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On the Challenges of Open World Recognition
under Shifting Visual Domains

Dario Fontanel1, Fabio Cermelli1,2, Massimiliano Mancini3 and Barbara Caputo1,2

Abstract— Robotic visual systems operating in the wild must
act in unconstrained scenarios, under different environmental
conditions while facing a variety of semantic concepts, including
unknown ones. To this end, recent works tried to empower
visual object recognition methods with the capability to i) detect
unseen concepts and ii) extended their knowledge over time, as
images of new semantic classes arrive. This setting, called Open
World Recognition (OWR), has the goal to produce systems
capable of breaking the semantic limits present in the initial
training set. However, this training set imposes to the system
not only its own semantic limits, but also environmental ones,
due to its bias toward certain acquisition conditions that do
not necessarily reflect the high variability of the real-world.
This discrepancy between training and test distribution is called
domain-shift. This work investigates whether OWR algorithms
are effective under domain-shift, presenting the first benchmark
setup for assessing fairly the performances of OWR algorithms,
with and without domain-shift. We then use this benchmark to
conduct analyses in various scenarios, showing how existing
OWR algorithms indeed suffer a severe performance degrada-
tion when train and test distributions differ. Our analysis shows
that this degradation is only slightly mitigated by coupling
OWR with domain generalization techniques, indicating that
the mere plug-and-play of existing algorithms is not enough
to recognize new and unknown categories in unseen domains.
Our results clearly point toward open issues and future research
directions, that need to be investigated for building robot visual
systems able to function reliably under these challenging yet
very real conditions.

I. INTRODUCTION

Given an image, recognizing the presence of an object
and its semantic category is a fundamental capability for any
robotic visual system. Indeed, knowledge about the category
is helpful in many tasks, such as object manipulation [1],
handling [2], and kitting [3]. A primary issue of standard
object recognition algorithms is the closed world assumption
(CWA), meaning that the set of categories available during
training are assumed to be the only one the robot will ever
encounter when deployed. This assumption is unrealistic
for robots operating in unconstrained scenarios, due to the
infinite number of semantics present in the world.

The urge to break the CWA has lead researchers to
consider the open world recognition (OWR) problem [4]. In
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Fig. 1: Our considered problem. In OWR a robot is asked to
incrementally learn new concepts over time while detecting
images containing unseen concepts. Our question is: does
the effectiveness of the visual system hold when acting in
different visual domains and environments?

OWR, an algorithm is asked to both detect unseen semantic
concepts as well as learning new semantic categories over
time. Various solutions for OWR have been developed [4],
[5], [6], [7], based on shallow [4], [5] and deep [6], [7]
classification models.

Despite their effectiveness, these algorithms always con-
sider the training and test images to share the same ac-
quisition conditions. As for CWA, this assumption, which
we name closed domain (CDA), is sound only for robots
operating in highly constrained settings, such as industrial
robots. However, CDA is unrealistic for e.g., mobile robots
working in the wild, and we need their visual systems to
be able of dealing with the various input distributions (a.k.a,
domains) that can arise from, e.g., different environments,
illumination, and acquisition conditions. As an example, a
visual system for security robots patrolling public spaces,
trained on purely day-time images, might struggle to gener-
alize to night-time ones due to abrupt differences between the
two. This difference between training and test distributions
is called domain-shift [8]. Multiple works addressed this
problem in robot vision, under the framework of domain
adaptation (DA) [9], [10]. In the standard domain adaptation
scenario, we have labeled data for one training (source)
domain, and unlabeled data for one test (target) domain, and
the goal is to use these data to model the discrepancy among
source and target distributions. Since the presence of target



data beforehand is a strong requirement, recent works tried
to perform adaptation without target data during the initial
training stage. In particular, they either exploit the stream of
incoming target data [11], [12], a domain description [13],
[14], and generalization strategies on either single [15], [16]
or multiple [17] source domains. Despite these efforts, most
of the DA algorithms focused on the case where training and
test categories are shared, i.e., under the CWA.

Since our final goal is to break CWA and CDA simulta-
neously (see Fig. 1), a crucial open question remains: can
OWR algorithms work under domain-shift? In this work, we
try to answer this question, benchmarking OWR algorithms
under changes between training and test distributions.

