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A generative model for duration-dependent score calibration
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Abstract

In this work we introduce a generative score calibration model
for speaker verification systems able to explicitly account for
utterance-dependent miscalibration sources, with a focus on
segment duration. The model is theoretically motivated by
an analysis of the effects of distribution mismatch on the
scores produced by Probabilistic Linear Discriminant Analy-
sis (PLDA), and extends our previous investigation on the dis-
tribution of well-calibrated PLDA log-likelihood ratios. We
characterize target and non-target scores by means of Variance-
Gamma densities, whose parameters represent effective be-
tween and within-class variabilities. Experimental results on
SRE 2019 show that the proposed method improves both cal-
ibration and verification accuracy with respect to duration-
agnostic models and to duration-aware discriminative methods.
Index Terms: Generative score calibration, Variance-Gamma
distribution, domain mismatch, duration-dependent calibration

1. Introduction
The standard approach for calibration of speaker verification
scores is based on discriminative prior-weighted Logistic Re-
gression (Log-Reg) [1, 2], successfully employed in a plethora
of different scenarios [3, 4, 5, 6, 7]. Logistic regression is effec-
tive in reducing miscalibration, and allows incorporating side-
information, the most important being segment duration, to im-
prove not only calibration, but also the accuracy of speaker ver-
ification systems [8, 9, 10]. Generative models have recently
proven to be a viable alternative to discriminative methods that
allows both for supervised and unsupervised training. In [11]
the authors analyzed the constraints that well-calibrated score
distributions should satisfy, and proposed a simple yet effective
linear calibration model based on constrained Gaussian distri-
butions. The model was further extended in [12] to handle
missing labels. In [13] the authors propose to model target
and non-target scores with different, unconstrained densities,
including T–student and Normal Inverse Gaussians (NIG).

Recently, we have proposed a generative linear model based
on Variance-Gamma (VΓ) distributions [14, 15, 16]. The
model was motivated by our analysis of the distribution of well-
calibrated log-likelihood ratios (LLR) obtained by Probabilistic
Linear Discriminant Analysis [17, 18] (PLDA) classifiers, and
has proven to be effective not only for supervised tasks, where
it matched linear logistic regression, but also for unsupervised
scenarios, where it outperformed other generative approaches.
This method, however, has two main limitations. Since the cal-
ibration model is linear, it may not be effective in presence
of non-linear miscalibration effects. For supervised scenarios
non-linear approaches such as the unconstrained NIG method
of [13] can provide better calibration, although we have shown
in [14] that the additional freedom of unconstrained models
can be detrimental for unsupervised tasks. Furthermore, cur-
rent state-of-the-art generative models are not able to effectively

account for trial-dependent miscalibration sources such as ut-
terance duration. In this work we address these limitations by
investigating the distribution of scores of PLDA classifiers in
presence of speaker vector distribution mismatch. In Sections 2
and 3 we show how the between and within-class covariances
of the evaluation population affect the distribution of scores of
Gaussian-distributed speaker vectors. This allows us to intro-
duce, in Section 4, a non-linear Variance-Gamma score model,
whose parameters represent effective between and within-class
variability and can account for trial-level mismatch sources. As
we show in Sections 5 and 6, a simple duration model can be
combined with the score model to achieve state-of-the-art cali-
bration for utterances of variable duration. This is, to our knowl-
edge, the first successful attempt at incorporating duration ef-
fects in generative calibration approaches.

2. The distribution of well-calibrated PLDA
scores

We consider the simplified two-covariance PLDA model1

Φ = Y + E , (1)

where Φ is the M -dimensional Random Variable (R.V.) re-
sponsible for generating an observed speaker vector φ (e.g. i-
vectors [20], e-vectors [21], or speaker embeddings [22]), Y
is the R.V. representing the speaker identity and E represents
residual noise. The prior distributions of Y and E are:

Y ∼ N (mM,BM) , E ∼ N (0,WM) . (2)

Without loss of generality, we assume that mM = 0, and both
BM and WM are diagonal. Let z =

[
φTE ,φ

T
T
]T

be a pair
of speaker vectors (enroll and test), realization of R.V. Z =[
ΦT
E ,Φ

T
T
]T

. According to (1), under the same and different
speaker hypotheses S and D the distribution of Z is[

