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Abstract: Computer-assisted analysis of three-dimensional imaging data (radiomics) has received
a lot of research attention as a possible means to improve the management of patients with lung
cancer. Building robust predictive models for clinical decision making requires the imaging features
to be stable enough to changes in the acquisition and extraction settings. Experimenting on 517
lung lesions from a cohort of 207 patients, we assessed the stability of 88 texture features from
the following classes: first-order (13 features), Grey-level Co-Occurrence Matrix (24), Grey-level
Difference Matrix (14), Grey-level Run-length Matrix (16), Grey-level Size Zone Matrix (16) and
Neighbouring Grey-tone Difference Matrix (five). The analysis was based on a public dataset of lung
nodules and open-access routines for feature extraction, which makes the study fully reproducible.
Our results identified 30 features that had good or excellent stability relative to lesion delineation, 28
to intensity quantisation and 18 to both. We conclude that selecting the right set of imaging features
is critical for building clinical predictive models, particularly when changes in lesion delineation
and/or intensity quantisation are involved.

Keywords: computed tomography; texture features; lung nodules; radiomics; lesion delineation;
intensity quantisation; stability

1. Introduction

Lung cancer, excluding skin cancer, is the second most common type of cancer in both
genders after prostate cancer in men and breast cancer in women [1,2]. Unfortunately, the
overall five-year survival rate of patients with lung cancer is still dismally low (≈18.6%)
and far below that of the other types of oncological disorders such as colorectal (≈64.5%),
breast (≈89.6%) and prostate (≈98.2%) cancer [2]. The survival rate, however, depends a
great deal on the stage of the disease when it is first diagnosed, ranging from a grim ≈5%
for distant tumours to ≈56% when the disease is still localized [2].

The effectiveness of lung cancer therapy strongly relies on early diagnosis. Chest
radiographies (CXRs), computed tomography (CT), magnetic resonance imaging (MRI),
positron emission tomography (PET), cytology sputum and breath analysis represent the
currently available detection techniques for lung cancer [3]. Computed tomography, in
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particular, plays a pivotal role in differentiating benign vs. malignant lung nodules in
the early screening phase. However, although CT scans provide valuable information
about suspicious lung nodules, their correct interpretation can be a challenging task for the
radiologist. In this context, computer-assisted diagnosis may provide a valid support for
the radiologist to contribute to the diagnostic process of lung cancer.

In recent years computerised analysis of imaging data (particularly from CT and
PET/CT) has shown great promises to improve the management of patients with lung
cancer [4–10]. The rationale behind this paradigm is that the quantitative extraction of
imaging parameters from suspicious lesions—particularly shape and texture features—may
reveal hidden patterns that would otherwise go unnoticed to the naked eye [11,12]. Fur-
thermore, the extraction of objective, reproducible and standardised imaging parameters
helps reduce the intra-observer and inter-observer bias and facilitates tracking changes
over time. Radiomics leverages on artificial intelligence techniques and the increasing
availability of large, open-access and multicentric datasets of pre-classified cases to infer
clinical information about unknown ones (‘population imaging’ approach [13]). Several
studies have underlined the potential benefit of radiomics for clinical problem-solving
in lung cancer, such as prediction of malignancy [14–16], histological subtype [17–19],
prognosis [20–22] and response to treatment [23–25] (see also Figure 1 for an overview of
potential applications).

Radiomics in
lung cancer

Computer-
assisted diagnosis

Triage and ther-
apy planning Follow up

Detection of sus-
picious nodules

Classification of
suspicious nodules

Prediction of
overall survival

Prediction of disease-
free survival

Prediction of re-
sponse to therapy

Assessment/tracking
of disease evolution

Figure 1. Potential applications of radiomics in lung cancer.

The radiomics pipeline consists of six steps [26]: (1) acquisition, (2) pre-processing,
(3) segmentation (also referred to as delineation), (4) feature extraction, (5) post-processing
and (6) data analysis/model building. The fourth step, which aims at extracting a set
of quantitative parameters from the region of interest, is central to the whole process
and various studies have shown that steps 1–3 can have significant impact on feature
extraction [27–32]. A current major research focus is therefore the assessment of the stability
of radiomics features to changes in image acquisition settings, signal pre-processing and
lesion delineation (see Traverso et al. [33] for a general review on the subject).

In particular, the repeatability and reproducibility of radiomics features from lung
lesions on CT has been investigated in a number of recent works. In [34] Balagurathan et al.
evaluated the test-retest reproducibility of texture and non-texture features from chest CT
scans to two consecutive acquisitions (on the same patient) taken within 15 min from one
another. Of the 329 features included in their study, they found that 29 (i.e., approximately
one in eleven) had a concordance correlation coefficient (CCC) > 0.9. The study by Seung-
Hak et al. [35] addressed the impact of voxel geometry and intensity quantisation on
260 lung nodules at CT; in this case the results indicated that nine of the 252 features
investigated had high reproducibility among the different experimental settings. As for
stability to lesion segmentation, Kalpathy-Cramer et al. [36] investigated 830 radiomics
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features from CT scans of pulmonary nodules at CT and determined that 68% of them had
CCC ≥ 0.75. Parmar et al. [37] compared the variability of radiomics features extracted
from automatically segmented lesions (3D-Slicer) with that of features from manually-
segmented ones and found higher reproducibility in the first case. Owens et al. [38]
examined the repeatability of 40 radiomics features from ten CT scans of non-small lung
cancer to manual and semi-automatic lesion delineation consequent to intra-observer,
inter-observer and inter-software variability. Similarly to [37], they concluded that semi-
automatic lesion delineation can provide better reproducible radiomics features than
manual segmentation. Tunali et al. [39] assessed the repeatability relative to the test-
retest of 264 radiomics features from the peritumoural area of lung lesions and their
stability to nine semi-automated lesion segmentation algorithms. They determined an
unlikely response between the different classes of texture features investigated with first-
order features generally showing better stability than the other groups. More recently,
Haarburger et al. [40] evaluated the stability of 89 shape and texture features to manual and
automatic lesion delineation, finding that 84% of the features investigated had intra-class
correlation coefficient (ICC) > 0.8.

One common shortcoming in the available studies, however, is that most of them
are based on proprietary datasets (with the notable exception of [40]) and custom feature
extraction routines, all of which renders the results difficult to reproduce. In this work
we investigated the stability of 88 textural features from CT scans of lung lesions to
delineation and intensity quantisation. To guarantee reproducibility we based our study
on a public dataset (LIDC-IDRI [41]) and on feature extraction routines from an open-
access package (PyRadiomics [42]). Furthermore, we made all the code used for the
experiments freely available to the public for future comparisons and evaluations. Our
results identified 30 features that had good or excellent stability to lesion delineation, 28 to
intensity quantisation and 18 to both.

