shown in Fig. 8, these LE models
include 75, 99, and 153 Lagrange points, respectively. In addition, five TE models of order 1, 2, 5,
10, and 15 are considered for the sake of completeness. The results of this convergence analysis are
reported in Table 7, where the last two columns are related to the errors of displacements and axial
stresses in comparison with the 20B4-25L9 model. As evident from the reported values of this table,
the classical and TE models of lower orders cannot accurately predict the displacements and axial
stresses of the thin-walled beam structure with complex geometry.
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Figure 8: Discretization of the beam-3 cross-section based on different Lagrange expansions

Table 7: The convergence analysis of the vertical displacements at the bottom point (See point B of
Fig. 4(c), y = 10000mm) and axial compressive stresses at the bottom point (y = 1000mm) of the
beam 3- arbitrary cross-section- effect of the structural theory

Model DOF Displacement (mm) Axial Stress (M Pa) Displacement Error %  Axial Stress Error %
20B4,TE=1 549 81.82 73.67 2.31 4.32
20B4,TE=2 1098 81.46 74.16 2.74 3.68
20B4,TE=5 3843 81.89 74.22 2.23 3.61
20B4,TE=10 12078 82.11 74.36 1.96 3.42
20B4,TE=15 24888 82.23 74.46 1.82 3.29

20B4-12L9 13725 83.66 76.93 0.11 0.09
20B4-16L9 18117 83.73 76.96 0.03 0.05
20B4-25L9 27999 83.76 77.00 0.00 0.00

5.1.4 Beam 4- Arbitrary cross-section

In order to investigate the effect of FE discretization, a convergence study is conducted for the
displacements and stresses of the beam 4 with arbitrary cross-section. The beam is clamped at one
end and subjected to a downward tip force P = 90000\ at the free end (point A in Fig. 4(d)). The
results of the vertical displacements at the bottom point (See point B of Fig. 4(d), y = 10000mm)
and axial compressive stresses at the bottom point (y = 1000mm) of the beam are reported in
Table 8. The results of this table are presented for the beam elements with two nodes (B2), three
nodes (B3), and four nodes (B4) elements, respectively. 17 Lagrange polynomials with nine nodes
(17L9) are used for the expansion function over the cross-section. The last columns of table 8 are
devoted to the error values of displacements and axial stresses compared to the 20B4-17L9 model.

Table 8: The convergence analysis of the vertical displacements at the bottom point (See point B of
Fig. 4(d), y = 10000mm) and axial compressive stresses at the bottom point (y = 1000mm) of the
beam 4- arbitrary cross-section- effect of FE discretization

Model DOF Displacement (mm) Axial Stress (M Pa) Displacement Error %  Axial Stress Error %
5B2-17L9 1890 32.65 73.62 72.07 61.45
10B2-17L9 3465 65.79 104.78 43.72 45.13
20B2-17L9 6615 95.65 179.66 18.17 5.92
30B2-17L9 9765 105.88 181.07 9.42 5.18
50B2-17L9 16065 112.54 188.63 3.72 1.23
5B3-17L9 3465 114.78 140.19 1.81 26.59
10B3-17L9 6615 116.09 159.44 0.69 16.51
20B3-17L9 12915 116.65 187.21 0.21 1.97
30B3-17L9 19215 116.83 189.48 0.05 0.78
5B4-17L9 5040 116.02 153.45 0.75 19.65
10B4-17L9 9765 116.62 165.39 0.23 13.39
20B4-17L9 19215 116.90 190.98 0.00 0.00

In order to investigate the effect of structural theories, the same convergence study is conducted
for the displacements and stresses of the beam 4 with arbitrary cross-section. Three LE models of
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1319, 1719, and 2619 are considered with 20B4 FE beams. As shown in Fig. 9, these LE models
include 81, 105, and 159 Lagrange points, respectively. In addition, five TE models of order 1, 2, 5,
10, and 15 are considered for the sake of completeness. The results of this convergence analysis are
reported in Table 9, where the last two columns are related to the errors of displacements and axial
stresses in comparison with the 20B4-26L9 model.

13L9 17L9 26L9
81 Lagrange points 105 Lagrange points 159 Lagrange points

Figure 9: Discretization of the beam-4 cross-section based on different Lagrange expansions

Table 9: The convergence analysis of the vertical displacements at the bottom point (See point B of
Fig. 4(d), y = 10000mm) and axial compressive stresses at the bottom point (y = 1000mm) of the
beam 4- arbitrary cross-section- effect of the structural theory

Model DOF Displacement (mm) Axial Stress (M Pa) Displacement Error %  Axial Stress Error %
20B4,TE=1 549 104.94 173.54 10.25 9.33
20B4,TE=2 1098 104.30 173.89 10.80 9.15
20B4,TE=5 3843 105.52 174.07 9.75 9.05
20B4,TE=10 12078 111.47 184.58 4.66 3.56
20B4,TE=15 24888 116.03 190.21 0.76 0.62

20B4-13L9 14823 116.87 190.82 0.05 0.30
20B4-17L9 19215 116.90 190.98 0.02 0.22
20B4-26L9 29097 116.93 191.41 0.00 0.00

5.2 Shear locking treatments

In this section, the results of displacements and axial stresses by some methods for the elimination of
shear locking are investigated and compared. As introduced in Section 3.3 four methods of reduced,
selective, full integration, and MITC are considered for the evaluation of shear locking in the beam
elements.

