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DISPERSION, SPREADING AND SPARSITY OF GABOR WAVE
PACKETS FOR METAPLECTIC AND SCHRÖDINGER

OPERATORS

ELENA CORDERO, FABIO NICOLA AND S. IVAN TRAPASSO

Abstract. Sparsity properties for phase-space representations of several types of
operators have been extensively studied in recent articles, including pseudodifferen-
tial, Fourier integral and metaplectic operators, with applications to the analysis of
Schrödinger-type evolution equations. It has been proved that such operators are
approximately diagonalized by Gabor wave packets. While the latter are expected
to undergo some spreading phenomenon, there is no record of this issue in the afore-
mentioned results. In this note we prove refined estimates for the Gabor matrix of
metaplectic operators, also of generalized type, where sparsity, spreading and dis-
persive properties are all noticeable. We provide applications to the propagation of
singularities for the Schrödinger equation.

1. Introduction and discussion of the results

The relevance of the notion of wave packet in harmonic analysis and mathematical
physics can be hardly overestimated. Roughly speaking, we say that a function g on
Rd is a wave packet if it does possess good localization in phase space. To be more
concrete, recall that good energy concentration of a function g ∈ S(Rd) \ {0} (the
Schwartz class) on a measurable set T ⊂ Rd is achieved if there exists 0 ≤ δT ≤ 1/2
such that (∫

Rd\T
|g(y)|2dy

)1/2

≤ δT ‖g‖L2 .

The spectral content of g on a set Ω ⊂ Rd is well concentrated if the analogous
estimate is satisfied by its Fourier transform ĝ for small δΩ. Therefore g is concentrated
on the cell T × Ω in the phase space and the Donoho-Stark uncertainty principle
prescribes a lower bound for the measure of such cell in terms of δT and δΩ [17].

The essential phase-space support of g can be moved to (x+ T )× (ξ + Ω) for any
choice of (x, ξ) ∈ R2d by applying a phase-space shift π(x, ξ) = MξTx to g, namely
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as a result of the joint action of the modulation operator Mξ and the translation
operator Tx, respectively defined as

Mξg(y) = e2πiy·ξg(y), Txg(y) = g(y − x), y ∈ Rd.

Functions of the type π(z)g for some fixed z ∈ R2d and g ∈ S(Rd) are called Gabor

wave packets or atoms. In the case where g(y) = e−π|y|
2

we speak of Gaussian wave
packets; the latter are well-known textbook examples in physics.

Analysis of functions and operators in terms of Gabor wave packets is one of the
primary purposes of modern time-frequency analysis [2, 14, 26]. For instance, a phase-
space representation of a signal f ∈ L2(Rd) is provided by the short-time Fourier
transform, which ultimately amounts to a decomposition of f along the uniform
boxes in phase space occupied by the Gabor atoms π(z)g, z ∈ R2d, for some fixed
window function g ∈ S(Rd) \ {0}. It is defined as

Vgf(x, ξ) := 〈f, π(x, ξ)g〉 =

∫
Rd
e−2πiy·ξf(y) g(y − x) dy, (x, ξ) ∈ R2d.

Phase-space analysis of operators can be conducted along the same lines by investi-
gating how they act at the atomic level. Precisely, the (continuous) Gabor matrix of a
linear continuous operator A : S(Rd)→ S ′(Rd) with respect to analysis and synthesis
windows g, γ ∈ S(Rd) \ {0} is defined by

KA(w, z) := 〈Aπ(z)g, π(w)γ〉, w, z ∈ R2d.

It can be regarded as an infinite matrix encoding the phase-space features of A, since
its action on phase space reads as an integral operator with kernel KA: under the
additional assumption ‖g‖L2 = ‖γ‖L2 = 1 we have indeed the identity

Vγ(Af)(w) =

∫
R2d

KA(w, z)Vgf(z)dz, w ∈ R2d.

It is clear that sparsity of KA is a highly desirable property, for both theoretical
and numerical purposes. Several results concerning the approximate diagonalization
of operators at the Gabor matrix level have been appearing in the literature, in
particular for pseudodifferential operators [12, 23, 25, 31], Fourier integral operators
[6, 7, 10] and propagators associated with Cauchy problems for Schrödinger-type
evolution equations [8, 11]. We stress that wave packets should be tailored in order
to best fit the geometry of the problem. For instance, the Gabor matrix of Fourier
integral operators arising as propagators for strictly hyperbolic equations does not
display a sparse behaviour, while analogous representations involving curvelet atoms
do enjoy super-polynomial decay, cf. [4, 16]. See also [27, 36, 38] for other applications
of wave packet analysis.
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For the sake of concreteness let us focus on the Schrödinger propagator for the free
particle U(t) = ei(t/2π)∆, t ∈ R, and fix g ∈ S(Rd) \ {0}. For any t ∈ R and N ∈ N
there exists a constant C = C(t, N) > 0 such that the following decay estimate for
the Gabor matrix elements of U(t) holds:

(1) |〈ei(t/2π)∆π(z)g, π(w)g〉| ≤ C(1 + |w − Stz|)−N , w, z ∈ R2d,

where St ∈ R2d×2d is the block matrix

(2) St =

[
I 2tI
O I

]
,

I ∈ Rd×d is the identity matrix and O ∈ Rd×d is the null matrix. We remark that
t 7→ St coincides with the Hamiltonian flow for the free particle in phase space;
precisely, the classical equations of motion with Hamiltonian H(x, ξ) = |ξ|2 and initial
datum (x0, ξ0) ∈ R2d are solved by (x(t), ξ(t)) = St(x0, ξ0). Hence (1) shows that the
time evolution of wave packets under U(t) approximately follows the classical flow,
in accordance with the correspondence principle of quantum mechanics.

Nevertheless, a distinctive feature of wave propagation dynamics is the unavoidable
effect of diffraction. In the situation under our attention it does manifest itself as the
well-known phenomenon of the spreading of wave packets. Moreover, a straightfor-
ward consequence of the dispersive estimates for the Schrödinger propagator [37] is
that there exists C = C(‖g‖L1∩L2) > 0 such that

(3) |〈ei(t/2π)∆π(z)g, π(w)g〉| ≤ C(1 + |t|)−d/2, w, z ∈ R2d.

It may therefore appear quite unsatisfactory that there is no trace of such issues
in quasi-diagonalization estimates as (1). The purpose of this note is exactly to
prove refined estimates for the Gabor matrix of U(t) where sparsity, spreading and
dispersive phenomena are fully represented. To the best of our knowledge, we are not
aware of systematic studies in this spirit for pseudodifferential or evolution operators.

Our quest is in fact motivated by the more general situation where U(t) is the
Schrödinger propagator corresponding to the Hamiltonian H = Qw, where Q is a real
homogeneous quadratic polynomial on R2d and Qw denotes its Weyl quantization,
(formally) defined as

Qwf(x) =

∫
R2d

e2πi(x−y)·ξQ

(
x+ y

2
, ξ

)
f(y)dydξ.

