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Abstract

In this paper, we highlight that the point group structure of elliptic curves, over finite or infinite
fields, may be also observed on reducible cubics with an irreducible quadratic component. Start-
ing from this, we introduce in a very general way a group’s structure over any kind of conic.
In the case of conics over finite fields, we see that the point group is cyclic and lies on the
quadratic component. Thanks to this, some applications to cryptography are described, consider-
ing convenient parametrizations of the conics. We perform an evaluation of the complexity of the
operations involved in the parametric groups and consequently in the cryptographic applications.
In the case of the hyperbolas, the Rédei rational functions can be used for performing the opera-
tions of encryption and decryption, and the More’s algorithm can be exploited for improving the
time costs of computation. Finally, we provide also an improvement of the More’s algorithm.

Keywords: Algorithms, Rational functions, Finite Fields, Public key cryptography, Groups over
curves.

1. Introduction

Curves having a group’s structure are classical and very important tools in cryptography. The
main example is provided by elliptic curves over finite fields, whose use in cryptography was
introduced, independently, by Koblitz [12] and Miller [17]. Moreover, curves with a group’s
structure, usually cubics or conics, can be exploited for constructing RSA–like schemes (see,
e.g., [4, 8, 13, 19, 20, 22, 23, 24]) for improving the performances in the decryption procedures
and having also more security than RSA in some contexts, like broadcast scenarios. Many of
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these cryptosystems were studied exploiting the properties of the Pell’s hyperbola that is the set
of solutions in a field F of the famous Pell’s equation x2−Dy2 = 1, with D ∈ F∗, like in [5], where
the authors exhibited an RSA-like cryptosystem over the Pell’s hyperbola exploiting multi-factor
moduli. The Pell’s hyperbola and its group’s structure have been widely studied not only for the
cryptographic applications, but also for the natural interest that inspires, see, e.g., [2] and [11].

In this paper, we first focus on the group’s structure of the Pell’s hyperbola, highlighting the
similarity with that of the elliptic curves. Starting from this, we introduce in a very general way
a group’s structure over any kind of conics (section 2). Then, we focus on conics defined over
finite fields, studying their structure as cyclic groups. This allows to use them in cryptographic
applications, especially considering convenient parametrizations (section 3). Hence, we perform
an evaluation of the complexity of the operations involved in the parametric groups, providing
also an improvement of a specific algorithm (section 4).

2. Group’s structure of conics

In the following, we will refer with the term product, in symbols ⊗, for the operation between
two points of a conic and we use the term addition, in symbols ⊕, for the operation over elliptic
curves.

Given two points A = (x, y) and B = (w, z) of the Pell’s hyperbola in the affine plane, their
product is obtained as

A ⊗ B = (xw + yzD, xz + yw) (1)

i.e.,
(x + y

√
D)(w + z

√
D) = (xw + yzD) + (xz + yw)

√
D

that is, from the product of elements in F(
√

D). This product is usually known as the Brah-
magupta product and it can be also introduced in a geometric way [25]. In fact, let O = (1, 0)
be a fixed point, the product of two points A and B is defined as the intersection A ⊗ B, with
the Pell’s hyperbola, of the line through O which is parallel to the line through A and B. Let us
note that O plays the role of the identity. This construction is the same that gives the operation
between points of elliptic curves, even if it appears slightly different, as we will point out below.

Given two points A and B of an elliptic curve (of equation y2z = x3 + axz2 + bz3) in the
projective plane, we consider the intersection C, with the elliptic curve, of the line through A and
B. Then A ⊕ B is the symmetric of C with respect to the x–axis or, in other words, A ⊕ B is the
intersection between the elliptic curve with the line through C and the identity, which is, in this
case, the point at the infinity.