5.2.1 Beam 1- C-shaped cross-section

For the first locking example, the C-shaped beam is considered. Fig. 10 plots the values of dis-
placements based on the number of DOFs by using the different methods of full, selective, reduced
integration, and MITC. As can be seen obviously in this figure, the locking significantly occurs for B2
linear beam elements by using the full integration. This phenomenon has been eliminated by using
other locking-free methods of selective, reduced integration and MITC. in Table 10, the values of
displacements and axial stresses are reported for B2, B3, and B4 elements respectively. The results
are consistent with the prediction of the shear locking phenomenon in the linear elements with full
integration. It should be noted that increasing the number of beam elements along the axis of the
beam reduces the effect of shear locking considerably. This fact can be observed by the comparison
of the evaluated displacements in Table 10 (also see Fig. 10a) for 5B2-14L9 and 14B2-14L9 models.
Furthermore, it can be noted that the solutions of vertical displacements for the selective and MITC
methods are similar.
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Figure 10: Evaluation of the effect of shear locking on the vertical displacements at the bottom point
of the beam 1- C-shaped cross-section

Table 10: Evaluation of the effect of shear locking on the vertical displacements at the bottom point
of the beam 1- C-shaped cross-section

Displacement (mm) Axial Stress (M Pa)

Models DOF  Selective Reduced MITC  Full Selective Reduced MITC  Full
5B2-14L9 1566 14.37 15.51 14.37  3.29 283.35 281.55  283.35 64.36
10B2-141.9 2871 15.01 15.56 15.01 6.48 202.21 114.11 202.21 87.13
20B2-14L9 5481 15.32 15.59 15.32  10.72 299.06 490.46  299.06 213.14
30B2-14L9 8091 15.42 15.59 1542 12.80 293.77 70.74 293.77 235.51
50B2-14L9 13311 15.49 15.59 1549 14.38 291.40 38.77 291.40 263.54
5B3-14L9 2871 15.15 15.59 15.15 15.10 240.84 182.36 240.84 139.42
10B3-141L9 5481 15.39 15.60 15.39  15.37 338.22 469.27  338.22 220.11
20B3-14L9 10701 15.50 15.60 15.50  15.49 272.85 492,40  272.85 272.46
30B3-14L9 15921 15.54 15.60 15.54 15.53 268.20 512.63  268.20 281.03
5B4-14L9 4176 15.37 15.61 15.37  15.36 274.14 277.32 27414 187.63
10B4-141.9 8091 15.49 15.60 15.49  15.49 256.18 100.80  256.18 237.92
20B4-14L9 15921 15.55 15.60 15.55  15.55 263.82 496.75  263.82 283.48
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5.2.2 Beam 2- T-shaped cross-section

For the second example of shear locking investigation, the T-shaped beam is considered. In Table 11,
the values of displacements and axial stresses are reported for B2, B3, and B4 elements, respectively.
The same comments as the previous example could be made about the results where the shear
locking phenomenon occurs significantly in the linear elements with full integration method. The
obtained results demonstrate the necessity of high order FE in order to overcome this issue. Use
of the CUF results in models that are hardly influenced by shear locking. The shear locking effect
should be carefully investigated while using the full integration method, especially for linear FE. It
should be noted that the results of locking behavior for the other beams focused in this research
paper are almost the same, and not presented here for the sake of brevity.

Table 11: Evaluation of the effect of shear locking on the vertical displacements at the bottom point
of the beam 2- T-shaped cross-section

Displacement (mm) Axial Stress (M Pa)
Models DOF  Selective Reduced MITC  Full Selective Reduced MITC  Full
5B2-15L9 1674 23.94 25.14 57.10 10.84 496.93 493.63  496.93 228.88

10B2-15L9 3069 24.69 25.25 25.52  18.82 430.40 342.62  430.40 327.71
20B2-15L9 5859 25.04 25.30 8.19  23.20 494.21 671.25  494.21 474.24

30B2-15L9 8649 25.14 25.31 3.91  24.28 508.30 318.49  508.30 475.76
50B2-15L9 14229 25.22 25.31 1.46  24.90 495.95 331.88  495.95 486.85
5B3-15L9 3069 24.87 25.31 1.70 24.84 445.29 387.17  445.29 402.06
10B3-15L9 5859 25.11 25.32 0.67  25.10 509.26 629.58  509.26 441.04

20B3-15L9 11439 25.23 25.32 0.19  25.22 475.52 646.94  475.52 486.00
30B3-15L9 17019 25.26 25.32 0.03  25.26 485.29 644.23  485.29 489.21
5B4-15L9 4464 25.09 25.33 0.71  25.09 468.34 47270 468.34 429.61
10B4-15L9 8649 25.22 25.32 0.19  25.22 507.72 377.02  507.72 467.26
20B4-15L9 17019 25.28 25.32 0.00  25.27 484.11 641.67  484.11 492.96

6 Higher-order modes detection via various models

In this section, the results of free vibration analysis and higher modes detection with cross-sectional
deformation for the investigated beam structures of this paper are presented. First, for the purpose
of validation of the proposed method, the free vibration modes and natural frequencies of a beam
with cruciform cross-section are presented, and the results are compared with experiments and other
available data from the literature as well as the Abaqus shell models. Then, the beam structures
with C-shaped, T-shaped, and arbitrary cross-sections are analyzed based on their mode shapes and
natural frequencies.