For example, (2πξj)
w = −i∂xj , j = 1, . . . , d, and Qw = −∆ for the choice Q(x, ξ) =

4π2|ξ|2.
The propagator U(t) = e−2πitQw

, t ∈ R, turns out to be a metaplectic operator. In
short, the metaplectic representation is a machinery which associates a symplectic
matrix S ∈ Sp(d,R) with a member of the metaplectic group µ(S) ∈ Mp(d,R), that
is a unitary operator on L2(Rd) defined up to the sign. If R 3 t 7→ St ∈ Sp(d,R)
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denotes the classical flow on phase space associated with the quadratic Hamiltonian
H(x, ξ) = Q(x, ξ) then µ(St) = ±e−2πitQw

- see (2) for the free particle case. We refer
to Section 2.5 below for further details and [18, 22] for comprehensive discussions on
the metaplectic representation.

It is therefore convenient to focus on metaplectic operators as primary objects of
our investigation. The spreading of wave packets under µ(S) is now connected with
the singular values of S ∈ Sp(d,R) [5], which occur in couples (σ, σ−1) of positive
real numbers. We fix the ordering by labelling the largest d singular values in such a
way that σ1 ≥ . . . ≥ σd ≥ 1; moreover we set Σ = diag(σ1, . . . , σd) and introduce the
matrices

D =

[
Σ O
O Σ−1

]
, D′ =

[
Σ−1 O
O I

]
, D′′ =

[
I O
O Σ−1

]
.

The singular value decomposition of S ∈ Sp(d,R) (also known as the Euler decomposi-
tion in this setting) has a peculiar form due to the symplectic condition, namely there
exist (non-unique) orthogonal and symplectic matrices U, V such that S = U>DV , cf.
Proposition 2.1 below. Such factorization is identified by the triple (U, V,Σ). In the
following for a given S ∈ Sp(d,R) we will denote by (U, V,Σ) an Euler decomposition
of S and by D,D′, D′′ the above defined related matrices.

We are now in the position to state our first result, concerning rapidly decaying
Gabor wave packets.

Theorem 1.1. For any g, γ ∈ S(Rd) and N > 0 there exists C > 0 such that, for
every S ∈ Sp(d,R) and every Euler decomposition (U, V,Σ) of S,

(4) |〈µ(S)π(z)g, π(w)γ〉| ≤ C(det Σ)−1/2(1 + |D′U(w − Sz)|)−N , z, w ∈ R2d.

We see that the simultaneous occurrence of sparsity, spreading and dispersive phe-
nomena are represented by the quasi-diagonal structure along S, the dilation by D′U
and the factor (det Σ)−1/2 respectively. An equivalent form of the previous estimate
where the spreading phenomenon is somehow more distributed follows by noticing
that D′U(w − Sz) = D′Uw −D′′V z.

The special case of the free particle propagator is treated in detail in Section 4
below. We just mention here that, for any fixed t ∈ R and any Euler decomposition
(Ut, Vt,Σt) of St, the estimate (4) reads∣∣〈ei(t/2π)∆π(z)g, π(w)γ〉

∣∣ ≤ C(1 + |t|)−d/2(1 + |D′tUt(w − Stz)|)−N , w, z ∈ R2d.

We see that the features of both (1) and (3) are now represented, whereas the spread-
ing phenomenon manifests itself as a dilation by the matrix D′tUt, the nature of which
is investigated in Section 4.

We provide results in the same spirit of Theorem 1.1 for wave packets associ-
ated with less regular atoms; in particular we assume that g and γ satisfy certain
phase-space decay conditions. The function spaces arising by imposing some weighted
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Lebesgue regularity on the short-time Fourier transform of a function are of primary
concern in time-frequency analysis and are known as modulation spaces [20]. To
be precise, let 1 ≤ p < ∞ and s ∈ R, and define the polynomial weight function
vs(z) := (1 + |z|)s on R2d. The modulation space Mp

vs(R
d) is defined as the subset of

temperate distributions f ∈ S ′(Rd) such that, for any g ∈ S(Rd) \ {0},

‖f‖Mp
vs

:=

(∫
R2d

|〈f, π(z)g〉|pvs(z)pdz

)1/p

<∞.

Similarly, we say that f ∈ M∞
vs (Rd) if there exists C > 0 such that, for any g ∈

S(Rd) \ {0},
|〈f, π(z)g〉| ≤ C(1 + |z|)−s, z ∈ R2d.

We write Mp(Rd) for the unweighted case (s = 0).
We collect some of the properties of modulation spaces in Proposition 2.2 below.

We just recall that they provide a refined framework of (Banach) spaces which en-
compasses several classical spaces of real harmonic analysis. For instance, we have
that M2

vs(R
d), s ∈ R, coincides with the Shubin-Sobolev space of order s [33], namely

Qs(Rd) = L2
vs(R

d) ∩Hs(Rd) = {f ∈ S ′(Rd) : f, f̂ ∈ L2
vs(R

d)}.

Note in particular that M2(Rd) = L2(Rd). Moreover, the modulation spaces Mp
vs are

related to the Schwartz class (and its dual space S ′) via the following characteriza-
tions, for every 1 ≤ p ≤ ∞,

(5) S(Rd) =
⋂
s≥0

Mp
vs(R

d), S ′(Rd) =
⋃
s≥0

Mp
v−s(R

d).

Modulation spaces also provide an optimal environment where to investigate the
behaviour of the Gabor matrix of a metaplectic operator, as evidenced by the following
result.

Theorem 1.2. (i) Let 1 ≤ p, q, r ≤ ∞ satisfy 1/p + 1/q = 1 + 1/r. For any
g ∈ Mp(Rd) and γ ∈ M q(Rd), S ∈ Sp(d,R) and any Euler decomposition
(U, V,Σ) of S, there exists H ∈ Lr(R2d) such that

(6) |〈µ(S)π(z)g, π(w)γ〉| ≤ H(D′U(w − Sz)), w, z,∈ R2d,

with

(7) ‖H‖Lr ≤ (det Σ)1/2−1/r ‖g‖Mp ‖γ‖Mq .

(ii) Let s > 2d. For any g, γ ∈ M∞
vs (Rd), S ∈ Sp(d,R) and any Euler decomposi-

tion (U, V,Σ) of S, there exists H ∈ L∞vs−2d
(R2d) such that (6) holds, with

(8) ‖H‖L∞vs−2d

≤ (det Σ)−1/2 ‖g‖M∞vs ‖γ‖M∞vs .
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Here we used the notation ‖H‖L∞vs = ‖Hvs‖L∞ . We remark that the best decay in
(7) is achieved in the case where p = q = r = 1, namely for Gabor atoms belonging
to the modulation space M1(Rd) - the so-called Feichtinger algebra [21, 29]. We also
highlight the inclusion M∞

vs (Rd) ⊂ M1(Rd) for s > 2d, which follows directly from
the definition and the integrability of v−s over R2d for s > 2d.