To fulfill this goal, we test three OWR algorithms, namely
Nearest-Non Outlier [4], [5], DeepNNO [6] and Boosting
Deep OWR by Clustering (B-DOC) using the well-known
RGB-D Object dataset (ROD) [18] and two datasets shar-
ing the same semantic categories but different acquisition
conditions, namely synthetic ROD (synROD) [10] and Au-
tonomous Robot Indoor Dataset (ARID) [19]. Training the
models on either synROD or ROD and testing on the other
datasets, we show how OWR algorithms indeed suffer from
severe performance degradation when tested on domains
different from the training one, with drops ranging from
10% to almost 45% in OWR harmonic mean. Interestingly,
despite the highest performance on in-domain test, end-to-
end trained deep OWR algorithms show to suffer the domain-
shift problem even more than non end-to-end counterparts.

We then couple NNO, DeepNNO, and B-DOC with three
single source domain generalization (DG) algorithms. Our
experiments show that DG algorithms mitigate but do not
resolve this problem, underlying how the objective of solving
CWA and CDA together is far from being solved.

Contributions. To summarize:
• We perform the first benchmark of OWR algorithms

under domain-shift, showing how their performances
heavily decrease when tested on different domains.

• We show how coupling OWR models with single-source
DG ones can only reduce but not eliminate this problem.

• We propose a validation procedure and we release our
benchmark for allowing easy and fair future research.

II. RELATED WORKS

A. Open World Recognition

The seminal work of Bendale et al. [4] defined the OWR
problem, trying to overcome the clear limitations of the
CWA. In [4], the authors also proposed the first OWR
algorithm, NNO, extending the popular Nearest Class Mean
(NCM) [20] with a rejection option for detecting unseen
concepts. In [5] an extension of NNO is proposed for
dynamic update of the classifier with online data streams.

Both [4] and [5] developed their OWR algorithms on top
of shallow features. In our previous works [6], [7] we tested
the benefits of more powerful deep representations [21],
developing two deep learning-based approaches for OWR.
In [6], we proposed the DeepNNO algorithm, an end-to-end

trainable deep extension of the original NNO using Deep
NCM [22] as classifier. In [7], we presented B-DOC, an
algorithm improving DeepNNO by considering clustering
objectives and the use of class-specific rejection thresholds.

Despite the advances in the field, none of these works
tested the robustness of the models under domain-shift. Pre-
liminary experiments were performed only on [6], showing
that using web images to learn novel classes was feasible
but with a decrease in the overall performance of the model,
due to the label noise and the domain-shift. In this work, we
are the first to explicitly benchmark these algorithms under
settings involving different training and test distributions.

B. Domain-Shift in Robot Vision

For robotic systems working in the wild is of utmost
importance to develop models robust to domain-shift. With
this goal, several efforts have been devoted in robotics to
perform adaptation in the presence of target data [23], [24],
[9], [25], [26], [27]. However, since it is impossible to
collect data for every possible target domain beforehand,
researchers explored techniques to address the domain-shift
problem without the presence of target data during training.
One solution is using the stream of incoming target data,
performing adaptation in an online fashion by e.g., updating
domain-specific components [11] and/or through adversarial
objectives [12]. A drawback of these strategies is their slow
adaptation time, a problem in scenarios where fast adaptation
is required (e.g., sudden illumination changes).

A way to produce systems robust to (possibly) any tar-
get domain without using any target data (neither during
training nor during employment), is resorting to domain
generalization techniques [17]. In this scenario, standard
methods focused on the multi-source settings [17], while
less research has been devoted to the case when only a
single source domain is present. In the latter, since we cannot
explicitly disentangle domain-specific and semantic-specific
information, one solution is to build structurally more robust
classifiers by means of part-based models [28], [16], multiple
visual cues [29], regularization strategies [30] and self-
supervised learning [31]. Another option is to simulate the
presence of multiple source domains through adversarial
techniques [32] or data augmentation [15]. In the latter
case, data augmentation can simulate increasingly harder new
domains [15] or fictitious multiple sources [33].