The above geometric construction on the Pell’s hyperbola gives the product (1). To see
that we have to think the Pell’s hyperbola as the quadratic component of the projective cubic
E : zx2 − Dy2z = z3, where [x : y : z] are the projective coordinates. Thus, given two points A
and B of the Pell hyperbola, the line through them intersects the cubic E in a point C that can be
only a point on the line at infinity z = 0. Then, considering the intersection between the Pell’s
hyperbola with the line through C and the identity, which is in this caseO = (0, 1), we get A⊗B.
See Figure 1.

As a matter of fact, this hyperbola point-group structure is simply another way to see the
operation over a degenerated cubic with two components. Therefore, we can consider a more
general situation where Pell’s hyperbola is substituted by any quadric, i.e. hyperbola, ellipsis, or
parabola, furthermore, as we will see, the identity point can be any point of the conic.

2



Figure 1: On the left, the geometric construction of the product between two points of the Pell’s hyperbola, where R is
the point at the inifnity; on the right the same construction on an elliptic curve.

Let C[F] be a projective cubic with a quadratic component Q[F] of affine equation

ex2 + 2gxy + f y2 + dx + hy + k = 0.

Fix a point O = (α, β) on Q[F], then the product of two points A and B on the quadric is A ⊗ B
defined as follows. Let C be the intersection between C[F] and the line through A and B (that
is a point on the line at infinity). The product A ⊗ B is the intersection between the line through
C and O and the quadric Q[F]. The geometric view immediately shows that the operation ⊗ is
commutative with O as the identity, as well as the existence of inverses.

The associativity can be proved geometrically or algebraically. In this second instance, it is
convenient to refer to quadrics in canonical, or reduced, form:

x2 − Dy2 = ` for hyperbolas and ellipses, i.e., g2 − e f , 0,
y = ex2 + k for parabolas, i.e., g2 − e f = 0.

The proof is indirect by showing first that we have a parametrization, and thus showing that the
set of parameters admits of a group structure.

Case g2 − e f , 0. It is necessary and convenient to distinguish two further cases.
When ` = u2, let m be a parameter, and rewrite the equation x2 − Dy2 = u2 as follows

Dy
x − u

=
x + u

y
= m

thus solving for x and y we have

x =
u(m2 + D)

m2 − D
y =

2um
m2 − D

. (2)
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The product of the two points A = (x(mA), y(mA)) and B = (x(mB), y(mB)) is the new point
P = (x(mP), y(mP)) where

mP = mA � mB =
mAmB + D
mA + mB

. (3)

Using this expression, the parameter characterizing the sum of three points A,B,C is

mAmBmC + D(mA + mB + mC)
mAmB + mBmC + mAmC + D

the symmetry proves that the product of points is associative.
When ` , u2, let m be a parameter and O = (α, β) be the fixed point on the conic (which

plays the role of group identity). Consider the line through O with slope m, that is of equation
y − β = m(x − α), which meets the hyperbola in a second point B of coordinates

x = α + 2 ·
α − βDm
Dm2 − 1

y = β + 2m ·
α − βDm
Dm2 − 1

.

The product of the two points A = (x(mA), y(mA)) and B = (x(mB), y(mB)) is the point P =

(x(mP), y(mP)) where

mP = mA � mB =
(mAmB + D)α − (mA + mB)β
−(mAmB + D)β + (mA + mB)α

. (4)

Again, the symmetry occurring in the product of three points proves that the product of points
is associative.

Case g2 − e f = 0. Let m be a parameter and O = (α, β) be the fixed point on the parabola, the
second intersection of the line through O is a point of coordinates

x =
−αe + m

e
, y =

α2e2 − 2αem + ek + m2

e
.

The product of two points A = (x(mA), y(mA)) and B = (x(mB), y(mB)) is given by the point
P = (x(mP), y(mP)), where

mP = mA � mB = −2αe + mA + mB. (5)

Again, the symmetry occurring in the product of three points proves that the product of points is
associative.