In Theorem 3.3 we prove an estimate in the same spirit of Theorem 1.2 for the Gabor
matrix of the so-called generalized metaplectic operators. This family of operators
characterized by the sparsity of their phase-space representation has been introduced
and studied in [6, 7] in connection with inverse-closed algebras of Fourier integral
operators. Their main properties are recalled in Section 2.5.

Finally, we provide an application of the enhanced estimates for the Gabor matrix
to the propagation of singularities for the Schrödinger equation in terms of new notions
of global wave front sets, after Hörmander [28]. In fact, several notions of global wave
front set have been introduced to detect (lack of) regularity at the modulation space
level; see [32] for a more detailed discussion and [30, 39] for further applications.

Given an open cone Γ in R2d and g ∈ S(Rd) \ {0} we define the space of M1
(g)(Γ) of

M1-regular distributions on the cone Γ with respect to g as the set of all f ∈ S ′(Rd)
such that

(9) ‖f‖M1
(g)

(Γ) :=

∫
Γ

|Vgf(z)|dz <∞.

The next result shows that M1-regularity of a function f on a conic subset of the
phase space is preserved by the action of µ(S) provided that the cone evolves under
S. We set S2d−1 for the sphere in R2d.

Theorem 1.3. Let S ∈ Sp(d,R), g, γ ∈ S(Rd) \ {0} and Γ,Γ′ ⊂ R2d be open cones

such that Γ′ ∩ S2d−1 ⊂ Γ ∩ S2d−1. If f ∈ S ′(Rd) is M1-regular on Γ with respect to g
then µ(S)f is M1-regular on S(Γ′) with respect to γ.

Precisely, given r ≥ 0 there exists C > 0 such that, for any f ∈M1
v−r(R

d)∩M1
(g)(Γ)

(cf. (5)), S ∈ Sp(d,R) and any Euler decomposition (U, V,Σ) of S, the following
estimate holds:

‖µ(S)f‖M1
(γ)

(S(Γ′)) ≤ C(det Σ)1/2
(
‖f‖M1

(g)
(Γ) + (det Σ)r ‖f‖M1

v−r (Rd)

)
.

If we specialize the previous result to the free particle propagator we get∥∥ei(t/2π)∆f
∥∥
M1

(γ)
(St(Γ′))

≤ C
(

(1 + |t|)d/2 ‖f‖M1
(g)

(Γ) + (1 + |t|)d(1/2+r) ‖f‖M1
v−r (Rd)

)
,

where St is the classical flow in (2). The latter can be regarded as a microlocal
refinement of known estimates, cf. for instance [40, Prop. 6.6] and Corollary 3.5
below.
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In short, this note is organized as follows. In Section 2 we collect some auxiliary
results. Section 3 is devoted to the proof of the main results. Section 4, as already
anticipated, provides the example of the Schrödinger free propagator in detail.

2. Preliminaries

2.1. Notation. We set |t|2 = t · t, t ∈ Rd, where x · y is the scalar product on
Rd. The bracket 〈f, g〉 denotes the extension to S ′(Rd)× S(Rd) of the inner product

〈f, g〉 =
∫
Rd f(t)g(t)dt on L2(Rd).

The conjugate exponent p′ of p ∈ [1,∞] is defined by 1/p+ 1/p′ = 1 if 1 ≤ p <∞
and as p′ = 1 if p = ∞. The symbol . means that the underlying inequality holds
up to a universal positive constant factor; the latter may possibly depend on some
“allowable” parameter λ, in which case we write

f .λ g ⇒ ∃C = C(λ) > 0 : f ≤ Cg.

Moreover, f � g stands for the case where both f . g and g . f hold.
The characteristic function of a set A ⊂ Rd is denoted by 1A. Recall that Γ ⊂ Rd

is a conic subset of Rd if it is invariant under multiplication by positive real numbers,
namely x ∈ Γ⇒ λx ∈ Γ for any λ > 0.

We choose the following normalization for the Fourier transform:

F(f)(ξ) = f̂(ξ) =

∫
Rd
e−2πix·ξf(x)dx, ξ ∈ Rd.

The reflection operator is defined as f∨(t) = f(−t), t ∈ Rd.
Given A,B ∈ Rd×d the direct sum A⊕B ∈ R2d×2d is defined as

A⊕B = diag(A,B) =

[
A O
O B

]
.

2.2. Symplectic matrices. The canonical symplectic matrix J ∈ R2d×2d is defined
as

J =

[
O I
−I O

]
.

The symplectic group Sp(d,R) is defined by

Sp(d,R) = {S ∈ GL(2d,R) : S>JS = J}.
Recall that the complex unitary group U(d,C) is isomorphic to the subgroup of
symplectic rotations U(2d,R) of Sp(d,R) [18], namely

U(2d,R) = Sp(d,R) ∩O(2d,R).

An equivalent, more concrete representation of symplectic rotations is

U(2d,R) =

{[
A −B
B A

]
∈ R2d×2d : AA> +BB> = I, AB> = B>A

}
.
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We recall a result on a SVD-like decomposition of symplectic matrices, also known
as the Euler decomposition in the literature; see [34, Appendix B.2] for details and
proofs.

Proposition 2.1. For any S ∈ Sp(d,R) there exist U, V ∈ U(2d,R) such that

S = U>DV, D = Σ⊕ Σ−1,

where Σ = diag(σ1, . . . , σd) and σ1 ≥ . . . ≥ σd ≥ σ−1
d ≥ . . . ≥ σ−1

1 are the singular
values of S.

We stress that while Σ is uniquely determined for given S once the order of the
singular values is fixed, the matrices U and V appearing in such factorization are not
unique in general due to possible occurrence of degenerate singular values.

We identify any Euler decomposition of S as U>DV with the triple (U, V,Σ).
Recall from the Introduction that other useful related matrices are

(10) D′ = Σ−1 ⊕ I, D′′ = I ⊕ Σ−1.

2.3. Modulation spaces. We provide a collection of time-frequency analysis tools
that are needed below. The reader may consult [26] for further details and proofs of
the mentioned results.

Recall that the short-time Fourier transform (STFT) of a temperate distribution
f ∈ S ′(Rd) with respect to the window function g ∈ S(Rd) \ {0} is defined as

(11) Vgf(x, ξ) := 〈f, π(x, ξ)g〉 =

∫
Rd
e−2πiy·ξf(y) g(y − x) dy.

The STFT is intimately connected with other well-known phase-space transforms
such as the Wigner distribution

(12) W (f, g)(x, ξ) =

∫
Rd
e−2πiy·ξf

(
x+

y

2

)
g
(
x− y

2

)
dy.

We write Wf when f = g. In particular, we have

(13) W (f, g) = 2de4πix·ξVg∨f(2x, 2ξ).