2. Materials and Methods
2.1. Patient Population

The study population included a total of 517 lung lesions (axial diameter = 16.2 ±11.5 mm
(3.2–72.3 mm)) from a cohort of 207 patients (110 males, 97 females, age = 59.0 ± 14.7 year
(14–88 year)) who underwent thoracic computed tomography (CT) for lung cancer screen-
ing. The data were sourced from the open-access Lung Image Database Consortium col-
lection (LIDC-IDRI [41,43]). Since this is a multicentric dataset, different imaging systems,
acquisition protocols and image reconstruction settings were used and included among
them are the following: tube voltage 120–140 kV, in-plane pixel spacing 0.53–0.98 mm, slice
thickness 0.6–3.0 mm and slice spacing 0.5–3.0 mm. Each nodule was manually annotated
by one to five radiologists relative to subtlety (difficulty of detection), internal structure (soft,
fluid, fat or air), pattern of calcification (if present), sphericity, margin (sharp vs. poorly
defined), degree of lobulation, extent of spiculation, radiographic solidity (solid, non-
solid, ground-glass or mixed) and subjective assessment of the likelihood of malignancy
(from highly unlikely to highly suspicious). The complete (anonymous) list of the patient
IDs along with the main acquisition settings for each scan and that of each nodule with
the related annotations are provided as Supplementary Material (scans_metadata.csv,
nodules_metadata.csv). Further details about the study population can also be retrieved
from the LIDC-IDRI repository either through the pylidc interface or via direct access to
the DICOM data (see also Section 2.5 on this point). Scans with incomplete metadata (e.g.,
lack of patient’s gender and/or age were excluded from our study).

2.2. Image Preprocessing

Pre-processing involved uniform intensity discretisation within a fixed-width window.
The original CT signal was first clipped between CTmin = (µd − 2σd) and CTmax = (µd + 2σd),
where µd, σd, respectively, represent the mean and standard deviation of the average nodule
density in the dataset. The resulting bounds were CTmin = −583 HU and CTmax = 137 HU
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(window level =−223 HU, width = 720 HU). Intensity values below the lower bound or above
the upper bound were set to CTmin or CTmax, respectively. Uniform signal quantisation was
then applied using Ng = 32, 64, 128 and 256 discretisation levels, which in terms of bin width
corresponded to approximately 23 HU, 11 HU, 6 HU and 3 HU, respectively. No further
pre-processing operations such as filtering or spatial resampling/interpolation were applied.

2.3. Feature Extraction

A total of 88 textural features from six classes were included in this study (see
Tables 1 and 2 for the complete list). All the features are compliant with the Imaging
Biomarker Standardization Initiative (IBSI [44]); volume-confounded features were not
considered in the analysis. For mathematical definitions and formulae we refer the reader
to the documentation available in [42]. Grey-level co-occurrence matrix (GLCM), grey level
dependence matrix (GLDM) and Grey level size zone matrix (GLSZM) features were all
computed using inter-voxel distance δ = 1 and a three-dimensional 26-connectivity voxel
neighbourhood. Feature extraction was based on the open-source PyRadiomics package
(see also Section 2.5 for further details).

Table 1. Complete list (names and abbreviations) of the first-order, GLCM and GLDM features considered in this study. For
each class, the features are listed in column-wise alphabetical order.

First-Order features

Entropy (Entropy) Inter-quartile range (IQR) Kurtosis
Mean absolute deviation (MAD) Maximum (Max) Mean (Mean)
Median Minimum (Min) Range
Robust mean absolute deviation (RMAD) Standard deviation (Std) Skewness
Uniformity

Features from Grey-Level Co-Occurrence Matrix (GLCM)

Autocorrelation (Acorr) Cluster shade (ClShade) Cluster prominence (ClProm)
Cluster tendency (ClTen) Contrast (Contr) Correlation (Corr)
Difference average (DiffAvg) Difference entropy (DiffEnt) Difference variance (DiffVar)
Joint average (JointAvg) Joint energy (JointEnergy) Joint entropy (JointEntropy)
Informational measure of correlation ‘1’
(IMC1)

Informational measure of correlation ‘2’
(IMC2) Inverse difference (ID)

Inverse difference moment (IDM) Inverse difference moment normalised
(IDMN) Inverse difference normalised (IDN)

Inverse variance (InvVar) Maximal correlation coefficient (MCC) Maximum probability (MaxProb)
Sum average (SumAvg) Sum entropy (SumEnt) Sum of squares (SumSquares)

Features from Grey-Level Difference Matrix (GLDM)

Dependence entropy (DE) Dependence non-uniformity (DN) Dependence non-uniformity normalised
(DNN)

Dependence variance (DV) Grey-level non-uniformity (GLN) Grey-level variance (GLV)

High grey-level emphasis (HGLE) Large dependence emphasis (LDE) Large dependence high grey-level
emphasis (LDHGLE)

Large dependence low grey-level
emphasis (LDLGLE) Low grey-level emphasis (LGLE) Small dependence high grey-level

emphasis (SDHGLE)
Small dependence low grey-level
emphasis (SDLGLE) Small dependence emphasis (SDE)
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Table 2. Complete list (names and abbreviations) of the GLRLM, GLSZM and NGTDM texture features considered in this
study. For each class, the features are listed in column-wise alphabetical order.

Features from Grey-Level Run-Length Matrix (GLRLM)

Grey-level non-uniformity normalised
(GLNN) Grey-level non-uniformity (GLN) Grey-level variance (GLV)

High grey-level run emphasis (HGLRE) Long-run emphasis (LRE) Long-run high grey-level emphasis
(LRHGLE)

Long-run low grey-level emphasis
(LRLGLE) Low grey-level run emphasis (LGLRE) Run entropy (RE)

Run-length non-uniformity normalised
(RLNN) Run-length non-uniformity (RLN) Run percentage (RP)

Run variance (RV) Short-run emphasis (SRE) Short-run high grey-level emphasis
(SRHGLE)

Short-run low grey-level emphasis
(SRLGLE)

Features from Grey-Level Size-Zone Matrix (GLSZM)

Grey-level non-uniformity (GLN) Grey-level non-uniformity normalised
(GLNN) Grey-level variance (GLV)

High grey-level zone emphasis (HGLZE) Large area emphasis (LAE) Large area high grey-level emphasis
(LAHGLE)

Large area low grey-level emphasis
(LALGLE) Low grey-level zone emphasis (LGLZE) Size-zone non-uniformity (SZN)

Size-zone non-uniformity normalised
(SZNN) Small area emphasis (SAE) Small area high grey-level emphasis

(SAHGLE)
Small area low grey-level emphasis
(SALGLE) Zone entropy (ZE) Zone percentage (ZP)

Zone variance (ZV)

Features from Neighbouring Grey-Tone Difference Matrix (NGTDM)

Busyness Coarseness Complexity
Contrast Strength

2.4. Experimental Design and Stability Assessment

In order to assess the stability of the texture features to lesion delineation (A) and
intensity resampling (B), we considered two experimental scenarios with the following
combinations of factors (see also Table 3 and Figure 2 for a round-up):

(A) Fixed number of quantisation levels (Ng = 256) and four lesion delineations per
nodule; each delineation was generated by one different observer;

(B) Number of quantisation levels for intensity resampling Ng = 32, 64, 128 and 256
and fixed lesion delineations based on consensus consolidation at 50% agreement
level—that is, a voxel was considered in the lesion when at least 50% of the available
delineations included that voxel and not in the lesion otherwise.