6.1 Validation case-cruciform beam

In order to validate the proposed method, a doubly clamped cruciform beam with a length of 670
mm is considered [31]. As indicated in schematic Fig. 11 (dimensions in millimeter), the cross-section
of the beam is not geometrically symmetric. The isotropic material properties of Young’s modulus
(E = 70 GPa), Poisson’s ratio (v = 0.3), and density (p = 2600 Kg/m?) are considered for this
beam model.
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Figure 11: Schematic view of the cruciform beam

The details of the Abaqus shell and CUF-1D models used for the simulation of this cruciform
beam are reported in Table 12. Moreover, the first ten natural frequencies of this beam are com-
pared in Table 13 based on the used Abaqus shell and CUF-1D models. As shown in Fig. 12, the
corresponding mode shapes 5 and 10 are also compared by using the CUF-1D and Abaqus shell
models. It is observed from the contour plots of the mode shapes that the CUF-1D results with
considerably lower computational costs correlate well with the more expensive Abaqus shell model.
Moreover, in Table 14, the natural frequencies of the experimental method by Piana [31], and the
other available literature for this case by Jrad [32] are compared with the proposed CUF-1D method.
The results show that the proposed CUF method can predict the free vibration mode shapes and
natural frequencies accurately and reliably.

Table 12: The details of Abaqus shell and CUF-1D models used for the simulation of the cruciform

beam

Model DOF number of elements Element type Beam axis elements Section discretization Time (Sec)
Abaqus shell-coarse 6342 320 Quadratic S8R 40 9 25.16
Abaqus shell-medium 24198 1280 Quadratic S8R 80 17 31.47
Abaqus shell-fine 94470 5120 Quadratic S8R 120 33 53.89
CUF 1D-LE 2736 5B4 four nodes beam element 40 9L9 4.33
CUF 1D-LE 9765 10B4 four nodes beam element 80 17L9 11.48
CUF 1D-LE 27999 20B4 four nodes beam element 120 2519 35.35

Table 13: The first ten natural frequencies of cruciform beam with doubly clamped edge conditions
based on the used Abaqus shell and CUF-1D models

Modes Abaqus shell-coarse  Abaqus shell-medium  Abaqus shell-fine 5B4-9L9 10B4-17L9 20B4-25L9
Mode 1 168.13 167.71 167.70 173.58 171.66 170.84
Mode 2 261.21 261.07 261.02 267.03 265.04 264.12
Mode 3 267.48 267.34 267.28 273.41 271.38 270.43
Mode 4 336.98 336.15 336.13 347.87 344.04 342.42
Mode 5 507.15 505.90 505.87 523.39 517.72 515.30
Mode 6 679.10 677.45 677.40 700.96 693.12 689.91
Mode 7 703.74 703.29 703.11 737.32 714.46 711.94
Mode 8 720.35 719.88 719.70 720.48 731.20 728.65
Mode 9 853.92 851.83 851.77 887.21 871.44 867.42
Mode 10 1031.8 1029.3 1029.2 1079.08 1052.84 1047.93
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Figure 12: The comparison of free vibration mode shapes of Abaqus shell model and CUF 20B4-251.9

Table 14: The comparison of first ten natural frequencies of the cruciform beam with the available
literature

Modes Experimental Numerical B3Dw[32] Abaqus-B310S[32] Abaqus shell-fine ~CUF-1D CUF-1D difference

results [31]  results[31] 20B4-25L9  with experiments (%)

Mode 1 161.87 165.66 165.56 166.05 167.70 170.84 5.25
Mode 2 275.47 263.75 266.97 265.38 261.02 264.12 4.30
Mode 3 284.18 269.90 273.34 271.63 267.28 270.43 5.08
Mode 4 325.43 331.69 331.17 332.16 336.13 342.42 4.96
Mode 5 486.13 499.17 496.79 498.28 505.87 515.30 5.66
Mode 6 667.84 667.49 662.34 664.31 677.40 689.91 3.20
Mode 7 741.30 716.75 734.71 725.23 703.11 711.94 4.12
Mode 8 767.30 733.04 752.20 742.02 719.70 728.65 5.30
Mode 9 813.39 838.93 827.96 830.47 851.77 867.42 6.23
Mode 10 - - - - 1029.2 1047.93 -

6.2 Beam 1- C-shaped cross-section

The first investigation of higher vibration modes with cross-sectional deformations is related to the
C-shaped beam with clamped-free edge conditions. A full comparison of the natural frequencies
based on the different structural theories of the proposed CUF-1D method is presented in Table 15,
where the natural frequencies of B3Dw [32], BC2CM][19] methods, as well as Abaqus shell model,
are compared. In Figs. 16, 17, and 18, the first 40 mode shapes of this beam are shown based on
the TE=1, TE=10, and 2219 models with 20B4 FE beams.
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Table 15: Natural frequencies of beam 1 with clamped-free edge conditions based on different struc-
tural theories