We also recall the orthogonality identity (also known as Moyal formula for the Wigner
distribution):

(14) 〈Vg1f1, Vg2f2〉L2 = 〈W (f1, g1),W (f1, g1)〉L2 = 〈f1, f2〉L2〈g1, g2〉L2 ,

for any f1, g1, f2, g2 ∈ L2(Rd). The behaviour of the Wigner distribution under time-
frequency shifts is given by

(15) W (π(w)f, π(z)g)(u) = c(w, z)MJ(w−z)Tw+z
2
W (f, g)(u), u, w, z ∈ R2d,
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where c(w, z) = eπi(w1+z1)·(z2−w2). The identity W (π(z)f)(u) = Wf(u − z) is often
referred to as the covariance property of Wf .

Recall from the Introduction that, for 1 ≤ p ≤ ∞ and s ∈ R, the modulation space
Mp

vs(R
d) is the set of f ∈ S ′(Rd) such that, for any g ∈ S(Rd) \ {0},

(16) ‖f‖Mp
vs

:= ‖Vgf‖Lpvs =

(∫
R2d

|Vgf(z)|pvs(z)pdz

)1/p

<∞,

with trivial modification in the case p =∞. We collect below the relevant properties
of modulation spaces that will be repeatedly used throughout this note, see [18, 26]
for proofs and generalizations.

Proposition 2.2. Consider 1 ≤ p ≤ ∞ and s, r ∈ R such that |s| ≤ r.

(i) Mp
vs(R

d) is a Banach space with the norm (16), which is independent of
the window function g (in the sense that different windows yield equivalent
norms). Moreover, the class of admissible non-zero windows can be extended
from S(Rd) to M1

vr(R
d).

(ii) If p < ∞ the Schwartz class S(Rd) is dense in Mp
vs(R

d). Moreover, for any
g ∈ S(Rd) \ {0},

f ∈ S(Rd) =⇒ Vgf, Wf ∈ S(R2d).

(iii) If p1 ≤ p2 and s2 ≤ s1, then Mp1
vs1

(Rd) ⊆Mp2
vs2

(Rd). In particular, for |s| ≤ r,

M1
vr(R

d) ⊆Mp
vs(R

d) ⊆M∞
v−r(R

d).

(iv) If 1 ≤ p <∞ then
(
Mp

vs(R
d)
)′ 'Mp′

v−s(R
d) and the duality is concretely given

by

〈f, h〉 =

∫
R2d

Vgf(z)Vgh(z)dz,

for f ∈Mp
vs(R

d), h ∈Mp′
v−s(R

d) and g ∈M1
vr(R

d) with ‖g‖L2 = 1.

It turns out that the STFT is injective in S ′(Rd), as a result of the following
inversion formula: for f ∈ S ′(Rd) and g, γ ∈ S(Rd) \ {0} such that 〈g, γ〉 6= 0 we
have

(17) f =
1

〈γ, g〉

∫
R2d

Vgf(z)π(z)γdz,

in the sense of temperate distributions. The same result extends to the case where
f ∈ Mp

vs(R
d) and g, γ ∈ M1

vr(R
d) \ {0} with s and r as in Proposition 2.2. The

particular choice γ = g yields

(18) IdMp
vs

=
1

‖g‖2
L2

V ∗g Vg,
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where V ∗g is the adjoint STFT defined as a vector-valued integral by

V ∗g F =

∫
R2d

F (z)π(z)gdz, F ∈ S(R2d).

Moreover, for g ∈ M1
vr(R

d) \ {0} we have that Vg : Mp
vs(R

d) → Lpvs(R
2d) and V ∗g :

Lpvs(R
2d)→Mp

vs(R
d) are continuous maps.

The inversion formula enables an efficient phase-space analysis of operators as
already mentioned in the Introduction. Consider a bounded linear operator A :
S(Rd) → S ′(Rd) and g, γ ∈ S(Rd) \ {0}; it is not restrictive to assume ‖g‖L2 =
‖γ‖L2 = 1. Using (18) we have that

A = V ∗γ VγAV
∗
g Vg = V ∗γ ÃVg,

where Ã := VγAV
∗
g is an integral operator in R2d with integral kernel given by the

Gabor matrix KA, that is

(19) ÃF (w) =

∫
R2d

KA(w, z)F (z)dz, KA(w, z) = 〈Aπ(z)g, π(w)γ〉, w ∈ R2d.

2.4. Weyl operators. Given a ∈ S ′(R2d) (symbol) the corresponding Weyl operator
aw : S(Rd)→ S ′(Rd) is defined by duality as

〈awf, g〉 = 〈a,W (g, f)〉, f, g ∈ S(Rd),

where W (g, f) is the Wigner distribution introduced in (12). Modulation spaces have
been extensively employed as symbol classes as well as background spaces where to
study boundedness of Weyl operators. Among the several results in this respect we
highlight the special properties of Weyl operators with symbols in M∞,1(R2d) - the
so-called Sjöstrand class after [35]. It is a modulation space of more general form
than above, since its norm involves a mixed Lebesgue regularity condition on the
short-time Fourier transform of a distribution: for any g ∈ S(Rd) \ {0},

‖f‖M∞,1 := ‖Vgf‖L∞,1 =

∫
Rd

sup
x∈Rd
|Vgf(x, ξ)|dξ <∞.

We list below some results first proved in [25], see also [1, 12, 15] for generalizations
and further results on almost diagonalization of operators.

Theorem 2.3. Fix g, γ ∈ M1(Rd) and consider a ∈ S ′(R2d). We have that a ∈
M∞,1(R2d) if and only if there exists a function H ∈ L1(R2d) such that

|〈awπ(z)g, π(w)γ〉| ≤ H(w − z), z, w ∈ R2d.

The controlling function H can be chosen as

H(w) = sup
z∈R2d

|VΦa(z, w)|, Φ = W (γ, g),



DISPERSION, SPREADING AND SPARSITY ESTIMATES FOR METAPLECTIC OPERATORS11

hence ‖H‖L1 � ‖a‖M∞,1. Moreover, aw is bounded on any modulation space Mp(Rd),
1 ≤ p ≤ ∞.

2.5. Metaplectic operators. Recall that the metaplectic group Mp(d,R) is the uni-
versal double cover of the symplectic group Sp(d,R). The corresponding faithful,
strongly continuous unitary representation in L2(Rd) allows us to directly interpret
Mp(d,R) as a subgroup of U(L2(Rd)), hence consisting of metaplectic operators. We
use the notation µ(S) to denote metaplectic operators defined up to sign, where
S = ρMp(µ(S)) ∈ Sp(d,R) and ρMp : Mp(d,R) → Sp(d,R) is the group projection,
hence

µ(AB) = ±µ(A)µ(B), A,B ∈ Sp(d,R).

An operator µ(S) satisfies the intertwining relation

π(Sz) = µ(S)π(z)µ(S)−1, z ∈ R2d.

We provide some elementary examples of metaplectic operators which are associated
with special elements of Sp(d,R). In fact, it turns out that the metaplectic group is
in some sense generated by operators µ(J), µ(S) and µ(C) defined below, cf. [18] for
a precise account.