In the first scenario (A) we limited the analysis to a subset of 206 nodules from
130 patients for which four lesion annotations were available for each nodule (see Figure 3
for an example of different delineation on the same nodule). The observers (raters) are
unknown and, due to the multicentric nature of the dataset, they are likely to be different
from one nodule to another. In the second scenario (B), we had four different (but fixed)
quantisation levels, which can be considered equivalent to different raters (Figure 4).
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CT data

Windowing
(-223 HU, 720 HU)

Resampling
Ng = 256

Delineation
(Four diff. observers)

Stability analysis

Stable features

CT data

Windowing
(-223 HU, 720 HU)

Resampling
(Ng = {32,64,128,256})

Delineation
(50% consensus)

Stability analysis

Stable features

Scenario (A) Scenario (B)

Figure 2. Flow charts of the experimental design for the two scenarios: lesion delineation (scenario A)
and intensity resampling (scenario B).

In both cases the assessment of feature stability was based on the average Symmetric
Mean Absolute Percentage Error (sMAPE [45,46]). Specifically, for each nodule and set
of raters (delineation or intensity resampling), we computed the average sMAPE for all
the observation pairs and averaged the results over the whole population. In formulas,
denoted with xij the reading on the i-th nodule by the j-th rater the by-nodule sMAPE Si is
defined as follows:

Si =
1

|P([J], 2)| ∑
( f ,t)∈P([J],2)

|x̂i − xi|
|x̂i|+ |xi|

× 100 (1)

where J is the number of raters and P([J], 2) denotes the 2-ordered subsets of [J], that
is, all the pairwise permutations of {1, . . . , J}. In other words, Si computes the average
sMAPE between pairs of readings each given by two observers, where one of the observers
is being alternatively considered the reference (therefore returning the ‘true’ value xi) or
the estimator (giving the ‘forecast’ value x̂i). One advantage of Si is that it counteracts
the intrinsic asymmetry—despite its name—of the sMAPE [46]. Furthermore, since it
is customary in the practice [45], we omitted the division by two from the summand’s
denominator in Equation (1), which forces Si to have values in [0, 100]. Finally, we obtained
the overall stability measure S by averaging Si over all the nodules:

S =
1
N

N

∑
i=1

Si (2)

where N is the total number of nodules. For an easier interpretation of the results we
established a qualitative scale of feature stability in four grades as detailed in Table 4.
A discussion about the use of sMAPE compared with other stability measures is also
presented in Section 4.

Table 3. Assessment of the stability of texture features against lesion delineation (A) and intensity
resampling (B): experimental settings.

Scenario Quantisation Lesion
Levels (Ng) Delineation

A 256 Four diff. observers
B {32,64,128,256} 50% consensus
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Table 4. Qualitative grading of feature stability and related colourmap based average on sMAPE.

Range Qualitative Label

0% ≤ S ≤ 5% Excellent
5% < S ≤ 10% Good
10% < S ≤ 20% Moderate

20% < S ≤ 100% Poor

Figure 3. Sample of a lung lesion and four manually delineated boundaries. Each annotation was
generated by a different observer. The orange arrow indicates the region of interest.

Figure 4. Effect of intensity resampling. Observe the difference in the texture granularity (subtle but
noticeable) particularly between Ng = 32 and Ng = 64. The orange arrow indicates the region of interest.

2.5. Implementation, Execution and Reproducible Research

The experiments were carried out on a laptop PC with Intel® Core™ i7-9750H CPU @
2.60 GHz, 32 GB RAM, NVIDIA Quadro T1000 (4 GB) graphics card and Windows 10 Pro
64-bit operating system. The implementation was based on Python 3.8.6, with functions
from dicom-parser 0.1.6 [47], NumPy 1.18.5 [48], Pandas 1.1.3 [49,50], pylidc 0.2.2 [51,52],
pynrrd 0.4.2 [53] and Py-Radiomics 3.0.1 [42,54]. For reproducible research purposes, all
the code and settings are available on the following GitHub repository: https://github.
com/bianconif/stability_radiomics_features_lung_ct, accessed on 3 July 2021.

3. Results

Tables 5–10 summarise the results of the experiments. As it can be observed, of the
88 features considered in the study, 18 showed good or excellent stability (defined as
S ≤ 10%) relative to both lesion delineation and intensity quantisation. Broken down by
class, the number (percentages) of features with at least good stability relative to both

https://github.com/bianconif/stability_radiomics_features_lung_ct
https://github.com/bianconif/stability_radiomics_features_lung_ct
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delineation and intensity quantisation were: 4/13 (≈31%) for first-order features, 6/24
(33%) for GLCM features, 1/14 (≈7%) for GLDM features, 5/16 (31%) for GLRLM features
and 2/16 (≈13%) for GLSZM features, whereas none of the five NGTDM features achieved
at least good stability relative to both conditions.

If we examine the results by class of features we observe that those of the first-order
(except Uniformity) all had at least good repeatability relative to intensity quantisation
(this is evident also from Figure 5). This is, of course, what we expected, as these features
(excluding Entropy and Uniformity) are by definition independent on signal quantisation—
apart from numerical round-off errors. It is also no surprise that Entropy and Uniformity
(Respectively defined as ‘Discretised intensity entropy’ and ‘Discretised intensity unifor-
mity’ in the Image Biomarker Standardisation Initiative [55]) exhibited the highest relative
error (9.40% and 23.05%, respectively ), for they depend—by definition—on the number
of quantisation levels used. Under the currently accepted formulations [42,55], Entropy
and Uniformity have values in [0, log2(Ng)] and [1/Ng, 1], respectively, which sets into
evidence the dependency on Ng. As for stability to lesion delineation, it emerged that Max
was the most stable feature. This is coherent with tissue density being usually highest in
the central area of the lesion, which is also the part of the tissue that most observers would
include in the delineation. The other parameters that had good to excellent stability were
Entropy, Range and Min.

For the other classes, Figure 5 indicates that the data about intensity quantisation were,
on the whole, more dispersed than those about lesion resampling. Features from GLCM
generally proved more resilient to changes in lesion delineation (half of them had S ≤ 10.0)
than intensity resampling (only seven features out of 24 reached at least good stability).
This is, again, coherent with the GLCM definition depending heavily on the number of
quantisation levels.

Table 5. Stability of the first-order features against lesion delineation and intensity resampling. S
indicates average sMAPE (Equation (2)).

Class Feature Name/Abbreviation
S

Delineation Resampling

First-order

Max 2.20% 5.53%
Entropy 4.62% 9.40%
Range 5.29% 0.48%
Min 6.27% 0.18%
Std 11.73% 0.21%
MAD 13.23% 0.24%
Kurtosis 13.64% 0.37%
IQR 16.53% 1.22%
RMAD 16.70% 1.28%
Uniformity 19.67% 23.05%
Mean 27.00% 0.23%
Median 30.41% 3.88%
Skewness 33.25% 2.04%
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Table 6. Stability of the GLCM features against lesion delineation and intensity resampling. S
indicates average sMAPE (Equation (2)).