In this work, we focus on DG models due to their readily
applicability to various target domains without requiring
any target data. Despite some efforts in testing domain
adaptation models under open-set [34], [35] and zero-shot
[36] scenarios, we are the first to explicitly study the domain-
shift problem in OWR, testing the effectiveness of coupling
OWR and DG algorithms for it.

III. BENCHMARKING OWR ALGORITHMS UNDER
DOMAIN-SHIFT

A. Problem formulation

Let us formalize the OWR problem. Suppose we have an
initial training set T0 = (xi, yi)i=1N0 , with xi being an image



NNO DeepNNO B-DOC
ω fixed updated updated
φ N (1− d(z,µy)

τ
) exp

(
− 1

2
||z − µy ||

)
1
ϕ

∥∥z − µy∥∥2
σ τ ≤ 0 φ ≤ τ φ > τ
τ fixed updated learned

TABLE I: Difference among OWR algorithms. Each method
learns a classification function f in which ω is the feature
extractor, φ is the scoring function, σ is the final prediction
function,N is a normalization factor, ϕ where is the standard
deviation of the features in z = ω(x) and τ is the method-
specific threshold(s).

in the image space X , yi being a class label in the set Y0,
and N0 the number of samples. Sequentially, at learning step
T we will receive another training set TT containing a novel
set of classes, i.e., YT

⋂
Yt = ∅ ∀t ∈ [0, T − 1]. Our goal

is to learn a function f : X → Kt ∪ u mapping an image x
into either one of the semantic classes learned until step T
(i.e., KT =

⋃T
t=0 Yt) or the unknown class u.

Note that, f will be incrementally updated (as a new
training set arrives) while still being asked to detect possibly
unseen concepts. OWR algorithms differ in the way f is
defined and learned. Without loss of generality, we consider
f being built on three components: a feature extractor ω :
X → Z mapping images into a feature space Z; a scoring
function φ : Z → <|KT | mapping features in Z to known
class scores; and σ : <|KT | → Kt ∪ u, mapping the class
scores to the final prediction. In the following we will
describe how various OWR algorithms have defined (and
eventually learned) ω, φ and σ (see Table I for a summary).

B. OWR algorithms

Nearest Non-Outlier (NNO). NNO [4] is a non-parametric
OWR approach. For a known class y and a sample x, the
scoring function φ takes the form:

φNNO
y (z) = N (1− d(z, µy)

τ
),

where z = ω(x), d is a distance measure, µy is the
class-specific centroid, τ is a rejection threshold and N
is a normalization factor. The class specific centroid µy is
computed with the Nearest-Class Mean (NCM) algorithm
[20], while the threshold τ using a set of held-out validation
samples. The final prediction is obtained by:

σ(z) =

{
u if φNNO

y (z) ≤ 0 ∀y ∈ Kt,
arg maxy∈YT

φNNO
y (z) otherwise.

While in the general case, ω is a shallow feature extractor
(e.g., SIFT [37]), in our benchmark we use a deep architec-
ture pretrained on the base training set T0 with DeepNCM
[22] as classifier and the online version of NNO presented
in [5] to compute the class centers µy and the threshold τ .
Deep Nearest Non-Outlier (DeepNNO). DeepNNO [6] is a
deep extension of NNO. In this case, ω is a deep architecture,
end-to-end trained. The score function is:

φDNNO
y (z) = exp

(
−1

2
||z − µy||

)
.

with the final prediction obtained as:

σ(z) =

{
u if φDNNO

y (z) ≤ τ ∀y ∈ Kt,
arg maxy∈YT

φDNNO
y (z) otherwise.

Both µy and τ are updated online, the first as the underline
feature representation is learned, the second based on the
confidence on the scores for both correctly and wrongly
classified training samples. At step t, the feature extractor
ω is trained by minimizing the following objective:

L =
1

|Tt|
∑
i

`BCE(xi, yi) + λ`DS(x, ωt−1) (1)

where λ is a trade-off hyperparameter, `BCE is the standard
binary-cross entropy loss and `DS the distillation loss defined
in [38] on the feature space:

`DS(x, ωt−1) = ||ω(x)− ωt−1(x)|| (2)

with ωt−1 being the feature extractor after the previous
learning step. This loss, together with a set of stored samples
of old classes prevents forgetting of past knowledge.