(1) The Fourier transform is a metaplectic operator associated with the canonical
symplectic matrix, that is µ(J)f = ±F(f). Notice in particular that µ(−J) =
±F−1.

(2) Consider A ∈ GL(d,R) and set

S =

[
A O
O (A−1)>

]
.

The metaplectic operator µ(S) acts as a rescaling by A:

µ(S)f(t) = ±| detA|−1/2f(A−1t).

(3) Let C ∈ Rd×d be a real symmetric matrix and set

C =

[
I O
C I

]
.

The metaplectic operator µ(C) is a chirp multiplication:

µ(C)f(t) = ±eπit·Ctf(t).

We already mentioned that an important example of metaplectic operator is pro-
vided by the Schrödinger propagator for the free particle U(t) = ei(t/2π)∆, t ∈ R. This
can be easily derived from the examples above since U(t) is a Fourier multiplier with

chirp symbol mt(ξ) = e−2πit|ξ|2 on Rd, hence

(20) U(t) = F−1mtF = ±µ(St), St =

[
I 2tI
O I

]
, t ∈ R.
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A distinctive property of the Weyl calculus is known as symplectic covariance [18,
Thm. 215]: for any S ∈ Sp(d,R) and a ∈ S ′(R2d),

(21) (a ◦ S)w = µ(S)−1awµ(S).

Metaplectic operators have been thoroughly studied in the framework of phase-
space analysis [18, 22] and also in connection with the Schrödinger equation with
quadratic Hamiltonians [9, 10, 13]. We mention below two relevant results concerning
the Gabor matrix of a metaplectic operator and the boundedness on modulation
spaces.

Theorem 2.4. Consider µ(S) ∈ Mp(d,R) and g, γ ∈ S(Rd). For any N ≥ 0 we have

|〈µ(S)π(z)g, π(w)γ〉| .N,S (1 + |w − Sz|)−N , w, z ∈ R2d.

As a consequence, for any 1 ≤ p ≤ ∞ and s ∈ R, the operator µ(S) is bounded from
Mp

vs(R
d) into itself.

General families of operators characterized by the sparsity of their phase-space
representation were introduced in [6, 7]. Given S ∈ Sp(d,R) and g ∈ S(Rd), we
say that a linear operator A : S(Rd) → S ′(Rd) is in the class FIO(S) of generalized
metaplectic operators if there exists H ∈ L1(R2d) such that

(22) |〈Aπ(z)g, π(w)g〉| ≤ H(w − Sz), w, z ∈ R2d.

The definition of FIO(S) does not depend on the choice of g ∈ S(Rd) \ {0}. In fact,
careful inspection of the proof of [6, Prop. 3.1] reveals that the class of admissible
windows may be extended to M1(Rd), hence the estimate (22) is equivalent to its
polarized version with two arbitrary windows g, γ ∈M1(Rd), that is,

(23) |〈Aπ(z)g, π(w)γ〉| ≤ H(w − Sz), w, z ∈ R2d.

Sparsity of the Gabor matrix of generalized metaplectic operators provides non-
trivial algebraic properties for FIO(S) in the spirit of Theorem 2.3, as detailed in
the following result.

Theorem 2.5. Let S, S1, S2 ∈ Sp(d,R).

(1) An operator T ∈ FIO(S) is bounded on Mp(Rd) for any 1 ≤ p ≤ ∞.
(2) If T1 ∈ FIO(S1) and T2 ∈ FIO(S2), then T1T2 ∈ FIO(S1S2).
(3) If T ∈ FIO(S) is invertible on L2(Rd) then T−1 ∈ FIO(S−1).
(4) T ∈ FIO(S) if and only if there exist a1, a2 ∈M∞,1(R2d) such that

T = aw
1 µ(S) = µ(S)aw

2 .

In particular, a2 = a1 ◦ S.
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In view of Theorem 2.4 we observe that the Gabor matrix 〈µ(S)π(z)g, π(w)γ〉 of a
metaplectic operator µ(S) ∈ Mp(d,R) is well defined in the case where

(24) g ∈Mp(Rd), γ ∈M q(Rd),
1

p
+

1

q
≥ 1.

To be precise,

‖µ(S)π(z)g‖Mp ≤ ‖µ(S)‖op‖π(z)g‖Mp = ‖µ(S)‖op‖g‖Mp , z ∈ Rd,

hence by Proposition 2.2 (iv)

|〈µ(S)π(z)g, π(w)γ〉| ≤ ‖µ(S)‖op‖g‖Mp‖π(w)γ‖Mp′

≤ ‖µ(S)‖op‖g‖Mp‖γ‖Mp′

≤ ‖µ(S)‖op‖g‖Mp‖γ‖Mq ,

since from (24) we infer q ≤ p′ and the inclusion M q(Rd) ⊂Mp′(Rd) (Proposition 2.2
(iii)) yields the last inequality.

The same arguments apply to the Gabor matrix of T ∈ FIO(S) as a consequence
of Theorem 2.5.

2.6. Technical lemmas. A key technical tool for the main results is the following
set of estimates.

Lemma 2.6. Let s > 1, a, b, σ ≥ 1 and v ∈ R. Then

(25)

∫
R
(a+ |σ−1u+ v|)−s(b+ |u|)−sdu .s (a+ |v|)−sb−s+1 + a−s+1(b+ |v|)−s+1,

(26)

∫
R
(a+|u−v|)−s(b+σ−1|u|)−sdu .s (a+σ−1|v|)−s+1b−s+1 +a−s+1(b+σ−1|v|)−s.

Proof. We prove (25) under the assumption |v| ≥ 1, otherwise the estimate is trivial
since

∫
R(b+|u|)−sdu . b−s+1. If |σ−1u+v| ≥ |v|/2 then (a+|σ−1u+v|)−s . (a+|v|)−s,

hence ∫
R
(a+ |σ−1u+ v|)−s(b+ |u|)−sdu . (a+ |v|)−sb−s+1.

If |σ−1u+ v| ≤ |v|/2 then |u| ≥ σ|v|/2, hence∫
R
(a+ |σ−1u+ v|)−s(b+ |u|)−sdu . a−s+1σ(b+ σ|v|)−s

≤ a−s+1(b+ |v|)−s+1.

The proof of (26) in the non-trivial case σ−1|v| ≥ 1 follows by similar arguments, by
considering separately the cases |u− v| ≥ |v|/2 and |u− v| < |v|/2. �
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Remark 2.7. For s > d and v ∈ Rd, the convolution inequality (26) with σ = 1 and
a = b can be improved in Rd as follows:

(27)

∫
Rd

(a+ |u− v|)−s(a+ |u|)−sdu .s a−s+d(a+ |v|)−s.

Notice that for a = 1 we have v−s ∗ v−s . v−s, cf. [26, Lem. 11.1.1(c)].

Lemma 2.8. Let σ1, . . . , σd ≥ 1 and define the matrices

Σ = diag(σ1, . . . , σd), D′ = Σ−1 ⊕ I, D′′ = I ⊕ Σ−1.