Class Feature Name/Abbreviation
S

Delineation Resampling

GLCM

IDMN 1.00% 0.18%
IDN 1.19% 0.18%
IMC2 1.79% 2.42%
MCC 3.47% 6.36%
JointEntropy 4.59% 4.16%
IMC1 4.65% 16.48%
DiffEnt 4.82% 10.37%
SumEnt 5.11% 6.89%
SumAvg 8.39% 47.51%
JointAvg 8.39% 47.51%
ID 9.04% 26.59%
InvVar 9.24% 45.41%
DiffAvg 11.19% 49.33%
IDM 13.82% 31.38%
Acorr 14.56% 73.09%
JointEnergy 18.70% 17.75%
DiffVar 18.72% 75.07%
Contrast 19.09% 75.02%
SumSquares 22.76% 75.03%
MaxProb 24.29% 17.63%
ClTen 25.72% 75.04%
Correlation 26.25% 2.21%
ClProm 37.84% 93.04%
ClShade 41.33% 87.14%

Similar arguments hold for the other classes of texture features. In particular, GLDM
produced very few stable features: Only three of them showed at least good stability to
lesion delineation and only one to intensity resampling. It is worth recalling that GLDM
is based on the concept of ‘depending’ voxels [42,56]; that is, a neighbouring voxel is
considered dependent on the central voxel if the absolute difference between the intensity
values of the two is below a user-defined threshold α. For the threshold value we used the
default PyRadiomics settings (α = 0) and this may have had an effect—possibly negative—
on the stability of this group of features. Likewise, GLSZM features were highly sensitive
to signal quantisation too, which is again logical given the definition of GLSZM. Recall that
this is based on sets of connected voxels (grey zones) sharing the same grey-level intensity;
consequently, changes in signal quantisation are likely to produce different grey-zones,
with fewer quantisation levels resulting in larger grey-zones and vice versa. This inevitably
reflects on the feature values.

Notably, none of the NGTDM features proved resilient enough to both lesion delin-
eation and intensity resampling (Table 10). As for lesion delineation, only Busyness and
Strength attained excellent and good stability, respectively, whereas Coarseness was the
only feature with good stability to intensity resampling. Consider that NGTDM [42,57]
estimates the joint probability between the intensity level at one voxel and the average
intensity difference among its neighbour voxels; we speculate that changing the number
of resampling levels (Ng) may alter the joint distribution and this could explain the poor
stability to signal quantisation.
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Table 7. Stability of the GLDM features against lesion delineation and intensity resampling. S
indicates average sMAPE (Equation (2)).

Class Feature Name/Abbreviation
S

Delineation Resampling

GLDM

DE 2.07% 3.75%
SDE 5.21% 14.50%
DNN 7.87% 20.90%
DN 11.30% 20.90%
HGLE 13.97% 73.65%
LDHGLE 14.82% 57.47%
SDHGLE 14.93% 79.09%
LDE 20.42% 23.00%
GLN 20.82% 23.05%
GLV 21.63% 75.07%
DV 29.87% 28.08%
SDLGLE 32.51% 14.58%
LGLE 50.74% 13.23%
LDLGLE 66.38% 21.97%

Table 8. Stability of the GLRLM features against lesion delineation and intensity resampling. S
indicates average sMAPE (Equation (2)).

Class Feature Name/Abbreviation
S

Delineation Resampling

GLRLM

SRE 0.99% 0.99%
RP 1.31% 1.32%
RLNN 1.74% 2.28%
RE 2.73% 7.94%
LRE 4.29% 4.23%
RLN 12.26% 3.47%
LRHGLE 13.48% 71.63%
HGLRE 13.70% 73.97%
SRHGLE 13.86% 74.49%
GLNN 18.36% 23.90%
GLN 19.44% 22.79%
GLV 20.55% 75.03%
RV 27.81% 29.96%
SRLGLE 48.67% 14.15%
LGLRE 49.55% 14.27%
LRLGLE 54.69% 15.22%
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Table 9. Stability of the GLSZM features against lesion delineation and intensity resampling. S
indicates average sMAPE (Equation (2)).

Class Feature Name/Abbreviation
S

Delineation Resampling

GLSZM

SAE 1.27% 6.02%
SZNN 1.73% 12.22%
ZE 2.83% 6.16%
GLN 4.39% 21.01%
ZP 5.12% 12.13%
GLNN 9.73% 31.25%
SZN 12.00% 23.39%
HGLZE 13.07% 75.20%
SAHGLE 13.24% 77.21%
LAHGLE 13.92% 54.67%
GLV 16.62% 75.37%
LAE 26.69% 30.24%
SALGLE 35.27% 29.12%
LGLZE 35.43% 25.31%
ZV 38.64% 41.65%
LALGLE 69.24% 30.97%

Table 10. Stability of the NGTDM features against lesion delineation and intensity resampling. S
indicates average sMAPE (Equation (2)).

Class Feature Name/Abbreviation
S

Delineation Resampling

NGTDM

Strength 12.43% 65.11%
Contrast 21.15% 68.59%
Complexity 25.07% 82.65%
Busyness 30.30% 44.60%
Coarseness 31.63% 31.12%

Figure 5. Stability of the texture features by class. Each dot represents one texture feature; the
corresponding values are reported in Tables 5–10.
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4. Discussion

Radiomics has attracted increasing research interest in recent years as a possible means
to assist physicians in clinical decision making. Potential applications in pulmonary imag-
ing include, in particular, detection and assessment of suspicious lung nodules; prediction
of histological subtype, prognosis and response to treatment. The radiomics workflow in-
volves six steps, each of which is sensitive to a number of settings and parameters. Stability
of radiomics features to these settings is therefore critical for guaranteeing reproducibility
and consistency across multiple institutions.

Regarding stability to lesion delineation, a comparison with previously published
works indicate that our results are by and large in agreement with what was reported
by Haarburger et al. [40] concerning first-order, GLDM, GLSZM and GLRLM features.
However, our study indicated lower stability of GLCM and NGTDM features than reported
in [40]. One possible explanation of this discrepancy might be that the bin width used here
(≈3 HU) was different than adopted in [40] (25 HU). In [34] Balagurunatan et al. found
29 features stable to lesion delineation, of which five were also investigated in the present
work. Our findings show partial overlap with [34]: first-order Entropy and GLRLM RLN
achieved good stability in both studies; on the other hand, GLCM Contrast, GLRLM GLN
and RLN were stable in [34] but not here. As for intensity quantisation, Lee et al. [35]
reported three highly stable (ICC > 0.7) first-order features (Max, Min and Entropy), which
confirmed their performance (S ≤ 10%) in our experiments, and two GLCM features
(DiffEnt and Homogeneity—equivalent to ID); however, the reproducibility of the latter
two was only moderate (DiffEnt) and poor (ID) in our study. In Shafiq-Ul-Hassan et al.’s
phantom study [58], 11 texture features panned out as highly stable and defined as percent
coefficient of variation (%COV) below 30%. Out of them, the ones directly comparable with
the present work are first-order Uniformity (indicated as Energy in [58]); GLCM InvVar
and JointAvg; GLRLM GLN and RLN; and NGTDM Coarseness and Strength. Among
these only the GLCM ones attained good stability in our experiments, albeit the threshold
for ‘goodness’ adopted in [58] (%COV < 30%) was far more generous than can be used here
(S ≤ 10%).