Boosting Deep OWR by Clustering (B-DOC). B-DOC [7]
revises the ideas of DeepNNO by imposing two clustering
constraints on the feature space and learning class-specific
rejection thresholds. In particular, the score function of B-
DOC is directly defined on the distances from the features
and the class centroid, i.e. it is defined as:

φBDOC
y (z) =

1

ϕ

∥∥z − µy∥∥2 , (3)

where ϕ is the standard deviation of the features in z = ω(x).
The prediction function is:

σ(x) =

{
u ifφBDOC

y (z) > τy, ∀y ∈ Yt,
argminyφ

BDOC
y (z) otherwise

with τy being a class-specific rejection threshold learned
using maximal distance constraint in a reserved set of
training samples with random augmentations. While the
distillation loss of Eq. (2) and the stored exemplars are used
to prevent forgetting, the representation is enforced with two
clustering objectives. The first is the cross-entropy loss on
the softmaxed negative scores computed in Eq. (3), for global
clustering. The second is the soft-nearest neighbor loss [39]
for local clustering:

`SNNL(x, y,B) = − log

∑
xj∈By\{x}

e−
1
ϕ ||ω(x)−ω(xj)||2

∑
xk∈B\{x}

e−
1
ϕ ||ω(x)−ω(xk)||2

with B being the current training batch, and By the set of
samples in the training batch belonging to class y. The final
loss is:

L =
1

|Tt|
∑
i

`CE(xi, yi)+γ`SNNL(xi, yi,B)+λ`DS(x, ωt−1)

with γ and λ being trade-off hyperparameters.



C. Single-source DG algorithms

In this section, we describe the single source domain
generalization algorithms we use in our benchmark.
Data augmentation with transformation sets. (RSDA)
The first common approach for addressing single source
domain generalization is through data augmentation tech-
niques, either adversarial [32], [33] or transformation based
[15]. As representative of this category, we choose the data
augmentation based approach of [15]. In particular, given
a training batch B = {(xi, yi)}ni=1, the model is trained
applying the semantic objectives on a transformed version
of the batch B̂ = {(αxi, yi)}ni=1 where α is a randomly
sampled transformation from a set A. Given a set of simple
transformations A (e.g., blurring, mirroring) the set A is
populated by composed transformations using the elements
in A. In particular, an evolutionary-based search selects the
combinations of A leading to the worst performances for
the current model and adds it to A. The hyperparameters
of the model are the set of basic transformations A, their
possible values and the frequency at which A is updated. We
fix the set A to the following transformations: hue, contrast,
brightness, saturation, random crop and mirroring.
Self-supervised learning with relative rotations. (RR)
Another popular strategy for achieving good domain gen-
eralization performances is through self-supervised learning
[31]. In particular, the presence of a self-supervised auxiliary
task makes the model focusing on discriminative invariances
and regularities helping generalization to new domains [31].
For the task to be helpful, it must require the model to reason
on the actual content of the image, rather than its specific
style and appearance. Among possible tasks, effective ones
are solving jigsaw puzzles [40], [31] and predicting rotations
[41], [35]. Here we take the task of relative rotations [35].
In particular, given a batch B, we build a new batch B̂
as B̂ = {(xi, yi, rotθi(xi), θi)}ni=1 where rot is a rotation
transformation applied with angle θi to the original image xi.
Since θi is sampled from a discrete set Θ (i.e., 0°, 90°, 180°
and 270°), the auxiliary task is classifying which θi has been
applied to xi. To perform this, we instantiate a new network
branch ρ mapping features extracted from the original image
and its rotated counterpart to the correct rotation angle, i.e.,
ρ : Z×Z → Θ. A standard cross-entropy loss is used on top
of the rotation predictions and it is used to update both ρ and
ω. In the full objective of an OWR algorithm (e.g., Eq.(1)),
this auxiliary loss is added scaled by a trade-off parameter ξ.
Note that we apply the semantic objectives also to the rotated
samples and that we perform random data augmentations to
them, to increase the complexity of the auxiliary task.
Regularization through self-challenging. (SC) Finally, reg-
ularization strategies can improve generalization to unseen
domains [30]. Here we test the self-challenging algorithm
of [30], where the model is asked to classify corrupted
features, obtained by removing the elements that mostly
contributed to a correct classification of the current sample.
Formally, features are extracted from the original samples
(i.e., z = ω(x)), to compute a score φy(z) for the ground-