Modes 20B4-22L9 20B4,TE=1 20B4,TE=2 20B4,TE=5 20B4,TE=10 20B4-8L9 20B4-14L9 Abaqus shell B3Dw([32] BC2CM][19]
Mode 1 25.10 33.59 33.84 33.63 26.39 25.12 25.11 25.00 25.37 25.37
Mode 2 33.57 73.00 73.33 53.09 33.57 33.58 33.57 33.51 33.58 33.63
Mode 3 96.19 208.23 209.15 110.72 96.56 96.32 96.22 96.07 98.16 98.15
Mode 4 135.58 435.55 436.06 203.13 141.18 137.72 136.05 134.61 148.43 148.41
Mode 5 151.31 573.27 480.15 206.62 160.67 152.83 151.63 150.51 209.84 210.14
Mode 6 156.40 624.08 573.55 419.71 169.17 158.10 156.72 155.20 410.02 409.97
Mode 7 166.95 650.22 1028.77 436.95 183.24 168.46 167.25 165.91 584.77 585.60
Mode 8 183.88 1097.31 1092.32 438.48 205.81 185.28 184.16 182.71 598.01 597.95
Mode 9 204.29 1139.50 1139.09 483.69 223.16 205.62 204.55 203.02 798.75 798.66
Mode 10 215.70 1762.99 1444.29 552.87 232.62 217.88 216.21 214.38 1025.78 1025.78
Mode 11 229.14 1872.25 1744.64 553.33 261.92 230.44 229.40 225.64 - -
Mode 12 229.55 1950.34 2049.14 641.40 268.99 247.87 233.18 227.73 - -
Mode 13 254.69 2055.96 2423.79 652.07 295.06 258.61 257.55 250.14 - -
Mode 14 257.28 2549.61 2506.89 729.85 306.69 277.26 259.05 255.73 - -
Mode 15 273.33 3249.50 3081.75 731.54 329.75 290.33 277.74 268.67 - -
Mode 16 288.90 3115.53 3095.34 805.25 331.15 296.28 289.18 287.18 - -
Mode 17 293.74 3120.41 3357.31 872.57 353.25 316.40 298.08 289.06 - -
Mode 18 316.69 3437.52 3426.73 932.17 370.12 325.54 320.98 312.03 - -
Mode 19 321.57 4266.07 4223.09 986.88 369.77 339.06 324.24 316.19 - -
Mode 20 323.92 4409.07 4276.19 985.44 379.76 347.62 328.89 319.73 - -
Mode 21 323.98 4368.58 4461.05 1027.46 383.12 352.11 327.49 322.03 - -
Mode 22 344.40 4547.07 5119.94 1033.64 408.80 364.17 348.56 339.74 - -
Mode 23 362.29 5449.09 5248.65 1076.31 411.87 366.25 362.66 360.20 - -
Mode 24 374.97 5474.33 5390.34 1079.32 441.42 396.48 379.06 370.33 - -
Mode 25 404.03 5616.75 5539.36 1121.52 456.46 406.26 404.47 401.74 - -
Mode 26 409.21 5842.42 6258.72 1137.52 477.33 430.49 413.24 404.59 - -
Mode 27 447.20 6544.88 6548.31 1164.09 503.81 451.81 449.66 442.62 - -
Mode 28 449.12 6718.19 6690.49 1207.46 510.85 468.40 451.22 446.58 - -
Mode 29 471.32 6864.92 7133.03 1216.18 516.69 500.86 484.71 464.38 - -
Mode 30 488.90 7134.94 7299.74 1252.72 560.16 510.12 492.91 484.35 - -
Mode 31 497.85 7686.00 7691.95 1265.32 554.52 524.70 498.53 495.07 - -
Mode 32 534.25 7982.08 7904.82 1293.70 554.38 549.72 538.24 529.79 - -
Mode 33 541.94 8113.12 8357.42 1304.41 585.74 553.70 544.43 539.89 - -
Mode 34 549.83 8424.00 8849.89 1300.74 606.08 556.12 550.64 546.68 - -
Mode 35 571.11 8864.03 9108.39 1338.04 608.12 581.46 578.92 558.61 - -
Mode 36 578.16 9253.18 9141.08 1352.34 655.86 605.70 588.19 576.65 - -
Mode 37 584.20 9361.35 9431.04 1372.11 660.99 610.00 601.73 580.09 - -
Mode 38 600.87 9709.00 10025.34 1407.62 665.29 659.25 606.98 587.46 - -
Mode 39 606.06 10072.19 10382.11 1408.09 705.34 670.05 636.62 602.08 - -
Mode 40 621.98 10517.44 10509.69 1445.67 709.34 716.91 641.26 608.10 - -
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Table 16: First 40 mode shapes of beam 1, 20B4,TE=1 model with clamped-free edge conditions

Mode 10

Mode 12 Mode 13 Mode 14 Mode 15

Mode 17 Mode 18 Mode 20

Mode 21 Mode 22 Mode 23

Mode 26 Mode 27 Mode 29

Mode 3l Mode 32 Mode 33 Mode 34 Mode 35
Mode 38 Mode 39 Mode 40
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Table 17: First 40 mode shapes of beam 1, 20B4,TE=10 model with clamped-free edge conditions

Mode 5

Mode 6 Mode 7 Mode 8 Mode 9 Mode 10
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Table 18: First 40 mode shapes of beam 1, 20B4-22L.9 model with clamped-free edge conditions

Mode 1

Mode 7 Mode 8 Mode 9 Mode 10
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For the sake of completeness, a shell model is used for the free vibration analysis of the structure.
The details of the Abaqus shell model used for the simulation of the C-shaped beam are reported in
Table 19. As shown in Fig. 13, for the corresponding modes number 40, the contour plots of mode
shapes and the natural frequencies are compared by using the CUF-1D and Abaqus shell models. It
is observed from the contour plots of the mode shapes that the CUF-1D results with considerably
lower computational costs correlate well with the more expensive Abaqus shell model.

Table 19: The details of Abaqus shell model used for the simulation of beam 1. CUF DOF = 17019.

Model DOF number of elements  Element type Beam axis elements Cross-Section discretization
Shell 12738 660 Quadratic S8R 60 8

"

a) Abaqus shell, Mode 40, Freq=608.10 Hz (b) CUF 1D, Mode 40, Freq=621.97 H z

Figure 13: The comparison of free vibration mode shapes of Abaqus shell model and CUF 20B4-221.9

Some comments could be made according to the results of Figs. 16, 17, 18, and Table 15 of the
natural frequencies.

1. Classical beam theories and the linear TE of order one are not capable of capturing many
cross-sectional deformations related to the bending or torsion; instead, they show rigid-cross
section modes that do not really exist.