One much debated question in radiomics is whether intensity resampling should
be absolute or relative [59]. In the first case, the window bounds are determined a priori
and are invariable across different scans and ROIs, whereas in the second case they are
relative to the region of interest. When intensity values represent quantities with the same
physical meaning across different scans (such as Hounsfield Units—assuming there are no
calibration errors) the use of absolute resampling seems logical [42,60] and this was the
decision made here. As detailed in Section 2.2, we determined the window bounds based
on the actual distribution of the intensity values in the whole dataset, but other choices
such as mediastinal (W:350, L:50) or lung (W:1500, L:−600) window would be reasonable
options as well. Notably, our results indicate that changes in intensity quantisation had
little consequence on most of the first-order features; whereas the effect on the other classes
was generally stronger and with much larger intra-class variability (see Figure 5). This
suggests that particular care should be taken in the selection of texture features different
than first-order when changes in signal quantisation are involved.

Another methodological point that requires further attention is what figure of merit
should be used for assessing feature stability. Althought Intra-class Correlation Coefficient
(ICC) is the common practice in the literature [35,37,38,40], we did not think this was the
correct choice here. There are two reasons behind this observation. First, ICC assumes a
statistical model where the true scores are normally distributed among the study popula-
tion [61], but of course this is not guaranteed. Second, in a multicentric study much of the
inter-subject variance may come from differences in parameters that are hard to control,
such as voxel size, slice thickness, tube voltage, etc., all of which may have unknown and
unpredictable effects on the estimated ICC. In order to avoid these potential problems we
based our evaluation on a direct measurement of intra-rater difference at the nodule level,
as for instance used in Varghese et al.’s phantom study [29], and averaged the result over
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the whole population. The resulting S (Equation (1)–(2)) avoids the unpredictable effects
consequent to between-nodule differences in the acquisition settings; furthermore, it has a
straightforward interpretation (values are bound between 0% and 100%) and does not rely
on any assumptions on the distribution of the underlying data.

Focussing on the potential implications of radiomics in clinical decision making, one
major problem related to the lack of feature stability is that the results are difficult to reuse
across multiple centres. If one centre determines that having a certain feature value above
a given threshold is predictive of malignancy in lung nodule screening, a second one
can reuse that result only if (a) the features are computed using the same settings or (b)
the features are stable enough. Concerning intensity quantisation, of course one sensible
approach would be to stick to one value (Ng = 256 is a common choice [16,62–64]) in order
to have comparable data. However, for some features simple mathematical transformations
could be applied to make the features independent of the number of quantisation levels
(see for instance Appendix A). In order to avoid or reduce the inter-observer bias related to
manual lesion delineation, automated and semi-automated methods offer great promises
in terms of speed, accuracy and repeatability [65]. Previous studies have shown that semi-
automated segmenters can improve on manual delineation and generate more reproducible
radiomics features [37,38].

5. Conclusions and Future Work

In recent years, the extraction of quantitative imaging features from lung lesions
on CT has attracted increasing research interest as a potential tool to improve diagnosis,
risk stratification and the follow-up of lung cancer. Still, the applicability of radiomics
across multiple institutions and on large populations of patients depends a great deal on
the robustness of the image features to changes in the acquisition settings, preprocessing
procedures and lesion delineation methods. In this context the objective of this work was
to evaluate the impact of lesion delineation and intensity quantisation on the stability
of texture features extracted from suspicious lung nodules on CT scans. Specifically, we
assessed the robustness of 88 texture features from six classes: first-order, GLCM, GLDM,
GLRLM, GLSZM and NGTDM. For reproducible research purposes, we carried out the
experiments on a public dataset of lung nodules (LIDC-IDRI) and employed open-source
tools (Python and PyRadiomics) for feature extraction. Implementation settings and code
are also available to the public for future comparisons and evaluation.

The results indicate that the impact of changes in lesion delineation and intensity
quantisation was important: of the 88 texture features included in the study, only 18 showed
good stability (S ≤ 10%) relative to both types of change. These findings suggest caution
when it comes to building predictive models involving CT features obtained with different
quantisation schemes and/or affected by contour variability. From a clinical standpoint,
our results are useful as they identify a set of stable CT texture features that can contribute
to the diagnosis of lung cancer. This is very important for the discovery of robust imaging
biomarkers that may help characterise lung lesions, particularly, in those cases where the
anatomical site or the clinical presentation of the patient rule out other invasive methods
(e.g., biopsy).

The present investigation indicates different directions for future research. In confirm-
ing previous studies [58], we found that most texture features were sensitive to intensity
quantisation of the CT signal. This suggests (a) that the mathematical formulations of
these features may need to be revised in order to remove such dependency (as for instance
proposed in Appendix A) and/or (b) that the number of quantisation level should be
defined/recommended in internationally-accepted guidelines (standardisation). Similarly,
the effects of intra-observer and inter-observer variability in lesion delineation could be
reduced by recurring to automated and semi-automated segmentation procedures. As
pointed out in [35], this is particularly critical in lung cancer where tumour progression is
associated with density changes in the core and peri-tumoural region. Hence, the need for
radiomics to take into account both areas.
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The following abbreviations are used in this manuscript (For texture features abbreviations please
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ACS American Cancer Society
CCC Concordance Correlation Coefficient
COV Coefficient of Variation
CT Computed Tomography
CXRs Chest radiographies
GLCM Grey-level Co-occurrence Matrix
GLDM Grey-level Difference Matrix
GLRLM Grey-level Run Length Matrix
GLSZM Grey-level Size-zone Matrix
ICC Intra-class Correlation Coefficient
HU Hounsfield Units
MRI Magnetic Resonance Imaging
NGTDM Neighbouring Grey-tone Difference Matrix
ROI Region of Interest
sMAPE Symmetric Mean Absolute Percentage Error
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Appendix A. Proposal for Normalised Formulations of First-Order Entropy
and Uniformity

The formulations of Entropy and Uniformity currently adopted in the literature [42,55]
are by definition dependent on the number of intensity levels Ng. We have the following:

Entropy = −
Ng

∑
i=1

log2[p(i)] (A1)

Uniformity =
Ng

∑
i=1

[p(i)]2 (A2)

where p(i) represents the probability of occurrence of the i-th intensity level. The following
are normalised formulations with values in [0, 1].

http://doi.org/10.7937/K9/TCIA.2015.LO9QL9SX
http://doi.org/10.7937/K9/TCIA.2015.LO9QL9SX
http://doi.org/10.7937/K9/TCIA.2015.LO9QL9SX
http://doi.org/10.7937/K9/TCIA.2015.LO9QL9SX
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Normalised Entropy = − 1
log2

(
Ng
) Ng

∑
i=1

log2[p(i)] (A3)

Normalised Uniformity =
Ng

1− Ng

{ Ng

∑
i=1

[p(i)]2 − 1
Ng

}
(A4)
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Med. 2020, 61, 488–495. [CrossRef]

13. Völzke, H.; Schmidt, C.; Hegenscheid, K.; Kühn, J.P.; Bamberg, F.; Lieb, W.; Kroemer, H.; Hosten, N.; Puls, R. Population imaging
as valuable tool for personalized medicine. Clin. Pharmacol. Ther. 2012, 92, 422–424. [CrossRef]