We conclude this section observing that it is a well-known fact for complex algebraic geome-
ters that smooth curves with a law group have genus g = 1. This is so because the law group
allows to define a non vanishing vector field (just by left translations), i.e., the tangent bundle is
trivial. Thus the Euler characteristic χ = 2 − 2g vanishes, hence g = 1. Any conic has genus 0,
so ones wonder what is going wrong. The point is that in this case our conics are affine curves.
That is to say, the argument with the Euler characteristic works for compact curves (so called
projective curves).

It is also a common practice to introduce the law group on a plane cubic by using the classic
secant-tangent construction. That is to say, on smooth projective cubic we take a flexR as neutral
element and introduce the group law ∗ by using the secant-tangent construction i.e. by using the
linear series of divisors |3R|:

P + Q + P−1 ∗Q−1 ≡
lin

3R
4



The converse of this procedure is not widely known. Namely,

Theorem 1. Let C be a complete smooth curve which is also an algebraic group (C, ∗). Then C
has genus g = 1 and (C, ∗) is abelian. Moreover, for arbitrary P,Q ∈ C:

P + Q + P−1 ∗Q−1 ≡
lin

3R

where R is the neutral element of ∗ and P−1 the inverse. Thus 3R is a very ample divisor and
the law group ∗ comes from the classical secant-tangent construction by using the embedding
into P2 given by the complete linear series |3R|.

For the proof of this Theorem we use the following results from [7].

Theorem 2. Any abelian variety is a commutative group and a projective variety.

Theorem 3 (Theorem of the square). Let D be a divisor on an abelian variety A defined over a
field k. For any x, y ∈ A(k), we have

(D + x) + (D + y) ≡
lin

D + (D + x + y).

Proof. of Theorem 1. Here we intend a complete curve as in [9, Chapter IV]. Denote by P ∗ Q
the law operation and by P−1 the inversion of P. As we explained above, g = 1, because using
left multiplication we get a never vanishing differential dz, i.e. the canonical bundle=cotangent
bundle is trivial. So any other differential, say α, is a multiple of dz :

α = f dz

where f is a regular function hence constant since C is complete. Thus g = 1.
That ∗ is abelian is a special case of Theorem 2. By putting D = P ∗Q, x = Q−1, y = P−1 in

Theorem 3 we get
P + Q ≡

lin
R + P ∗Q

where R is the neutral element of ∗. Since this is true for arbitrary points we get:

P ∗Q + P−1 ∗Q−1 ≡
lin

2R

hence for arbitrary P,Q we get

P + Q + P−1 ∗Q−1 ≡
lin

3R

So |3R| is a complete g2
3, i.e. a linear system 2 = dim|3R|, 3 = deg(3R), and it is very ample

as follows from [9, pag. 307]. Then C is embedded in P2 as a cubic by |3R|. The equation

P + Q + P−1 ∗Q−1 ≡
lin

3R

tells us that the law group ∗ is given by the secant-tangent construction.

Remark 1. The binary operation ∗ on the conic can be extended to all pairs P,Q of the singular
projective cubic with exclusion of the pair {S1,S2} of two singular points intersection of the conic
with the line at infinity. Here is the explicit formula

[x : y : u] ∗ [w : z : v] = [xw + yzD : xz + yw : uv].

We conclude this section summarizing the parameters and products corresponding to each
conic.
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Conic Parameter Product

x2 − Dy2 = `, ` = u2 m =
x + u

y
mA � mB =

mAmB + D

mA + mB

x2 − Dy2 = `, ` , u2 m =
y − β

x − α
mA � mB =

(DmAmB + 1)α − (mA + mB)βD

(−(DmAmB + 1)β + (mA + mB)α)D
y = ex2 + k m = (x + α)e mA � mB = −2αe + mA + mB

Table 1: Parameters and products corresponding to the conics, where (α, β) is the identity.

3. Group and group order

When F is a finite field, the point product defines a finite group on the quadrics which depends
on a single parameter, thus, it is expected that these groups are cyclic. That is the case is proved
along with the determination of group order.