2. In contradiction with the TE=1 model, the other structural models of TE=10 and 22L9 share
some common modes

3. The need for the models capable of detecting cross-sectional deformations is outlined.

4. The values of natural frequencies obtained by the CUF-1D (with considerably lower computa-~
tional costs) correlate reasonably well with the more expensive Abaqus shell model

5. It can be observed in the contour plots of the mode shapes that many of them are not cor-
responding to each other. Therefore, the use of MAC analysis is necessary to investigate the
corresponding modes related to each theory.

The MAC is defined as a scalar that represents the degree of consistency between two distinct
modal vectors in such a way that the values change from 0 to 1. The MAC value of 0 represents no
consistent correspondence of the models. The MAC is obtained according to the following equation
[49, 68, 69, 70]:

2
T
{oa}" {es,},
T T
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where ¢4, is the i th eigenvector of model A, and ¢p; is the j th eigenvector of model B. In the

following, by using the MAC analysis (see Fig. 14), a comparison of the corresponding natural
frequencies based on the different structural theories of the proposed CUF-1D method is presented

MAC;; = (18)
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in Table 20, where the natural frequencies of B3Dw [32], BC2CM[19] methods, as well as Abaqus
shell model, are also compared. It should be noted that the differences between the reference and
the proposed solutions is that the reference uses analytical approaches. It adopted elements with
2 nodes and 7 DOFs per node in order to consider the effects of bending and torsional couplings.
It should be considered that it is difficult to make a one by one comparison between the present
approach and the reference one, because the latter could be seen as a combination of low order
theories, which are here described as TE1 and TE2.

Table 20: Natural frequencies of beam 1 with clamped-free edge conditions based on different struc-
tural theories for the corresponding mode shapes using MAC (see Table 15 for comparison)

Modes 20B4-22L9 20B4,TE=1 20B4,TE=2 20B4,TE=5 20B4,TE=10 20B4-8L9 20B4-14L9 Abaqus shell B3Dw[32] BC2CM][19]
Mode 1 25.10 - - - 26.39 25.12 25.11 25.00 25.37 25.37
Mode 2 33.57 33.59 33.84 33.63 33.57 33.58 33.57 33.51 33.58 33.63
Mode 3 96.19 - - 110.72 96.56 96.32 96.22 96.07 98.16 98.15
Mode 4 135.58 - - 206.62 141.18 137.72 136.05 134.61 148.43 148.41
Mode 5 151.31 - - - 160.67 152.83 151.63 150.51 209.84 210.14
Mode 6 156.40 - - - 169.17 158.10 156.72 155.20 410.02 409.97
Mode 7 166.95 - - - 183.24 168.46 167.25 165.91 584.77 585.60
Mode 8 183.88 - - - 205.81 185.28 184.16 182.71 598.01 597.95
Mode 9 204.29 - - - - 205.62 204.55 203.02 798.75 798.66
Mode 10 215.70 - - - 223.16 217.88 216.21 214.38 1025.78 1025.78
Mode 11 229.14 - - 731.54 261.92 230.44 229.40 225.64 - -
Mode 12 229.55 - - - 268.99 247.87 233.18 227.73 - -
Mode 13 254.69 - - - 306.69 277.26 259.05 250.14 - -
Mode 14 257.28 - - 805.25 295.06 258.61 257.55 255.73 - -
Mode 15 273.33 - - - 329.75 296.28 277.74 268.67 - -
Mode 16 288.90 - - 872.57 331.15 290.33 289.18 287.18 - -
Mode 17 293.74 - - - 353.25 316.40 298.08 289.06 - -
Mode 18 316.69 - - - - 339.06 320.98 312.03 - -
Mode 19 321.57 - - - 383.12 352.11 327.49 316.19 - -
Mode 20 323.92 - - 932.17 370.12 325.54 324.24 319.73 - -
Mode 21 323.98 - - - - 347.62 328.89 322.03 - -
Mode 22 344.40 - - 1265.32 408.80 366.25 348.56 339.74 - -
Mode 23 362.29 - - 985.44 411.87 364.17 362.66 360.20 - -
Mode 24 374.97 - - - 441.42 396.48 379.06 370.33 - -
Mode 25 404.03 - - 1033.64 456.46 406.26 404.47 401.74 - -
Mode 26 409.21 - - 1338.04 477.33 430.49 413.24 404.59 - -
Mode 27 447.20 - - 1372.11 516.69 468.40 451.22 442.62 - -
Mode 28 449.12 - - - 503.81 451.81 449.66 446.58 - -
Mode 29 471.32 - - - 510.85 524.70 484.71 464.38 - -
Mode 30 488.90 - - 1407.62 - 510.12 492.91 484.35 - -
Mode 31 497.85 - - 1121.52 554.52 500.86 498.53 495.07 - -
Mode 32 534.25 - - 1445.67 606.08 - 538.24 529.79 - B
Mode 33 541.94 - - - 554.38 549.72 544.43 539.89 - -
Mode 34 549.83 - - 1164.09 608.12 553.70 550.64 546.68 - -
Mode 35 571.11 - - - 660.99 - 601.73 558.61 - -
Mode 36 578.16 - - - 585.74 581.46 578.92 576.65 - -
Mode 37 584.20 - - - 655.86 605.70 588.19 580.09 - -
Mode 38 600.87 - - - 705.34 - 636.62 587.46 - -
Mode 39 606.06 - - - - 610.00 - 602.08 - -
Mode 40 621.98 - - - - - - 608.10 - -
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Figure 14: The comparison of free vibration modes using MAC for beam 1 with clamped-free edge
conditions based on different structural theories and 20B4-221.9 model
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6.3 Beam 2- T-shaped cross-section

The second investigation of higher vibration modes with cross-sectional deformations is related to
the T-shaped beam with clamped-free edge conditions. The first 40 mode shapes of this beam are
shown in Fig. 23 based on the 20B4-231.9 model. The details of the Abaqus shell model used for the
simulation of the T-shaped beam are reported in Table 21. By using the MAC analysis, a comparison
of the corresponding natural frequencies based on the different structural theories of the proposed
CUF-1D method is presented in Table 22, where the natural frequencies of B3Dw [32], BC2CM][19]
methods, as well as Abaqus shell model, are also compared.