14. Chen, S.; Harmon, S.; Perk, T.; Li, X.; Chen, M.; Li, Y.; Jeraj, R. Diagnostic classification of solitary pulmonary nodules using dual
time 18F-FDG PET/CT image texture features in granuloma-endemic regions. Sci. Rep. 2017, 7, 9370. [CrossRef]

15. Hu, X.; Ye, W.; Li, Z.; Chen, C.; Cheng, S.; Lv, X.; Weng, W.; Li, J.; Weng, Q.; Pang, P.; et al. Non-invasive evaluation for benign and
malignant subcentimeter pulmonary ground-glass nodules (≤1 cm) based on CT texture analysis. Br. J. Radiol. 2020, 93, 20190762.
[CrossRef] [PubMed]

16. Palumbo, B.; Bianconi, F.; Palumbo, I.; Fravolini, M.; Minestrini, M.; Nuvoli, S.; Stazza, M.; Rondini, M.; Spanu, A. Value of shape
and texture features from 18F-FDG PET/CT to discriminate between benign and malignant solitary pulmonary nodules: An
experimental evaluation. Diagnostics 2020, 10, 696. [CrossRef]

17. Bianconi, F.; Palumbo, I.; Fravolini, M.; Chiari, R.; Minestrini, M.; Brunese, L.; Palumbo, B. Texture Analysis on [18F]FDG PET/CT
in Non-Small-Cell Lung Cancer: Correlations Between PET Features, CT Features, and Histological Types. Mol. Imaging Biol.
2019, 21, 1200–1209. [CrossRef] [PubMed]

18. Yan, M.; Wang, W. Development of a Radiomics Prediction Model for Histological Type Diagnosis in Solitary Pulmonary Nodules:
The Combination of CT and FDG PET. Front. Oncol. 2020, 10, 555514. [CrossRef] [PubMed]

19. Liu, H.; Jiao, Z.; Han, W.; Jing, B. Identifying the histologic subtypes of non-small cell lung cancer with computed tomography
imaging: A comparative study of capsule net, convolutional neural network, and radiomics. Quant. Imaging Med. Surg. 2021,
11, 2756–2765. [CrossRef]

20. Fried, D.; Tucker, S.; Zhou, S.; Liao, Z.; Mawlawi, O.; Ibbott, G.; Court, L. Prognostic value and reproducibility of pretreatment ct
texture features in stage III non-small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2014, 90, 834–842. [CrossRef] [PubMed]

21. Bianconi, F.; Fravolini, M.; Bello-Cerezo, R.; Minestrini, M.; Scialpi, M.; Palumbo, B. Evaluation of shape and textural features
from CT as prognostic biomarkers in non-small cell lung cancer. Anticancer. Res. 2018, 38, 2155–2160.

https://www.cancer.org/cancer/lung-cancer/about/key-statistics.html
https://www.cancer.org/cancer/lung-cancer/about/key-statistics.html
https://www.lung.org/lung-health-diseases/lung-disease-lookup/lung-cancer/resource-library/lung-cancer-fact-sheet
https://www.lung.org/lung-health-diseases/lung-disease-lookup/lung-cancer/resource-library/lung-cancer-fact-sheet
http://doi.org/10.1007/s10555-020-09901-x
http://www.ncbi.nlm.nih.gov/pubmed/32519151
http://dx.doi.org/10.21037/tcr.2016.06.18
http://dx.doi.org/10.1186/s13014-017-0885-x
http://www.ncbi.nlm.nih.gov/pubmed/28915902
http://dx.doi.org/10.1016/j.lungcan.2017.10.015
http://dx.doi.org/10.2214/AJR.18.20623
http://www.ncbi.nlm.nih.gov/pubmed/30620678
http://dx.doi.org/10.21037/jtd.2020.03.105
http://dx.doi.org/10.1016/j.phrs.2021.105643
http://www.ncbi.nlm.nih.gov/pubmed/33940185
http://dx.doi.org/10.3389/fonc.2021.603595
http://www.ncbi.nlm.nih.gov/pubmed/34026602
http://dx.doi.org/10.1186/s41747-018-0068-z
http://dx.doi.org/10.2967/jnumed.118.222893
http://dx.doi.org/10.1038/clpt.2012.100
http://dx.doi.org/10.1038/s41598-017-08764-7
http://dx.doi.org/10.1259/bjr.20190762
http://www.ncbi.nlm.nih.gov/pubmed/32686958
http://dx.doi.org/10.3390/diagnostics10090696
http://dx.doi.org/10.1007/s11307-019-01336-3
http://www.ncbi.nlm.nih.gov/pubmed/30847822
http://dx.doi.org/10.3389/fonc.2020.555514
http://www.ncbi.nlm.nih.gov/pubmed/33042839
http://dx.doi.org/10.21037/qims-20-734
http://dx.doi.org/10.1016/j.ijrobp.2014.07.020
http://www.ncbi.nlm.nih.gov/pubmed/25220716


Diagnostics 2021, 11, 1224 16 of 17

22. D’Amico, N.; Sicilia, R.; Cordelli, E.; Tronchin, L.; Greco, C.; Fiore, M.; Carnevale, A.; Iannello, G.; Ramella, S.; Soda, P.
Radiomics-based prediction of overall survival in lung cancer using different volumes-of-interest. Appl. Sci. 2020, 10, 6425.
[CrossRef]

23. Li, H.; Galperin-Aizenberg, M.; Pryma, D.; Simone, C.; Fan, Y. Unsupervised machine learning of radiomic features for predicting
treatment response and overall survival of early stage non-small cell lung cancer patients treated with stereotactic body. Radiother.
Oncol. 2018, 129, 218–226. [CrossRef] [PubMed]

24. Carles, M.; Fechter, T.; Radicioni, G.; Schimek-Jasch, T.; Adebahr, S.; Zamboglou, C.; Nicolay, N.; Martí-Bonmatí, L.; Nestle, U.;
Grosu, A.; et al. FDG-PET radiomics for response monitoring in non-small-cell lung cancer treated with radiation therapy.
Cancers 2021, 13, 814. [CrossRef] [PubMed]

25. Zerunian, M.; Caruso, D.; Zucchelli, A.; Polici, M.; Capalbo, C.; Filetti, M.; Mazzuca, F.; Marchetti, P.; Laghi, A. CT based radiomic
approach on first line pembrolizumab in lung cancer. Sci. Rep. 2021, 11, 6633. [CrossRef] [PubMed]

26. Bianconi, F.; Palumbo, I.; Spanu, A.; Nuvoli, S.; Fravolini, M.; Palumbo, B. PET/CT radiomics in lung cancer: An overview. Appl.
Sci. 2020, 5, 1718. [CrossRef]

27. Fave, X.; Zhang, L.; Yang, J.; Mackin, D.; Balter, P.; Gomez, D.; Followill, D.; Jones, A.; Stingo, F.; Court, L. Impact of image
preprocessing on the volume dependence and prognostic potential of radiomics features in non-small cell lung cancer. Transl.
Cancer Res. 2016, 5, 349–363. [CrossRef]