truth class y. Then, the gradient of the score with respect
to z is computed (i.e., g = ∂φy(z)/∂z). Finally, a new set
of features ẑ is calculated by applying a mask m on the
original features z, i.e., ẑ = m ◦ z where ◦ is the Hadamard
product and m is a binary mask with 0s for every value zj
whose gradient gj ≥ qp, and 1 otherwise. The threshold qp
is computed ensuring to preserve the top-p percentile of the
activations per corrupted samples. The hyperparameters of
the model are the corruption ratios sample- and batch-wise.

D. Experimental setting

We conduct the experiments on three datasets : RGB-D
Object dataset (ROD) [18], synthetic ROD (synROD) [10],
and Autonomous Robot Indoor Dataset (ARID) [19]. The
three datasets contain images of the same set of 51 daily-life
objects but under very different acquisition conditions.

ROD [18], is one of the most used dataset for object
recognition in robotics. In ROD, different instances of the
objects are captured while lying on a table in a quasi-
ideal scenario, where there is no clutter, no illumination or
background changes but only different camera angles.

synROD [10] is a synthetic version of ROD [18], created
by rendering public 3D models available on free catalogs.
The authors rendered the scenes using a ray-tracing engine
in Blender to simulate a realistic lighting. This benchmark
was proposed to test the ability of a model to deal with the
domain-shift existing between synthetic and real images.

In ARID [19] instead the objects are represented with sev-
eral backgrounds, scales, views, lighting conditions, and dif-
ferent levels of occlusions. Thus, ARID is a more challenging
dataset, originally developed to evaluate the robustness of
deep recognition models in unconstrained environments.

Regarding the evaluation procedure, we divide the seman-
tic categories following the same split provided in [7], i.e.,
we use 26 classes as known and 25 as unknown, considering
the first 11 as base classes and adding 5 classes at the time
in each incremental step. In each experiment we used all
the images belonging to the instances of the first train-test
split defined in [18], with one instance per class in the test
set and all the others in the training set. For synROD, we
followed the split proposed in [10], adding the images of the
3 classes of ROD excluded from the benchmark1. Finally,
we use ARID [19] only for test, being the most challenging
and realistic scenario.

Metrics. To asses the performances of OWR methods we
use two different metrics. To evaluate the ability to learn
new concepts, we use the accuracy over the set of known
classes (i.e, closed world) averaged across all incremental
steps. We report the results for this metric with and without
the rejection option (i.e., the possibility to detect unknown
concepts). To test the performances on the actual OWR
scenario, we use the open world harmonic mean (OWR-
H), i.e., the harmonic mean between the closed world with
rejection and the open set accuracies averaged across all
incremental step, as proposed in [7].

1Images of the remaining 3 classes were provided by the authors of [10].



E. Validation protocol

An open question in OWR is how to set the values of
the hyperparameters of a method since i) only a subset of
the semantic class is available in each training step and ii)
images of unknown categories are not available. Here, we
propose a strategy exploiting only the base classes to find
the best hyperparameters.

In particular, we propose to split the classes available in
the first training stage in two sets: known and unknown
classes. We consider 10% of the base classes (e.g., 2 out of
11 in our benchmark) as unknown while the rest as known
classes. From the known class set, we use 50% of them
(e.g., 5 out of 9 in our benchmark) as classes for the first
training step, while we use the second half (4 out of 9 in our
case) to construct the incremental learning steps. Note that
with these three splits we have artificially created i) a set of
base classes to start training the model, ii) a set of classes
that will be incrementally learned and iii) a set of unseen
concepts to evaluate the open set performances of the model.
Finally, since the number of classes we will receive in each
incremental step is unknown during deployment, we simulate
this uncertainty by adding the set of incremental classes in
multiple trials with different class cardinality. Specifically,
we use multiple steps with a single class (e.g., 4 steps with
1 class in our benchmark), two steps with half of the classes
(e.g., 2 steps of 2 classes), and a single step with all of them
(e.g., 1 step with 4 classes). The split among known/unknown
classes and among base/incremental is repeated multiple
times, to ensure a better hyperparameter values estimation.