Table 21: The details of Abaqus shell model used for the simulation of beam 2. CUF DOF = 25803.

Model DOF number of elements  Element type Beam axis elements Cross-Section discretization
Shell 24198 1280 Quadratic S8R 80 16

Table 22: Natural frequencies of beam 2 with clamped-free edge conditions based on different struc-

tural theories for the corresponding mode shapes using MAC

Modes 20B4-23L9 20B4,TE=1 20B4,TE=2 20B4,TE=5 20B4,TE=10 20B4-9L9 20B4-15L9 Abaqus shell B3Dw[32] BC2CM][19]
Mode 1 12.54 - - - 12.93 12.57 12.55 12.43 12.48 12.48
Mode 2 27.50 - - 48.28 30.33 27.71 27.59 27.09 27.62 27.62
Mode 3 45.42 - - - 45.43 45.42 45.42 45.27 45.75 45.75
Mode 4 54.68 - - - 60.23 55.14 54.89 53.99 55.90 55.90
Mode 5 88.32 - - - 96.35 89.01 88.61 87.18 92.66 92.68
Mode 6 124.21 - - - 130.59 124.84 124.48 122.58 128.84 128.84
Mode 7 130.74 - - - 141.13 131.57 131.07 128.97 141.80 141.83
Mode 8 166.59 - - 240.45 179.65 167.87 167.07 164.26 188.27 188.31
Mode 9 205.85 - - 279.77 219.39 207.32 206.37 203.12 236.87 236.95
Mode 10 250.20 - - - 264.02 251.83 250.75 247.08 282.85 282.85
Mode 11 263.02 272.56 271.49 264.22 263.46 263.17 263.06 261.84 - -
Mode 12 298.44 - - - 300.11 298.98 295.04 - -
Mode 13 315.93 - - - 319.22 316.37 316.05 312.55 - -
Mode 14 354.59 - - 427.15 368.44 356.52 355.19 350.82 - -
Mode 15 415.57 - - 486.95 429.36 417.65 416.19 411.51 - -
Mode 16 459.32 - - - 478.93 462.10 460.11 453.70 - -
Mode 17 482.26 - - - 496.67 484.66 482.98 477.57 - -
Mode 18 487.54 - - - 511.15 490.55 488.48 482.23 - -
Mode 19 525.06 - - - 541.66 528.18 526.05 520.31 - -
Mode 20 553.70 - - - - 556.73 554.69 548.26 - -
Mode 21 560.24 - - - - 563.11 561.13 555.21 - -
Mode 22 628.34 - - - 662.19 632.78 629.89 622.36 - -
Mode 23 639.20 - - 705.85 - 641.79 639.93 634.02 - -
Mode 24 649.55 - - 649.66 649.58 649.57 649.55 649.13 - -
Mode 25 662.35 715.18 769.26 670.59 665.68 663.84 662.69 658.32 - -
Mode 26 677.64 - - - 717.97 682.37 679.44 669.76 - -
Mode 27 725.15 - - - - 728.39 726.15 719.34 - -
Mode 28 732.66 - - - 779.94 739.58 734.87 726.48 - -
Mode 29 816.96 - - - - - 819.10 809.46 - -
Mode 30 823.29 - - - - - 824.91 816.58 - -
Mode 31 902.95 - - - 963.75 913.63 906.19 893.08 - -
Mode 32 923.70 - - - 935.53 927.05 924.58 916.21 - -
Mode 33 965.36 - - - 1006.02 972.81 967.76 945.81 - -
Mode 34 994.64 - - 1363.44 1063.81 1007.73 998.38 982.57 - -
Mode 35 1032.09 - - 1096.39 1044.03 1035.54 1033.00 1022.73 - -
Mode 36 1084.75 - - - - 1099.84 1088.86 1060.54 - -
Mode 37 1107.53 - - - 1263.43 1140.75 1115.41 1070.11 - -
Mode 38 1120.25 - - - - - 1128.13 1073.57 - -
Mode 39 1140.14 1294.36 1269.53 1171.98 1153.91 1147.42 1141.59 1097.15 - -
Mode 40 1142.58 - - - - - 1147.82 1130.12 - -
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Table 23: First 40 mode shapes of beam 2, 20B4-23L9 model with clamped-free edge conditions

.

Mode 11 Mode 12 Mode 13 Mode 14 Mode 15

Mode 16 Mode 17 Mode 18 Mode 19 Mode 20

Mode 21

Mode 26 Mode 27 Mode 28 Mode 29 Mode 30

Mode 31 Mode 32 Mode 33 Mode 34 Mode 35

Mode 36 Mode 37 Mode 38 Mode 39 Mode 40
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6.4 Beam 3- Arbitrary cross-section

The third investigation of higher vibration modes with cross-sectional deformations is related to the
beam 3 (arbitrary cross-section) with clamped-free edge conditions. The first 40 mode shapes of
this beam are shown in Fig. 26 based on the 20B4-251.9 model. The details of the Abaqus shell
model used for the simulation of the beam 3 are reported in Table 24. By using the MAC analysis,
a comparison of the corresponding natural frequencies based on the different structural theories of
the proposed CUF-1D method is presented in Table 25, where the natural frequencies of B3Dw [32],
BC2CM[19] methods, as well as Abaqus shell model, are also compared.