ΦE
ΦT

]
|S ∼ N (0,ΣM,S)

[
ΦE
ΦT

]
|D ∼ N (0,ΣM,D) (3)

with

ΣM,S =

[
TM BM
BM TM

]
, ΣM,D =

[
TM 0
0 TM

]
, (4)

and TM = BM + WM. The log-likelihood ratio for a pair of
speaker vectors z is

`(z) = KM −
1

2
zT
(
Σ−1
M,S −Σ−1

M,D

)
z . (5)

where KM = 1
2

log
∣∣Σ−1
M,SΣM,D

∣∣. As we showed in [14], if
an evaluation trial is a realization of Z, its score can be inter-
preted as a realization of R.V. L, conditionally defined as

L|D = `(Z|D) , L|S = `(Z|S) .

1Extension to subspace-constrained models is straghtforward — see,
for example, [19] for the relationship between the two models.
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L|S and L|D can be expressed as sums of M independent
Variance-Gamma distributed R.V.s whose parameters depend
on the between-to-within variability ratios ρi =

BM,i

WM,i
, where

BM,i and WM,i are the i-th elements of the diagonals of BM
and WM, respectively. If we also assume isotropic ρi , ρ, a
score can be interpreted as a realization of R.V. L, with

L|D ∼ VΓ(λ, α, βD, µ) , L|S ∼ VΓ(λ, α, βS, µ) , (6)

βD = −1 , α2 =
(ρ+ 1)2

ρ2
, βS = 0 , λ =

M

2
.

In [14] we assumed that most miscalibration effects can be
captured through a linear miscalibration model, where ob-
served scores are obtained as an affine transformation of well-
calibrated, VΓ-distributed scores. Since the transformation
alone is not able to account for the skewness that is often ob-
served in empirical score distributions, we relaxed the assump-
tions on βS and βD, allowing for non-zero values for βS, and
tying the two parameters as βS = βD + 1.

3. The distribution of PLDA scores in
presence of domain mismatch

Well-calibrated VΓ densities model score distributions in which
evaluation trials are sampled according to the PLDA model (3).
In most cases, however, the mismatch between the PLDA model
and the evaluation population is significant (if this was not the
case, score calibration would not be required). To investigate
how this affects the distribution of PLDA scores, we assume
that scores are computed using the PLDA model parameters
in (5), but evaluation trials are not samples of R.V.s distributed
as in (3), but rather of R.V. Z = [ΦE ,ΦT ] with distribution[

ΦE
ΦT

]
|S ∼ N (m,ΣS) ,

[
ΦE
ΦT

]
|D ∼ N (m,ΣD) , (7)

where

ΣS =

[
TE BC
BC TT

]
, ΣD =

[
TE 0
0 TT

]
, (8)

TE = BC+WE and TT = BC+WT . Matrix BC represents
the common between-class variability for the evaluation popu-
lation, whereas WE and WT represent within-class variability
for the enrollment and test segments. We directly consider the
more general case with different enroll and test within-class co-
variance matrices as this will lead, in Section 5, to a simple
solution for modeling utterance duration. To keep the model
tractable, we also assume that BC , WE and WT are diagonal.
We will show that, despite this assumption, the resulting model
is powerful enough to improve calibration with respect to the
linear VΓ model of [14]. We also assume2 m = 0. Given that
all covariance matrices are diagonal, we can again represent the
LLR as a sum of M independent terms

`(z) =

M∑
i=1

1

2
zTi Aizi + ki , (9)

where zi =
[
φE,i ,φT ,i

]T stacks the i-th components of the
speaker vectors φE ,φT , and

Ai =
BM,i

T2
Mi
−B2

M,i

−BM,i

TMi
1

1 −BM,i

TMi

 , (10)

2The evaluation population mean can be easily estimated and com-
pensated from few, unlabeled evaluation samples. In Section 4 we will
show a possible way to also account for small, non-zero m.

with TMi = BM,i + WM,i. The terms ki correspond to
ki = 1

2
log T2

M,i− 1
2

log
(
T2
M,i −B2

M,i

)
. Since we assumed

that BE ,WE and WT are diagonal, the R.V.s corresponding to
the i-th components of the speaker vectors Zi = [ΦE,i ,ΦT ,i]
are independent under both the same and different speaker hy-
potheses, thus we can write L|D and L|S as sums of M inde-
pendent R.V.s as:

L|D = `(Z|D) =

M∑
i=1

Li|D , L|S = `(Z|S) =

M∑
i=1

Li|S ,

(11)
where

Li|h = `(Zi|h) =
1

2
ZTh,iAiZh,i + ki , (12)

with h ∈ {S,D}, Zh,i ∼ Zi|h ∼ N (0,Σh,i), and

ΣS,i =

[
TE,i BC,i
BC,i TT ,i

]
, ΣD,i =

[
TE,i 0

0 TT ,i

]
. (13)

BC,i, TE,i and TT ,i are the i-th elements of the diagonals of
BC , TE and TT , respectively. Let Ch,i denote the Cholesky
decomposition of Σh,i. Let also Uh,iDh,iU

T
h,i denote the

eigendecomposition of Mh,i , CT
h,iAiCh,i = Uh,iDh,iU

T
h,i.

The conditional distributions of Li can then be rewritten as

Li|h ∼
1

2
YTCT

h,iACh,iY+ki ∼
1

2
YTDh,iY + ki , (14)

where Y ∼ N (0, I) is a standard normal distributed R.V., and
Dh,i contains the eigenvalues of Mh,i. The determinant of
Mh,i is negative, therefore its two eigenvalues have different
sign. To derive an expression for Li we analyze the distribution
of quadratic, indefinite forms (14). For the sake of readability,
we drop all suffices and we simply consider quadratic forms

L =
1

2
YTDY + k =

1

2
d+Y

2
+ −

1

2
|d−|Y 2

− + k (15)

where D is a 2× 2 diagonal matrix with elements d+ > 0 and
d− < 0, and Y = [Y+, Y−]T ∼ N (0, I). We denote

G+ ,
1

2
d+Y

2
+ , G− ,

1

2
|d−|Y 2

− , L = G+ −G− + k .

(16)
Since Y+ and Y− are independent and standard normal dis-
tributed, Y+ ∼ Y− ∼ N (0, 1), G+ and G− are also inde-
pendent, and Gamma distributed:

G+ ∼ Γ

(
1

2
,

1

d+

)
, G− ∼ Γ

(
1

2
,

1

|d−|

)
, (17)

and therefore L follows a Variance-Gamma distribution [23,
14]. To derive the parameters, we consider the Moment Gen-
erating Function (MGF) of L:

ML(t) = ektMG+(t)MG−(−t)

= ekt
(
1− tr(D)t+ det(D)t2

)− 1
2 , (18)

where tr and det denote the trace and determinant opera-
tors, respectively. The MGF of a VΓ distributed R.V. X ∼
VΓ(λ, α, β, µ) is

MX(t) = eµt
(

1− 2β

γ2
t− t2

γ2

)−λ
, (19)
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with γ2 = α2 − β2. We can verify that L is VΓ-distributed,
and the parameters can be recovered by inspection:

λ =
1

2
, µ = k , γ2 = − 1

det(D)
, β = −1

2

tr(D)

det(D)
.

(20)
Since tr(Dh,i) = tr(Mh,i) = tr(AΣh,i) and det(Dh,i) =
det(Mh,i) = det(AΣh,i),Li|D andLi|S are VΓ-distributed:

Li|h ∼ VΓ

(
1

2
, ki, αh,i, βh,i

)
, (21)

with α2
h,i = γ2

h,i + β2
h,i, and

βh,i = −1

2

tr(AΣh,i)

det(AΣh,i)
, γ2

h,i = − 1

det(AΣh,i)
. (22)

In many cases it’s reasonable to assume that the enroll and
test speaker vectors are affected by independent, identically
distributed (i.i.d.) noise, distributed as N (0,WC), so that
WE = WT = WC . After some algebraic manipulations we
can write the parameters of the score distributions:

γ2
D,i =

T2
M,i

T2
C,i

1 + 2ρM,i

ρ2M,i

, γ2
S,i = γ2

D,i
(1 + ρC,i)

2

1 + 2ρC,i
(23)

βD,i = −TM,i

TC,i
, βS,i =

TM,i

TC,i

1 + ρC,i
1 + 2ρC,i

(
ρC,i
ρM,i

− 1

)
,

where TC = WC+BC . We can observe that the model param-
eters depend only on three values: the ratio TM,i