For any s > 2d

(28)

∫
R2d

(1 + |v −D′′u|)−s(1 + |D′u|)−sdu .s (1 + |D′v|)−s+2d, v ∈ R2d.

Proof. The integral under our attention is∫
R2d

(
1 +

d∑
j=1

|vj − uj|+
2d∑

j=d+1

|vj − σ−1
j−duj|

)−s(
1 +

d∑
j=1

|σ−1
j uj|+

2d∑
j=d+1

|uj|

)−s
du.

We look at the latter as an iterated integral and we repeatedly apply Lemma 2.6;
precisely we estimate each of the integrals with respect to u1, . . . , ud as in (26) and
the each one with respect to ud+1, . . . , u2d as in (25). Careful inspection of the involved
quantities reveals that the result after 2d steps is dominated by a sum of products of
the form A−s+2dB−s+2d with A,B ≥ 1 such that

A+B = 2 +
d∑
j=1

σ−1
j |vj|+

2d∑
j=d+1

|vj| > 1 + |D′v|.

The claim follows after noticing that A−s+2dB−s+2d ≤ (A+B)−s+2d since s > 2d. �

Remark 2.9. The decay rate −s+ 2d in (28) could be judged quite unsatisfactory at
a first glance, since we are ultimately concerned with subconvolutive weights like v−s
[3, 24]. In fact, it is easy to realize that subconvolutivity still holds for v−s(A · +b),
for an invertible matrix A ∈ R2d and b ∈ Rd. The crucial point here is that the latter
property does hold indeed, but only up to constants that depend on A, while the key
feature of the estimate proved in Lemma 2.8 is precisely the uniformity with respect to
the involved matrices, which comes at the price of an unavoidable loss in decay rate.
Moreover, an inspection of the proof shows that Lemma 28 is specific to R2d, since
the fine structure of the involved weights plays a key role via Lemma 2.6.

We also emphasize that the issue is not even a consequence of the proof technique:
while we do not claim that the decay −s+ 2d is sharp, a simple argument shows that
the estimate in (28) can not hold with −s as exponent on the right-hand side. Let
d = 1 for simplicity so that Σ reduces to a scalar σ ≥ 1, and assume that (28) holds
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with an exponent α in place of −s + 2d. Set u = (u1, u2) and v = (v1, v2), assuming
in addition v1 = 0. By Fatou’s lemma we have that for σ →∞ the estimate reads∫

R2

(1 + |u1|+ |v2|)−s(1 + |u2|)−sdu1du2 ≤ Cs(1 + |v2|)α,

or equivalently ∫
R
(1 + |u1|+ |v2|)−sdu1 ≤ C ′s(1 + |v2|)α

for some new constant C ′s > 0 depending only on s. A straightforward computation
shows that the integral on the left-hand side is equivalent to (1 + |v2|)−s+1 (up to a
constant depending only on s), therefore we conclude that α ≥ −s+ 1.

3. Proof of the main results

We start this section with the proof of Theorem 1.1, namely a pointwise inequality
for the Gabor matrix with Gabor atoms in the Schwartz class.

Proof of Theorem 1.1. We use the Moyal formula (14), the covariance property of
Wigner distribution (15) and the symplectic covariance of the Weyl calculus (21).
Hence

|〈µ(S)π(z)g, π(w)γ〉|2 =

∫
R2d

W (µ(S)π(z)g)(u)W (π(w)γ)(u)du

=

∫
R2d

W (π(z)g)(S−1u)Wγ(u− w)du

=

∫
R2d

Wg(S−1u− z)Wγ(u− w)du

=

∫
R2d

Wg(S−1u+ S−1w − z)Wγ(u)du.

Direct application of Proposition 2.2 (ii) yields, for any s ≥ 0,

|〈µ(S)π(z)g, π(w)γ〉|2 .
∫
R2d

v−s(S
−1u+ S−1w − z)v−s(u)du.

Recall that S = U>DV , hence S−1 = V >D−1U and therefore

|〈µ(S)π(z)g, π(w)γ〉|2 .
∫
R2d

v−s(D
−1u+ V (S−1w − z))v−s(u)du.

Set v := V (S−1w − z). The change of variable u = D′′u′ leads to

|〈µ(S)π(z)g, π(w)γ〉|2 . (det Σ)−1

∫
R2d

(1 + |D′u+ v|)−s(1 + |D′′u|)−sdu.
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We fix s > 2d and apply Lemma 2.8 with D′ and D′′ interchanged. The claim
then follows after setting N = (s − 2d)/2, since s > 2d is arbitrarily chosen and
D′′v = D′U(w − Sz). �

We now prove Theorem 1.2, where Gabor atoms in suitable modulation spaces are
considered.

Proof of Theorem 1.2. Fix φ, ψ ∈ S(Rd) \ {0} with ‖φ‖L2 = ‖ψ‖L2 = 1; the recon-
struction formula (17) applied to g ∈ Mp(Rd), γ ∈ M q(Rd) (resp. g, γ ∈ M∞

vs (Rd))
yields

g =

∫
R2d

F (u)π(u)φdu, F = Vφg ∈ Lp(R2d) (resp. F = Vφg ∈ L∞vs(R
2d))

γ =

∫
R2d

G(v)π(v)ψdv, G = Vψγ ∈ Lq(R2d) (resp. G = Vψγ ∈ L∞vs(R
2d)).

Then we have

|〈µ(S)π(z)g, π(w)γ〉| ≤
∫
R4d

|F (u)||G(v)||〈µ(S)π(z + u)φ, π(w + v)ψ〉|dudv

=

∫
R4d

|F (u− z)||G(v − w)||〈µ(S)π(u)φ, π(v)ψ〉|dudv.

Direct application of Theorem 1.1 with N > max{2d, s} (the reason of this choice
will be clear in a moment) yields

|〈µ(S)π(z)g, π(w)γ〉| .N (det Σ)−1/2

∫
R4d

|F (u−z)||G(v−w)|v−N(D′Uv−D′′V u)dudv.

Set F̃ = F ◦ (D′′V )−1 and G̃ = G ◦ (D′U)−1. Then

|〈µ(S)π(z)g, π(w)γ〉| .N (det Σ)3/2

∫
R4d

|F̃ (u−D′′V z)||G̃(v −D′Uw)|v−N(v − u)dudv

= (det Σ)3/2

∫
R4d

|F̃ (u)||G̃(v +D′′V z −D′Uw)|v−N(v − u)dudv

= (det Σ)3/2(|F̃ | ∗ v−N ∗ |G̃|∨)(D′Uw −D′′V z)
= H(D′U(w − Sz)),

where we defined

(29) H(u) = (det Σ)3/2(v−N ∗ |F̃ | ∗ |G̃|∨)(u), u ∈ R2d.
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For g ∈ Mp(Rd) and γ ∈ M q(Rd) we apply Young’s inequality to prove that H ∈
Lr(R2d) for 1/p+ 1/q = 1 + 1/r, cf. (24). In particular, since N > 2d,

‖H‖Lr ≤ (det Σ)3/2‖v−N‖L1‖|F̃ | ∗ |G̃|∨‖Lr

. (det Σ)3/2−1/p−1/q ‖F‖Lp ‖G‖Lq

. (det Σ)1/2−1/r ‖g‖Mp ‖γ‖Mq .