Table 24: The details of Abaqus shell model used for the simulation of beam 3. CUF DOF = 27999.

Model DOF number of elements  Element type Beam axis elements Cross-Section discretization
Shell 64854 3520 Quadratic S8R 80 42

Table 25: Natural frequencies of beam 3 with clamped-free edge conditions based on different struc-
tural theories for the corresponding mode shapes using MAC

Modes 20B4-25L9 20B4,TE=1 20B4,TE=2 20B4,TE=5 20B4,TE=10 20B4-12L9 20B4-16L9 Abaqus shell B3Dw[32] BC2CM]19]

Mode 1 3.27 - - - - 3.27 3.27 3.26 3.27 3.27
Mode 2 4.80 - - - - 4.81 4.80 4.79 4.82 4.82
Mode 3 12.37 - - - - 12.38 12.38 12.35 12.63 12.63
Mode 4 18.44 - - - - 18.46 18.45 18.35 19.17 19.17
Mode 5 25.50 - - - - 25.58 25.53 25.35 28.85 28.85
Mode 6 37.73 - - - - 38.28 37.91 37.07 52.71 52.71
Mode 7 38.20 - - - - - 38.29 37.77 73.68 73.68
Mode 8 44.01 - - - - 44.49 44.17 43.43 79.77 79.77
Mode 9 55.53 - - - - 55.86 55.62 55.08 102.56 102.56
Mode 10 56.23 - - - - 56.92 56.43 55.66 128.07 128.10
Mode 11 67.58 - - - - 68.11 67.74 67.12 154.80 154.81
Mode 12 73.55 - - - - - 74.24 72.05 168.52 168.55
Mode 13 74.30 - - - - - 74.95 72.67 197.56 197.56
Mode 14 75.29 - - - - 78.52 76.18 73.46 250.16 -
Mode 15 78.71 - - - - 81.64 79.50 77.07 - -
Mode 16 82.26 - - - - 85.03 83.04 80.44 - -
Mode 17 85.97 - - - - 90.98 87.10 83.80 - -
Mode 18 93.85 - - - - 96.38 94.59 92.02 - -
Mode 19 95.43 - - - - 101.66 96.80 92.94 - -
Mode 20 97.63 - - - - 99.26 97.99 96.88 - -
Mode 21 103.70 - - - - 104.41 103.97 101.29 - -
Mode 22 104.05 - - - - - 105.55 103.09 - -
Mode 23 111.89 - - - - 114.79 112.73 109.69 - -
Mode 24 112.91 - - - - - 114.48 110.31 - -
Mode 25 122.04 - - - - 129.91 123.74 119.05 - -
Mode 26 128.22 - - - - 128.23 128.22 128.15 - -
Mode 27 131.93 - - - - 140.08 133.69 128.83 - -
Mode 28 133.94 - - - - 142.57 - 130.61 - -
Mode 29 135.02 - - - - 138.64 - 132.79 - -
Mode 30 142.84 - - - - 151.09 144.64 139.66 - -
Mode 31 148.90 - - - - 167.84 152.89 143.39 - -
Mode 32 152.58 - - - - - 156.50 147.27 - -
Mode 33 154.03 - - - - - - 150.53 - -
Mode 34 155.96 - - - - - - 152.23 - -
Mode 35 157.38 - - - - - - 155.05 - -
Mode 36 161.28 - - - - 165.78 162.53 158.64 - -
Mode 37 166.97 - - - - 175.53 168.84 163.60 - -
Mode 38 169.74 - - - - - 170.33 168.55 - -
Mode 39 180.35 - - - - 188.96 182.28 176.84 - -
Mode 40 186.40 - - - - - 188.28 183.35 - -
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Table 26: First 40 mode shapes of beam 3, 20B4-251.9 model with clamped-free edge conditions
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6.5 Beam 4- Arbitrary cross-section

The last investigation of higher vibration modes with cross-sectional deformations is related to the
beam 4 (arbitrary cross-section) with clamped-free edge conditions. The first 40 mode shapes of
this beam are shown in Fig. 27 based on the 20B4-261.9 model. The details of the Abaqus shell
model used for the simulation of the beam 4 are reported in Table 28. By using the MAC analysis,
a comparison of the corresponding natural frequencies based on the different structural theories of
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the proposed CUF-1D method is presented in Table 29, where the natural frequencies of B3Dw [32],
BC2CM[19] methods, as well as Abaqus shell model, are also compared.

Table 27: First 40 mode shapes of beam 4, 20B4-261.9 model with clamped-free edge conditions
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Table 28: The details of Abaqus shell model used for the simulation of beam 4. CUF DOF = 29097.