Once we obtain these base class splits, we perform hy-
perparameters validation in two steps. In the first, the hy-
perparameters that contribute only to acquire the knowledge
of the network (i.e., closed world without rejection) are
validated. This ensure that the method is capable of actually
learning the novel concepts, without the risk of focusing
on either retaining only the old knowledge or having low
confidence on the predictions which might damage the open
set performance lately. In this stage, two kind of hyper-
parameters are validated: the ones related to the network
optimized (e.g., learning rate and weight decay) and the ones
related to the weights of the semantic loss functions (e.g.,
cross-entropy, distillation and clustering). In the second step,
we validate all hyperparameters related to the detection of
samples containing unknown categories, using the OWR-H
performances. For instance, we validate the negative weight
used to update the rejection thresholds in DeepNNO [6] and
the learning rate used by B-DOC [7] to learn the class-
specific rejection thresholds.

We want to highlight that this whole procedure is agnostic
to the underlying OWR model and the benchmark, using just
the set of base classes to select the optimal hyperparameters.
The only hyperparameters that we did not set using this
protocol are the training epochs of base and incremental
steps. For these, we select the epoch by looking at the
training accuracy on the classes present in each learning
step. In our case, we set 12 epochs for ROD and 70 for

synROD for the base classes. For the incremental step we
use a number of epoch proportional to the number of added
classes for ROD, while we fix this value to 35 for synROD,
being a more difficult scenario.

IV. RESULTS

In this section, we show the results of our benchmark. We
start by testing standard OWR algorithms under domain-shift
(Section IV-A), in both Syntethic-to-Real and Constrained-
to-Unconstrained scenarios, showing severe performance
degradations whenever their input distribution changes. We
then show how single source DG algorithms coupled with
OWR methods can mitigate the domain-shift problem, de-
spite being still far from solving it (Section IV-B). We finally
discuss the implications of our benchmark, open issues and
future research directions (Section IV-C).

A. Are OWR models Robust to Domain Shift?

Synthetic-to-Real. We start our experimental analysis by
considering as source domain the synROD dataset and all the
others as target domains in turn. Results are reported in Fig. 2
in terms of closed world without rejection performances,
closed world with rejection and OWR harmonic mean. As
we can see from Fig. 2, all the OWR methods suffer
a significant drop in performance under domain-shift. In
particular, from Fig. 2a we note that in the closed world
scenario without the possibility of classifying samples as
unknowns, recognizing real objects is a very difficult task
for all the OWR methods trained on synthetic data. While
DeepNNO and B-DOC achieve good results without domain-
shift, (47.6% and 46.1% respectively) their performance drop
of almost 18% when going from synROD to ROD, and of
almost 26% from synROD to the more challenging ARID.

Similarly, in Fig. 2b, with the rejection option the perfor-
mances drop in average of almost 15% on ROD and of more
than 19% on ARID. Surprisingly, B-DOC suffers more than
all the others when the rejection option is introduced, losing
nearly 16% accuracy on ROD and 20% on ARID. This may
be due to the fact that the thresholds of B-DOC are estimated
on a held out set from the training data. Consequently, since
these samples do not represent the distribution of test samples
under domain-shifts, the wrongly computed thresholds lead
the model to perform poorly. Similar is the behaviour of
the other deep model, DeepNNO, reaching the poor closed
world with rejection accuracies of 9.6% on ROD and 5.4%
on ARID. Surprisingly, the non end-to-end approach NNO
achieves considerably higher performances on ROD and
ARID, with an average loss of 13.5%. The reason behind
this behaviour is that the threshold computed by NNO on
synROD is usually low, due to the low confidence on the
predictions of its shallow classification model and the high
variability of the dataset. This allows NNO to reject less
samples, thus better preserving the closed world accuracy.
Despite that, the performance on ARID, with an average of
nearly 5%, arise serious concerns on the applicability of these
algorithms in real scenarios.