For g, γ ∈M∞
vs (Rd), s > 2d, we note that

|F̃ (u)| ≤ ‖g‖M∞vs (1 + |(D′′)−1u|)−s, |G̃(u)| ≤ ‖γ‖M∞vs (1 + |(D′)−1u|)−s.

Therefore, since N > s and again by Young’s inequality,

‖H‖L∞vs−2d
≤ (det Σ)3/2‖v−N‖L1

vs−2d
‖|F̃ | ∗ |G̃|∨‖L∞vs−2d

. (det Σ)3/2‖g‖M∞vs ‖γ‖M∞vs
∥∥v−s((D′)−1·) ∗ v−s((D′′)−1·)

∥∥
L∞vs−2d

. (det Σ)−1/2 ‖g‖M∞vs ‖γ‖M∞vs ,

where in the last step we used Lemma 2.8 with the substitutions u 7→ (D′)−1(D′′)−1u
and v 7→ (D′)−1v. �

Remark 3.1. Notice that after setting H̃ = H ◦D′U the estimate (6) reads

|〈µ(S)π(z)g, π(w)γ〉| ≤ H̃(w − Sz),

while (7) becomes

‖H̃‖Lr . (det Σ)1/2 ‖g‖Mp ‖γ‖Mq .

It is then clear that there is a trade-off between phase-space concentration of µ(S)
along the graph of S and the spreading of wave packets.

We also emphasize that a similar balance involves the Gabor matrix decay and
dispersion: arguing as before it is easy to show that if g, γ ∈M∞

vs (Rd), s > 2d,

‖H‖L∞vs . (det Σ)3/2‖g‖M∞vs ‖γ‖M∞vs .

Remark 3.2. More precise claims on the regularity of H can be made in view of its
structure, cf. (29). Precisely, since N > 2d it is easy to realize that v−N belongs to the
Wiener algebra W (C0, L

1)(R2d) of continuous functions f : R2d → C that are globally
in L1, namely

‖f‖W (C0,L1) :=

∫
Rd

(
max
x∈[0,1]d

|f(x+ y)|
)
dy <∞.

The Wiener algebra is an example of more general amalgam spaces W (X,Lp)(R2d)
with local and global components X and Lp respectively, obtained by mixing conditions
on local regularity (encoded by some norm ‖·‖X) and global Lp decay - see the original



18 ELENA CORDERO, FABIO NICOLA AND S. IVAN TRAPASSO

paper [19] and the recent monograph [14] for further details and proofs of the mentioned
results.

We recall that Lp(Rd) = W (Lp, Lp)(Rd) for any 1 ≤ p ≤ ∞, and that Wiener
amalgam spaces do preserve Banach convolution triples in local and global components.
With reference to our case, since (C0, L

p, C0) and (L1, Lp, Lp), 1 ≤ p ≤ ∞, are Banach
convolution triples, we have that

W (C0, L
p)(R2d) ∗W (L1, Lp)(R2d) ⊂ W (C0, L

p)(R2d).

We thus infer that v−N ∗ |F̃ | ∈ W (C0, L
p)(R2d) and again, since

W (C0, L
p)(R2d) ∗W (Lq, Lq)(R2d) ⊂ W (C0, L

r)(R2d),
1

p
+

1

q
=

1

r
,

arguing as before we conclude that H = (det Σ)3/2v−N ∗ |F̃ | ∗ |G̃|∨ ∈ W (C0, L
r)(R2d),

with
‖H‖W (C0,Lr) . CN(det Σ)1/2−1/r‖g‖Mp‖γ‖Mq ,

where we set CN = ‖v−N‖W (C0,L1).
Similar arguments show that if g, γ ∈M∞

vs (Rd), s > 2d, then H ∈ W (C0, L
∞
vs)(R

2d)
but a deterioration of the dispersive factor occurs as expected:

‖H‖W (C0,L∞vs ) . (det Σ)3/2‖g‖M∞vs ‖γ‖M∞vs .
We conclude with a result in the same spirit for generalized metaplectic operators.

Theorem 3.3. Let 1 ≤ p, q, r ≤ ∞ satisfy 1/p + 1/q = 1 + 1/r. Consider S ∈
Sp(d,R) with an Euler decomposition (U, V,Σ), a ∈M∞,1(R2d) so that T := awµ(S) ∈
FIO(S), cf. Theorem 2.5. For any g ∈ Mp(Rd), γ ∈ M q(Rd) there exists H ∈
Lr(R2d) such that, for any z, w ∈ R2d,

(30) |〈Tπ(z)g, π(w)γ〉| ≤ H(D′U(w − Sz)),

with
‖H‖Lr ≤ (det Σ)1/2−1/r ‖a‖M∞,1 ‖g‖Mp ‖γ‖Mq .

Proof. We assume ‖g‖L2 = ‖γ‖L2 = 1 without loss of generality. Denoting by
Kµ(S)(w, z) = 〈µ(S)π(z)g, π(w)γ〉 the Gabor matrix of µ(S) and similarly forKaw(w, z) =
〈awπ(z)γ, π(w)γ〉, in view of (19), by Theorems 2.3 and 2.5 we have

|〈Tπ(z)g, π(w)γ〉| = |〈awµ(S)π(z)g, π(w)γ〉|

≤
∫
R2d

|Kaw(w, u)||Kµ(S)(u, z)|du

=

∫
R2d

|〈awπ(u)γ, π(w)γ〉||〈µ(S)π(z)g, π(u)γ〉|du

≤
∫
R2d

Ha(w − u)HS(D′Uu−D′′V z)du,
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where HS is the controlling function in Theorem 1.2 (i) and Ha is the one appearing
in Theorem 2.3 with g = γ; in particular ‖Ha‖L1 � ‖a‖M∞,1 . The substitution
y = D′U(w − u) yields

|〈Tπ(z)g, π(w)γ〉| ≤ (det Σ)
[
(Ha ◦ (D′U)−1) ∗HS

]
(D′U(w − Sz)).

The claim follows by Young inequality and Theorem 1.2 (i) after setting H =
(det Σ)(Ha ◦ (D′U)−1) ∗HS:

‖H‖Lr ≤ (det Σ)
∥∥Ha ◦ (D′U)−1

∥∥
L1 ‖HS‖Lr

= ‖Ha‖L1 ‖HS‖Lr
. (det Σ)1/2−1/r ‖a‖M∞,1 ‖g‖Mp ‖γ‖Mq .

�

We conclude with the proof of Theorem 1.3; namely we study how the modulation
space regularity on a cone in the phase space behaves under the action of a metaplectic
operator.