Let q = pm be an odd prime power, and consider the curve x2 −Dy2 − z2 = 0 in the projective
plane. The points at infinity have coordinates [±

√
D : 1 : 0], where

√
D belongs to Fq if D is

a square in the field, otherwise it belongs to the extension field Fq2 , i.e., it is not an Fq-point.
Considering the Pell’s equation written as Dy2 = x2 − 1, and rising both sides to the power
exponent q−1

2 we have

(x2 − 1)
q−1

2 =

{
1 if D is a square and y , 0
−1 if D is not a square and y , 0.

Therefore, considering q prime we have the following results, (see, e.g., [16, Theorem 5]).

• D not square: since
(
(x2 − 1)

q−1
2

)q+1
= 1 if x2 − 1 , 0, the total number of points on the

curve is q + 1 including the two points (±1, 0).

• D square: since (x2 − 1)
q−1

2 = 1 if x2 − 1 , 0, the total number of points is q − 1 including
the two points (±1, 0), but in this case we must also count the two points at infinity, that in
projective coordinate are [±

√
D : 1 : 0], hence in total the group has still order q + 1.

This count also holds for any square `, in which case the coordinates x and y are changed by the
same factor u, with u2 = `.
If ` is not a square in the field, the set of solutions can be obtained as the product

(u +
√

Dv)(xo +
√

Dyo)

where u +
√

Dv is any solution of the Pell equation and xo +
√

Dyo is a fixed solution of the
equation x2 − Dy2 = `.

The group of the parabola of equation y = ex2 + k is cyclic of order q + 1. Clearly the
equation identifies q points, the further point is the point at infinity, which is characterized by
the homogeneous equation yz = ex2 + kz2. By setting z = 0, we obtain x = 0, thus the point at
infinity has homogeneous coordinates (0, 1, 0).

In many algorithms for cryptographic applications, the use of the arithmetic of algebraic
curves typically requires the evaluation of a multiple nA or a power An of a point on the curve
with large n. The use of quadrics does not avoid this computation, however the computational
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cost may be significantly smaller, although maintaining the same strength against cryptanalytic
attacks. Furthermore, the point product is a complete operation, which means that the formulas
are defined for all pairs of input points on the quadric, with no exceptions for doubling, for the
neutral element, or for negatives, and the output is always a point on the curve [6]. In particular,
in the case of quadrics, it appears convenient to perform the operations on the corresponding set
of parameters, like, e.g., in [4, 20], where the authors only focused on the Pell’s hyperbola, while
here we have showed that it is possible to work on more general conics. We give a sketch of the
RSA-like cryptosystem on general conics.

• Key generation.

– Take two large prime numbers p and q and evaluate N = pq

– Take an integer ε coprime with (p+1)(q+1) and evaluate δ ≡ ε−1 (mod (p+1)(q+1))

The couple (N, ε) is the public key, the triple (p, q, δ) is the private key.

• Encryption.
Let Mx,My ∈ Z∗N be two plaintexts.

– Find the conic where (Mx,My) lies (for instance, in the case of the Pell hyperbola,
evaluate D = (M2

x − 1)/M2
y in ZN ; D identifies the Pell hyperbola where the point

lies)

– Find the parameter m corresponding to (Mx,My) (for instance, in the case of the Pell
hyperbola m = (1 + Mx)/My in ZN)

– Evaluate c = m�ε (mod N), where powers are evaluated with respect to � that is the
operation over the set of parameters (i.e., the operation described by equations (3),
(4), (5), depending on the type of conic).

The encrypted message is c (which will be sent to the receiver together to D in the case,
e.g., of the Pell’s hyperbola).

• Decryption.
Let c be the ciphertext.

– Evaluate c�δ (mod N) that returns m

– Find the point corresponding to the parameter m, i.e., the plaintexts (Mx,My) (for
instance, in the case of the Pell hyperbola evaluate (m2+D)/(m2−D) and 2m/(m2−D)
in ZN).