(a) Closed World Without Rejection (b) Closed World With Rejection (c) OWR Harmonic mean

Fig. 2: Comparison of NNO [4], DeepNNO [6] and B-DOC [7] trained on synROD [10] and tested on synROD [10], ROD
[18] and ARID [19]. The numbers denote the average accuracy among the different incremental steps.

(a) Closed World Without Rejection (b) Closed World With Rejection (c) OWR Harmonic mean

Fig. 3: Comparison of NNO [4], DeepNNO [6] and B-DOC [7] trained on ROD [18] and tested on ROD [18] and ARID
[19]. The numbers denote the average accuracy among the different incremental steps.

Finally, as a global analysis from Fig. 2c, we can see that
the OWR-H performances confirm the previous trends. All
the methods suffer a huge performance drop, of more than
19% on average on ROD and of 26% in ARID. In particular,
the performance of both deep models, DeepNNO and B-
DOC decrease of almost 23% in ROD and of 30% in ARID.
Again (and surprisingly) NNO shows a good trade-off, with
a decrease in performance of almost 15% on average.

Constrained-to-Unconstrained. We continue our experi-
mental analysis in a different, real-to-real scenario, by con-
sidering as source domain ROD and as target domains ROD
itself and ARID. We highlight that both ROD and ARID are
real datasets and their shift being only on the environments
they depict, constrained ROD and unconstrained ARID.
Fig. 3 shows the results. As expected, while they achieve
good performance on the same domain, all the methods
suffer a considerable drop in performances when tested under
domain shifts. However, this drop is even larger than the one
experienced in the synthetic-to-real case. In the closed world
with rejection (Fig. 3a), the models which had an average
accuracy of 65% on ROD, lose almost 45% of accuracy
when tested on ARID, obtaining performances close to 20%
accuracy. The same drop in accuracy happens in the closed
world with rejection scenario (Fig. 3b). The domain-shift
leads the models to confuse samples of the new domains
as unknowns, as demonstrated by the drop in performance
between ROD and ARID: in the latter, the accuracy with
rejection is barely 7% on average.

The overall performances with the OWR-H metric are very
unsatisfactory and there is a significant gap (almost 40%
on average) between the accuracy values reached on ROD
and ARID, considering all the three methods. These results
highlight how they significantly suffer when tested on data
belonging to new domains/environments and confirms our
conjecture that domain-shift is a huge problem for OWR
algorithms.

B. Can DG methods address the problem?

Given the poor results of OWR methods under domain-
shift, in this section we check whether single source DG
algorithms can be used to address this problem. For sake of
space, we consider the OWR-H metric for the comparisons.

Synthetic-to-Real. We start with the synthetic-to-real sce-
nario. Fig. 4 shows how the OWR-H of all methods changes
when equipped with a DG algorithm. While NNO experi-
ences a slight improvement, the performances of DeepNNO
and B-DOC largely benefit from DG techniques, especially
when the SC strategy [30] is applied. Indeed, the results
on ARID are 2 and 4 times higher than the originals for
DeepNNO and B-DOC respectively. Looking at the other DG
methods, they all improve DeepNNO and B-DOC on ROD,
while their performance on ARID varies, bringing no to little
gains. We ascribe the higher effectiveness of SC to the fact
that it regularizes the classifier, forcing it to i) focusing on
multiple cues and ii) achieving a lower confidence on the
predictions which might help in estimating better thresholds



(a) NNO - OWR Harmonic (b) DeepNNO - OWR Harmonic (c) B-DOC - OWR Harmonic
Fig. 4: Comparison of NNO [4], DeepNNO [6] and B-DOC [7] with Domain Generalization techniques when trained on
synROD [10] and tested on ROD [18] and ARID [19]. The numbers denote the average accuracy among the different
incremental steps.