Proof of Theorem 1.3. Fix g, γ ∈ S(Rd) \ {0} with ‖g‖L2 = ‖γ‖L2 = 1, and Γ and Γ′

as in the statement. From (19) with A = µ(S) and Theorem 1.1, for any N > 0 we
have

|Vγ(µ(S)f)(w)| ≤
∫
R2d

|Kµ(S)(w, z)||Vgf(z)|dz

.N (det Σ)−1/2

∫
R2d

v−N(D′U(w − Sz))|Vgf(z)|dz

.N (det Σ)−1/2

∫
R2d

H(w − Sz)|Vgf(z)|dz,

where we set H = v−N ◦ D′U . After naming G = H ◦ S = v−N ◦ D′′V we apply
Hölder’s inequality and get

I := ‖µ(S)f‖M1
(γ)

(S(Γ′))

=

∫
S(Γ′)

|Vγ(µ(S)f)(w)|dw

=

∫
Γ′
|Vγ(µ(S)f)(Sw)|dw

. (det Σ)−1/2

∫
Γ′

∫
R2d

G(w − z)|Vgf(z)|dzdw.

We then have I . I1 + I2, where

I1 := (det Σ)−1/2

∫
Γ′

∫
Γ

G(w − z)|Vgf(z)|dzdw,
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I2 := (det Σ)−1/2

∫
Γ′

∫
Γc
G(w − z)|Vgf(z)|dzdw.

Young’s inequality yields

I1 ≤ ‖G‖L1 ‖Vgf · 1Γ‖L1 . (det Σ)1/2 ‖f‖M1
(g)

(Γ) .

After setting F (z) = |Vgf(z)|v−r(z), the remaining integral is

I2 = (det Σ)−1/2

∫
Γ′

∫
Γc
G(w − z)vr(z)F (z)dz.

The key point is now that

1 + |w − z| � max{1 + |w|, 1 + |z|}, w ∈ Γ′, z ∈ Γc,

hence

I2 . (det Σ)−1/2

∫
Γ′

∫
Γc
G(w − z)vr(w − z)F (z)dz

≤ (det Σ)−1/2 ‖(G · vr) ∗ F‖L1

. (det Σ)−1/2 ‖G · vr‖L1 ‖f‖M1
v−r

.

Therefore, the remaining integral to estimate is

‖G · vr‖L1 =

∫
R2d

(1 + |D′′z|)−N(1 + |z|)rdz.

Recall that D′′ = I ⊕ Σ−1, cf. (10), and consider the elementary estimates

v−N(D′′z) ≤ v−N/2d(z1) · · · v−N/2d(zd)v−N/2d(σ−1
1 zd+1) · · · v−N/2d(σ−1

d z2d),

vr(z) ≤ vr(z1) · · · vr(z2d).

As a result, the integral is dominated by AdB1 · · ·Bd, where

A :=

∫
R
(1 + |x|)−N/2d+rdx,

Bj :=

∫
R
(1 + σ−1

j |x|)−N/2d(1 + |x|)rdx, j = 1, . . . , d.

If N is large enough then A <∞ and Bj . σ1+r
j , therefore

I2 . (det Σ)1/2+r ‖f‖M1
v−r

,

and the claim follows. �
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Remark 3.4. (1) Condition (9) can be generalized to introduce the notion of Mp-
regularity, 1 ≤ p ≤ ∞, on the cone Γ with respect to g ∈ S(Rd) \ {0}. The
latter is satisfied for f ∈ S ′(Rd) if

(31) ‖f‖Mp
(g)

(Γ) := ‖Vgf · 1Γ‖Lp <∞.

Weighted versions of such conditions can be defined similarly. The proof of
Theorem 1.3 can be easily modified in order to prove the estimate

(32) ‖µ(S)f‖Mp
(γ)

(S(Γ′)) . (det Σ)1/2
(
‖f‖Mp

(g)
(Γ) + (det Σ)r ‖f‖Mp

v−r

)
,

which however is not sharp unless p = 1 or p = ∞. We postpone further
investigations on the issue to a subsequent contribution.

(2) The notion of Mp-regularity does not depend on the window g used to compute
Vgf in (31) provided that a slightly smaller cone is allowed when changing
window. This is indeed a consequence of (32) in the case where S = I. The
properties of Mp

(g)(Γ) as a function space will be object of future studies.

Corollary 3.5. Consider 1 ≤ p ≤ ∞. There exists C > 0 such that, for any
f ∈Mp(Rd), S ∈ Sp(d,R),

‖µ(S)f‖Mp ≤ C(det Σ)|1/2−1/p|‖f‖Mp .

Proof. By choosing Γ = Γ′ = R2d \ {0} and r = 0 in Theorem 1.3 we see that the
desired estimate holds for p = 1. Since µ(S) is unitary on L2(Rd), the operator
µ(S−1), and therefore µ(S), satisfies the same estimate for p =∞. Interpolating with
the trivial L2-estimate, we obtain the desired result (modulation spaces interpolate
like the corresponding Lp spaces [20]). �

4. Applications to the free particle propagator

Let us consider the free particle propagator U(t) = ei(t/2π)∆ and the corresponding
classical flow (20); a straightforward computation shows that the largest d singular
values of St coincide:

σj = σ(t) = (1 + 2t2 + 2(t2 + t4)1/2)1/2 =
√

1 + t2 + |t|, j = 1, . . . , d.

Note in particular that σ(t) is comparable to 1 + |t|, t ∈ R. An example of Euler
decomposition (Ut, Vt,Σt) of St for t ≥ 0 is given by

Ut = (1 + σ(t)2)−1/2

[
σ(t)I I
−I σ(t)I

]
, Vt = (1 + σ(t)2)−1/2

[
I σ(t)I

−σ(t)I I

]
.

Theorem 1.1 thus yields∣∣〈ei(t/2π)∆π(z)g, π(w)γ〉
∣∣ ≤ C(1 + |t|)−d/2(1 + |D′tUt(w − Stz)|)−N , z, w ∈ R2d.
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The spreading phenomenon manifests itself as a dilation by

D′tUt = (1 + σ(t)2)−1/2

[
I σ(t)−1I
−I σ(t)I

]
.

We attempt to shed some light on the apparently unintelligible structure of such
matrix by means of a toy example in dimension d = 1. Let z = 0 for simplicity and
assume that the atom g is concentrated on the box Q = {(x, ξ) ∈ R2 : |x| < 1, |ξ| < 1}
in phase space. In view of (4) we are lead to consider

(D′tUt)
−1(Q) = {(x, ξ) : |x+ σ−1(t)ξ| <

√
1 + σ(t)2, |x− σ(t)ξ| <

√
1 + σ(t)2}.

Therefore, the effect of D′tUt on Q ultimately amounts to a horizontal stretch by a fac-
tor of approximately σ(t). While the set (D′tUt)

−1(Q) only represents an envelope of
the actual phase-space evolution of the initial wave packet, the findings are consistent
with the result in (2); see also [11, Fig. 1-8] for illuminating graphic representations.
We stress that the estimate (1) is completely blind to such spreading effect.
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