See [4] for details on the behaviour of the Pell’s hyperbola over ZN . We provide an example
of the above scheme using the Pell’s hyperbola.

Example 1.

• Key generation.
Let us consider p = 2027, q = 3061, and N = pq = 6204647. We choose as the encryption
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exponent ε = 216 + 1 = 65537, which is also a standard choice also for the RSA scheme,
because it has an efficient binary representation. Then we evaluate

δ ≡ ε−1 (mod (p + 1)(q + 1)) = 44249.

The couple (6204647, 65537) is the public key and (2027, 3061, 44249) is the private key.

• Encryption.
Now we would like to encrypt, e.g, the plaintext

(Mx,My) = (1098585, 5538173) ∈ Z∗N × Z
∗
N .

For doing this, we evaluate the Pell hyperbola x2 − Dy2 = 1 where (Mx,My) lies and we
find

D ≡ (M2
x − 1)M−2

y (mod N) = 4993512,

since we want to find D such that M2
x − DM2

y ≡ 1 (mod N). Thus, we evaluate the param-
eter corresponding to the point (Mx,My) by

m ≡ (1 + Mx)M−1
y (mod N) = 1310780,

see first row of Table 1 with u = 1. Then, we encrypt m using the encryption exponent ε:

c ≡ m�ε (mod N) = 1263767,

where the powers are evaluated with respect to the product (3) and c is the ciphertext
corresponding to the initial plaintext (Mx,My).

• Decryption.
Given the ciphertext c = 1263767 and D = 4993512, the receiver can use the private ket δ
for recovering the parameter m corresponding to the plaintext (Mx,My):

c�δ (mod N) = 1310780.

Once the parameter m = 1310780 is recovered, we are able to retrieve the plaintext eval-
uating the point over the Pell hyperbola x2 − Dy2 = 1 corresponding to this parameter:

Mx ≡ (m2 + D)(m2 − D)−1 (mod N), My ≡ 2m(m2 − D)−1 (mod N)

where we have used equation (2).

Remark 2. If we construct the previous cryptosystem using a parabola of equation y = ex2 + k,
with identity (α, β), then the cryptosystem appears to be weak, since the exponentiation with
respect to the operation described by (5) has a closed form:

m�ε = −(2ε − 2)αe + ε (mod N)

where ε, α, e are known quantities. However, previously, we have studied the group’s structure
also for the parabola for the completeness of the discussion.
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4. Complexity of the computations

In this section, we evaluate the complexity of the operations involved in cryptosystems con-
structed on conics, referring to the parametric representation and considering the equations (3),
(4), and (5). We study also the case given by the parabola just for completeness. The complexity
is expressed in terms of number of arithmetical operations in Fq, i.e., number of multiplications,
additions, and divisions, or inversions, being well known that inversion in finite fields is an ex-
pensive operation. In particular, we will focus the attention on the operation over hyperbolas,
since the main cryptosystems in the literature are developed on these curves. We will present a
direct method of evaluation of the exponentiation over the set of the parameters for all the conics
(subsection 4.1). Moreover, for the exponentiation over the set of parameters of hyperbolas, we
evaluate the complexity of More’s algorithm (subsection 4.2) and of an improvement of it that
we propose in subsection 4.3.

In the following, let n =
∑L

i=1 ci2i−1, with ci ∈ {0, 1} ⊂ N, and L = blog2 nc + 1, be the
binary representation of n, and denote with w(n) =

∑L
i=1 ci the number of symbols 1 in the binary

representation of n. Three different algorithms, all exploiting the square-and-multiply method,
for computing A⊗n, with A a point of a conic, are described and compared. The computation
scheme is the following

i) Find the parameter value m of A

ii) Compute m�n that is the parameter of A⊗n

iii) Find the coordinates of the resulting point A⊗n

Since the computations at steps i) and iii) are common to every method, they are not counted in
this complexity evaluation. The product of a point with itself is called doubling.