Model

DOF

number of elements  Element type Beam axis elements

Cross-Section discretization

Shell

60498

3280 Quadratic S8R

80

41

Table 29: Natural frequencies of beam 4 with clamped-free edge conditions based on different struc-
tural theories for the corresponding mode shapes using MAC

Modes 20B4-26L9 20B4,TE=1 20B4,TE=2 20B4,TE=5 20B4,TE=10 20B4-13L9 20B4-17L9 Abaqus shell B3Dw([32] BC2CM]19]
Mode 1 3.15 - - - 3.93 3.15 3.15 3.13 3.17 3.17
Mode 2 5.71 - - - 5.80 5.71 5.71 5.71 5.77 5.77
Mode 3 12.27 - - - - 12.36 12.30 12.17 13.46 13.46
Mode 4 16.04 - - - - - 16.10 15.81 17.88 17.88
Mode 5 16.22 - - - - - 16.26 16.04 35.86 35.86
Mode 6 25.34 - - - 46.80 25.71 25.56 25.12 49.01 49.02
Mode 7 29.33 - - - - 29.95 29.73 29.03 81.01 81.01
Mode 8 38.76 - - - - - - 37.83 95.34 95.34
Mode 9 38.81 - - - - - - 38.38 99.47 99.47
Mode 10 42.80 - - - - 44.79 44.26 42.01 128.07 128.10
Mode 11 47.36 - - - - 49.36 48.94 46.61 156.71 156.74
Mode 12 56.71 - - - - 58.54 58.07 55.97 192.44 192.45
Mode 13 59.38 - - - - 60.17 59.86 59.03 216.83 216.83
Mode 14 69.87 - - - - 71.70 70.30 69.02 232.78 232.87
Mode 15 71.76 - - - - 74.07 72.44 70.68 - -
Mode 16 76.22 - - - - 83.12 77.40 74.18 - -
Mode 17 77.38 - - - 100.23 79.17 78.18 76.64 - -
Mode 18 82.61 - - - - 88.14 83.64 80.97 - -
Mode 19 85.58 - - - - 91.35 86.64 83.86 - -
Mode 20 90.67 - - - - 96.93 92.11 88.82 - -
Mode 21 94.83 - - - - - 96.45 92.97 - -
Mode 22 97.56 - - - - - 98.92 95.86 - -
Mode 23 98.57 - - - - - 99.99 97.49 - -
Mode 24 107.55 - - - - - 109.74 105.04 - -
Mode 25 114.04 - - - - - - 111.84 - -
Mode 26 114.39 - - - - - - 112.19 - -
Mode 27 116.88 - - - - - 119.98 113.58 - -
Mode 28 125.30 - - - - - - 121.35 - -
Mode 29 127.87 - - - - - - 125.11 - -
Mode 30 128.05 - - - - - - 125.62 - -
Mode 31 128.29 - - - - - - 126.20 - -
Mode 32 128.50 - - - - - - 127.21 - -
Mode 33 130.44 - - - - 144.37 133.16 128.19 - -
Mode 34 133.23 - - - - - 137.62 129.01 - -
Mode 35 136.60 - - - - - 139.24 133.35 - -
Mode 36 137.99 - - - - - 140.94 134.54 - -
Mode 37 138.58 - - - - - 141.37 135.37 - -
Mode 38 140.75 - - - - - 146.12 135.61 - -
Mode 39 147.01 - - - - 160.91 149.77 142.60 - -
Mode 40 148.43 - - - - - 154.36 143.71 - -

The following comments could be made based on the mentioned results:

1. In the higher-order modes, the effect of the adopted structural theory is more significant. For
example, see Fig. 20 where the MAC analysis shows some differences between the mode shapes
in the higher modes (modes 30-40) for the 20B4-8L9 and 20B4-14L9 models.

2. The proposed CUF-based approach can predict the natural frequencies in good agreement with
the more expensive shell-2D models.

3. The obtained results by the CUF refined models reveal the fact that by the proposed method,
the mode shapes of the structure are captured reliably with the cross-sectional deformations.

4. As the complexity of the cross-section of the beam is increased, the MAC analysis shows the
fact that higher TE is needed in order to capture the accurate mode shapes with the cross-
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sectional deformations, For instance, in the beam cases of 3 and 4 with arbitrary sections, most
of the models with classical and low order TEs are not capable of finding the accurate mode
shapes (See Tables 25 and 29)

5. The obtained results by the CUF refined models confirm the fact that by the proposed method,
the mode shapes of the structure are captured reliably with the cross-sectional deformations.

6. For the sake of comparison, the natural frequencies by the methods of B3Dw [32] and BC2CM][19]
are compared with the 20B4, TE=2 CUF model.

7 Conclusions

In this study, higher-order vibration modes have been analyzed in a series of open-section thin-
walled beams, which had been proposed previously as benchmark problems. The CUF FEs based
on the power of cross-sectional deformation coordinates (x, z) and those based on the Lagrangian
polynomials have been implemented. A comprehensive comparison has been presented between
the classical beam theories, refined ones based on the CUF, shell results by the commercial FE
software, and the data available from the literature. The results have demonstrated the reliability
and accuracy of the CUF-based approach proposed for the higher-order free vibration analysis of
thin-walled beams due to the cross-sectional deformations. The natural frequencies and mode shapes
obtained by the proposed efficient method have shown good agreement with the shell models that
need considerably higher computational efforts.

The need for the models capable of detecting the cross-sectional deformations has been outlined.
In fact, classical beam theories and the linear TE of order one have not been capable of capturing
many cross-sectional deformations related to the bending or torsion; instead, they have shown rigid
cross-section modes that did not really exist. Global vibration modes, such as bending and torsion,
related to the rigid cross-sectional deformations, have been detected via classical and shear refined
theories. However, cross-sectional deformations have appeared at higher frequencies, and these
modes have been mixed with the global ones. The MAC has been used in order to compare the
free vibration modes based on the different structural theories. It has been confirmed that in the
higher-order modes, the effect of the adopted structural theory is more significant. In addition,
the MAC analysis reveals that more refinement is essential for the TE when used for the complex
geometries of the cross-section.
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