TC,i
, representing

the scale of test samples compared to the scale of training sam-
ples, and the between-to-within variability ratios of the train-
ing and evaluation populations ρM,i and ρC,i. Furthermore, in
contrast with well-calibrated LLRs, in this case both Li|S and
Li|D may be skewed. In particular, the non-target distribution
is left-skewed, whereas the skewness of the target distribution
depends on whether ρC,i is greater or smaller than ρM,i: in the
former case, the distribution will be right-skewed (this corre-
sponds to evaluation vectors that are easier to discriminate with
respect to training samples along direction i), in the latter case
the distribution will be left-skewed. Finally, we can observe
that the non-target distribution does not depend on the evalua-
tion population between-over-within variability ratio ρC,i.

4. A generative model for mismatched data
In general, the distribution ofL|S andL|D cannot be expressed
in closed form. However, if we assume that, for all directions i,

BM,i = ξibM ,WM,i = ξiwM

BC,i = ξibC , WE,i = ξiwE , WT ,i = ξiwT , (24)

for scalars ξi 6= 0, then L|D and L|S are VΓ-distributed as

L|h ∼ VΓ

(
M

2
,

M∑
i=1

ki, αh, βh

)
, (25)

where αh and βh can be computed from (10) and (22) using the
parameters for any of the i-th directions, since the result does
not depend on the values ξi. Assuming isotropic normalized
variances is a strong approximation which, however, is effec-
tive as long as we also estimate a “effective” number of speaker
vector dimensions through the parameter λ of the VΓ distribu-
tions [14]. Therefore, we consider the score model

L|h ∼ VΓ (λ, µh, αh, βh) , (26)

where λ is a shared shape parameter, µh are location parame-
ters and αh, βh depend on the parameters bM, wM, bC , wE , wT
through

tM = bM + wM , tE = bC + wE , tT = bC + wT

ΣM,S =

[
tM bM
bM tM

]
, ΣM,D =

[
tM 0
0 tM

]
A = Σ−1

M,D −Σ−1
M,S

ΣS =

[
tE bC
bC tT

]
, ΣD =

[
tE 0
0 tT

]
βh = −1

2

tr(AΣh)

det(AΣh)
, γ2

h = − 1

det(AΣh)

α2
h = γ2

h + β2
h . (27)

We can observe that the model is over-parametrized: scaling
bM, wM, bC, wE , wT by some ξ 6= 0 results in the same so-
lution for the VΓ parameters, thus we can arbitrarily fix any
one of these parameters. In the following we set wM = 1.
According to the PLDA LLR, the terms µD and µS should be
equal, and should be tied to the remaining parameters. In this
work we enrich the calibration model by treating the terms µD

and µS as free parameters. The rationale derives from two ob-
servations. 1) PLDA-based models often include a bias term
(e.g. Pairwise Support Vector Machines [24, 25, 26] or discrim-
inative PLDA [27]). These terms result in score shifts that are
optimal for the training criterion, but may not result in well-
calibrated scores. We can capture such behavior through a
shared location parameter. 2) Our derivations do not consider
dataset shifts or the equivalent effects of linear terms that ap-
pear in PSVM or discriminative PLDA scoring functions. The
resulting distributions would become more complex, and we are
not aware of closed-form solutions even for isotropic models.
We can, however, assume that the shift is sufficiently small,
so that we can still approximate score distributions with VΓ
densities. To capture the different location for the two score
distributions, we introduce an additional free location parame-
ter that represents the location differences between target and
non-target distributions. In practice, both 1) and 2) can be ac-
counted for through two independent location parameters µS

and µD. Our score models thus depends on the 7 free param-
eters λ, µD, µS, bM, bC , wE , wT . If enrollment and test data
are affected only by i.i.d. nuisance, we can reduce the num-
ber of parameters to 6, by tying wE = wT , wC . Since the
model parameters can be interpreted as “effective” variances,
we refer to this last model as VΓ-Var. Given a set of calibration
scores (SS, SD), the model can be trained by maximizing the
weighted likelihood

ζ

|SS|
∑
s∈SS

fL|S(s) +
1− ζ
|SD|

∑
s∈SD

fL|D(s) , (28)

where fL|S(s) and fL|D(s) are the VΓ densities for the target
and non-target distributions (26) and ζ is a weighting factor.