4.1. Direct Algorithm

The procedure computes and stores L doublings, denoted by x j, j = 1, . . . , L, of the initial
m using the equations (3), (4), and (5), i.e., set x0 = m and x j = x j−1 � x j−1. Then iteratively
evaluates the sum

∑L
j=0 c jx j by means of the same equations. For doing these computations we

recall the equations (3) and (4), highlighting also the doubling:

mA � mB =
mAmB + D
mA + mB

m�2 =
m2 + D
m + m

(6)


mA � mB =

(mAmB + D) − (mA + mB) β
α

−(mAmB + D) β
α

+ (mA + mB)

m�2 =
(m2 + D) − (m + m) β

α

−(m2 + D) β
α

+ (m + m)

(7)

respectively.
The algorithm is detailed in Figure 2. Notice that during the pre-computation phase L − 1

squares, L − 1 products, L − 1 doubling, L − 1 additions and L − 1 inversions are performed.
Similarly, during the exponentiation phase, 2w(n) products, 2w(n) additions, and w(n) inversions
are performed.
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Direct(m, n)

if m = 0 return∞

Set L, c j s.t. n =

L∑
j=1

c j2 j−1

// Pre-computation:

x1 = m

for j = 2, . . . , L

x j = x�2
j−1

// Exponentiation:

y1 = ∞

for j = 1, . . . , L

if c j = 1 y j+1 = y j � x j

else y j+1 = y j

return yL+1

More(m, n)

if m = 0 or n = 0 return∞

Set L, c j s.t. n =

L∑
j=1

c j2 j−1

R1 = m

for j = 1, . . . , L − 1

R j+1 =
R2

j + b

2R j + a

if cL− j = 1

R j+1 =
mR j+1 + b

R j+1 + m + a

return RL+1

Modified More(m, n)

if m = 0 or n = 0 return∞

Set L, c j s.t. n =

L∑
j=1

c j2 j−1

A1 = m, B1 = 1

for j = 1, . . . , L − 1

A j+1 = A2
j + bB j

B j+1 = 2A jB j + aB2
j

if cL− j = 1

A′ = A j+1, B′ = B j+1

A j+1 = mA′ + bB′

B j+1 = A′ + (m + a)B′

return AL+1/BL+1

Figure 2: Direct exponentiation algorithm (left), More’s algorithm (middle), and the modified More’s algorithm (right).

4.2. More’s algorithm

The operation defined by equation (6) is connected to the Rédei polynomials, see [3, 4]. See
also [14] for a general overview on Rédei polynomials. For the ease of the reader, below, we
recall the useful definitions and results.

Rédei polynomials are defined as follows:

Nn(D, z) =

d n
2 e∑

k=0

(
n
2k

)
Dkzn−2k Dn(D, z) =

d n
2 e∑

k=0

(
n

2k + 1

)
Dkzn−2k−1

and satisfy the linear recurrences{
Nn+1(D, z) = zNn(D, z) + dDn(D, z)
Dn+1(D, z) = Nn(D, z) + zDn(D, z)

or, equivalently, satisfy the homogeneous linear recurrence of order two

xn+2 − 2zxn+1 + (z2 − D)xn = 0

with respective initial conditions{
x0 = N0(D, z) = z , x1 = N1(D, z) = z2 + D
x0 = D0(D, z) = 1 , x1 = D1(D, z) = 2z

The Rédei rational function is the ratio Qn(D, z) =
Nn(D,z)
Dn(D,z) and gives z�n (that is the powers of a

parameter corresponding to a point of the Pell’s hyperbola x2−Dy2 = 1). Both Rédei polynomials
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and rational functions can be quickly evaluated via their recurrence relations. Many properties
can be deduced from the relation[

Nn(D, z) DDn(D, z)
Dn(D, z) Nn(D, z)

]
=

[
z D
1 z

]n

From this representation of Rédei polynomials we immediately have the following relations for
the Rédei rational functions

Qn+m(D, z) = Qn(D, z) � Qm(D, z) Qnm(D, z) = Qn(D,Qm(D, z)).