28. Ger, R.; Zhou, S.; Chi, P.C.; Lee, H.; Layman, R.; Jones, A.; Goff, D.; Fuller, C.; Howell, R.; Li, H.; et al. Comprehensive
Investigation on Controlling for CT Imaging Variabilities in Radiomics Studies. Sci. Rep. 2018, 8, 13047. [CrossRef]

29. Varghese, B.; Hwang, D.; Cen, S.; Levy, J.; Liu, D.; Lau, C.; Rivas, M.; Desai, B.; Goodenough, D.; Duddalwar, V. Reliability of
CT-based texture features: Phantom study. J. Appl. Clin. Med. Phys. 2019, 20, 155–163. [CrossRef]

30. Sosna, J. Fewer reproducible radiomic features mean better reproducibility within the same patient. Radiology 2019, 293.
[CrossRef]

31. Fornacon-Wood, I.; Faivre-Finn, C.; O’Connor, J.; Price, G. Radiomics as a personalized medicine tool in lung cancer: Separating
the hope from the hype. Lung Cancer 2020, 146, 197–208. [CrossRef]

32. Fornacon-Wood, I.; Mistry, H.; Ackermann, C.; Blackhall, F.; McPartlin, A.; Faivre-Finn, C.; Price, G.; O’Connor, J. Reliability
and prognostic value of radiomic features are highly dependent on choice of feature extraction platform. Eur. Radiol. 2020,
30, 6241–6250. [CrossRef]

33. Traverso, A.; Wee, L.; Dekker, A.; Gillies, R. Repeatability and Reproducibility of Radiomic Features: A Systematic Review. Int. J.
Radiat. Oncol. Biol. Phys. 2018, 102, 1143–1158. [CrossRef] [PubMed]

34. Balagurunathan, Y.; Gu, Y.; Wang, H.; Kumar, V.; Grove, O.; Hawkins, S.; Kim, J.; Goldgof, D.; Hall, L.; Gatenby, R.; et al.
Reproducibility and prognosis of quantitative features extracted from CT images. Transl. Oncol. 2014, 7, 72–87. [CrossRef]

35. Lee, S.H.; Cho, H.H.; Lee, H.; Park, H. Clinical impact of variability on CT radiomics and suggestions for suitable feature selection:
A focus on lung cancer. Cancer Imaging 2019, 19, 54. [CrossRef]

36. Kalpathy-Cramer, J.; Mamomov, A.; Zhao, B.; Lu, L.; Cherezov, D.; Napel, S.; Echegaray, S.; Rubin, D.; McNitt-Gray, M.;
Lo, P.; et al. Radiomics of Lung Nodules: A Multi-Institutional Study of Robustness and Agreement of Quantitative Imaging
Features. Tomography 2016, 2, 430–437. [CrossRef]

37. Parmar, C.; Velazquez, E.; Leijenaar, R.; Jermoumi, M.; Carvalho, S.; Mak, R.; Mitra, S.; Shankar, B.; Kikinis, R.;
Haibe-Kains, B.; et al. Robust radiomics feature quantification using semiautomatic volumetric segmentation. PLoS
ONE 2014, 9, e102107. [CrossRef] [PubMed]

38. Owens, C.; Peterson, C.; Tang, C.; Koay, E.; Yu, W.; Mackin, D.; Li, J.; Salehpour, M.; Fuentes, D.; Court, L.; et al. Lung
tumor segmentation methods: Impact on the uncertainty of radiomics features for non-small cell lung cancer. PLoS ONE 2018,
13, e0205003. [CrossRef]

39. Tunali, I.; Hall, L.; Napel, S.; Cherezov, D.; Guvenis, A.; Gillies, R.; Schabath, M. Stability and reproducibility of computed
tomography radiomic features extracted from peritumoral regions of lung cancer lesions. Med. Phys. 2019, 46, 5075–5085.
[CrossRef] [PubMed]

40. Haarburger, C.; Müller-Franzes, G.; Weninger, L.; Kuhl, C.; Truhn, D.; Merhof, D. Radiomics feature reproducibility under
inter-rater variability in segmentations of CT images. Sci. Rep. 2020, 10, 12688. [CrossRef]

41. Armato, S., III.; McLennan, G.; Bidaut, L.; McNitt-Gray, M.; Meyer, C.; Reeves, A.; Zhao, B.; Aberle, D.; Henschke, C.; Hoffman,
E.; et al. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A completed reference
database of lung nodules on CT scans. Med. Phys. 2011, 38, 915–931. [CrossRef]

42. Py-Radiomics: Open-Source Radiomics Library Written in Python. Available online: https://www.radiomics.io/pyradiomics.
html (accessed on 18 March 2021).

43. The Cancer Imaging Archive (TCIA). Available online: http://www.cancerimagingarchive.net/ (accessed on 17 March 2021).
44. Hatt, M.; Vallieres, M.; Visvikis, D.; Zwanenburg, A. IBSI: An international community radiomics standardization initiative. J.

Nucl. Med. 2018, 59, 287.
45. Lewinson, E. Choosing the Correct Error Metric: MAPE vs. sMAPE. Towards Data Science. 2020. Available online:

https://towardsdatascience.com/choosing-the-correct-error-metric-mape-vs-smape-5328dec53fac (accessed on 30 April 2021).
46. Goodwin, P.; Lawton, R. On the asymmetry of the symmetric MAPE. Int. J. Forecast. 1999, 15, 405–408. [CrossRef]
47. Dicom-Parser. Available online: https://pypi.org/project/dicom-parser/ (accessed on 18 March 2021).

http://dx.doi.org/10.3390/app10186425
http://dx.doi.org/10.1016/j.radonc.2018.06.025
http://www.ncbi.nlm.nih.gov/pubmed/30473058
http://dx.doi.org/10.3390/cancers13040814
http://www.ncbi.nlm.nih.gov/pubmed/33672052
http://dx.doi.org/10.1038/s41598-021-86113-5
http://www.ncbi.nlm.nih.gov/pubmed/33758304
http://dx.doi.org/10.3390/app10051718
http://dx.doi.org/10.21037/tcr.2016.07.11
http://dx.doi.org/10.1038/s41598-018-31509-z
http://dx.doi.org/10.1002/acm2.12666
http://dx.doi.org/10.1148/radiol.2019191958
http://dx.doi.org/10.1016/j.lungcan.2020.05.028
http://dx.doi.org/10.1007/s00330-020-06957-9
http://dx.doi.org/10.1016/j.ijrobp.2018.05.053
http://www.ncbi.nlm.nih.gov/pubmed/30170872
http://dx.doi.org/10.1593/tlo.13844
http://dx.doi.org/10.1186/s40644-019-0239-z
http://dx.doi.org/10.18383/j.tom.2016.00235
http://dx.doi.org/10.1371/journal.pone.0102107
http://www.ncbi.nlm.nih.gov/pubmed/25025374
http://dx.doi.org/10.1371/journal.pone.0205003
http://dx.doi.org/10.1002/mp.13808
http://www.ncbi.nlm.nih.gov/pubmed/31494946
http://dx.doi.org/10.1038/s41598-020-69534-6
http://dx.doi.org/10.1118/1.3528204
https://www.radiomics.io/pyradiomics.html
https://www.radiomics.io/pyradiomics.html
http://www.cancerimagingarchive.net/
https://towardsdatascience.com/choosing-the-correct-error-metric-mape-vs-smape-5328dec53fac
http://dx.doi.org/10.1016/S0169-2070(99)00007-2
https://pypi.org/project/dicom-parser/


Diagnostics 2021, 11, 1224 17 of 17

48. Harris, C.; Millman, K.; van der Walt, S.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.; et al.
Array programming with NumPy. Nature 2020, 585, 357–362. [CrossRef]

49. McKinney, W. Data structures for statistical computing in python. In Proceedings of the 9th Python in Science Conference
(SciPy 2010), Austin, TX, USA, 28–30 June 2010; Stéfan van der, W., Jarrod, M., Eds.; 2010; pp. 56–61. Available online:
https://conference.scipy.org/proceedings/scipy2010/mckinney.html (accessed on 3 July 2021).