5. Utterance-dependent calibration
According to our model, given a trial z =

[
φTEφ

T
T
]T

, the cor-
responding score is a sample of VΓ distributions in (26), where
the parameters wE and wT represent “effective” within-class
variability for the enrollment and test speaker vectors. To ac-
count for utterance-dependent nuisance, we can then assume
that the terms wE and wT are not fixed, but vary from utterance
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Table 1: Calibration results on SRE 2019

PLDA NL-PLDA PSVM
Cllr Cprim EER Cllr Cprim EER Cllr Cprim EER

Min. costs† 0.192 0.418 5.2% 0.183 0.391 5.0% 0.155 0.342 4.0%

Log-Reg [1, 2] 0.200 0.438 5.2% 0.188 0.409 5.0% 0.165 0.360 4.0%
Linear VΓ [14] 0.206 0.424 5.2% 0.194 0.395 5.0% 0.169 0.347 4.0%
VΓ-Var 0.193 0.418 5.2% 0.184 0.392 5.0% 0.157 0.362 4.0%

Log-Reg + QM4 [8] 0.190 0.434 4.8% 0.176 0.409 4.6% 0.153 0.374 3.7%
VΓ-Var + Dur 0.183 0.419 4.8% 0.174 0.388 4.6% 0.145 0.357 3.7%
† Minimum Cllr , minimum Cprim, and EER computed on the classifiers output

to utterance. In particular, for each speaker-vector φi the effec-
tive within-class variance is wi, and is a function of both i.i.d.
and utterance-dependent miscalibration sources.

Given the significant effect of utterance duration variabil-
ity on the accuracy of speaker verification systems, in this sec-
tion we focus on modeling the effects of utterance duration on
wi, taking inspiration from i-vector [20] models. The i-vector
model allows accounting for i-vector uncertainty through the i-
vector posterior covariance matrix [28, 29, 30]. Incorporating
the i-vector uncertainty at trial level is equivalent to modeling
target and non-target trials as in (7) and (8), but replacing the
covariance matrices TE and TT with TE = BC+WE +CE,i
and TT = BC + WT + CT ,i, where CE,i and CT ,i are the i-
vector posterior covariances for enroll and test i-vectors of trial
zi. An i-vector posterior covariance matrix C has a complex
expression that depends on the zero-order statistics for an ut-
terance computed on a Universal Background Model (UBM).
However, it can be reasonably approximated [31] by a matrix
whose form is

C ≈ (I +DM)−1 , (29)

where M depends on the UBM and the i-vector model parame-
ters, whereas D is the utterance duration in frames. We further
assume that Λ and C have the same principal directions, so that
they can be both jointly diagonalized (a similar approximation
was used in [32]). Each component Cj of C has then a func-
tional form Cj = 1

1+Dηj
=

ηj
ηj+D

. In this sense, we can inter-
pret the i-vector posterior covariance matrix as a measure of the
effects of utterance duration on the within-class variability of
speaker vectors. To incorporate utterance duration in our score
model, we adopt a similar functional relationship. We represent
the effective variances wE,i and wT ,i of a trial zi as

wE,i = wE +
ψ

DE,i + η
, wE,i = wT +

ψ

DT ,i + η
, (30)

where DE,i and DT ,i are the enroll and test segment duration,
and ψ and η are additional free model parameters, shared for all
trials, that can be estimated by ML. As for the VΓ-Var model,
also in this case we can assume3 that wE = wT = wC . We
refer to this model as VΓ-Var + Dur. It is worth noting that
this approach can also be interpreted as a way to model speaker
vector uncertainty in those cases where we have no access to
uncertainty estimates (e.g. x-vectors), or uncertainty cannot be
taken into account at classification level (e.g. PSVM).

3In some cases having different wE and wT can be useful to model
differences in enrollment and test populations. Due to lack of space we
do not further investigate the corresponding model in this work.