In [18], More proposed a fast algorithm for evaluating the Rédei rational functions. Though,
the algorithm uses 2 inversions at each step. Precisely, in Fq, the number of multiplications
required for computing the inverse of an element is O(log2 q). Therefore, the actual complexity
of More’s algorithm is O(log2 n·log2 q). However, as shown below, the algorithm can be modified
to avoid inversions at each step by using more multiplications, and using only one inversion
before returning the result.

More’s algorithm mimics the square-and-multiply algorithm for evaluating powers, and eval-
uates the Rédei function Qn(x) of degree n ≥ 1 with respect to t(x) = x2 − ax− b (i.e., for a more
general definition of Rédei functions). It consists of

the following steps:

• Initialize R(x)← x.

• For i from L to 1 updated R(x) as follows:

– R(x)← R2(x)+b
2R(x)+a .

– If ci = 1, set R(x)← xR(x)+b
R(x)+x+a .

• Return R(x).

Note that x + a can be pre-computed. The algorithm is detailed in Figure 2.
The output of this procedure is R(x), that is the Rédei rational function Qn(x), which coincides

with x�n when the polynomial is t(x) = x2−D. Noting that expression 2R(x)+a can be evaluated
as R(x) + R(x) + a, each step requires 1 multiplication (i.e. R2(x)), 2 additions, and one division
if bi = 0, while if bi = 1 one further multiplication, 2 further additions, and one further division
are required. Note that a division can be done using one inversion and one multiplication. Notice
that, the for cycle never checks the most significant bit of n. In summary, the algorithm requires
2(w(n) + L − 1) multiplications, 2(w(n) − 1) + 3(L − 1) additions (m + a can be pre-computed),
and w(n) − 1 + L − 1 inversions.

In the following section an algorithm which uses only one inversion is described and its
complexity estimated.

4.3. Modified More’s algorithm

A way to avoid the division at every step is to consider R(x), in the More’s algorithm, as the
ratio of two polynomials A(x)

B(x) so that we can update the polynomials A(x) and B(x) at each step
and only at the end perform the quotient.

The procedure consists of the following steps:

11



• Initialize A(x)← x and B(x)← 1.

• For i from L to 1 updated A(x) and B(x) as follows:

– A(x) = A(x)2 + bB(x), and B(x) = 2A(x)B(x) + a ∗ B2
j .

– If ci = 1, set A′(x) ← A(x), B′(x) ← B(x), A(x) = xA′(x) + bB′(x), and B(x) =

A′(x) + (x + a)B′(x).

• Return R(x)← A(x)/B(x).

The algorithm is detailed in Figure 2.
Also in this case, the output is R(x), that is the Rédei rational function Qn(x), which coincides

with x�n when the polynomial is t(x) = x2 − D. Let us note that, in the iterations, no inversion is
needed, and only a final quotient is computed to provide the value of the Rédei rational function.

This modified algorithm needs some additional multiplication and sum at each step, that is

1. 5 multiplications, 3 additions, and zero inversion for L − 1 steps:
2. 3 multiplications, 2 additions (m + a can be pre-computed), and zero inversion for w(n)−1

steps.

In summary the total number of multiplications is 5(L − 1) + 3(w(n) − 1), the number of
additions is 3(L − 1) + 2(w(n) − 1), plus a final division.

For the sake of comparison the complexities relative to the three algorithms are summarized
in Table 2. Note that an inversion costs about log2 q multiplications.