50. The Pandas Development Team. pandas-dev/pandas: Pandas, 2020. Available online: https://zenodo.org/record/3630805#
.YORK2kxRVPY (accessed on 3 July 2021). [CrossRef]

51. Hancock, M.; Magnan, J. Lung nodule malignancy classification using only radiologist-quantified image features as inputs to
statistical learning algorithms: Probing the Lung Image Database Consortium dataset with two statistical learning methods. J.
Med. Imaging 2016, 3, 044504. [CrossRef] [PubMed]

52. Pylidc: Object-Relational Mapping for the Data Provided in the LIDC Dataset. Available online: https://pylidc.github.io/index.
html (accessed on 18 March 2021).

53. Pynrrd: Pure Python Module for Reading and Writing NRRD Files. Available online: https://pypi.org/project/pynrrd/
(accessed on 11 May 2021).

54. van Griethuysen, J.; Fedorovand, A.; Parmarand, C.; Hosnyand, A.; Vivek Narayanand, A.; Beets-Tanand, R.; Fillion-Robinand, J.C.;
Pieperand, S.; Aerts, H. Computational Radiomics System to decode the Radiographic Phenotype. Cancer Res. 2017,
77, e104–e107. [CrossRef] [PubMed]

55. Various Authors. The Image Biomarker Standardisation Initiative. Available online: https://ibsi.readthedocs.io/en/latest/
index.html (accessed on 4 May 2021).

56. Sun, C.; Wee, W. Neighboring gray level dependence matrix for texture classification. Comput. Vision Graph. Image Process. 1983,
23, 341–352. [CrossRef]

57. Adamasun, M.; King, R. Textural features corresponding to textural properties. IEEE Trans. Syst. Man Cybern. 1989, 19, 1264–1274.
[CrossRef]

58. Shafiq-Ul-Hassan, M.; Zhang, G.; Latifi, K.; Ullah, G.; Hunt, D.; Balagurunathan, Y.; Abdalah, M.; Schabath, M.; Goldgof, D.;
Mackin, D.; et al. Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. Med. Phys. 2017,
44, 1050–1062. [CrossRef]

59. van Timmeren, J.; Cester, D.; Tanadini-Lang, S.; Alkadhi, H.; Baessler, B. Radiomics in medical imaging–“how-to” guide and
critical reflection. Insights Imaging 2020, 11, 91. [CrossRef]

60. LIFEx Soft. FAQ of Texture. 2021. Available online: https://www.lifexsoft.org/index.php/support/faq-of-texture (accessed on
28 April 2021).

61. Liljequist, D.; Elfving, B.; Roaldsen, K. Intraclass correlation – A discussion and demonstration of basic features. PLoS ONE 2019,
14, e0219854. [CrossRef] [PubMed]

62. Suo, S.; Cheng, J.; Cao, M.; Lu, Q.; Yin, Y.; Xu, J.; Wu, H. Assessment of Heterogeneity Difference Between Edge and Core by
Using Texture Analysis: Differentiation of Malignant From Inflammatory Pulmonary Nodules and Masses. Acad. Radiol. 2016,
23, 1115–1122. [CrossRef]

63. Chen, C.H.; Chang, C.K.; Tu, C.Y.; Liao, W.C.; Wu, B.R.; Chou, K.T.; Chiou, Y.R.; Yang, S.N.; Zhang, G.; Huang, T.C. Radiomic
features analysis in computed tomography images of lung nodule classification. PLoS ONE 2018, 13, e0192002. [CrossRef]
[PubMed]

64. McNitt-Gray, M.; Napel, S.; Jaggi, A.; Mattonen, S.; Hadjiiski, L.; Muzi, M.; Goldgof, D.; Balagurunathan, Y.; Pierce, L.; Kinahan,
P.; et al. Standardization in Quantitative Imaging: A Multicenter Comparison of Radiomic Features from Different Software
Packages on Digital Reference Objects and Patient Data Sets. Tomography 2020, 6, 118–128. [CrossRef] [PubMed]

65. Bianconi, F.; Fravolini, M.; Pizzoli, S.; Palumbo, I.; Minestrini, M.; Rondini, M.; Nuvoli, S.; Spanu, A.; Palumbo, B. Comparative
evaluation of conventional and deep learning methods for semi-automated segmentation of pulmonary nodules on CT. Quant.
Imaging Med. Surg. 2021, 11, 3286–3305. [CrossRef]

http://dx.doi.org/10.1038/s41586-020-2649-2
https://conference.scipy.org/proceedings/scipy2010/mckinney.html
https://zenodo.org/record/3630805#.YORK2kxRVPY
https://zenodo.org/record/3630805#.YORK2kxRVPY
http://dx.doi.org/10.5281/zenodo.3509134
http://dx.doi.org/10.1117/1.JMI.3.4.044504
http://www.ncbi.nlm.nih.gov/pubmed/27990453
https://pylidc.github.io/index.html
https://pylidc.github.io/index.html
https://pypi.org/project/pynrrd/
http://dx.doi.org/10.1158/0008-5472.CAN-17-0339
http://www.ncbi.nlm.nih.gov/pubmed/29092951
https://ibsi.readthedocs.io/en/latest/index.html
https://ibsi.readthedocs.io/en/latest/index.html
http://dx.doi.org/10.1016/0734-189X(83)90032-4
http://dx.doi.org/10.1109/21.44046
http://dx.doi.org/10.1002/mp.12123
http://dx.doi.org/10.1186/s13244-020-00887-2
https://www.lifexsoft.org/index.php/support/faq-of-texture
http://dx.doi.org/10.1371/journal.pone.0219854
http://www.ncbi.nlm.nih.gov/pubmed/31329615
http://dx.doi.org/10.1016/j.acra.2016.04.009
http://dx.doi.org/10.1371/journal.pone.0192002
http://www.ncbi.nlm.nih.gov/pubmed/29401463
http://dx.doi.org/10.18383/j.tom.2019.00031
http://www.ncbi.nlm.nih.gov/pubmed/32548288
http://dx.doi.org/10.21037/qims-20-1356

	Introduction
	Materials and Methods
	Patient Population
	Image Preprocessing
	Feature Extraction
	Experimental Design and Stability Assessment
	Implementation, Execution and Reproducible Research

	Results
	Discussion
	Conclusions and Future Work
	Proposal for Normalised Formulations of First-Order Entropy and Uniformity
	References