6. Experiments
We report results on the SRE 2019 [33] Evaluation set with
three backends: PLDA with length normalization, Non-Linear
PLDA (NL-PLDA) [34, 35] and Pairwise Support Vector Ma-
chines (PSVM) [24, 25]. Calibration parameters were estimated
on a subset of the SRE 2019 Progress set. The front-end con-
sists of a Deep Neural Network (DNN) with the same topology
as in [36]. Details can be found in [14]. To assess the qual-
ity of our generative models, we consider a Logistic Regression
baseline. For duration modeling, our baseline follows the ap-
proach of [8], which enriches the linear Log-Reg calibration
model with quality measures (QM) that account for the effects
of duration. In particular, we select QM4 of [8], since it pro-
vided the best calibration results in our scenario. The results are
reported in Table 1 in terms of Cllr [4, 37, 38] and actual pri-
mary cost Cprim. Since duration modeling improves discrimi-
nation, we also report Equal Error Rate (EER). The target prior
for Log-Reg training and for the ML weight ζ was set to 0.1.
The minor differences with respect to the results in [34] are due
to slightly different backend training lists. Results show that the
VΓ-Var model is effective, and provides close to optimal cali-
bration for all classifiers. The results are similar to those of the
NIG approach [13] we reported in [14]. Indeed, both models
are able to capture non-linear miscalibration effects, and thus
provide slightly better calibration, for supervised tasks, than lin-
ear models. The last two rows show that our approach is able
to effectively account also for additional miscalibration sources
such as utterance duration. Indeed, we can observe that VΓ-
Var + Dur improves performance not only with respect to the
other duration-agnostic models, but also with respect to mini-
mum costs computed on raw scores. Compared to QM mod-
els, our approach achieves better performance with PLDA and
PSVM, and similar Cllr , but better Cprim, with NL-PLDA.

7. Conclusions
We have presented a generative model able to incorporate
utterance-dependent miscalibration sources in terms of “ef-
fective”, non i.i.d., utterance-dependent within-class variance.
This allows us, for example, to explicitly model utterance du-
ration. The resulting generative model improves both calibra-
tion and verification accuracy, and achieves similar or better
performance with respect to discriminative approaches based
on quality measures. Being generative, the model can be ex-
tended to deal with missing labels. Future work will investigate
the effectiveness for semi-supervised scenarios. Furthermore,
our approach provides strong interpretations for the calibration
parameters. We believe this to be an important step towards a
unified model for score normalization and calibration.
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[13] N. Brümmer, A. Swart, and D. van Leeuwen, “A comparison
of linear and nonlinear calibrations for speaker recognition,” in
Odyssey 2014: The Speaker and language Recognition Workshop,
2014, pp. 14–18.

[14] S. Cumani, “On the distribution of speaker verification scores:
Generative models for unsupervised calibration,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing,
vol. 29, pp. 547–562, 2021.

[15] S. Cumani and P. Laface, “Tied normal variance–mean mixtures
for linear score calibration,” in Proceedings of ICASSP 2019, 05
2019, pp. 6121–6125.

[16] S. Cumani, “Normal variance-mean mixtures for unsupervised
score calibration,” in Proceedings of Interspeech 2019, 09 2019,
pp. 401–405.

[17] S. Ioffe, “Probabilistic linear discriminant analysis,” in Proceed-
ings of the 9th European Conference on Computer Vision, ser.
ECCV’06, vol. Part IV, 2006, pp. 531–542.

[18] P. Kenny, “Bayesian speaker verification with Heavy-Tailed Pri-
ors,” in Keynote presentation, Odyssey 2010, The Speaker and
Language Recognition Workshop, 2010.

[19] S. Cumani and P. Laface, “Generative pairwise models for speaker
recognition,” in Proceedings of Odyssey 2014, 2014.

[20] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet,
“Front-end factor analysis for speaker verification,” IEEE Trans-
actions on Audio, Speech, and Language Processing, vol. 19,
no. 4, pp. 788–798, 2011.

[21] S. Cumani and P. Laface, “Speaker recognition using e–vectors,”
IEEE/ACM Transactions on Audio, Speech, and Language Pro-
cessing, vol. 26, no. 4, pp. 736–748, 2018.

[22] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudan-
pur, “X–vectors: Robust DNN embeddings for speaker recogni-
tion,” in Proceedings of ICASSP 2018, 2018, pp. 5329–5333.

[23] D. Madan, P. Carr, and E. Chang, “The Variance Gamma process
and option pricing,” Eurepean Finance Review, vol. 2, pp. 79–105,
1998.
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