Direct More Modified More
P A I P A I P A I

(3) 2(L + w − 1) 2(L − 1) + 3w L + w − 1 2(L + w − 2) 3(L − 1) + 2(w − 1) L + w − 2 5(L − 1) + 3(w − 1) 3(L − 1) + 2(w − 1) 1
(4) 4L + 4w 4L + 3w L + w – – – – – –
(5) – 2L + 2w – – – – – – –

P = # products, squares A= # additions, doublings I = # inversions

Table 2: Complexity of three algorithms to compute the exponentiation m�n.
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Example 2. In this example, we show the intermediate steps of the three algorithms to compute
m�n work. In particular, we set m = 2, n = 11 = (1011)2, L = 4, D = 2, a = 0, and b = D.

Direct:
Pre-computation of x:

x1 = m = 2
x2 = x1 � x1 =

=
x2

1 + D
2x1

=
3
2

x3 = x2 � x2 =

=
x2

2 + D
2x2

=
17
12

x4 = x3 � x3 =

=
x2

3 + D
2x3

=
577
408

Exponentiation:

y0 = ∞

i = 1, c1 = 1
y2 = y1 � x1 =

=
y1x1 + D
y1 + x1

=
2
1

i = 2, c2 = 1
y3 = y2 � x2 =

=
y2x2 + D
y2 + x2

=
10
7

i = 3, c3 = 0
c3 = 0

y4 = y3 =
10
7

i = 4, c4 = 1
y5 = y4 � x4 =

=
y4x4 + D
y4 + x4

=
11482
8119

More:
R1 = m = 2

i = 1, c3 = 0

R2 =
R2

1 + b
2R1 + a

=
3
2

i = 2, c2 = 1

R3 =
R2

2 + b
2R2 + a

=
17
12

R3 =
mR3 + b

R3 + m + a
=

58
41

i = 3, c1 = 1

R4 =
R2

3 + b
2R3 + a

=
3363
2378

R4 =
mR4 + b

R4 + m + a
=

11482
8119

Modified More:
A1 = m = 2
B1 = 1

i = 1, c3 = 0

A2 = A2
1 + bB1 = 6

B2 = 2A1B1 + aB2
1 = 4

i = 2, c2 = 1

A3 = A2
2 + bB2 = 68

B3 = 2A2B2 + aB2
2 = 48

A′ = A3, B′ = B3

A3 = mA′ + bB′ = 232
B3 = A′ + (m + a)B′ = 164

i = 3, c1 = 1

A4 = A2
3 + bB3 = 107616

B4 = 2A3B3 + aB2
3 = 76096

A′ = A4, B′ = B4

A4 = mA′ + bB′ = 367424
B4 = A′ + (m + a)B′ = 259808
A4

B4
=

11482
8119

A4

B4
=

11482
8119

According to Table 2, since L = 4,w(n) = 3 we expected

• 2(L − 1) + 2w = 12 products, 2(L − 1) + 3w = 12 additions, and L − 1 + w = 6 inversions,
for the direct method;

• 2(w+ L−2) = 10 products, 2(w−1)+3(L−1) = 13 additions, and w+ L−2 = 5 inversions
for More’s method;
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• 5(L − 1) + 3(w − 1) = 21 products, 3(L − 1) + 2(w − 1) = 13 additions, and 1 inversion for
the Modified More’s method.

To conclude, we note that More’s method allows to perform one less inversion compared to
the Direct method. Though, half of the inversions can be pre-computed in the Direct method.
Both methods perform a similar number of multiplications, while the Direct method performs
more additions when the exponent has many 1’s in its binary representation. Finally, if one wants
to avoid inversions at the cost of increasing the number of multiplications and additions, he can
perform a modifications of More’s algorithm, which postpones the inversion to only the last step.
In the case of the rational field, this implies working with larger integers as the algorithms is
close to the end.

5. Conclusions

We introduced a general group structure over any kind of conic. For the case of finite field,
we also described some applications to cryptography derived from convenient parametrization of
the conics. Additionally, we described three different ways of performing the group operation,
and we evaluated and compared the complexity of each method.
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48. (2010), p. 348–357.
[4] E. Bellini, N. Murru, An efficient and secure RSA-like cryptosystem exploiting Rédei rational functions over conics.
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