(a) NNO - OWR Harmonic (b) DeepNNO - OWR Harmonic (c) B-DOC - OWR Harmonic
Fig. 5: Comparison of NNO [4], DeepNNO [6] and B-DOC [7] with Domain Generalization techniques when trained on
ROD [10] and tested on ARID [19]. The numbers denote the average accuracy among the different incremental steps.

for detecting unknown samples in different domains. As
stated above, for NNO, all the DG techniques have low to
even negative effect (Fig. 4a). This happens because NNO
does not fine-tune its representation across multiple training
stages, thus the DG method has a more limited impact.

For what concerns the other DG methods, while RR
[35] brings a slight improvement on almost all baselines
regardless of the scenario, RSDA [15] is more effective on
ROD rather then ARID. The reason is that synROD images
differ from ROD ones mainly in colors and shapes, thus using
precise data augmentation to bridge these differences leads
to a general improvement in performance. For ARID, this
occurs only partially due to other (different challenges) such
as occlusion and scale variations.

Despite these results, the domain-shift problem is still
heavily present, with an average drop from the synROD
performance of almost 10% on ROD and of 19% on ARID.

Constrained-to-Unconstrained. Finally, in this section we
analyze the effectiveness of DG techniques for models
trained on ROD and tested on ARID. We report in Fig. 5
the results. As the figure shows, all the DG methods bring
improvements to OWR methods in this scenario, even if in
different ways. For instance, SC leads to the highest perfor-
mances only for B-DOC, with 27.3% of accuracy, while for
DeepNNO and NNO, RSDA and RR are more effective. In
particular, despite the limited training phase in which the DG
algorithms act, NNO still benefits from them in this scenario,
with performances more than 3 times higher when coupled

with RR and RSDA. This means that the augmentations these
methods apply are effective in reducing the domain-shift
between ROD and ARID. However, compared to the original
results on ROD, the gaps are still impressive: NNO+RR
is still 40% lower than NNO applied on ROD. Similarly,
DeepNNO+RR and B-DOC+SC are almost 30% far from
their counterpart applied on ROD. These results confirm that
the domain-shift in OWR can be mitigated (but not solved)
using single-source DG algorithms.

C. Discussion and future directions

From the results of Section IV, we can draw two important
conclusions. First, OWR methods are not robust to domain-
shift, performing much worse when tested on input distri-
butions different from the training ones. Second, despite the
slight improvements, coupling methods for single-source DG
with OWR techniques is not sufficient to solve this problem.
After these conclusions, we want to highlight two open issues
which we believe the community should focus on to produce
OWR systems applicable in the real-world.
Domain-shift in recognition. OWR models need to be
capable of adapting to unseen domains quickly when applied
in the wild. In this work we highlighted how a combination
of DG and OWR methods is not enough to tackle this issue,
with poor recognition performances and wrong estimation
of the rejection thresholds. Future works could develop a
single model for the two problems and/or couple them with
algorithms exploiting the incoming stream of target data, in
an online DA fashion [11].



Domain-shift while learning. Current OWR algorithms
assume that data in each incremental step arrive from the
same input distribution. An open question is what would
happen if different incremental steps contain data from
different domains. Our intuition is that, while being more
prone to forgetting, a model will also tend to use domain
cues to perform a (wrong) prediction, which is something
we want definitely avoid. Disentangling domain-specific and
semantic-specific information in this scenario is very chal-
lenging and it might require either the use of unlabeled data
[42] or side-information [36].

V. CONCLUSION AND FUTURE WORKS

In this work we tested the robustness of OWR algorithms
to domain-shift. In particular, we proposed a cross-domain
benchmark for OWR containing multiple classes and ac-
quisition conditions. We then tested OWR algorithms in
this benchmark showing how: i) they heavily suffer from
the domain-shift problem; and ii) coupling them with DG
algorithms only mitigates this issue, being far from solving
it. According to the results, we highlighted some open issues
and future directions in this topic.

Finally, while these are some open issues of OWR sys-
tems, there are others not strictly related to domain-shift
that remain to be solved. An example is how to make the
model autonomously learn from the environment, inferring
the label of a detected unknown object and collecting the
data necessary to learn it, even from the web [6]. We believe
our results and considerations show how a collective effort
is needed to have practical and autonomous OWR systems
able to reliably act in the real world.
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